JP2019212139A - 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体 - Google Patents

画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体 Download PDF

Info

Publication number
JP2019212139A
JP2019212139A JP2018109126A JP2018109126A JP2019212139A JP 2019212139 A JP2019212139 A JP 2019212139A JP 2018109126 A JP2018109126 A JP 2018109126A JP 2018109126 A JP2018109126 A JP 2018109126A JP 2019212139 A JP2019212139 A JP 2019212139A
Authority
JP
Japan
Prior art keywords
image
focus
learning
focus image
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018109126A
Other languages
English (en)
Other versions
JP7129229B2 (ja
JP2019212139A5 (ja
Inventor
智暁 井上
Tomoaki Inoue
智暁 井上
法人 日浅
Norito Hiasa
法人 日浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018109126A priority Critical patent/JP7129229B2/ja
Priority to PCT/JP2019/020641 priority patent/WO2019235258A1/ja
Publication of JP2019212139A publication Critical patent/JP2019212139A/ja
Publication of JP2019212139A5 publication Critical patent/JP2019212139A5/ja
Application granted granted Critical
Publication of JP7129229B2 publication Critical patent/JP7129229B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/60Image enhancement or restoration using machine learning, e.g. neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

【課題】撮影画像から高精度に焦点外れ像の変形を推定または補正することが可能な画像処理方法を提供する。【解決手段】画像処理方法は、焦点外れ像の変形が生じている入力画像の少なくとも一部の領域を取得する工程と、焦点外れ像の変形に関して予め学習された学習情報を取得する工程と、学習情報を用いて領域における焦点外れ像の変形を推定または補正する工程とを有し、焦点外れ像の変形を推定または補正する工程は、Nを2以上の整数、nを1からNまでの整数とするとき、領域に対して、学習情報に基づく複数の線型関数のそれぞれによる第n線型変換と、非線型関数による第n非線型変換とをnが1からNになるまで順に実行することで中間データを生成する工程と、中間データに対して、学習情報に基づく少なくとも一つの線型関数による第N+1線型変換を実行する工程とを含む。【選択図】図1

