JP2019213311A - Vibration wave motor and driving device having vibration wave motor - Google Patents

Vibration wave motor and driving device having vibration wave motor Download PDF

Info

Publication number
JP2019213311A
JP2019213311A JP2018105853A JP2018105853A JP2019213311A JP 2019213311 A JP2019213311 A JP 2019213311A JP 2018105853 A JP2018105853 A JP 2018105853A JP 2018105853 A JP2018105853 A JP 2018105853A JP 2019213311 A JP2019213311 A JP 2019213311A
Authority
JP
Japan
Prior art keywords
vibrator
vibration wave
wave motor
pressure
vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018105853A
Other languages
Japanese (ja)
Inventor
健太 ▲高▼井
健太 ▲高▼井
Kenta Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018105853A priority Critical patent/JP2019213311A/en
Publication of JP2019213311A publication Critical patent/JP2019213311A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a compact vibration wave motor that achieves thinning.SOLUTION: A vibration wave motor 100 comprises: a plurality of vibrators 103A, 103B constituted of a piezoelectric element 101 and a vibration plate 102; a friction member 104A having a friction contact surface 104c that contacts the vibrator 103A; pressurizing means that pressurizes the vibrator 103A against the friction member 104A; and guiding means 112 that guides a relative movement between the vibrator 103A and the friction member 104A. The vibrator 103A and the friction member 104A relatively move due to the vibration generated by the vibrator 103A. A direction in which the pressurizing means presses each of the plurality of vibrators 103A, 103B intersects a direction of the relative movement on a vertical plane. The pressurizing means is rotatably held by a rotation shaft 107A and presses each of the plurality of vibrators 103A and 103B in different rotation directions.SELECTED DRAWING: Figure 2

Description

本発明は、振動波モータ及び振動波モータを有する駆動装置に関する。   The present invention relates to a vibration wave motor and a driving device having the vibration wave motor.

従来の直動型超音波モータでは、圧電素子に高周波電圧を印加することで圧電素子が固定された振動子を振動させている。振動子の振動により、振動子に押圧される摩擦部材が高効率に駆動される。例えば、特許文献1の直動型超音波モータは、複数の振動子を有して構成することで、より大きな駆動力を発生させることができる。   In a conventional direct acting ultrasonic motor, a vibrator to which a piezoelectric element is fixed is vibrated by applying a high frequency voltage to the piezoelectric element. The friction member pressed by the vibrator is driven with high efficiency by the vibration of the vibrator. For example, the direct acting ultrasonic motor of Patent Document 1 can generate a larger driving force by having a plurality of vibrators.

特開2016−101022号公報JP, 2006-101022, A

しかしながら、特許文献1に開示された直動型超音波モータでは、複数の振動子を加圧する加圧方向が平行になっており、さらに加圧部材が加圧方向に積層して配置されているため、加圧方向の厚さの低減には限界があった。   However, in the direct acting ultrasonic motor disclosed in Patent Document 1, the pressing directions for pressing a plurality of vibrators are parallel, and further, the pressing members are stacked in the pressing direction. Therefore, there is a limit to reducing the thickness in the pressing direction.

そこで、本発明の目的は、薄型化を実現したコンパクトな振動波モータを提供することである。   Therefore, an object of the present invention is to provide a compact vibration wave motor that is thin.

上記課題を解決するために、本発明の振動波モータは、圧電素子と振動板とからなる複数の振動子と、前記振動子と接触する摩擦接触面を有する摩擦部材と、前記振動子を前記摩擦部材に加圧する加圧手段と、前記振動子と前記摩擦部材との相対移動をガイドするガイド手段と、を備え、前記振動子が発生する振動により前記振動子と前記摩擦部材とが前記相対移動し、前記加圧手段が複数の前記振動子の各々を加圧する方向は、前記相対移動の方向と鉛直な面上で交差し、前記加圧手段は回転軸に回動可能に保持され、複数の前記振動子の各々を異なる回転方向に加圧することを特徴とする。   In order to solve the above problems, a vibration wave motor according to the present invention includes a plurality of vibrators each including a piezoelectric element and a diaphragm, a friction member having a friction contact surface in contact with the vibrator, and the vibrator including the vibrator. Pressurizing means for pressurizing the friction member; and guide means for guiding relative movement between the vibrator and the friction member, and the vibrator and the friction member are moved relative to each other by vibration generated by the vibrator. The direction in which the pressurizing unit moves and pressurizes each of the plurality of vibrators intersects the direction of the relative movement on a vertical plane, and the pressurizing unit is rotatably held on a rotating shaft, Each of the plurality of vibrators is pressurized in different rotation directions.

本発明によれば、薄型化を実現したコンパクトな振動波モータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the compact vibration wave motor which implement | achieved thickness reduction can be provided.

実施例1の振動波モータ100の平面図である。1 is a plan view of a vibration wave motor 100 of Example 1. FIG. 実施例1の振動波モータ100の断面図である。1 is a cross-sectional view of a vibration wave motor 100 according to a first embodiment. (A)〜(C)構成部材の位置がずれた場合を示す実施例1の振動波モータ100の断面図である。It is sectional drawing of the vibration wave motor 100 of Example 1 which shows the case where the position of (A)-(C) structural member has shifted | deviated. (A)従来の直動型超音波モータ900を実装したレンズ装置の断面図である。(B)実施例1の振動波モータ100を実装したレンズ装置の断面図である。(A) It is sectional drawing of the lens apparatus which mounted the conventional linear motion type ultrasonic motor 900. FIG. (B) It is sectional drawing of the lens apparatus which mounted the vibration wave motor 100 of Example 1. FIG. 実施例2の振動波モータ200の正面図である。It is a front view of the vibration wave motor 200 of Example 2. FIG. 実施例2の振動波モータ200の断面図である。FIG. 6 is a cross-sectional view of a vibration wave motor 200 according to a second embodiment. 実施例1の振動波モータ100を搭載したレンズ鏡筒20とカメラ本体10の断面図である。1 is a cross-sectional view of a lens barrel 20 and a camera body 10 on which a vibration wave motor 100 of Example 1 is mounted.

(実施例1)
以下、本発明の好ましい各実施例を添付の図面に基づいて説明する。図1は、本発明の実施例1に係る直動型振動波モータ(以下、「振動波モータ100」とする。)の平面図である。また、図2は、図1の断面線II−IIにおける振動波モータ100の断面図である。図1及び図2を参照して、本実施例1における振動波モータ100の構成を説明する。なお、以下の説明では、後述のデジタルカメラのレンズ鏡筒20などを駆動するアクチュエータとしてユニット化された振動波モータ100を例に説明する。しかしながら、本発明の使用用途はこれに限られたものではない。
(Example 1)
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view of a direct acting vibration wave motor (hereinafter referred to as “vibration wave motor 100”) according to Embodiment 1 of the present invention. 2 is a cross-sectional view of the vibration wave motor 100 taken along a cross-sectional line II-II in FIG. With reference to FIG.1 and FIG.2, the structure of the vibration wave motor 100 in the present Example 1 is demonstrated. In the following description, a vibration wave motor 100 unitized as an actuator for driving a lens barrel 20 of a digital camera, which will be described later, will be described as an example. However, the usage of the present invention is not limited to this.

