JP2019212817A - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP2019212817A
JP2019212817A JP2018108962A JP2018108962A JP2019212817A JP 2019212817 A JP2019212817 A JP 2019212817A JP 2018108962 A JP2018108962 A JP 2018108962A JP 2018108962 A JP2018108962 A JP 2018108962A JP 2019212817 A JP2019212817 A JP 2019212817A
Authority
JP
Japan
Prior art keywords
wafer
frame
polyester
sheet
polyester sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018108962A
Other languages
Japanese (ja)
Inventor
成規 原田
Shigenori Harada
成規 原田
稔 松澤
Minoru Matsuzawa
稔 松澤
逸人 木内
Itsuto Kiuchi
逸人 木内
良彰 淀
Yoshiaki Yodo
良彰 淀
太朗 荒川
Taro Arakawa
太朗 荒川
昌充 上里
Masamitsu Ueno
昌充 上里
慧美子 河村
Sumiko Kawamura
慧美子 河村
祐介 藤井
Yusuke Fujii
祐介 藤井
俊輝 宮井
Toshiteru Miyai
俊輝 宮井
巻子 大前
Makiko Omae
巻子 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2018108962A priority Critical patent/JP2019212817A/en
Publication of JP2019212817A publication Critical patent/JP2019212817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To form a device chip without deteriorating quality.SOLUTION: A wafer processing method for dividing a wafer in which a plurality of devices are formed on a surface into individual device chips comprises a polyester-based sheet arranging step, an integrating step, a frame supporting step, a dividing step, and a picking-up step. The polyester-based sheet arranging step arranges a polyester-based sheet on a rear surface of the wafer. The integrating step heats the polyester-based sheet by applying hot air to the sheet, and integrates the wafer and the polyester-based sheet. The frame supporting step supports the polyester-based sheet by a frame composed of a first frame including an opening and a plurality of magnets and a second frame including an opening by holding an outer periphery of the polyester-based sheet between the first frame and the second frame by a magnetic force using the frame. The dividing step divides the wafer into individual device chips by cutting the wafer using a cutting device. The picking-up step pushes up the device chip by spraying air.SELECTED DRAWING: Figure 4

Description

本発明は、複数のデバイスが分割予定ラインによって区画された表面の各領域に形成されたウェーハを個々のデバイスに分割するウェーハの加工方法に関する。   The present invention relates to a wafer processing method that divides a wafer formed in each region of a surface defined by a plurality of devices by dividing lines into individual devices.

携帯電話やパソコン等の電子機器に使用されるデバイスチップの製造工程では、まず、半導体等の材料からなるウェーハの表面に複数の交差する分割予定ライン(ストリート)を設定する。そして、該分割予定ラインで区画される各領域にIC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)等のデバイスを形成する。   In the manufacturing process of a device chip used for an electronic device such as a mobile phone or a personal computer, first, a plurality of intersecting division lines (streets) are set on the surface of a wafer made of a material such as a semiconductor. Then, devices such as an IC (Integrated Circuit) and an LSI (Large-scale Integrated Circuit) are formed in each region partitioned by the planned division lines.

その後、開口を有する環状のフレームに該開口を塞ぐように貼られたダイシングテープと呼ばれる粘着テープを該ウェーハの裏面に貼着し、ウェーハと、粘着テープと、環状のフレームと、が一体となったフレームユニットを形成する。そして、フレームユニットに含まれるウェーハを該分割予定ラインに沿って加工して分割すると、個々のデバイスチップが形成される。   Thereafter, an adhesive tape called a dicing tape attached to an annular frame having an opening is attached to the back surface of the wafer, and the wafer, the adhesive tape, and the annular frame are integrated. Forming a frame unit. Then, when the wafer included in the frame unit is processed and divided along the planned dividing lines, individual device chips are formed.

ウェーハの分割には、例えば、切削装置が使用される。切削装置は、粘着テープを介してウェーハを保持するチャックテーブル、ウェーハを切削する切削ユニット等を備える。切削ユニットは、円環状の砥石部を備える切削ブレードと、該切削ブレードの中央の貫通孔に突き通され切削ブレードを回転させるスピンドルと、を備える。   For example, a cutting device is used for dividing the wafer. The cutting apparatus includes a chuck table that holds a wafer via an adhesive tape, a cutting unit that cuts the wafer, and the like. The cutting unit includes a cutting blade having an annular grindstone portion, and a spindle that is pierced through a central through hole of the cutting blade and rotates the cutting blade.

ウェーハを切削する際には、チャックテーブルの上にフレームユニットを載せ、粘着テープを介してチャックテーブルにウェーハを保持させ、スピンドルを回転させることで切削ブレードを回転させ、切削ユニットを所定の高さ位置に下降させる。そして、チャックテーブルと、切削ユニットと、をチャックテーブルの上面に平行な方向に沿って相対移動させ分割予定ラインに沿って切削ブレードにウェーハを切削させる。すると、ウェーハが分割される。   When cutting a wafer, the frame unit is placed on the chuck table, the wafer is held on the chuck table via an adhesive tape, the cutting blade is rotated by rotating the spindle, and the cutting unit is moved to a predetermined height. Lower to position. Then, the chuck table and the cutting unit are relatively moved along the direction parallel to the upper surface of the chuck table, and the wafer is cut by the cutting blade along the scheduled division line. Then, the wafer is divided.

その後、切削装置からフレームユニットを搬出し、粘着テープに紫外線を照射する等の処理を施して粘着テープの粘着力を低下させ、デバイスチップをピックアップする。デバイスチップの生産効率が高い加工装置として、ウェーハの分割と、粘着テープへの紫外線の照射と、を一つの装置で連続して実施できる切削装置が知られている(特許文献1参照)。粘着テープ上からピックアップされたデバイスチップは、所定の配線基板等に実装される。   Thereafter, the frame unit is taken out from the cutting device, and the adhesive tape is subjected to a process such as irradiating ultraviolet rays to reduce the adhesive force of the adhesive tape, and the device chip is picked up. As a processing apparatus with high device chip production efficiency, there is known a cutting apparatus capable of continuously performing wafer division and ultraviolet irradiation on an adhesive tape with one apparatus (see Patent Document 1). The device chip picked up from the adhesive tape is mounted on a predetermined wiring board or the like.

特許第3076179号公報Japanese Patent No. 3076179

粘着テープは、基材層と、該基材層上に配設された糊層と、を含む。切削装置では、ウェーハを確実に分割するために、切削ブレードの下端がウェーハの下面よりも低い位置に達するように切削ユニットが所定の高さに位置付けられる。そのため、ウェーハを切削する切削ブレードは、粘着テープの糊層をも切削する。したがって、ウェーハの切削時には、ウェーハに由来する切削屑とともに糊層に由来する切削屑が発生する。   An adhesive tape contains a base material layer and the paste layer arrange | positioned on this base material layer. In the cutting apparatus, in order to reliably divide the wafer, the cutting unit is positioned at a predetermined height so that the lower end of the cutting blade reaches a position lower than the lower surface of the wafer. Therefore, the cutting blade for cutting the wafer also cuts the adhesive layer of the adhesive tape. Accordingly, when cutting the wafer, cutting waste derived from the glue layer is generated together with cutting waste derived from the wafer.

ウェーハの切削時にはウェーハや切削ブレードに切削液が供給されるが、切削により発生した該切削屑が該切削液に取り込まれてウェーハの表面に拡散される。ここで、糊層に由来する切削屑はデバイスの表面に再付着しやすい上、その後のウェーハの洗浄工程等で除去するのも容易ではない。そのため、糊層に由来した切削屑が付着すると、デバイスチップの品質の低下が問題となる。   When the wafer is cut, cutting fluid is supplied to the wafer and the cutting blade, but the cutting waste generated by the cutting is taken into the cutting fluid and diffused on the surface of the wafer. Here, the cutting waste derived from the glue layer is easily reattached to the surface of the device, and it is not easy to remove in a subsequent wafer cleaning process or the like. Therefore, when the cutting waste derived from the glue layer adheres, the deterioration of the quality of the device chip becomes a problem.

本発明はかかる問題点に鑑みてなされたものであり、その目的とするところは、切削屑がデバイスの表面に付着しにくく、デバイスチップの品質の低下が抑制されたウェーハの加工方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a wafer processing method in which cutting scraps are less likely to adhere to the surface of the device and deterioration in the quality of the device chip is suppressed. That is.