Description

本発明は、画像処理方法に関する。
一般に、撮像装置の光学性能は合焦物体の結像性能で評価されるが、用途によっては、焦点外れ像(ボケ像)の見え方が撮像装置の光学性能にとって重要な評価指標になる場合がある。特に、デジタルスチルカメラ、ビデオカメラ、または、TVカメラ等の撮像装置では、焦点外れ像の見え方が重要視される傾向にある。
特許文献1には、絞りの近傍にアポダイゼーションフィルタを備えた光学系が開示されている。一般に、広角から中望遠の撮像光学系においては、軸外光束のサジタルハロが画面周辺部における焦点外れ像の強度ムラを引き起こす。アポダイゼーションフィルタは、このようなサジタルハロの除去に効果的である。
特開2016−145862号公報
Y.LeCun,et al., "Gradient−based Learning Applied to Document Recognition", Proc. of The IEEE, 1998. G.E.Hinton,et al., "A fast learning algorithm for deep belief nets", Neural Comput. 2006 Jul; 18(7): 1527−54. I.J.Goodfellow,et al., "Maxout networks", arXiv preprint arXiv:1302.4389 (2013). G.E.Hinton & R.R.Salakhutdinov (2006−07−28). "Reducing the Dimensionality of Data with Neural Networks", Science 313(5786): 504−507. N.Srivastava,et al., "Dropout: A simple way to prevent neural networks from overfitting", The Journal of Machine Learning Research, 15(1):1929−1958, 2014. A.Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", 2009, https://www.cs.toronto.edu/〜kriz/learning−features−2009−TR.pdf
しかしながら、特許文献1に開示されたアポダイゼーションフィルタを備えた光学系では、カダディオプトリックレンズ(反射望遠レンズ)で生じるリングボケ等の口径食により生じる焦点外れ像の形状の補正に対応できない。
そこで本発明は、撮影画像から高精度に焦点外れ像の変形を推定または補正することが可能な画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体を提供することを目的とする。
本発明の一側面としての画像処理方法は、焦点外れ像の変形が生じている入力画像の少なくとも一部の領域を取得する工程と、前記焦点外れ像の変形に関して予め学習された学習情報を取得する工程と、前記学習情報を用いて前記領域における前記焦点外れ像の変形を推定または補正する工程とを有し、前記焦点外れ像の変形を推定または補正する工程は、Nを2以上の整数、nを1からNまでの整数とするとき、前記領域に対して、前記学習情報に基づく複数の線型関数のそれぞれによる第n線型変換と、非線型関数による第n非線型変換とをnが1からNになるまで順に実行することで中間データを生成する工程と、前記中間データに対して、前記学習情報に基づく少なくとも一つの線型関数による第N+1線型変換を実行する工程とを含む。
本発明の他の側面としての画像処理装置は、焦点外れ像の変形に関する学習情報を記憶する記憶部と、前記学習情報を用いて入力画像の少なくとも一部の領域における前記焦点外れ像の変形を推定または補正する画像処理部とを有し、前記画像処理部は、Nを2以上の整数、nを1からNまでの整数とするとき、前記領域に対して、前記学習情報に基づく複数の線型関数のそれぞれによる第n線型変換と、非線型関数による第n非線型変換とをnが1からNになるまで順に実行することで中間データを生成し、前記中間データに対して、前記学習情報に基づく少なくとも一つの線型関数による第N+1線型変換を実行する。
本発明の他の側面としての撮像装置は、被写体空間の像を入力画像として取得する撮像部と、前記画像処理装置とを有する。
本発明の他の側面としてのプログラムは、前記画像処理方法をコンピュータに実行させる。
本発明の他の側面としての記憶媒体は、前記プログラムを記憶している。
本発明の他の目的及び特徴は、以下の実施形態において説明される。
本発明によれば、撮影画像から高精度に焦点外れ像の変形を推定または補正することが可能な画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体を提供することができる。
実施例1および実施例2における焦点外れ像を補正するネットワーク構造を示す図である。 実施例1および実施例3における撮像装置のブロック図である。 実施例1および実施例3における撮像装置の外観図である。 実施例1における焦点外れ像の補正処理を示すフローチャートである。 実施例1における学習情報の学習を示すフローチャートである。 実施例2における画像処理システムのブロック図である。 実施例2における画像処理システムの外観図である。 実施例2における焦点外れ像の補正処理を示すフローチャートである。 実施例3における焦点外れ像の変形の推定処理を示すフローチャートである。 実施例3における焦点外れ像の変形を推定するネットワーク構造を示す図である。 実施例3における学習情報の学習を示すフローチャートである。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照符号を付し、重複する説明は省略する。
各実施例の具体的な説明へ入る前に、本発明の要旨を述べる。本発明では、ディープラーニング(深層学習)を用いて、撮影画像から焦点外れ像の変形(変形した焦点外れ像の形状)を推定または補正する。一般に撮像光学系は、立体被写体の撮影に適用することができる。ここで、「立体被写体」とは、光軸方向の距離が異なる複数の部分からなる被写体であり、特に、撮影時に撮像光学系の焦点面から被写界深度以上離れた点を持つ被写体のことである。このとき、結像面には焦点外れ像が形成され、焦点外れ像の直径が撮像光学系のイメージサークル半径に対して約1〜2%よりも大きくなると、焦点外れ像として認識できるようになる。ここで、「イメージサークル」とは、レンズの有効径内を通った光線が結像する円である。
本実施形態の光学系をデジタルスチルカメラやビデオカメラの撮像光学系として使用する場合、結像面はCCDセンサやCMOSセンサ等の半導体撮像素子(光電変換素子)の撮像面となる。なお、前述のイメージサークル半径は、撮像装置においては撮像面の最大像高としてもよい。また、一般的な撮像光学系では、軸外光束に口径食が見られる。「口径食」とは、光束の一部がケラレることを意味しており、ビネッティングとも呼ばれる。口径食の影響がない焦点外れ像は、絞りの形状を反映した形状となり、一般的には円形となる。口径食により、一般的な撮像光学系では軸外で円が欠けた様な形状となり、絞り中央部が遮蔽される反射望遠レンズではリング状の形状(リングボケ)となる。