本実施例1における振動波モータ100は、第一の振動子103Aと第二の振動子103Bの2つを有する。第一の振動子103Aと第二の振動子103Bの基本構成は同じであるので、第二の振動子103B及びこれに係る部材については括弧書きで示し、必要に応じて説明する。なお、図面において、同一符号は同一部材を示している。   The vibration wave motor 100 according to the first embodiment includes the first vibrator 103A and the second vibrator 103B. Since the basic configuration of the first vibrator 103A and the second vibrator 103B is the same, the second vibrator 103B and members related thereto are shown in parentheses and will be described as necessary. In the drawings, the same reference numerals indicate the same members.

本明細書中において、第一の振動子103A(103B)と第一の摩擦部材104A(104B)が相対移動する方向をX軸方向とする。第一の振動子103Aが加圧される第一の摩擦部材104Aの摩擦接触面104cと、第二の振動子103Bが加圧される第二の摩擦部材104Bの摩擦接触面104cとがなす角度の二等分線が延在する方向をZ軸方向とする。なお、第一の振動子103Aから第一の摩擦部材104Aへの向きを略−Z軸方向、第一の摩擦部材104Aから第一の振動子103Aへの向きを略+Z軸方向と定義する。また、X軸方向及びZ軸方向に直交する方向をY軸方向とする。本実施例1における振動波モータ100は、X軸方向に長軸を有し、以下に説明する各部材により構成されている。   In this specification, the direction in which the first vibrator 103A (103B) and the first friction member 104A (104B) move relative to each other is defined as the X-axis direction. Angle formed by the friction contact surface 104c of the first friction member 104A to which the first vibrator 103A is pressed and the friction contact surface 104c of the second friction member 104B to which the second vibrator 103B is pressed The direction in which the bisector extends is the Z-axis direction. The direction from the first vibrator 103A to the first friction member 104A is defined as a substantially −Z axis direction, and the direction from the first friction member 104A to the first vibrator 103A is defined as a substantially + Z axis direction. A direction orthogonal to the X-axis direction and the Z-axis direction is taken as a Y-axis direction. The vibration wave motor 100 according to the first embodiment has a long axis in the X-axis direction and is configured by members described below.

第一の振動子103A(103B)は、振動板102と圧電素子101により構成されている。圧電素子101は、振動板102に公知の接着剤等により固定されているが、振動板102と圧電素子101との接着は、接着されればその方法は限定されない。振動板102は、圧電素子101が固定された面の反対側の面にさらに摩擦接触部102cを備え、摩擦接触部102cは、摩擦接触面104cに押圧を伴う加圧接触状態で接触している。   The first vibrator 103 </ b> A (103 </ b> B) includes the diaphragm 102 and the piezoelectric element 101. The piezoelectric element 101 is fixed to the diaphragm 102 with a known adhesive or the like, but the method of bonding the diaphragm 102 and the piezoelectric element 101 is not limited as long as they are bonded. The vibration plate 102 further includes a friction contact portion 102c on the surface opposite to the surface on which the piezoelectric element 101 is fixed, and the friction contact portion 102c is in contact with the friction contact surface 104c in a pressure contact state with pressing. .

圧電素子101に高周波電圧を印加することにより超音波領域の周波数の高周波振動(超音波振動)が励振される。圧電素子101に超音波振動が発生することで、振動板102と圧電素子101により構成された第一の振動子103A(103B)に共振現象が起こり、振動板102の摩擦接触部102cに楕円運動が発生する。圧電素子101に印加される高周波電圧の周波数や位相を変えることで、楕円運動の回転方向や楕円比を適宜変化させて所望の動きを得ることができる。   By applying a high-frequency voltage to the piezoelectric element 101, high-frequency vibration (ultrasonic vibration) having a frequency in the ultrasonic region is excited. When ultrasonic vibration is generated in the piezoelectric element 101, a resonance phenomenon occurs in the first vibrator 103 </ b> A (103 </ b> B) configured by the diaphragm 102 and the piezoelectric element 101, and elliptical motion occurs in the frictional contact portion 102 c of the diaphragm 102. Will occur. By changing the frequency and phase of the high-frequency voltage applied to the piezoelectric element 101, a desired motion can be obtained by appropriately changing the rotational direction and ellipticity ratio of the elliptical motion.

第一の振動子103A(103B)は、第一の振動子支持部材105A(105B)に共振現象を阻害しない公知の方法で固定されている。第一の振動子支持部材105A(105B)は、第一の振動子103A(103B)の振動板102が第一の摩擦部材104A(104B)に加圧される加圧方向に移動可能な公知の方法により振動子連結部材106に保持されている。すなわち、第一の振動子103A(103B)は、摩擦接触面104cと略鉛直方向に移動可能に保持されている。   The first vibrator 103A (103B) is fixed to the first vibrator support member 105A (105B) by a known method that does not inhibit the resonance phenomenon. The first vibrator support member 105A (105B) is known in the art so that the diaphragm 102 of the first vibrator 103A (103B) can move in the pressing direction in which the first friction member 104A (104B) is pressed. The vibrator connecting member 106 is held by the method. That is, the first vibrator 103A (103B) is held so as to be movable in a substantially vertical direction with respect to the friction contact surface 104c.

X軸方向から見たときに、第一の摩擦部材104Aの摩擦接触面104cと第二の摩擦部材104Bの摩擦接触面104cのなす角度が180度未満の角度となるように、第一の摩擦部材104A及び第二の摩擦部材104Bは配置される。すなわち、X軸方向から見たときに、第一の摩擦部材104A及び第二の摩擦部材104Bが山型(ハの字)になるように配置される。そして、第一の摩擦部材104A及び第二の摩擦部材104Bは、相対駆動部材108によって連結される。   When viewed from the X axis direction, the first friction member 104A has a friction contact surface 104c and the second friction member 104B have a friction contact surface 104c having an angle of less than 180 degrees. The member 104A and the second friction member 104B are disposed. That is, when viewed from the X-axis direction, the first friction member 104A and the second friction member 104B are arranged in a mountain shape (C shape). The first friction member 104A and the second friction member 104B are connected by a relative drive member 108.

加圧手段は、第一の加圧部材109A、第二の加圧部材109B、加圧部材連結軸110及び複数の加圧バネ111により構成される。第一の加圧部材109Aは、矩形の形状をした本体部109hを備え、本体部109hの略−Y軸方向の端部に枢動部109eを2つ備え、枢動部109eと対向する反対側に腕部109dを備えている。この枢動部109eは、振動子連結部材106の略−Y軸方向の端部に設けられた第一の回転軸107Aに回動可能に係合する。同様に、第二の加圧部材109Bは、矩形の形状をした本体部109hを備え、本体部109hの略+Y軸方向の端部に枢動部109eを2つ備え、枢動部109eと対向する反対側に腕部109dを備えている。この枢動部109eは、振動子連結部材106の略+Y軸方向の端部に設けられた第二の回転軸107Bに回動可能に係合する。第一の回転軸107Aは第一の振動子103Aの略−Y軸方向の外方に設けられており、また第二の回転軸107Bは第二の振動子103Bの略+Y軸方向の外方に設けられており、第一の回転軸107Aと第二の回転軸107BはともにX軸方向に略平行である。   The pressurizing means includes a first pressurizing member 109A, a second pressurizing member 109B, a pressurizing member connecting shaft 110, and a plurality of pressurizing springs 111. 109 A of 1st pressurization members are provided with the main-body part 109h of the rectangular shape, are equipped with two pivot parts 109e in the edge part of the substantially -Y-axis direction of the main body part 109h, and are opposite to the pivot part 109e. The arm portion 109d is provided on the side. The pivot portion 109e is rotatably engaged with a first rotation shaft 107A provided at an end portion of the transducer coupling member 106 in the substantially −Y axis direction. Similarly, the second pressurizing member 109B includes a main body portion 109h having a rectangular shape, and includes two pivot portions 109e at an end portion of the main body portion 109h in a substantially + Y-axis direction, and is opposed to the pivot portion 109e. The arm portion 109d is provided on the opposite side. The pivot 109e is rotatably engaged with a second rotation shaft 107B provided at an end portion of the transducer coupling member 106 in the substantially + Y-axis direction. The first rotation shaft 107A is provided outward of the first vibrator 103A in the approximately −Y axis direction, and the second rotation shaft 107B is provided outward of the second oscillator 103B in the approximately + Y axis direction. The first rotating shaft 107A and the second rotating shaft 107B are both substantially parallel to the X-axis direction.