本発明の一態様によれば、複数のデバイスが、分割予定ラインによって区画された表面の各領域に形成されたウェーハを個々のデバイスチップに分割するウェーハの加工方法であって、ウェーハの裏面にポリエステル系シートを配設するポリエステル系シート配設工程と、該ポリエステル系シートに熱風を当てて該ポリエステル系シートを加熱し、該ウェーハと、該ポリエステル系シートと、を一体化させる一体化工程と、該一体化工程の前または後に、該ウェーハを収容できる大きさの開口部を有し複数の磁石を備える第1のフレームと、該ウェーハを収容できる大きさの開口部を有する第2のフレームと、で構成されるフレームを使用して、該磁石により生じる磁力により該第1のフレームと、該第2のフレームと、の間に該ポリエステル系シートの外周部を挟持して該ポリエステル系シートを該フレームで支持するフレーム支持工程と、切削ブレードを回転可能に備えた切削装置を用いて該ウェーハを分割予定ラインに沿って切削して該ウェーハを個々のデバイスチップに分割する分割工程と、該ポリエステル系シート側からエアーを吹き付けることにより個々にデバイスチップを突き上げ、該ポリエステル系シートから該デバイスチップをピックアップするピックアップ工程と、を備えることを特徴とするウェーハの加工方法が提供される。   According to one aspect of the present invention, there is provided a wafer processing method in which a plurality of devices divide a wafer formed in each region of a surface partitioned by a predetermined division line into individual device chips, on the back surface of the wafer. A polyester-based sheet disposing step of disposing a polyester-based sheet; and an integrating step of heating the polyester-based sheet by applying hot air to the polyester-based sheet to integrate the wafer and the polyester-based sheet; Before or after the integration step, a first frame having an opening large enough to accommodate the wafer and having a plurality of magnets, and a second frame large enough to accommodate the wafer And the polyester between the first frame and the second frame by the magnetic force generated by the magnet. A frame supporting step for supporting the polyester sheet with the frame by sandwiching the outer periphery of the system sheet, and a cutting device equipped with a cutting blade that can be rotated to cut the wafer along the division line. A dividing step of dividing the wafer into individual device chips, and a pickup step of individually pushing up the device chips by blowing air from the polyester sheet side and picking up the device chips from the polyester sheet. A featured wafer processing method is provided.

また、好ましくは、該ピックアップ工程では、該ポリエステル系シートを拡張して各デバイスチップ間の間隔を広げる。   Preferably, in the pickup step, the polyester-based sheet is expanded to widen the space between the device chips.

また、好ましくは、該ポリエステル系シートは、ポリエチレンテレフタレートシート、ポリエチレンナフタレートシートのいずれかである。   Preferably, the polyester sheet is either a polyethylene terephthalate sheet or a polyethylene naphthalate sheet.

さらに、好ましくは、該一体化工程において、該ポリエステル系シートが該ポリエチレンテレフタレートシートである場合に加熱温度は250℃〜270℃であり、該ポリエステル系シートが該ポリエチレンナフタレートシートである場合に加熱温度は160℃〜180℃である。   Further preferably, in the integration step, when the polyester-based sheet is the polyethylene terephthalate sheet, the heating temperature is 250 ° C. to 270 ° C., and when the polyester-based sheet is the polyethylene naphthalate sheet, it is heated. The temperature is 160 ° C to 180 ° C.

また、好ましくは、該ウェーハは、Si、GaN、GaAs、ガラスのいずれかで構成される。   Preferably, the wafer is made of any one of Si, GaN, GaAs, and glass.

本発明の一態様に係るウェーハの加工方法では、フレームユニットに糊層を有する粘着テープを使用せず、糊層を備えないポリエステル系シートを用いてフレームと、ウェーハと、を一体化する。ポリエステル系シートと、ウェーハと、を一体化させる一体化工程は、該ポリエステル系シートに熱風を当てて実現される。   In the wafer processing method according to one embodiment of the present invention, the frame and the wafer are integrated using a polyester sheet that does not use an adhesive tape having a glue layer in the frame unit and does not have a glue layer. The integration process for integrating the polyester sheet and the wafer is realized by applying hot air to the polyester sheet.

本発明の一態様に係るウェーハの加工方法では、ウェーハを収容できる大きさの開口部を有する第1のフレームと、ウェーハを収容できる大きさの開口部を有する第2のフレームと、で構成されるフレームが使用される。第1のフレームは複数の磁石を備え、第1のフレーム及び第2のフレームは、該磁石により生じる磁力により互いに引き寄せられる。   The wafer processing method according to one aspect of the present invention includes a first frame having an opening large enough to accommodate a wafer and a second frame having an opening large enough to accommodate the wafer. Frames are used. The first frame includes a plurality of magnets, and the first frame and the second frame are attracted to each other by a magnetic force generated by the magnets.

そして、フレーム支持工程では、該第1のフレームと、該第2のフレームと、の間にポリエステル系シートを配し、該第1のフレームと、該第2のフレームと、で挟持して該ポリエステル系シートをフレームで支持できる。   In the frame supporting step, a polyester-based sheet is disposed between the first frame and the second frame, and is sandwiched between the first frame and the second frame. A polyester sheet can be supported by a frame.

すなわち、ポリエステル系シートが糊層を備えていなくても、該一体化工程及びフレーム支持工程を実施することで、ウェーハと、ポリエステル系シートと、フレームと、を一体化させてフレームユニットを形成できる。   That is, even if the polyester sheet does not have a glue layer, the frame unit can be formed by integrating the wafer, the polyester sheet, and the frame by performing the integration step and the frame support step. .

その後、切削ブレードによりウェーハを切削してウェーハを個々のデバイスチップに分割し、ポリエステル系シート側からエアーを吹き付けることにより個々にデバイスチップを突き上げ、ポリエステル系シートからデバイスチップをピックアップする。ピックアップされたデバイスチップは、それぞれ、所定の実装対象に実装される。なお、ピックアップの際にエアーによりデバイスチップを突き上げると、ポリエステル系シートから剥離する際にデバイスチップにかかる負荷を軽減できる。   Thereafter, the wafer is cut with a cutting blade to divide the wafer into individual device chips, and air is blown from the polyester sheet side to individually push up the device chips and pick up the device chips from the polyester sheet. Each picked-up device chip is mounted on a predetermined mounting target. If the device chip is pushed up by air during pick-up, the load applied to the device chip when peeling from the polyester sheet can be reduced.

ウェーハを切削する際、ウェーハの下のポリエステル系シートにも切削ブレードが切り込むため、ポリエステル系シートに由来する切削屑が発生する。しかし、ポリエステル系シートは糊層を備えないため、該切削屑が切削水に取り込まれてウェーハの表面上に拡散されても該切削屑は比較的ウェーハに接着しにくい。また、ウェーハに切削屑が付着しても、その後の洗浄工程等により容易に除去される。   When the wafer is cut, the cutting blade also cuts into the polyester sheet under the wafer, so that cutting waste derived from the polyester sheet is generated. However, since the polyester-based sheet does not have a glue layer, even if the cutting waste is taken into the cutting water and diffused on the surface of the wafer, the cutting waste is relatively difficult to adhere to the wafer. Moreover, even if cutting waste adheres to the wafer, it is easily removed by a subsequent cleaning process or the like.

すなわち、本発明の一態様によると、糊層を備えないポリエステル系シートを用いたフレームユニットの形成が可能となり、ウェーハの切削時に粘着力の高い切削屑が発生せず、該切削屑によるデバイスチップの品質低下が抑制される。   That is, according to one aspect of the present invention, it is possible to form a frame unit using a polyester-based sheet that does not have a glue layer, and no cutting chips with high adhesive force are generated when a wafer is cut. The deterioration of quality is suppressed.

したがって、本発明の一態様によると、切削屑がデバイスの表面に付着しにくく、デバイスチップの品質の低下が抑制されたウェーハの加工方法が提供される。   Therefore, according to one aspect of the present invention, there is provided a wafer processing method in which cutting scraps are less likely to adhere to the surface of a device, and degradation of device chip quality is suppressed.