第一の加圧部材109A(109B)は、本体部109hの略中央部に加圧接触部109cを備えており、加圧接触部109cは、第一の振動子支持部材105A(105B)に接触している。上記のように、枢動部109eが回動可能に係合することにより、枢動部109eを中心に第一の加圧部材109A(109B)の全体がアームのように回転することができる。そして、第一の加圧部材109Aと第二の加圧部材109Bは、各々異なる回転方向に回転し、各々の加圧接触部109cが第一の振動子支持部材105Aと第二の振動子支持部材105Bを異なる回転方向に加圧する。すなわち、第一の加圧部材109Aと第二の加圧部材109Bが第一の振動子103Aと第二の振動子103Bを加圧する方向は、相対移動の方向と鉛直な面上で交差し、第一の振動子103Aと第二の振動子103Bは異なる回転方向に加圧される。   The first pressure member 109A (109B) includes a pressure contact portion 109c at a substantially central portion of the main body portion 109h, and the pressure contact portion 109c contacts the first vibrator support member 105A (105B). doing. As described above, the pivot portion 109e is rotatably engaged, whereby the entire first pressure member 109A (109B) can be rotated like an arm around the pivot portion 109e. The first pressure member 109A and the second pressure member 109B rotate in different rotation directions, and the pressure contact portions 109c are respectively supported by the first vibrator support member 105A and the second vibrator support. The member 105B is pressurized in different rotational directions. That is, the direction in which the first pressure member 109A and the second pressure member 109B pressurize the first vibrator 103A and the second vibrator 103B intersects the direction of relative movement on a vertical plane, The first vibrator 103A and the second vibrator 103B are pressurized in different rotational directions.

加圧部材連結軸110は、第一の振動子103Aと第二の振動子103Bの間に配置され、第一の加圧部材109Aと第二の加圧部材109Bを連結し、2つの加圧バネ111からの加圧力を第一の加圧部材109Aと第二の加圧部材109Bに付与する。第一の加圧部材109A(109B)の腕部109dは、略U字型の形状をしており、加圧部材連結軸110に係合するとともに、加圧部材連結軸110により腕部109dは加圧方向に揺動可能になっている。   The pressure member connecting shaft 110 is disposed between the first vibrator 103A and the second vibrator 103B, and couples the first pressure member 109A and the second pressure member 109B with two pressure members. The pressing force from the spring 111 is applied to the first pressure member 109A and the second pressure member 109B. The arm portion 109 d of the first pressure member 109 </ b> A (109 </ b> B) has a substantially U shape, engages with the pressure member connecting shaft 110, and the arm portion 109 d is engaged with the pressure member connecting shaft 110. It can swing in the pressurizing direction.

2つの加圧バネ111の一方は、加圧バネ111の中心部111cが加圧部材連結軸110の−X軸方向の端部に係合し、同様に他方は一方の加圧バネ111からX軸方向に離隔し、中心部111cが加圧部材連結軸110の+X軸方向の端部に係合する。さらに、2つの加圧バネ111の略Y軸方向の端部111dが振動子連結部材106の爪部106cに掛止され、2つの加圧バネ111は、2つの加圧バネ111の中心部111cを貫通する加圧部材連結軸110に−Z軸方向の加圧力を付与する。   One of the two pressure springs 111 has a central portion 111c of the pressure spring 111 engaged with an end portion of the pressure member connecting shaft 110 in the -X-axis direction, and similarly, the other one of the two pressure springs 111 to the X of the pressure spring 111 The central portion 111c is separated in the axial direction, and engages with the + X-axis direction end of the pressing member connecting shaft 110. Furthermore, the end portions 111 d in the substantially Y-axis direction of the two pressure springs 111 are hooked on the claw portions 106 c of the transducer coupling member 106, and the two pressure springs 111 are center portions 111 c of the two pressure springs 111. A pressing force in the −Z-axis direction is applied to the pressure member connecting shaft 110 penetrating through the pressure member.

上記のように加圧部材連結軸110には、第一の加圧部材109A(109B)の腕部109dが係合する。そして、2つの加圧バネ111による加圧力により、第一の加圧部材109A(109B)の腕部109dが共にZ軸方向に揺動し、枢動部109eを中心に第一の加圧部材109A(109B)の全体がアームのように回転する。第一の加圧部材109A(109B)が各々異なる回転方向に加圧され、第一の振動子103Aと第二の振動子103Bが加圧される。なお、本実施例1における加圧バネ111はねじりコイルバネであるが、加圧力を得ることができればこれに限られたものではない。   As described above, the arm portion 109d of the first pressure member 109A (109B) is engaged with the pressure member connecting shaft 110. Then, due to the pressure applied by the two pressure springs 111, the arm portion 109d of the first pressure member 109A (109B) is swung in the Z-axis direction, and the first pressure member is centered on the pivot portion 109e. The entire 109A (109B) rotates like an arm. The first pressure member 109A (109B) is pressurized in different rotational directions, and the first vibrator 103A and the second vibrator 103B are pressurized. In addition, although the pressurization spring 111 in the present Example 1 is a torsion coil spring, if the pressurization force can be obtained, it will not be restricted to this.

振動波モータ100は、ガイド手段112を備え、ガイド手段112は振動子連結部材106の底部106dに形成されたV溝と相対駆動部材108に形成されたV溝と転動部材113により構成される。転動部材113は、振動子連結部材106の底部106dに形成されたV溝と対向して相対駆動部材108に形成されたV溝に挟持される。そして、転動部材113が転動することで相対駆動部材108が振動子連結部材106に対して摩擦負荷なく駆動され、X軸方向に直進案内される。相対駆動部材108には、駆動力取出部材114が不図示のビスで固定されるとともに、ガイドバー115で軸支され、相対駆動部材108からの駆動力を受けてX軸方向に摺動する。   The vibration wave motor 100 includes guide means 112, and the guide means 112 includes a V groove formed in the bottom portion 106 d of the vibrator coupling member 106, a V groove formed in the relative drive member 108, and a rolling member 113. . The rolling member 113 is sandwiched between the V grooves formed in the relative drive member 108 so as to face the V grooves formed in the bottom portion 106 d of the vibrator coupling member 106. Then, as the rolling member 113 rolls, the relative driving member 108 is driven with respect to the vibrator coupling member 106 without a frictional load, and is linearly guided in the X-axis direction. A driving force extraction member 114 is fixed to the relative driving member 108 with a screw (not shown), and is pivotally supported by a guide bar 115, and receives a driving force from the relative driving member 108 and slides in the X-axis direction.