ウェーハを模式的に示す斜視図である。It is a perspective view which shows a wafer typically. チャックテーブルの保持面上にウェーハを位置付ける様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode that a wafer is positioned on the holding surface of a chuck table. ポリエステル系シート配設工程を模式的に示す斜視図である。It is a perspective view which shows a polyester-type sheet | seat arrangement | positioning process typically. 一体化工程の一例を模式的に示す斜視図である。It is a perspective view which shows an example of an integration process typically. 図5(A)は、フレーム支持工程を模式的に示す斜視図であり、図5(B)は、形成されたフレームユニットを模式的に示す斜視図である。FIG. 5A is a perspective view schematically showing the frame supporting step, and FIG. 5B is a perspective view schematically showing the formed frame unit. 分割工程を模式的に示す斜視図である。It is a perspective view which shows a division | segmentation process typically. ピックアップ装置へのフレームユニットの搬入を模式的に示す斜視図である。It is a perspective view which shows typically carrying in of the frame unit to a pick-up apparatus. 図8(A)は、フレーム支持台の上に固定されたフレームユニットを模式的に示す断面図であり、図8(B)は、ピックアップ工程を模式的に示す断面図である。FIG. 8A is a cross-sectional view schematically showing the frame unit fixed on the frame support, and FIG. 8B is a cross-sectional view schematically showing the pickup process.

添付図面を参照して、本発明の一態様に係る実施形態について説明する。まず、本実施形態に係る加工方法で加工されるウェーハについて説明する。図1は、ウェーハ1を模式的に示す斜視図である。ウェーハ1は、例えば、Si(シリコン)、SiC(シリコンカーバイド)、GaN(窒化ガリウム)、GaAs(ヒ化ガリウム)、若しくは、その他の半導体等の材料、または、サファイア、ガラス、石英等の材料からなる略円板状の基板等である。   Embodiments according to one aspect of the present invention will be described with reference to the accompanying drawings. First, a wafer processed by the processing method according to the present embodiment will be described. FIG. 1 is a perspective view schematically showing the wafer 1. The wafer 1 is made of, for example, a material such as Si (silicon), SiC (silicon carbide), GaN (gallium nitride), GaAs (gallium arsenide), or another semiconductor, or a material such as sapphire, glass, or quartz. A substantially disk-shaped substrate.

ウェーハ1の表面1aは格子状に配列された複数の分割予定ライン3で区画される。また、ウェーハ1の表面1aの分割予定ライン3で区画された各領域にはIC(Integrated Circuit)やLED(Light Emitting Diode)等のデバイス5が形成される。本実施形態に係るウェーハ1の加工方法では、ウェーハ1を分割予定ライン3に沿って切削して分割することで、個々のデバイスチップを形成する。   The surface 1a of the wafer 1 is partitioned by a plurality of division lines 3 arranged in a lattice pattern. In addition, a device 5 such as an IC (Integrated Circuit) or an LED (Light Emitting Diode) is formed in each region partitioned by the division lines 3 on the surface 1a of the wafer 1. In the processing method of the wafer 1 according to the present embodiment, individual device chips are formed by cutting the wafer 1 along the division line 3 and dividing it.

ウェーハ1は、切削装置で切削される。ウェーハ1を該切削装置に搬入する前に、ウェーハ1と、ポリエステル系シートと、フレームと、が一体化され、フレームユニットが形成される。ウェーハ1は、フレームユニットの状態で切削装置に搬入され、切削される。形成された個々のデバイスチップはポリエステル系シートに支持される。その後、ポリエステル系シートを拡張することでデバイスチップ間の間隔を広げ、ピックアップ装置によりデバイスチップをピックアップする。   The wafer 1 is cut by a cutting device. Before the wafer 1 is carried into the cutting apparatus, the wafer 1, the polyester sheet and the frame are integrated to form a frame unit. The wafer 1 is carried into a cutting device in the state of a frame unit and cut. Each formed device chip is supported by a polyester-based sheet. Then, the space | interval between device chips is expanded by extending a polyester-type sheet | seat, and a device chip is picked up with a pick-up apparatus.

環状のフレーム7(図5(A)及び図5(B)等参照)は、例えば、金属等の材料で形成され、ウェーハ1を収容できる大きさの開口部7bを有する第1のフレーム7aと、ウェーハ1を収容できる大きさの開口部7gを有する第2のフレーム7fと、の2つの部材で構成される。例えば、第1のフレーム7aと、第2のフレーム7fと、は略同一の形状である。   The annular frame 7 (see FIGS. 5A and 5B) is formed of a material such as metal, for example, and includes a first frame 7a having an opening 7b large enough to accommodate the wafer 1. The second frame 7f having an opening 7g having a size capable of accommodating the wafer 1 is constituted by two members. For example, the first frame 7a and the second frame 7f have substantially the same shape.

第1のフレーム7aは、上面7c上に複数のピン7dを備える。また、第1のフレーム7aの上面7cには、複数の磁石7eが埋め込まれて配設される。第2のフレーム7fには、厚さ方向に貫通する複数の貫通孔7iが設けられる。第1のフレーム7aと、第2のフレーム7fと、を重ね合わせた際に、第1のフレーム7aのピン7dが該貫通孔7iに嵌め入れられるように、第2のフレーム7fの該貫通孔7iは第1のフレーム7aのピン7dに対応する数、位置及び大きさで形成される。   The first frame 7a includes a plurality of pins 7d on the upper surface 7c. A plurality of magnets 7e are embedded in the upper surface 7c of the first frame 7a. The second frame 7f is provided with a plurality of through holes 7i penetrating in the thickness direction. When the first frame 7a and the second frame 7f are overlapped, the through hole of the second frame 7f is so fitted that the pin 7d of the first frame 7a is fitted into the through hole 7i. 7i is formed with the number, position and size corresponding to the pin 7d of the first frame 7a.

ポリエステル系シート9(図3等参照)は、柔軟性を有する樹脂系シートであり、表裏面が平坦である。そして、フレーム7の外径よりも大きい径を有し、糊層を備えない。ポリエステル系シート9は、ジカルボン酸(2つのカルボキシル基を有する化合物)と、ジオール(2つのヒドロキシル基を有する化合物)と、をモノマーとして合成されるポリマーのシートであり、例えば、ポリエチレンテレフタレートシート、または、ポリエチレンナフタレートシート等の可視光に対して透明または半透明なシートである。ただし、ポリエステル系シート9はこれに限定されず、不透明でもよい。   The polyester-based sheet 9 (see FIG. 3 and the like) is a resin-based sheet having flexibility, and the front and back surfaces are flat. And it has a diameter larger than the outer diameter of the frame 7, and does not have a glue layer. The polyester-based sheet 9 is a polymer sheet synthesized using a dicarboxylic acid (a compound having two carboxyl groups) and a diol (a compound having two hydroxyl groups) as monomers, for example, a polyethylene terephthalate sheet, or And a transparent or translucent sheet for visible light such as a polyethylene naphthalate sheet. However, the polyester sheet 9 is not limited to this, and may be opaque.

ポリエステル系シート9は、粘着性を備えないため室温ではウェーハ1に貼着できない。しかしながら、ポリエステル系シート9は熱可塑性を有するため、所定の圧力を印加しながらウェーハ1と接合させた状態で融点近傍の温度まで加熱すると、部分的に溶融してウェーハ1に接着できる。   Since the polyester sheet 9 does not have adhesiveness, it cannot be attached to the wafer 1 at room temperature. However, since the polyester-based sheet 9 has thermoplasticity, it can be partially melted and bonded to the wafer 1 when heated to a temperature near the melting point while being bonded to the wafer 1 while applying a predetermined pressure.

本実施形態に係るウェーハ1の加工方法では、加熱によりウェーハ1の裏面1b側にポリエステル系シート9を接着し、ポリエステル系シート9の外周部を第1のフレーム7aと、第2のフレーム7fと、の間に挟持してフレームユニットを形成する。   In the processing method of the wafer 1 according to this embodiment, the polyester sheet 9 is bonded to the back surface 1b side of the wafer 1 by heating, and the outer periphery of the polyester sheet 9 is bonded to the first frame 7a and the second frame 7f. The frame unit is formed by sandwiching between the two.

次に、本実施形態に係るウェーハ1の加工方法の各工程について説明する。まず、ウェーハ1と、ポリエステル系シート9と、を一体化させる準備のために、ポリエステル系シート配設工程を実施する。図2は、チャックテーブル2の保持面2a上にウェーハ1を位置付ける様子を模式的に示す斜視図である。図2に示す通り、ポリエステル系シート配設工程は、上部に保持面2aを備えるチャックテーブル2上で実施される。   Next, each process of the processing method of the wafer 1 which concerns on this embodiment is demonstrated. First, in order to prepare for integrating the wafer 1 and the polyester sheet 9, a polyester sheet disposing step is performed. FIG. 2 is a perspective view schematically showing how the wafer 1 is positioned on the holding surface 2 a of the chuck table 2. As shown in FIG. 2, the polyester-based sheet disposing step is performed on the chuck table 2 having the holding surface 2a on the top.

チャックテーブル2は、上部中央にウェーハ1の外径よりも大きな径の多孔質部材を備える。該多孔質部材の上面は、チャックテーブル2の保持面2aとなる。チャックテーブル2は、図3に示す如く一端が該多孔質部材に通じた排気路を内部に有し、該排気路の他端側には吸引源2bが配設される。排気路には、連通状態と、切断状態と、を切り替える切り替え部2cが配設され、切り替え部2cが連通状態であると保持面2aに置かれた被保持物に吸引源2bにより生じた負圧が作用し、被保持物がチャックテーブル2に吸引保持される。   The chuck table 2 includes a porous member having a diameter larger than the outer diameter of the wafer 1 at the upper center. The upper surface of the porous member becomes the holding surface 2 a of the chuck table 2. As shown in FIG. 3, the chuck table 2 has an exhaust passage having one end communicating with the porous member, and a suction source 2b is disposed on the other end side of the exhaust passage. The exhaust path is provided with a switching unit 2c that switches between a communication state and a disconnected state. When the switching unit 2c is in a communication state, negative pressure generated by the suction source 2b on an object to be held placed on the holding surface 2a. The pressure acts, and the object to be held is sucked and held on the chuck table 2.

ポリエステル系シート配設工程では、まず、図2に示す通り、チャックテーブル2の保持面2a上にウェーハ1を載せる。この際、ウェーハ1の表面1a側を下方に向ける。次に、ウェーハ1の裏面1b上にポリエステル系シート9を配設する。図3は、ポリエステル系シート配設工程を模式的に示す斜視図である。図3に示す通り、ウェーハ1を覆うようにウェーハ1の上にポリエステル系シート9を配設する。   In the polyester sheet disposing step, first, the wafer 1 is placed on the holding surface 2a of the chuck table 2 as shown in FIG. At this time, the front surface 1a side of the wafer 1 is directed downward. Next, the polyester sheet 9 is disposed on the back surface 1 b of the wafer 1. FIG. 3 is a perspective view schematically showing a polyester-based sheet disposing step. As shown in FIG. 3, a polyester sheet 9 is disposed on the wafer 1 so as to cover the wafer 1.

なお、ポリエステル系シート配設工程では、ポリエステル系シート9の径よりも小さい径の保持面2aを備えるチャックテーブル2が使用される。後に実施される一体化工程でチャックテーブル2による負圧をポリエステル系シート9に作用させる際に、保持面2aの全体がポリエステル系シート9により覆われていなければ、負圧が隙間から漏れてしまい、ポリエステル系シート9に適切に圧力を印加できないためである。   In the polyester-based sheet disposing step, the chuck table 2 including the holding surface 2a having a diameter smaller than the diameter of the polyester-based sheet 9 is used. When the negative pressure by the chuck table 2 is applied to the polyester sheet 9 in the integration process to be performed later, if the entire holding surface 2a is not covered with the polyester sheet 9, the negative pressure leaks from the gap. This is because pressure cannot be appropriately applied to the polyester sheet 9.

本実施形態に係るウェーハ1の加工方法では、次に、ポリエステル系シート9に熱風を当ててポリエステル系シート9を加熱し、ウェーハ1と、該ポリエステル系シート9と、を一体化する一体化工程を実施する。図4は、一体化工程の一例を模式的に示す斜視図である。図4では、可視光に対して透明または半透明であるポリエステル系シート9を通して視認できるものを破線で示す。   In the processing method of the wafer 1 according to the present embodiment, next, the polyester sheet 9 is heated by applying hot air to the polyester sheet 9 to integrate the wafer 1 and the polyester sheet 9. To implement. FIG. 4 is a perspective view schematically showing an example of the integration process. In FIG. 4, what can be visually recognized through the polyester-type sheet | seat 9 which is transparent or translucent with respect to visible light is shown with a broken line.

一体化工程では、まず、チャックテーブル2の切り替え部2cを作動させて連通状態とし吸引源2bをチャックテーブル2の上部の多孔質部材に接続し、吸引源2bによる負圧をポリエステル系シート9に作用させる。すると、大気圧によりポリエステル系シート9がウェーハ1に対して密着する。   In the integration step, first, the switching portion 2c of the chuck table 2 is operated to establish a communication state, the suction source 2b is connected to the porous member on the upper side of the chuck table 2, and the negative pressure by the suction source 2b is applied to the polyester sheet 9. Make it work. Then, the polyester sheet 9 comes into close contact with the wafer 1 due to atmospheric pressure.

次に、吸引源2bによりポリエステル系シート9を吸引しながらポリエステル系シート9を加熱する。ポリエステル系シート9の加熱は、例えば、図4に示す通り、チャックテーブル2の上方に配設されるヒートガン4により実施される。   Next, the polyester sheet 9 is heated while sucking the polyester sheet 9 by the suction source 2b. The polyester sheet 9 is heated by, for example, a heat gun 4 disposed above the chuck table 2 as shown in FIG.

ヒートガン4は、電熱線等の加熱手段と、ファン等の送風機構と、を内部に備え、空気を加熱し噴射できる。吸引源2bによる負圧をポリエステル系シート9に作用させながらヒートガン4によりポリエステル系シート9に上面から熱風4aを供給し、ポリエステル系シート9を所定の温度に加熱すると、ポリエステル系シート9がウェーハ1に熱圧着される。   The heat gun 4 includes heating means such as a heating wire and a blowing mechanism such as a fan inside, and can heat and inject air. When a negative pressure from the suction source 2b is applied to the polyester sheet 9, hot air 4a is supplied from the upper surface to the polyester sheet 9 by the heat gun 4, and the polyester sheet 9 is heated to a predetermined temperature, so that the polyester sheet 9 becomes the wafer 1. It is thermocompression bonded to.

ポリエステル系シート9を熱圧着した後は、切り替え部2cを作動させてチャックテーブル2の多孔質部材を吸引源2bから切り離し、チャックテーブル2による吸着を解除する。   After the polyester-based sheet 9 is thermocompression bonded, the switching portion 2c is operated to disconnect the porous member of the chuck table 2 from the suction source 2b, and the suction by the chuck table 2 is released.

なお、熱圧着を実施する際にポリエステル系シート9は、好ましくは、その融点以下の温度に加熱される。加熱温度が融点を超えると、ポリエステル系シート9が溶解してシートの形状を維持できなくなる場合があるためである。また、ポリエステル系シート9は、好ましくは、その軟化点以上の温度に加熱される。加熱温度が軟化点に達していなければ熱圧着を適切に実施できないためである。すなわち、ポリエステル系シート9は、その軟化点以上でかつその融点以下の温度に加熱されるのが好ましい。   In addition, when implementing thermocompression bonding, the polyester-type sheet | seat 9 is preferably heated to the temperature below the melting | fusing point. This is because if the heating temperature exceeds the melting point, the polyester sheet 9 may be dissolved and the sheet shape may not be maintained. Further, the polyester sheet 9 is preferably heated to a temperature equal to or higher than its softening point. This is because thermocompression bonding cannot be performed properly unless the heating temperature reaches the softening point. In other words, the polyester sheet 9 is preferably heated to a temperature not lower than its softening point and not higher than its melting point.

さらに、一部のポリエステル系シート9は、明確な軟化点を有しない場合もある。そこで、熱圧着を実施する際にポリエステル系シート9は、好ましくは、その融点よりも20℃低い温度以上でかつその融点以下の温度に加熱される。   Furthermore, some polyester-based sheets 9 may not have a clear softening point. Therefore, when the thermocompression bonding is performed, the polyester sheet 9 is preferably heated to a temperature that is 20 ° C. lower than its melting point and lower than its melting point.

また、例えば、ポリエステル系シート9がポリエチレンテレフタレートシートである場合、加熱温度は250℃〜270℃とされる。また、該ポリエステル系シート9がポリエチレンナフタレートシートである場合、加熱温度は160℃〜180℃とされる。   For example, when the polyester sheet 9 is a polyethylene terephthalate sheet, the heating temperature is set to 250 ° C. to 270 ° C. Moreover, when this polyester-type sheet | seat 9 is a polyethylene naphthalate sheet, heating temperature shall be 160 to 180 degreeC.