次に、振動波モータ100の構成部材に作用する力について説明する。2つの加圧バネ111により加圧部材連結軸110に荷重F1を付勢した際、荷重F1は第一の加圧部材109Aに第一の回転軸107Aを中心としたモーメントM1を発生させる。同様に、第二の加圧部材109Bに第二の回転軸107Bを中心としたモーメントM1を発生させる。第一の加圧部材109A(109B)の加圧接触部109cは、第一の加圧部材109A(109B)の回転軌道上で第一の振動子支持部材105A(105B)に接触し、第一の振動子支持部材105A(105B)を荷重F2で加圧する。この荷重F2は、第一の振動子103A(103B)を第一の摩擦部材104A(104B)に加圧する加圧力となる。   Next, the force which acts on the structural member of the vibration wave motor 100 will be described. When the load F1 is urged to the pressure member connecting shaft 110 by the two pressure springs 111, the load F1 causes the first pressure member 109A to generate a moment M1 about the first rotation shaft 107A. Similarly, a moment M1 about the second rotation shaft 107B is generated in the second pressure member 109B. The pressure contact portion 109c of the first pressure member 109A (109B) contacts the first vibrator support member 105A (105B) on the rotation path of the first pressure member 109A (109B), and The vibrator support member 105A (105B) is pressurized with a load F2. This load F2 is a pressure that pressurizes the first vibrator 103A (103B) against the first friction member 104A (104B).

次に、本発明の振動波モータ100において、第一の摩擦部材104A及び第一の振動子支持部材105AのZ軸方向の位置が変化した際の各部材の挙動を説明する。図3(A)〜(C)は、いずれも図2で示した振動波モータ100の断面図における第一の振動子103A及び第一の振動子103Aに係る部材を示している。なお、第二の振動子103Bは、第一の振動子103Aと対称な構成であるので、図3(A)〜(C)ではその記載を省略している。   Next, in the vibration wave motor 100 of the present invention, the behavior of each member when the position of the first friction member 104A and the first vibrator support member 105A in the Z-axis direction is changed will be described. 3A to 3C show the first vibrator 103A and the members related to the first vibrator 103A in the cross-sectional view of the vibration wave motor 100 shown in FIG. Since the second vibrator 103B has a symmetric configuration with the first vibrator 103A, the description thereof is omitted in FIGS.

図3(A)は、第一の摩擦部材104Aの摩擦接触面104cと振動板102の摩擦接触部102cの交点Pが一点鎖線H1に位置する場合であって、図2で示した場合と同じである。図3(B)は、交点Pが図3(A)で示した位置よりも−Z軸方向にずれた場合を示し、第一の摩擦部材104Aに加圧されている第一の振動子103Aと第一の振動子支持部材105Aは、方向D1に位置がずれている。一方、第一の加圧部材109Aは、一点鎖線H2に位置する第一の回転軸107Aに枢動部109eが回動可能に係合するとともに、加圧接触部109cで第一の振動子支持部材105Aを加圧している。この構成のため、第一の加圧部材109Aは、第一の振動子支持部材105Aの位置ずれに応じて第一の回転軸107Aにおいて方向R1に回転し、加圧部材連結軸110の位置は一点鎖線H3で示す位置より−Z軸方向に変化する。   FIG. 3A shows a case where the intersection point P between the friction contact surface 104c of the first friction member 104A and the friction contact portion 102c of the diaphragm 102 is located at the alternate long and short dash line H1, and is the same as the case shown in FIG. It is. FIG. 3B shows a case where the intersection point P is deviated in the −Z-axis direction from the position shown in FIG. 3A, and the first vibrator 103A pressed against the first friction member 104A. The first vibrator support member 105A is displaced in the direction D1. On the other hand, in the first pressure member 109A, the pivot portion 109e is rotatably engaged with the first rotation shaft 107A located on the alternate long and short dash line H2, and the first vibrator is supported by the pressure contact portion 109c. The member 105A is pressurized. Due to this configuration, the first pressure member 109A rotates in the direction R1 on the first rotation shaft 107A in accordance with the positional deviation of the first vibrator support member 105A, and the position of the pressure member connecting shaft 110 is It changes in the −Z-axis direction from the position indicated by the alternate long and short dash line H3.

図3(C)は、交点Pが図3(A)で示した位置よりも+Z軸方向にずれた場合を示し、第一の摩擦部材104Aに加圧されている第一の振動子103Aと第一の振動子支持部材105Aは、方向D2に位置がずれている。一方、第一の加圧部材109Aは、一点鎖線H2に位置する第一の回転軸107Aに枢動部109eが回動可能に係合するとともに、加圧接触部109cで第一の振動子支持部材105Aを加圧している。この構成のため、第一の加圧部材109Aは、第一の振動子支持部材105Aの位置ずれに応じて第一の回転軸107Aにおいて方向R2に回転し、加圧部材連結軸110の位置は一点鎖線H3で示す位置より+Z軸方向に変化する。   FIG. 3C shows a case where the intersection point P is deviated in the + Z-axis direction from the position shown in FIG. 3A, and the first vibrator 103A pressed against the first friction member 104A and The position of the first vibrator support member 105A is shifted in the direction D2. On the other hand, in the first pressure member 109A, the pivot portion 109e is rotatably engaged with the first rotation shaft 107A located on the alternate long and short dash line H2, and the first vibrator is supported by the pressure contact portion 109c. The member 105A is pressurized. Due to this configuration, the first pressure member 109A rotates in the direction R2 on the first rotation shaft 107A in accordance with the displacement of the first vibrator support member 105A, and the position of the pressure member coupling shaft 110 is It changes in the + Z-axis direction from the position indicated by the alternate long and short dash line H3.

第一の加圧部材109Aの加圧接触部109cは半球形状であるので、第一の加圧部材109Aと第一の振動子支持部材105Aの相対角度が変化しても、加圧接触部109cの加圧力分布はほとんど変化しない。その結果、位置がずれても、第一の振動子103Aが第一の摩擦部材104Aに安定して加圧接触する状態が保たれる。   Since the pressure contact portion 109c of the first pressure member 109A has a hemispherical shape, even if the relative angle between the first pressure member 109A and the first vibrator support member 105A changes, the pressure contact portion 109c. The pressure distribution of the air hardly changes. As a result, even if the position is shifted, the state in which the first vibrator 103A is in stable pressure contact with the first friction member 104A is maintained.