ここで、加熱温度とは、一体化工程を実施する際のポリエステル系シート9の温度をいう。例えば、ヒートガン4等の熱源では出力温度を設定できる機種が実用に供されているが、該熱源を使用してポリエステル系シート9を加熱しても、ポリエステル系シート9の温度が設定された該出力温度にまで達しない場合もある。そこで、ポリエステル系シート9を所定の温度に加熱するために、熱源の出力温度をポリエステル系シート9の融点よりも高く設定してもよい。   Here, heating temperature means the temperature of the polyester-type sheet | seat 9 at the time of implementing an integration process. For example, although a model capable of setting the output temperature is provided for a heat source such as the heat gun 4, the temperature of the polyester sheet 9 is set even when the polyester sheet 9 is heated using the heat source. The output temperature may not be reached. Therefore, in order to heat the polyester sheet 9 to a predetermined temperature, the output temperature of the heat source may be set higher than the melting point of the polyester sheet 9.

本実施形態に係るウェーハ1の加工方法では、該一体化工程の前または後に、ポリエステル系シート9をフレーム7で支持するフレーム支持工程を実施する。図5(A)は、フレーム支持工程を模式的に示す斜視図である。フレーム支持工程では、該第1のフレーム7aと、該第2のフレーム7fと、の間にポリエステル系シート9の外周部を挟持してポリエステル系シート9を該フレーム7で支持する。   In the processing method of the wafer 1 according to the present embodiment, a frame support process for supporting the polyester sheet 9 with the frame 7 is performed before or after the integration process. FIG. 5A is a perspective view schematically showing the frame supporting step. In the frame support step, the polyester sheet 9 is supported by the frame 7 by sandwiching the outer periphery of the polyester sheet 9 between the first frame 7a and the second frame 7f.

まず、第1のフレーム7aの上面7cの上にポリエステル系シート9を載せる。この際、第1のフレーム7aの開口部7bをすべて塞ぐようにポリエステル系シート9の位置を決める。次に、第2のフレーム7fを下方に下面7hを向けた状態でポリエステル系シート9の上に載せる。この際、第2のフレーム7fの貫通孔7iが第1のフレーム7aのピン7dに嵌め入れられるように第2のフレーム7fの位置を決める。   First, the polyester sheet 9 is placed on the upper surface 7c of the first frame 7a. At this time, the position of the polyester sheet 9 is determined so as to block all the openings 7b of the first frame 7a. Next, the second frame 7f is placed on the polyester sheet 9 with the lower surface 7h facing downward. At this time, the position of the second frame 7f is determined so that the through hole 7i of the second frame 7f is fitted into the pin 7d of the first frame 7a.

第1のフレーム7aと、第2のフレーム7fと、を重ねると第1のフレーム7aが備える複数の磁石7eにより生じる磁力が作用して両フレームが互いに引き寄せられ、ポリエステル系シート9の外周部が両フレーム間に挟持される。したがって、ポリエステル系シート9がフレーム7に支持される。このとき、第1のフレーム7aのピン7dが第2のフレーム7fの貫通孔7iに嵌め入れられるため、第1のフレーム7a及び第2のフレーム7fは、互いに水平方向にずれることがない。   When the first frame 7a and the second frame 7f are overlapped, the magnetic force generated by the plurality of magnets 7e included in the first frame 7a acts and the two frames are attracted to each other. It is sandwiched between both frames. Accordingly, the polyester sheet 9 is supported by the frame 7. At this time, since the pin 7d of the first frame 7a is fitted into the through hole 7i of the second frame 7f, the first frame 7a and the second frame 7f do not shift in the horizontal direction.

なお、一体化工程の後にフレーム支持工程を実施する場合について説明したが、本実施形態に係るウェーハの加工方法はこれに限定されない。例えば、フレーム支持工程の後に一体化工程を実施してもよい。この場合、一体化工程における加熱によりポリエステル系シート9の外周部が第1のフレーム7a及び第2のフレーム7fに接着されて、ポリエステル系シート9がより強い力でフレーム7に支持される。   In addition, although the case where a frame support process is implemented after an integration process was demonstrated, the wafer processing method which concerns on this embodiment is not limited to this. For example, the integration step may be performed after the frame support step. In this case, the outer periphery of the polyester sheet 9 is bonded to the first frame 7a and the second frame 7f by heating in the integration step, and the polyester sheet 9 is supported by the frame 7 with a stronger force.

次に、本実施形態に係るウェーハ1の加工方法では、フレームユニット11の状態となったウェーハ1を切削ブレードで切削して分割する分割工程を実施する。分割工程は、例えば、図6に示す切削装置で実施される。図6は、分割工程を模式的に示す斜視図である。   Next, in the processing method of the wafer 1 according to the present embodiment, a dividing step is performed in which the wafer 1 in the state of the frame unit 11 is cut by a cutting blade and divided. The dividing step is performed, for example, with a cutting apparatus shown in FIG. FIG. 6 is a perspective view schematically showing the dividing step.

切削装置6は、被加工物を切削する切削ユニット8と、被加工物を保持するチャックテーブル(不図示)と、を備える。切削ユニット8は、円環状の砥石部を備える切削ブレード12と、該切削ブレード12の中央の貫通孔に先端側が突き通され切削ブレード12を回転させるスピンドル(不図示)と、を備える。切削ブレード12は、例えば、中央に該貫通孔を備える環状基台と、該環状基台の外周部に配設された環状の砥石部と、を備える。   The cutting device 6 includes a cutting unit 8 that cuts a workpiece, and a chuck table (not shown) that holds the workpiece. The cutting unit 8 includes a cutting blade 12 having an annular grindstone part, and a spindle (not shown) that rotates the cutting blade 12 with its distal end passing through a central through hole of the cutting blade 12. The cutting blade 12 includes, for example, an annular base having the through-hole at the center, and an annular grindstone disposed on the outer periphery of the annular base.

該スピンドルの基端側は、スピンドルハウジング10の内部に収容されたスピンドルモータ(不図示)に接続されており、スピンドルモータを作動させると切削ブレード12を回転できる。   The base end side of the spindle is connected to a spindle motor (not shown) housed in the spindle housing 10, and the cutting blade 12 can be rotated by operating the spindle motor.

切削ブレード12により被加工物を切削すると、切削ブレード12と、被加工物と、の摩擦により熱が発生する。また、被加工物が切削されると被加工物から切削屑が発生する。そこで、切削により生じた熱及び切削屑を除去するため、被加工物を切削する間、切削ブレード12及び被加工物に純水等の切削水が供給される。切削ユニット8は、例えば、切削ブレード12等に切削水を供給する切削水供給ノズル14を切削ブレード12の側方に備える。   When the workpiece is cut by the cutting blade 12, heat is generated by friction between the cutting blade 12 and the workpiece. Further, when the workpiece is cut, cutting waste is generated from the workpiece. Therefore, in order to remove the heat and cutting waste generated by the cutting, cutting water such as pure water is supplied to the cutting blade 12 and the workpiece while cutting the workpiece. The cutting unit 8 includes, for example, a cutting water supply nozzle 14 that supplies cutting water to the cutting blade 12 or the like on the side of the cutting blade 12.

ウェーハ1を切削する際には、チャックテーブルの上にフレームユニット11を載せ、ポリエステル系シート9を介してチャックテーブルにウェーハ1を保持させる。そして、チャックテーブルを回転させウェーハ1の分割予定ライン3を切削装置6の加工送り方向に合わせる。また、分割予定ライン3の延長線の上方に切削ブレード12が配設されるように、チャックテーブル及び切削ユニット8の相対位置を調整する。   When cutting the wafer 1, the frame unit 11 is placed on the chuck table, and the wafer 1 is held on the chuck table via the polyester sheet 9. Then, the chuck table is rotated to align the division line 3 of the wafer 1 with the processing feed direction of the cutting device 6. Further, the relative positions of the chuck table and the cutting unit 8 are adjusted so that the cutting blade 12 is disposed above the extended line of the division line 3.

次に、スピンドルを回転させることで切削ブレード12を回転させる。そして、切削ユニット8を所定の高さ位置に下降させ、チャックテーブルと、切削ユニット8と、をチャックテーブルの上面に平行な方向に沿って相対移動させる。すると、回転する切削ブレード12の砥石部がウェーハ1に接触しウェーハ1が切削され、分割予定ライン3に沿った切削痕3aがウェーハ1及びポリエステル系シート9に形成される。   Next, the cutting blade 12 is rotated by rotating the spindle. Then, the cutting unit 8 is lowered to a predetermined height position, and the chuck table and the cutting unit 8 are relatively moved along a direction parallel to the upper surface of the chuck table. Then, the grindstone portion of the rotating cutting blade 12 comes into contact with the wafer 1 and the wafer 1 is cut, and a cutting mark 3 a along the scheduled division line 3 is formed on the wafer 1 and the polyester sheet 9.

一つの分割予定ライン3に沿って切削を実施した後、チャックテーブル及び切削ユニット8を加工送り方向とは垂直な割り出し送り方向に移動させ、他の分割予定ライン3に沿って同様にウェーハ1の切削を実施する。一つの方向に沿った全ての分割予定ライン3に沿って切削を実施した後、チャックテーブルを保持面に垂直な軸の回りに回転させ、同様に他の方向に沿った分割予定ライン3に沿ってウェーハ1を切削する。ウェーハ1のすべての分割予定ライン3に沿ってウェーハ1を切削すると、分割ステップが完了する。   After cutting along one division line 3, the chuck table and the cutting unit 8 are moved in an indexing feed direction perpendicular to the machining feed direction, and the wafer 1 is similarly cut along the other division line 3. Perform cutting. After cutting along all the division lines 3 along one direction, the chuck table is rotated around an axis perpendicular to the holding surface, and along the division lines 3 along the other direction as well. Then, the wafer 1 is cut. When the wafer 1 is cut along all the planned dividing lines 3 of the wafer 1, the dividing step is completed.

切削装置6は、切削ユニット8の近傍に洗浄ユニット(不図示)を備えてもよい。切削ユニット8により切削されたウェーハ1は、該洗浄ユニットに搬送され、該洗浄ユニットにより洗浄されてもよい。例えば、洗浄ユニットはフレームユニット11を保持する洗浄テーブルと、フレームユニット11の上方を往復移動できる洗浄水供給ノズルと、を備える。   The cutting device 6 may include a cleaning unit (not shown) in the vicinity of the cutting unit 8. The wafer 1 cut by the cutting unit 8 may be transferred to the cleaning unit and cleaned by the cleaning unit. For example, the cleaning unit includes a cleaning table that holds the frame unit 11 and a cleaning water supply nozzle that can reciprocate above the frame unit 11.

洗浄テーブルを保持面に垂直な軸の回りに回転させ、洗浄水供給ノズルから純水等の洗浄液をウェーハ1に供給しながら、洗浄水供給ノズルを該保持面の中央の上方を通る経路で往復移動させると、ウェーハ1の表面1a側を洗浄できる。   The cleaning table is rotated around an axis perpendicular to the holding surface, and a cleaning liquid such as pure water is supplied from the cleaning water supply nozzle to the wafer 1, and the cleaning water supply nozzle is reciprocated along a path passing above the center of the holding surface. When moved, the surface 1a side of the wafer 1 can be cleaned.

分割ステップを実施すると、ウェーハ1は個々のデバイスチップに分割される。形成されたデバイスチップは、ポリエステル系シート9に支持される。ウェーハ1を切削する際は、ウェーハ1を確実に分割するために、切削ブレード12の下端の高さ位置がウェーハ1の裏面1bよりも低い高さ位置となるように切削ユニット8が所定の高さに位置付けられる。そのため、ウェーハ1を切削すると、ポリエステル系シート9も切削され、ポリエステル系シート9に由来する切削屑が発生する。   When the dividing step is performed, the wafer 1 is divided into individual device chips. The formed device chip is supported by the polyester sheet 9. When cutting the wafer 1, in order to divide the wafer 1 reliably, the cutting unit 8 is set to a predetermined height so that the height position of the lower end of the cutting blade 12 is lower than the back surface 1b of the wafer 1. Positioned. Therefore, when the wafer 1 is cut, the polyester sheet 9 is also cut, and cutting waste derived from the polyester sheet 9 is generated.

フレームユニット11にポリエステル系シート9ではなく粘着テープを使用する場合、粘着テープの糊層に由来する切削屑が発生する。この場合、切削水供給ノズル14から噴射される切削水に該切削屑が取り込まれ、ウェーハ1の表面1a上に拡散される。糊層に由来する切削屑はデバイス5の表面に再付着しやすい上、切削後に実施されるウェーハ1の洗浄工程等で除去するのも容易ではない。糊層に由来した切削屑が付着すると、形成されるデバイスチップの品質の低下が問題となる。   When an adhesive tape is used for the frame unit 11 instead of the polyester sheet 9, cutting waste derived from the adhesive layer of the adhesive tape is generated. In this case, the cutting waste is taken into the cutting water sprayed from the cutting water supply nozzle 14 and diffused on the surface 1 a of the wafer 1. The cutting waste derived from the glue layer easily adheres to the surface of the device 5 and is not easy to remove in a cleaning step of the wafer 1 performed after cutting. When the cutting waste derived from the glue layer adheres, the quality of the device chip to be formed becomes a problem.

これに対して、本実施形態に係るウェーハ1の加工方法では、フレームユニット11に糊層を備えた粘着テープではなく、糊層を備えないポリエステル系シート9を使用する。ポリエステル系シート9に由来する切削屑が発生し、切削水に取り込まれてウェーハの表面上に拡散されても、該切削屑は比較的ウェーハ1に接着しにくい。また、ウェーハ1に切削屑が付着しても、その後の洗浄工程等により容易に除去される。したがって、該切削屑によるデバイスチップの品質低下が抑制される。   On the other hand, in the processing method of the wafer 1 according to the present embodiment, the polyester sheet 9 not having the glue layer is used instead of the adhesive tape having the glue layer in the frame unit 11. Even if cutting waste derived from the polyester sheet 9 is generated, taken into cutting water and diffused on the surface of the wafer, the cutting waste is relatively difficult to adhere to the wafer 1. Further, even if cutting waste adheres to the wafer 1, it is easily removed by a subsequent cleaning process or the like. Therefore, the quality degradation of the device chip due to the cutting waste is suppressed.

本実施形態に係るウェーハ1の加工方法では、次に、ポリエステル系シート9から個々の該デバイスチップをピックアップするピックアップ工程を実施する。ピックアップ工程では、図7下部に示すピックアップ装置16を使用する。図7は、ピックアップ装置16へのフレームユニット11の搬入を模式的に示す斜視図である。   In the processing method of the wafer 1 according to the present embodiment, next, a pickup process of picking up individual device chips from the polyester sheet 9 is performed. In the pickup process, a pickup device 16 shown in the lower part of FIG. 7 is used. FIG. 7 is a perspective view schematically showing the loading of the frame unit 11 into the pickup device 16.

ピックアップ装置16は、ウェーハ1の径よりも大きい径を有する円筒状のドラム18と、フレーム支持台22を含むフレーム保持ユニット20と、を備える。フレーム保持ユニット20のフレーム支持台22は、該ドラム18の径よりも大きい径の開口を備え、該ドラム18の上端部と同様の高さに配設され、該ドラム18の上端部を外周側から囲む。   The pickup device 16 includes a cylindrical drum 18 having a diameter larger than the diameter of the wafer 1 and a frame holding unit 20 including a frame support base 22. The frame support base 22 of the frame holding unit 20 includes an opening having a diameter larger than the diameter of the drum 18 and is disposed at the same height as the upper end portion of the drum 18. Enclose from.

フレーム支持台22の外周側には、クランプ24が配設される。フレーム支持台22の上にフレームユニット11を載せ、クランプ24によりフレームユニット11のフレーム7を把持させると、フレームユニット11がフレーム支持台22に固定される。   A clamp 24 is disposed on the outer peripheral side of the frame support base 22. When the frame unit 11 is placed on the frame support base 22 and the frame 7 of the frame unit 11 is gripped by the clamp 24, the frame unit 11 is fixed to the frame support base 22.

フレーム支持台22は、鉛直方向に沿って伸長する複数のロッド26により支持され、各ロッド26の下端部には、該ロッド26を昇降させるエアシリンダ28が配設される。複数のエアシリンダ28は、円板状のベース30に支持される。各エアシリンダ28を作動させると、フレーム支持台22がドラム18に対して引き下げられる。   The frame support 22 is supported by a plurality of rods 26 extending in the vertical direction, and an air cylinder 28 for moving the rods 26 up and down is disposed at the lower end of each rod 26. The plurality of air cylinders 28 are supported by a disk-shaped base 30. When each air cylinder 28 is operated, the frame support 22 is pulled down with respect to the drum 18.