次に本発明の振動波モータ100と従来例の直動型超音波モータ900をレンズ装置に実装した際において、本発明が有する優れた効果について説明する。図4(A)は、従来例の直動型超音波モータ900を実装した場合の断面図であり、直動型超音波モータ900では、第一の摩擦部材904Aと第二の摩擦部材904Bが同一面上(XY平面上)で平行に並んで配置されている。そのため、直動型超音波モータ900を円筒形状であるレンズ装置などに部材が干渉しないように配置する場合、固定筒21の直径を大きくする必要があり、また、固定筒21と直動型超音波モータ900との間にデッドスペースSができてしまう。さらに、直動型超音波モータ900を実装するために、フォーカスレンズ保持枠25の一部25aを振動子連結部材906の底部906dに合わせて切り欠く必要がある。   Next, the excellent effect of the present invention when the vibration wave motor 100 of the present invention and the direct acting ultrasonic motor 900 of the conventional example are mounted on a lens apparatus will be described. FIG. 4A is a cross-sectional view when a conventional direct acting ultrasonic motor 900 is mounted. In the direct acting ultrasonic motor 900, a first friction member 904A and a second friction member 904B are provided. They are arranged in parallel on the same plane (on the XY plane). For this reason, when the direct acting ultrasonic motor 900 is arranged so that the members do not interfere with a cylindrical lens device or the like, it is necessary to increase the diameter of the fixed cylinder 21, and the fixed cylinder 21 and the direct acting super motor A dead space S is formed between the sonic motor 900 and the sonic motor 900. Furthermore, in order to mount the direct acting ultrasonic motor 900, it is necessary to cut out a part 25a of the focus lens holding frame 25 in accordance with the bottom portion 906d of the vibrator coupling member 906.

一方、図4(B)は、本発明の振動波モータ100を実装した場合の断面図であり、本発明の振動波モータ100では、レンズ装置の円筒形状に合わせて配置が可能である。ハの字に配置された第一の摩擦部材104Aと第二の摩擦部材104Bの配置角度を変えることで、振動波モータ100の振動子連結部材106の底部106dとフォーカスレンズ保持枠25との干渉を回避することができる。さらに、ハの字に配置することによって生じる第一の振動子103Aと第二の振動子103Bの間のスペースに加圧部材連結軸110と加圧バネ111を備えることで、スペース効率を向上させている。本発明の振動波モータ100は、従来例と比較して固定筒21の径方向の寸法を長さδだけ短くすることが可能となり、薄型化とフォーカスレンズ保持枠25のスペース確保において優れた効果を有する。   On the other hand, FIG. 4B is a cross-sectional view when the vibration wave motor 100 of the present invention is mounted, and the vibration wave motor 100 of the present invention can be arranged according to the cylindrical shape of the lens device. Interference between the bottom portion 106d of the vibrator coupling member 106 of the vibration wave motor 100 and the focus lens holding frame 25 by changing the arrangement angle of the first friction member 104A and the second friction member 104B arranged in the letter C. Can be avoided. Furthermore, the space efficiency is improved by providing the pressure member connecting shaft 110 and the pressure spring 111 in the space between the first vibrator 103A and the second vibrator 103B generated by arranging in a square shape. ing. The vibration wave motor 100 according to the present invention can shorten the dimension in the radial direction of the fixed cylinder 21 by the length δ as compared with the conventional example, and is excellent in reducing the thickness and securing the space for the focus lens holding frame 25. Have

(実施例2)
図5は、本発明の実施例2に係る直動型振動波モータ(以下、「振動波モータ200」とする。)の平面図である。また、図6は、図5の断面線VI−VIにおける振動波モータ200の断面図である。図5及び図6を参照して、本実施例2における振動波モータ200の構成を説明する。なお、実施例2において、実施例1と同一符号を有する部材は同じ部材であるため、その説明を省略する。本実施例2における振動波モータ200はX軸方向に長軸を有し、以下に説明する各部材により構成されている。
(Example 2)
FIG. 5 is a plan view of a direct-acting vibration wave motor (hereinafter referred to as “vibration wave motor 200”) according to Embodiment 2 of the present invention. 6 is a cross-sectional view of the vibration wave motor 200 taken along a cross-sectional line VI-VI in FIG. With reference to FIGS. 5 and 6, the configuration of the vibration wave motor 200 in the second embodiment will be described. In the second embodiment, members having the same reference numerals as those in the first embodiment are the same members, and thus the description thereof is omitted. The vibration wave motor 200 according to the second embodiment has a long axis in the X-axis direction, and is configured by members described below.

実施例2の振動波モータ200は、実施例1と同様に、第一の摩擦部材104A及び第二の摩擦部材104Bは、相対駆動部材108によって連結される。そして、X軸方向から見たときに、第一の摩擦部材104A及び第二の摩擦部材104Bが山型(ハの字)になるように配置される。   In the vibration wave motor 200 of the second embodiment, as in the first embodiment, the first friction member 104A and the second friction member 104B are connected by a relative drive member 108. Then, when viewed from the X-axis direction, the first friction member 104A and the second friction member 104B are arranged in a mountain shape (C-shape).

加圧手段は、第一の加圧部材209A、第二の加圧部材209B、加圧部材連結軸210及び複数の加圧バネ211により構成される。第一の加圧部材209Aは、矩形の形状をした本体部209hを備え、本体部209hの略−Y軸方向の端部に2つの腕部209dを備え、2つの腕部209dはさらにX軸方向に延在する爪部209fを備えている。さらに、爪部209fと対向する反対側に枢動部209eを備えている。この枢動部209eは、振動子連結部材206に支持された加圧部材連結軸210に回動可能に係合する。同様に、第二の加圧部材209Bは、矩形の形状をした本体部209hを備え、本体部209hの略+Y軸方向の端部に2つの腕部209dを備え、2つの腕部209dはさらにX軸方向に延在する爪部209fを備えている。さらに、爪部209fと対向する反対側に枢動部209eを備えている。この枢動部209eは、振動子連結部材206に支持された加圧部材連結軸210に回動可能に係合する。   The pressurizing means includes a first pressurizing member 209A, a second pressurizing member 209B, a pressurizing member connecting shaft 210, and a plurality of pressurizing springs 211. The first pressure member 209A includes a main body 209h having a rectangular shape, and includes two arms 209d at an end portion of the main body 209h in a substantially −Y-axis direction, and the two arms 209d further include an X axis. A claw portion 209f extending in the direction is provided. Further, a pivoting portion 209e is provided on the opposite side facing the claw portion 209f. The pivot portion 209e is rotatably engaged with the pressure member connecting shaft 210 supported by the vibrator connecting member 206. Similarly, the second pressure member 209B includes a main body portion 209h having a rectangular shape, and includes two arm portions 209d at an end portion of the main body portion 209h in a substantially + Y-axis direction, and the two arm portions 209d are further provided. A claw portion 209f extending in the X-axis direction is provided. Further, a pivoting portion 209e is provided on the opposite side facing the claw portion 209f. The pivot portion 209e is rotatably engaged with the pressure member connecting shaft 210 supported by the vibrator connecting member 206.

第一の加圧部材209A(209B)は、本体部209hの略中央部に加圧接触部209cを備えており、加圧接触部209cは、第一の振動子支持部材105A(105B)に接触している。上記のように、枢動部209eが回動可能に係合することにより、枢動部209eを中心に第一の加圧部材209A(209B)の全体がアームのように回転することができる。そして、第一の加圧部材209Aと第二の加圧部材209Bは、各々異なる回転方向に回転し、各々の加圧接触部209cが第一の振動子支持部材105Aと第二の振動子支持部材105Bを異なる回転方向に加圧する。すなわち、第一の加圧部材209Aと第二の加圧部材209Bが第一の振動子103Aと第二の振動子103Bを加圧する方向は、相対移動の方向と鉛直な面上で交差し、第一の振動子103Aと第二の振動子103Bは異なる回転方向に加圧される。   The first pressure member 209A (209B) includes a pressure contact portion 209c at a substantially central portion of the main body portion 209h, and the pressure contact portion 209c contacts the first vibrator support member 105A (105B). doing. As described above, the pivot portion 209e is pivotably engaged, whereby the entire first pressure member 209A (209B) can be rotated like an arm around the pivot portion 209e. Then, the first pressure member 209A and the second pressure member 209B rotate in different rotation directions, and each pressure contact portion 209c is supported by the first vibrator support member 105A and the second vibrator support. The member 105B is pressurized in different rotational directions. That is, the direction in which the first pressure member 209A and the second pressure member 209B pressurize the first vibrator 103A and the second vibrator 103B intersects the direction of relative movement on a vertical plane, The first vibrator 103A and the second vibrator 103B are pressurized in different rotational directions.

加圧部材連結軸210は、第一の振動子103Aと第二の振動子103Bの間に配置され、第一の加圧部材209Aと第二の加圧部材209Bを連結し、2つの加圧バネ211からの加圧力を第一の加圧部材209Aと第二の加圧部材209Bに付与する。そして、第一の加圧部材209A(209B)の爪部209fは、加圧方向に揺動可能になっている。   The pressure member connecting shaft 210 is disposed between the first vibrator 103A and the second vibrator 103B, and connects the first pressure member 209A and the second pressure member 209B to provide two pressures. The pressing force from the spring 211 is applied to the first pressure member 209A and the second pressure member 209B. The claw portion 209f of the first pressure member 209A (209B) is swingable in the pressure direction.

2つの加圧バネ211の一方は、加圧バネ211の中心部211cが加圧部材連結軸210の−X軸方向の端部に係合し、同様に他方は一方の加圧バネ211からX軸方向に離隔し、中心部211cが加圧部材連結軸210のX軸方向の端部に係合する。さらに、2つの加圧バネ211の略Y軸方向の端部211dが第一の加圧部材209A(209B)の爪部209fに掛止され、2つの加圧バネ211は、2つの加圧バネ211の中心部211cを貫通する加圧部材連結軸210により軸支されている。そして、相対移動の方向における第一の振動子103A(103B)の端面と振動子連結部材206の端面の間に加圧バネ211が備えられ、加圧バネ211により第一の加圧部材209A(209B)に加圧力が与えられる。   One of the two pressure springs 211 has a central portion 211c of the pressure spring 211 engaged with an end portion of the pressure member connecting shaft 210 in the −X-axis direction, and similarly, the other one of the two pressure springs 211 to the X of the pressure spring 211 The central portion 211c is separated from the axial direction and engages with the end portion of the pressing member connecting shaft 210 in the X-axis direction. Further, end portions 211d in the substantially Y-axis direction of the two pressure springs 211 are hooked on the claw portions 209f of the first pressure member 209A (209B), and the two pressure springs 211 are two pressure springs. 211 is supported by a pressure member connecting shaft 210 penetrating through the central portion 211c of 211. A pressure spring 211 is provided between the end face of the first vibrator 103A (103B) and the end face of the vibrator connecting member 206 in the direction of relative movement, and the first pressure member 209A ( 209B) is given a pressing force.

上記のように第一の加圧部材209A(209B)の爪部209fには、2つの加圧バネ211の略Y軸方向の端部211dが掛止される。そして、2つの加圧バネ211による加圧力により、第一の加圧部材209A(209B)が共に加圧方向に加圧され、また枢動部209eを中心に第一の加圧部材209A(209B)の全体がアームのように回転する。第一の加圧部材209A(209B)が各々異なる回転方向に加圧され、第一の振動子103Aと第二の振動子103Bが加圧される。なお、本実施例2における加圧バネ211はねじりコイルバネであるが、加圧力を得ることができればこれに限られたものではない。   As described above, the end portions 211d of the two pressure springs 211 in the substantially Y-axis direction are hooked on the claw portions 209f of the first pressure member 209A (209B). The first pressurizing member 209A (209B) is pressed in the pressurizing direction by the pressure applied by the two pressurizing springs 211, and the first pressurizing member 209A (209B) is centered on the pivot 209e. ) Rotates like an arm. The first pressure member 209A (209B) is pressurized in different rotational directions, and the first vibrator 103A and the second vibrator 103B are pressurized. In addition, although the pressurization spring 211 in the present Example 2 is a torsion coil spring, if the pressurization force can be obtained, it will not be restricted to this.

振動波モータ200は、ガイド手段212を備え、ガイド手段212は振動子連結部材206の底部206dに形成されたV溝と相対駆動部材108に形成されたV溝と転動部材113により構成される。転動部材113は、振動子連結部材206の底部206dに形成されたV溝と対向して相対駆動部材108に形成されたV溝に挟持される。そして、転動部材113が転動することで相対駆動部材108が振動子連結部材206に対して摩擦負荷なく駆動され、X軸方向に直進案内される。   The vibration wave motor 200 includes guide means 212, and the guide means 212 includes a V groove formed in the bottom portion 206 d of the vibrator coupling member 206, a V groove formed in the relative drive member 108, and a rolling member 113. . The rolling member 113 is sandwiched between the V grooves formed in the relative drive member 108 so as to face the V grooves formed in the bottom 206 d of the vibrator coupling member 206. Then, as the rolling member 113 rolls, the relative drive member 108 is driven without a frictional load with respect to the vibrator coupling member 206, and is linearly guided in the X-axis direction.

次に、振動波モータ200の構成部材に作用する力について説明する。2つの加圧バネ211により第一の加圧部材209Aと第二の加圧部材209Bの各々の爪部209fに荷重F3を付勢した際、荷重F3は第一の加圧部材209Aと第二の加圧部材209Bに加圧部材連結軸210を中心としたモーメントM2を発生させる。第一の加圧部材209A(209B)の加圧接触部209cは、第一の加圧部材209A(209B)の回転軌道上で第一の振動子支持部材105A(105B)に接触し、第一の振動子支持部材105A(105B)を荷重F4で加圧する。この荷重F4は、第一の振動子103A(103B)を第一の摩擦部材104A(104B)に加圧する加圧力となる。   Next, the force which acts on the structural member of the vibration wave motor 200 will be described. When the load F3 is urged to the claw portions 209f of the first pressure member 209A and the second pressure member 209B by the two pressure springs 211, the load F3 is equal to the first pressure member 209A and the second pressure member 209A. A moment M2 about the pressure member connecting shaft 210 is generated in the pressure member 209B. The pressure contact portion 209c of the first pressure member 209A (209B) contacts the first vibrator support member 105A (105B) on the rotation path of the first pressure member 209A (209B), and The vibrator support member 105A (105B) is pressurized with a load F4. The load F4 is a pressure that pressurizes the first vibrator 103A (103B) to the first friction member 104A (104B).