ドラム18の内部には、ポリエステル系シート9に支持されたデバイスチップを下方から突き上げる突き上げ機構32が配設される。突き上げ機構32は、上方に向けてエアー32aを吹き出す機能を有する。また、ドラム18の上方には、デバイスチップを吸引保持できるコレット34(図8(B)参照)が配設される。突き上げ機構32及びコレット34は、フレーム支持台22の上面に沿った水平方向に移動可能である。また、コレット34は、切り替え部34b(図8(B)参照)を介して吸引源34a(図8(B)参照)に接続される。   Inside the drum 18, a push-up mechanism 32 that pushes up the device chip supported by the polyester sheet 9 from below is disposed. The push-up mechanism 32 has a function of blowing air 32a upward. Further, a collet 34 (see FIG. 8B) capable of sucking and holding the device chip is disposed above the drum 18. The push-up mechanism 32 and the collet 34 are movable in the horizontal direction along the upper surface of the frame support base 22. The collet 34 is connected to the suction source 34a (see FIG. 8B) via the switching unit 34b (see FIG. 8B).

ピックアップ工程では、まず、ピックアップ装置16のドラム18の上端の高さと、フレーム支持台22の上面の高さと、が概略一致するように、エアシリンダ28を作動させてフレーム支持台22の高さを調節する。例えば、フレーム支持台22の上面の高さ位置は、ドラム18の上端よりも第1のフレーム7aの厚さの分だけ低い高さ位置に位置付けられてもよい。次に、切削装置6から搬出されたフレームユニット11をピックアップ装置16のドラム18の上に載せる。   In the pickup process, first, the air cylinder 28 is operated to adjust the height of the frame support 22 so that the height of the upper end of the drum 18 of the pickup device 16 and the height of the upper surface of the frame support 22 are substantially the same. Adjust. For example, the height position of the upper surface of the frame support 22 may be positioned at a height position lower than the upper end of the drum 18 by the thickness of the first frame 7a. Next, the frame unit 11 carried out from the cutting device 6 is placed on the drum 18 of the pickup device 16.

その後、クランプ24によりフレーム支持台22の上にフレームユニット11のフレーム7を固定する。図8(A)は、フレーム支持台22の上に固定されたフレームユニット11を模式的に示す断面図である。ウェーハ1には、分割ステップにより切削痕3aが形成され分割されている。   Thereafter, the frame 7 of the frame unit 11 is fixed on the frame support 22 by the clamp 24. FIG. 8A is a cross-sectional view schematically showing the frame unit 11 fixed on the frame support base 22. On the wafer 1, cutting marks 3a are formed and divided by the dividing step.

次に、エアシリンダ28を作動させてフレーム保持ユニット20のフレーム支持台22をドラム18に対して引き下げる。すると、図8(B)に示す通り、ポリエステル系シート9が外周方向に拡張される。図8(B)は、ピックアップ工程を模式的に示す断面図である。   Next, the air cylinder 28 is operated to pull down the frame support 22 of the frame holding unit 20 with respect to the drum 18. Then, as shown in FIG. 8B, the polyester sheet 9 is expanded in the outer peripheral direction. FIG. 8B is a cross-sectional view schematically showing the pickup process.

ポリエステル系シート9が外周方向に拡張されると、ポリエステル系シート9に支持された各デバイスチップ1cの間隔が広げられる。すると、デバイスチップ1c同士が接触しにくくなり、個々のデバイスチップ1cのピックアップが容易となる。そして、ピックアップの対象となるデバイスチップ1cを決め、該デバイスチップ1cの下方に突き上げ機構32を移動させ、該デバイスチップ1cの上方にコレット34を移動させる。   When the polyester sheet 9 is expanded in the outer circumferential direction, the distance between the device chips 1c supported by the polyester sheet 9 is increased. Then, it becomes difficult for the device chips 1c to come into contact with each other, and pickup of the individual device chips 1c becomes easy. Then, the device chip 1c to be picked up is determined, the push-up mechanism 32 is moved below the device chip 1c, and the collet 34 is moved above the device chip 1c.

その後、突き上げ機構32を作動させてポリエステル系シート9側からエアー32aを吹き付けることにより該デバイスチップ1cを突き上げる。そして、切り替え部34bを作動させてコレット34を吸引源34aに連通させる。すると、コレット34により該デバイスチップ1cが吸引保持され、デバイスチップ1cがポリエステル系シート9からピックアップされる。ピックアップされた個々のデバイスチップ1cは、その後、所定の配線基板等に実装されて使用される。   Thereafter, the device chip 1c is pushed up by operating the push-up mechanism 32 and blowing air 32a from the polyester sheet 9 side. And the switching part 34b is operated and the collet 34 is connected to the suction source 34a. Then, the device chip 1 c is sucked and held by the collet 34 and the device chip 1 c is picked up from the polyester sheet 9. The individual device chips 1c thus picked up are used after being mounted on a predetermined wiring board or the like.

なお、デバイスチップのピックアップ時に該ポリエステル系シート9側からデバイスチップにエアー32aを吹き付けて該デバイスチップを突き上げると、該ポリエステル系シート9からデバイスチップを剥離する際に該デバイスチップにかかる負荷が軽減される。   When the device chip is picked up, air 32a is blown onto the device chip from the polyester sheet 9 side to push up the device chip, thereby reducing the load on the device chip when the device chip is peeled off from the polyester sheet 9 Is done.

以上に説明する通り、本実施形態に係るウェーハの加工方法によると、粘着テープを使用することなくウェーハ1を含むフレームユニット11を形成できる。そのため、ウェーハ1を切削しても粘着テープの糊層に由来する切削屑が発生せず、該切削屑がデバイスチップ1cに付着することもない。そのため、デバイスチップ1cの品質を低下させることがない。   As described above, according to the wafer processing method of the present embodiment, the frame unit 11 including the wafer 1 can be formed without using an adhesive tape. Therefore, even if the wafer 1 is cut, cutting waste derived from the adhesive layer of the adhesive tape is not generated, and the cutting waste does not adhere to the device chip 1c. Therefore, the quality of the device chip 1c is not deteriorated.

なお、本発明は上記実施形態の記載に限定されず、種々変更して実施可能である。例えば、上記実施形態では、ポリエステル系シート9が、例えば、ポリエチレンテレフタレートシート、または、ポリエチレンナフタレートシートである場合について説明したが、本発明の一態様はこれに限定されない。例えば、ポリエステル系シートは、他の材料が使用されてもよく、ポリトリメチレンテレフタレートシートや、ポリブチレンテレフタレートシート、ポリブチレンナフタレート等でもよい。   In addition, this invention is not limited to description of the said embodiment, A various change can be implemented. For example, in the above-described embodiment, the case where the polyester sheet 9 is, for example, a polyethylene terephthalate sheet or a polyethylene naphthalate sheet has been described, but one aspect of the present invention is not limited thereto. For example, other materials may be used for the polyester sheet, such as a polytrimethylene terephthalate sheet, a polybutylene terephthalate sheet, or a polybutylene naphthalate.

その他、上記実施形態に係る構造、方法等は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施できる。   In addition, the structure, method, and the like according to the above-described embodiment can be appropriately modified and implemented without departing from the scope of the object of the present invention.

1 ウェーハ
1a 表面
1b 裏面
3 分割予定ライン
3a 切削痕
5 デバイス
7,7a,7f フレーム
7b,7g 開口部
7c 上面
7d ピン
7e 磁石
7h 下面
7i 貫通孔
9 ポリエステル系シート
11 フレームユニット
2 チャックテーブル
2a 保持面
2b,34a 吸引源
2c,34b 切り替え部
4 ヒートガン
4a 熱風
6 切削装置
8 切削ユニット
10 スピンドルハウジング
12 切削ブレード
14 切削水供給ノズル
16 ピックアップ装置
18 ドラム
20 フレーム保持ユニット
22 フレーム支持台
24 クランプ
26 ロッド
28 エアシリンダ
30 ベース
32 突き上げ機構
32a エアー
34 コレット
DESCRIPTION OF SYMBOLS 1 Wafer 1a Front surface 1b Back surface 3 Scheduled division line 3a Cutting trace 5 Device 7, 7a, 7f Frame 7b, 7g Opening 7c Upper surface 7d Pin 7e Magnet 7h Lower surface 7i Through hole 9 Polyester sheet 11 Frame unit 2 Chuck table 2a Holding surface 2b, 34a Suction source 2c, 34b Switching unit 4 Heat gun 4a Hot air 6 Cutting device 8 Cutting unit 10 Spindle housing 12 Cutting blade 14 Cutting water supply nozzle 16 Pickup device 18 Drum 20 Frame holding unit 22 Frame support 24 Clamp 26 Rod 28 28 Air Cylinder 30 Base 32 Pushing mechanism 32a Air 34 Collet

Claims (5)