実施例2の振動波モータ200は、実施例1と同様にレンズ装置など円筒形状に合わせて配置が可能である。ハの字に配置された第一の摩擦部材104Aと第二の摩擦部材104Bの配置角度を変えることで、振動波モータ200の振動子連結部材206の底部206dとフォーカスレンズ保持枠25との干渉を回避することができる。さらに、ハの字に配置することによって生じる第一の振動子103Aと第二の振動子103Bの間のスペースに加圧部材連結軸210と加圧バネ211を備えることで、スペース効率を向上させている。本発明の振動波モータ200は、固定筒21の径方向の薄型化とフォーカスレンズ保持枠25のスペース確保において優れた効果を有する。   The vibration wave motor 200 according to the second embodiment can be arranged according to a cylindrical shape such as a lens device as in the first embodiment. Interference between the bottom portion 206d of the vibrator coupling member 206 of the vibration wave motor 200 and the focus lens holding frame 25 by changing the arrangement angle of the first friction member 104A and the second friction member 104B arranged in the letter C. Can be avoided. Furthermore, the space efficiency is improved by providing the pressure member connecting shaft 210 and the pressure spring 211 in the space between the first vibrator 103A and the second vibrator 103B generated by arranging in the letter C. ing. The vibration wave motor 200 of the present invention has excellent effects in reducing the thickness of the fixed cylinder 21 in the radial direction and securing the space for the focus lens holding frame 25.

(適用例)
次に、図7を参照して、本発明の振動波モータ100を有する駆動装置としての適用例であるレンズ装置について説明する。本適用例においては、振動波モータ100の振動子連結部材106の底部106dを、レンズ装置のような円筒形状または凸形状を有する円弧部に適合させることにより、振動波モータ100を容易に配置することが可能である。また、本発明の振動波モータ200を適用しても良く、さらに振動波モータ100又は200を適用する装置は、レンズ装置には限定されない。図7は、一例として、本発明の振動波モータ100が組み込まれているレンズ装置のレンズ鏡筒20を示している。なお、当該レンズ鏡筒20は略回転対称形であるため、上側半分のみ図示されている。
(Application example)
Next, with reference to FIG. 7, a lens apparatus which is an application example as a driving apparatus having the vibration wave motor 100 of the present invention will be described. In this application example, the vibration wave motor 100 can be easily arranged by adapting the bottom 106d of the vibrator coupling member 106 of the vibration wave motor 100 to a circular arc portion having a cylindrical shape or a convex shape such as a lens device. It is possible. Further, the vibration wave motor 200 of the present invention may be applied, and a device to which the vibration wave motor 100 or 200 is further applied is not limited to a lens device. FIG. 7 shows, as an example, a lens barrel 20 of a lens apparatus in which the vibration wave motor 100 of the present invention is incorporated. Since the lens barrel 20 is substantially rotationally symmetric, only the upper half is shown.

撮像装置としてのカメラ本体10には、レンズ鏡筒20が着脱自在に取り付けられ、カメラ本体10内には、撮像素子1aが設けられている。カメラ本体10のマウント11には、レンズ鏡筒20をカメラ本体10に取り付けるためのバヨネット部が設けられている。レンズ鏡筒20は、固定筒21を有しており、固定筒21がマウント11のフランジ部に当接している。そして、固定筒21とマウント11は不図示のビスに固定されている。固定筒21にはさらに、レンズG1を保持する前鏡筒22とレンズG3を保持する後鏡筒23が固定されている。レンズ鏡筒20はさらにフォーカスレンズ保持枠25を備え、フォーカスレンズG2を保持している。フォーカスレンズ保持枠25はさらに、振動波モータ100の駆動力取出部材114とビス等で固定されて、前鏡筒22と後鏡筒23に保持されたガイドバー115によって直進移動可能に保持されている。振動波モータ100の振動子連結部材106には、不図示の固定部が形成されており、後鏡筒23にビス等で固定されている。   A lens barrel 20 is detachably attached to a camera body 10 as an imaging device, and an imaging element 1 a is provided in the camera body 10. The mount 11 of the camera body 10 is provided with a bayonet portion for attaching the lens barrel 20 to the camera body 10. The lens barrel 20 has a fixed cylinder 21, and the fixed cylinder 21 is in contact with the flange portion of the mount 11. The fixed cylinder 21 and the mount 11 are fixed to screws (not shown). Further, a front barrel 22 holding the lens G1 and a rear barrel 23 holding the lens G3 are fixed to the fixed barrel 21. The lens barrel 20 further includes a focus lens holding frame 25 and holds the focus lens G2. The focus lens holding frame 25 is further fixed to the driving force extraction member 114 of the vibration wave motor 100 by screws or the like, and is held by a guide bar 115 held by the front lens barrel 22 and the rear lens barrel 23 so as to be linearly movable. Yes. A fixed portion (not shown) is formed on the vibrator coupling member 106 of the vibration wave motor 100 and is fixed to the rear lens barrel 23 with a screw or the like.

上記のような構成で、振動波モータ100の駆動力取出部材114を含む可動部が駆動されると、振動波モータ100の駆動力は、駆動力取出部材114を介してフォーカスレンズ保持枠25に伝達される。フォーカスレンズ保持枠25は、ガイドバー115によって案内されて直進移動する。   When the movable portion including the driving force extraction member 114 of the vibration wave motor 100 is driven with the above configuration, the driving force of the vibration wave motor 100 is applied to the focus lens holding frame 25 via the driving force extraction member 114. Communicated. The focus lens holding frame 25 is guided by the guide bar 115 and moves straight.

本発明によって加圧方向に対して薄型化を達成した小型の振動波モータ100及び200を得ることができるとともに、薄型化した振動波モータ100及び200を搭載した駆動装置を得ることができる。本発明は上記実施例1、2及び適用例に限定されるものではなく、請求項に記載の範囲に示したものであればどのような形態をとることも可能である。   According to the present invention, it is possible to obtain small vibration wave motors 100 and 200 that have been reduced in thickness in the pressurizing direction, and it is possible to obtain a drive device on which the vibration wave motors 100 and 200 that are reduced in thickness are mounted. The present invention is not limited to the first and second embodiments and application examples, and can take any form as long as it is within the scope of the claims.

101 圧電素子
102 振動板
103A 第一の振動子
103B 第二の振動子
104A 第一の摩擦部材
104B 第二の摩擦部材
104c 摩擦接触面
106、206 振動子連結部材(連結部材)
107A 第一の回転軸
107B 第二の回転軸
109A、209A 第一の加圧部材(加圧手段)
109B、209B 第二の加圧部材(加圧手段)
110、210 加圧部材連結軸
111、211 加圧バネ
112、212 ガイド手段
DESCRIPTION OF SYMBOLS 101 Piezoelectric element 102 Diaphragm 103A 1st vibrator | oscillator 103B 2nd vibrator | oscillator 104A 1st friction member 104B 2nd friction member 104c Friction contact surface 106,206 Vibrator connection member (connection member)
107A First rotating shaft 107B Second rotating shaft 109A, 209A First pressurizing member (pressurizing means)
109B, 209B Second pressure member (pressure means)
110, 210 Pressure member coupling shafts 111, 211 Pressure springs 112, 212 Guide means

Claims (8)