複数のデバイスが、分割予定ラインによって区画された表面の各領域に形成されたウェーハを個々のデバイスチップに分割するウェーハの加工方法であって、
ウェーハの裏面にポリエステル系シートを配設するポリエステル系シート配設工程と、
該ポリエステル系シートに熱風を当てて該ポリエステル系シートを加熱し、該ウェーハと、該ポリエステル系シートと、を一体化させる一体化工程と、
該一体化工程の前または後に、該ウェーハを収容できる大きさの開口部を有し複数の磁石を備える第1のフレームと、該ウェーハを収容できる大きさの開口部を有する第2のフレームと、で構成されるフレームを使用して、該磁石により生じる磁力により該第1のフレームと、該第2のフレームと、の間に該ポリエステル系シートの外周部を挟持して該ポリエステル系シートを該フレームで支持するフレーム支持工程と、
切削ブレードを回転可能に備えた切削装置を用いて該ウェーハを分割予定ラインに沿って切削して該ウェーハを個々のデバイスチップに分割する分割工程と、
該ポリエステル系シート側からエアーを吹き付けることにより個々にデバイスチップを突き上げ、該ポリエステル系シートから個々の該デバイスチップをピックアップするピックアップ工程と、
を備えることを特徴とするウェーハの加工方法。
A wafer processing method in which a plurality of devices divide a wafer formed in each region of a surface defined by division-scheduled lines into individual device chips,
A polyester-based sheet disposing step of disposing a polyester-based sheet on the back surface of the wafer;
An integration step of heating the polyester sheet by applying hot air to the polyester sheet, and integrating the wafer and the polyester sheet;
Before or after the integration step, a first frame having an opening sized to accommodate the wafer and having a plurality of magnets, and a second frame having an opening sized to accommodate the wafer, The polyester sheet is sandwiched between the first frame and the second frame by the magnetic force generated by the magnet, and the outer periphery of the polyester sheet is sandwiched between the first frame and the second frame. A frame support step for supporting the frame;
A dividing step of cutting the wafer along a predetermined dividing line by using a cutting device having a cutting blade rotatably, and dividing the wafer into individual device chips;
Picking up the device chips individually by blowing air from the polyester sheet side, and picking up the individual device chips from the polyester sheet;
A method for processing a wafer, comprising:
該ピックアップ工程では、該ポリエステル系シートを拡張して各デバイスチップ間の間隔を広げ、該ポリエステル系シート側から該デバイスチップを突き上げることを特徴とする請求項1記載のウェーハの加工方法。   2. The wafer processing method according to claim 1, wherein, in the pick-up step, the polyester sheet is expanded to widen the space between the device chips, and the device chip is pushed up from the polyester sheet side. 該ポリエステル系シートは、ポリエチレンテレフタレートシート、ポリエチレンナフタレートシートのいずれかであることを特徴とする請求項1記載のウェーハの加工方法。   2. The wafer processing method according to claim 1, wherein the polyester sheet is a polyethylene terephthalate sheet or a polyethylene naphthalate sheet. 該一体化工程において、該ポリエステル系シートが該ポリエチレンテレフタレートシートである場合に加熱温度は250℃〜270℃であり、該ポリエステル系シートが該ポリエチレンナフタレートシートである場合に加熱温度は160℃〜180℃であることを特徴とする請求項3記載のウェーハの加工方法。   In the integration step, when the polyester sheet is the polyethylene terephthalate sheet, the heating temperature is 250 ° C. to 270 ° C., and when the polyester sheet is the polyethylene naphthalate sheet, the heating temperature is 160 ° C. to The wafer processing method according to claim 3, wherein the wafer processing temperature is 180 ° C. 該ウェーハは、Si、GaN、GaAs、ガラスのいずれかで構成されることを特徴とする請求項1記載のウェーハの加工方法。   2. The wafer processing method according to claim 1, wherein the wafer is made of any one of Si, GaN, GaAs, and glass.
JP2018108962A 2018-06-06 2018-06-06 Wafer processing method Pending JP2019212817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018108962A JP2019212817A (en) 2018-06-06 2018-06-06 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018108962A JP2019212817A (en) 2018-06-06 2018-06-06 Wafer processing method

Publications (1)

Publication Number Publication Date
JP2019212817A true JP2019212817A (en) 2019-12-12

Family

ID=68847007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108962A Pending JP2019212817A (en) 2018-06-06 2018-06-06 Wafer processing method

Country Status (1)

Country Link
JP (1) JP2019212817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7542915B2 (en) 2020-08-04 2024-09-02 株式会社ディスコ Method for processing workpiece

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637169A (en) * 1992-07-16 1994-02-10 Hitachi Ltd Pellet pushing-up mechanism for semiconductor manufacture device
JPH10112494A (en) * 1996-08-09 1998-04-28 Lintec Corp Adhesive sheet sticking device
JP2000138277A (en) * 1998-11-02 2000-05-16 Anam Semiconductor Inc Method and system for picking up semiconductor chip unit from wafer
JP2003100727A (en) * 2001-09-20 2003-04-04 Dainippon Screen Mfg Co Ltd Sheet film holder, cassette, carrier, thin film forming apparatus and method of carrying the sheet film
JP2005191297A (en) * 2003-12-25 2005-07-14 Jsr Corp Dicing film and cutting method of semiconductor wafer
JP2005302932A (en) * 2004-04-09 2005-10-27 M Tec Kk Chip separation apparatus
JP2007165636A (en) * 2005-12-14 2007-06-28 Nippon Zeon Co Ltd Method for manufacturing semiconductor element
JP2007250598A (en) * 2006-03-14 2007-09-27 Renesas Technology Corp Process for manufacturing semiconductor device
JP2014049452A (en) * 2012-08-29 2014-03-17 Hitachi High-Tech Instruments Co Ltd Die bonding apparatus, die pickup device, and die pickup method
WO2018003312A1 (en) * 2016-06-30 2018-01-04 リンテック株式会社 Semiconductor processing sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637169A (en) * 1992-07-16 1994-02-10 Hitachi Ltd Pellet pushing-up mechanism for semiconductor manufacture device
JPH10112494A (en) * 1996-08-09 1998-04-28 Lintec Corp Adhesive sheet sticking device
JP2000138277A (en) * 1998-11-02 2000-05-16 Anam Semiconductor Inc Method and system for picking up semiconductor chip unit from wafer
JP2003100727A (en) * 2001-09-20 2003-04-04 Dainippon Screen Mfg Co Ltd Sheet film holder, cassette, carrier, thin film forming apparatus and method of carrying the sheet film
JP2005191297A (en) * 2003-12-25 2005-07-14 Jsr Corp Dicing film and cutting method of semiconductor wafer
JP2005302932A (en) * 2004-04-09 2005-10-27 M Tec Kk Chip separation apparatus
JP2007165636A (en) * 2005-12-14 2007-06-28 Nippon Zeon Co Ltd Method for manufacturing semiconductor element
JP2007250598A (en) * 2006-03-14 2007-09-27 Renesas Technology Corp Process for manufacturing semiconductor device
JP2014049452A (en) * 2012-08-29 2014-03-17 Hitachi High-Tech Instruments Co Ltd Die bonding apparatus, die pickup device, and die pickup method
WO2018003312A1 (en) * 2016-06-30 2018-01-04 リンテック株式会社 Semiconductor processing sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7542915B2 (en) 2020-08-04 2024-09-02 株式会社ディスコ Method for processing workpiece

Similar Documents

Publication Publication Date Title
JP2019201049A (en) Processing method of wafer
JP2019212812A (en) Wafer processing method
JP2019212816A (en) Wafer processing method
KR20190139143A (en) Wafer processing method
JP2019201052A (en) Processing method of wafer
JP2019212817A (en) Wafer processing method
JP2019201022A (en) Processing method of wafer
JP7134563B2 (en) Wafer processing method
JP2019212818A (en) Wafer processing method
JP7134562B2 (en) Wafer processing method
JP7139041B2 (en) Wafer processing method
JP7134564B2 (en) Wafer processing method
JP7134560B2 (en) Wafer processing method
JP7071784B2 (en) Wafer processing method
JP2019212814A (en) Wafer processing method
JP2019212789A (en) Wafer processing method
JP2019212811A (en) Wafer processing method
JP2020009896A (en) Wafer processing method
JP2019212815A (en) Wafer processing method
JP2020024993A (en) Wafer processing method
JP2019212813A (en) Wafer processing method
JP2019212788A (en) Wafer processing method
JP2019212790A (en) Wafer processing method
JP2019201023A (en) Processing method of wafer
JP2020009897A (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220913