圧電素子と振動板とからなる複数の振動子と、
前記振動子と接触する摩擦接触面を有する摩擦部材と、
前記振動子を前記摩擦部材に加圧する加圧手段と、
前記振動子と前記摩擦部材との相対移動をガイドするガイド手段と、を備え、
前記振動子が発生する振動により前記振動子と前記摩擦部材とが前記相対移動し、
前記加圧手段が複数の前記振動子の各々を加圧する方向は、前記相対移動の方向と鉛直な面上で交差し、
前記加圧手段は回転軸に回動可能に保持され、複数の前記振動子の各々を異なる回転方向に加圧することを特徴とする、振動波モータ。
A plurality of vibrators composed of piezoelectric elements and diaphragms;
A friction member having a friction contact surface in contact with the vibrator;
Pressurizing means for pressurizing the vibrator to the friction member;
A guide means for guiding relative movement between the vibrator and the friction member,
The vibrator and the friction member move relative to each other due to vibration generated by the vibrator,
The direction in which the pressurizing unit pressurizes each of the plurality of vibrators intersects the direction of the relative movement on a vertical plane,
The pressurizing means is rotatably held on a rotating shaft, and pressurizes each of the plurality of vibrators in different rotational directions.
複数の前記振動子の間に連結軸を備え、前記加圧手段は前記連結軸に係合し複数の前記振動子を加圧することを特徴とする、請求項1に記載の振動波モータ。   2. The vibration wave motor according to claim 1, further comprising a connecting shaft between the plurality of vibrators, wherein the pressurizing unit pressurizes the plurality of vibrators by engaging with the connecting shaft. 前記相対移動の方向に離隔して設けられた複数の加圧バネを備え、複数の前記振動子を加圧することを特徴とする、請求項1又は2に記載の振動波モータ。   The vibration wave motor according to claim 1, further comprising a plurality of pressure springs provided apart from each other in the direction of relative movement, and pressurizing the plurality of vibrators. 前記回転軸は、複数の前記振動子の各々の外方に備えられ、前記加圧手段は前記回転軸に係合し複数の前記振動子を加圧することを特徴とする、請求項1乃至3のいずれか1項に記載の振動波モータ。   The rotation shaft is provided outside each of the plurality of vibrators, and the pressurizing unit presses the plurality of vibrators by engaging with the rotation shaft. The vibration wave motor according to any one of the above. 複数の前記振動子を連結する連結部材を備え、前記相対移動の方向における前記振動子の端面と前記連結部材の端面との間に前記加圧バネが備えられることを特徴とする、請求項3に記載の振動波モータ。   4. A connecting member for connecting a plurality of the vibrators, wherein the pressure spring is provided between an end face of the vibrator and an end face of the connecting member in the relative movement direction. The vibration wave motor described in 1. 複数の前記振動子は、第一の振動子と第二の振動子とで構成され、
前記第一の振動子と前記第二の振動子とは、各々が接触する前記摩擦接触面と略鉛直方向に移動可能に保持され、
前記加圧手段は、少なくとも前記第一の振動子を加圧する第一の加圧部材と前記第二の振動子を加圧する第二の加圧部材とを備え、
前記回転軸は、第一の回転軸と第二の回転軸とで構成され、
前記第一の加圧部材の端部が前記第一の回転軸で回動可能に保持され、
前記第二の加圧部材の端部が前記第二の回転軸で回動可能に保持され、
前記第一の回転軸と前記第二の回転軸とが、前記相対移動の方向と略平行であることを特徴とする、請求項1乃至5のいずれか1項に記載の振動波モータ。
The plurality of vibrators are composed of a first vibrator and a second vibrator,
The first vibrator and the second vibrator are held so as to be movable in a substantially vertical direction with respect to the friction contact surface with which the first vibrator and the second vibrator are in contact,
The pressurizing means includes at least a first pressurizing member that pressurizes the first vibrator and a second pressurizing member that pressurizes the second vibrator,
The rotating shaft is composed of a first rotating shaft and a second rotating shaft,
An end of the first pressure member is rotatably held by the first rotating shaft,
An end of the second pressure member is rotatably held by the second rotation shaft,
6. The vibration wave motor according to claim 1, wherein the first rotation shaft and the second rotation shaft are substantially parallel to the direction of the relative movement. 7.
前記振動は、超音波領域の周波数の高周波振動であり、前記振動波モータは超音波モータであることを特徴とする、請求項1乃至6のいずれか1項に記載の振動波モータ。   The vibration wave motor according to any one of claims 1 to 6, wherein the vibration is high-frequency vibration having a frequency in an ultrasonic region, and the vibration wave motor is an ultrasonic motor. 請求項1乃至7のいずれか1項に記載の振動波モータを有する駆動装置。   A drive device comprising the vibration wave motor according to claim 1.
JP2018105853A 2018-06-01 2018-06-01 Vibration wave motor and driving device having vibration wave motor Pending JP2019213311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105853A JP2019213311A (en) 2018-06-01 2018-06-01 Vibration wave motor and driving device having vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105853A JP2019213311A (en) 2018-06-01 2018-06-01 Vibration wave motor and driving device having vibration wave motor

Publications (1)

Publication Number Publication Date
JP2019213311A true JP2019213311A (en) 2019-12-12

Family

ID=68845636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105853A Pending JP2019213311A (en) 2018-06-01 2018-06-01 Vibration wave motor and driving device having vibration wave motor

Country Status (1)

Country Link
JP (1) JP2019213311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726034A (en) * 2020-05-25 2020-09-29 南京航空航天大学 Surface-mounted piezoelectric rotating mechanism and driving method thereof
US11796758B2 (en) 2020-04-30 2023-10-24 Canon Kabushiki Kaisha Driving device and image pickup apparatus including the driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796758B2 (en) 2020-04-30 2023-10-24 Canon Kabushiki Kaisha Driving device and image pickup apparatus including the driving device
CN111726034A (en) * 2020-05-25 2020-09-29 南京航空航天大学 Surface-mounted piezoelectric rotating mechanism and driving method thereof
CN111726034B (en) * 2020-05-25 2021-05-25 南京航空航天大学 Surface-mounted piezoelectric rotating mechanism and driving method thereof

Similar Documents

Publication Publication Date Title
EP3098637B1 (en) Ultrasonic motor and lens apparatus including the same
EP3093980B1 (en) Ultrasonic motor and lens apparatus including the same
US10804820B2 (en) Motor and apparatus using the same
JP2019213311A (en) Vibration wave motor and driving device having vibration wave motor
KR20200010067A (en) Driving system having reduced vibration transmission
CN109980986A (en) Vibration types of motors, lens apparatus and electronic device
JPS63242185A (en) Piezoelectric motor
JP3401097B2 (en) Ultrasonic actuator
JP2018137859A (en) Vibration wave motor and optical device including vibration wave motor
JP6624859B2 (en) Vibration wave motor
JP6106306B2 (en) Ultrasonic motor and lens apparatus having the same
JPH06261565A (en) Vibrating actuator
JP2019054675A (en) Vibration wave motor and optical device having vibration wave motor
JP2015159725A (en) Oscillation type motor and lens device including the same
JP2724730B2 (en) Ultrasonic motor
JP2021048767A (en) Vibration wave motor and device using the same
JP2018148683A (en) Vibration wave motor
JP2019187196A (en) Vibration wave motor and drive device including the same
JPS63129871A (en) Vibrating-reed motor
JPH01174282A (en) Ultrasonic motor
JPH01136576A (en) Supersonic motor
JP2012070547A (en) Rotary drive device
JPH0533688U (en) Ultrasonic motor
JP2012139071A (en) Ultrasonic motor
JPH02168869A (en) Ultrasonic wave linear-motor