各実施例によれば、焦点外れ像の状態が異なる画像を用いて、その対応関係をディープラーニングによって学習することにより、焦点外れ像の変形(変形した焦点外れ像の形状)を高精度に推定または補正することができる。すなわち各実施例によれば、理想的な焦点外れ像の形状から光学系等の撮影条件により変形した焦点外れ像の形状を高精度に推定することが可能となる。また各実施例によれば、変形した焦点外れ像の形状を理想的な焦点外れ像の形状に高精度に補正する(理想的な焦点外れ像の形状に近づける)ことが可能となる。ここで、理想的な焦点外れ像の形状は、光学系の口径食や収差等の影響がない光学系を用いて取得された焦点外れ像の形状であり、例えば円形形状である。一方、光学系の口径食や収差等の影響により変形した焦点外れ像の形状は、例えばリング形状である。
まず、図2および図3を参照して、本発明の実施例1における撮像装置について説明する。図2は、撮像装置100のブロック図である。図3は、撮像装置100の外観図である。本実施例において、撮像装置100は、画像処理方法を実行し、焦点外れ像の変形(光学系の口径食や収差等の影響により変形した焦点外れ像の形状)をディープラーニングにより補正する。
撮像装置100は、被写体空間の像を撮影画像(入力画像)として取得する撮像部101を有する。撮像部101は、被写体空間から入射する光を集光する結像光学系101aと、複数の画素を有する撮像素子101bとを有する。撮像素子101bは、例えば、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal−Oxide Semiconductor)センサである。
画像処理部102は、撮影画像(入力画像)に対して、焦点外れ像(焦点外れ像の変形)を補正する。画像処理部102は、学習部102aと補正部102bとを有する。記憶部103は、画像処理部102による焦点外れ像(焦点外れ像の変形)を補正する際に用いられる学習情報(焦点外れ像の変形に関して予め学習された学習情報)を記憶している。この処理の詳細については後述する。画像処理部102により焦点外れ像の変形が補正された画像等の出力画像は、液晶ディスプレイなどの表示部104に表示されるか、または、記録媒体105に保存される。ただし、撮影画像を記録媒体105に保存し、任意のタイミングで焦点外れ像の補正処理を行ってもよい。撮影画像は、静止画だけでなく動画であってもよい。この場合、各フレームに対して焦点外れ像の補正処理を行う。以上の一連の制御は、システムコントローラ106により行われる。
次に、図4を参照して、画像処理部102による焦点外れ像の補正処理について説明する。画像処理部102は、焦点外れ像の補正処理の際に、事前に学習された学習情報を用いるが、この学習の詳細については後述する。図4は、焦点外れ像の補正処理を示すフローチャートである。図4の各ステップは、主に、画像処理部102の補正部102bにより実行される。
まずステップS101において、画像処理部102(補正部102b)は、焦点外れ像の変形が生じた撮影画像(入力画像)と学習情報とを取得する。ここで、焦点外れ像の変形とは、理想的な焦点外れ像に対して形状や輝度分布が異なっている状態を意味する。学習情報とは、撮影画像と焦点外れ像(焦点外れ像の変形)が補正された画像とを結び付けるために予め学習された情報である。続いてステップS102において、補正部102bは、撮影画像から、撮影画像の少なくとも一部の領域(部分領域)を取得する。焦点外れ像の補正処理は、この領域(部分領域)を単位として(部分領域ごとに)行われる。
続いてステップS103において、補正部102bは、学習情報を用いて部分領域から焦点外れ像が補正された部分領域である補正部分領域を生成する。ここで、図1を参照して、焦点外れ像の補正処理について詳述する。図1は、ディープラーニングの一つであるCNN(Convolutional Neural Network)のネットワーク構造を示している。ただし、ディープラーニングとして、CNN以外の手法、例えばDBN(Deep Belief Network)を用いても構わない。CNNおよびDBNの詳細はそれぞれ、非特許文献1および非特許文献2に説明されている。
CNNは、複数の層構造になっており、各層で学習情報を用いた線型変換と非線型変換とが実行される。nを1からNまでの整数とするとき、n番目の層を第n層、第n層における線型変換と非線型変換とをそれぞれ、第n線型変換と第n非線型変換と呼称する。ただし、Nは2以上の整数である。部分領域201に関しては、第1層において、複数のフィルタ202のそれぞれとのコンボリューション(複数の線型関数による第1線型変換)が実行される。その後、活性化関数(Activation Function)と呼ばれる非線型関数を用いて変換(第1非線型変換)が実行される。図1において、活性化関数をAFとして示している。また、部分領域201が複数枚描画されているのは、入力画像(撮影画像)が複数のチャンネルを有するためである。本実施例において、部分領域はRGB(Red、Green、Blue)の3チャンネルを有する。ただし、チャンネルの数はこれに限定されるものではない。後述のように、複数の撮影画像が入力された場合、部分領域は、入力された撮影画像に対応する数のチャンネル数を有していてもよい。また、部分領域が複数のチャンネルを有する場合でも、1チャンネルごとに個別にCNNへ入力しても構わない。
フィルタ202は複数存在する。補正部102bは、複数のフィルタ202のそれぞれと部分領域201とのコンボリューションを個別に算出する。フィルタ202の係数は、学習情報に基づいて決定される。学習情報は、フィルタ202の係数(フィルタ係数)そのもの、または、フィルタ202を所定の関数でフィッティングした際の係数でもよい。フィルタ202のそれぞれのチャンネル数は、部分領域201の数と一致する。部分領域201のチャンネル数が2以上の場合、3次元フィルタとなる(3次元目がチャンネル数を表す)。また、コンボリューションの結果に対して、学習情報から決定される定数(負もとり得る)を加算してもよい。
活性化関数f(x)の例として、以下の式(1)〜(3)が挙げられる。
式(1)はシグモイド関数、式(2)はハイパボリックタンジェント関数、式(3)はReLU(Rectified Linear Unit)と呼ばれる。式(3)中のmaxは、引数のうち最大値を出力するMAX関数を表す。式(1)〜(3)に示される活性化関数f(x)は、全て単調増加関数である。また、活性化関数としてMaxoutを使用してもよい。Maxoutは、第n線型変換の出力である複数の画像のうち、各画素で最大値である信号値を出力するMAX関数である。Maxoutの詳細は、非特許文献3に説明されている。
図1において、第1線型変換および第1非線型変換が施された部分領域を、第1変換部分領域203と呼称する。第1変換部分領域203の各チャンネル成分は、部分領域201と複数のフィルタ202のそれぞれとのコンボリューションから生成される。このため、第1変換部分領域203のチャンネル数は、フィルタ202の数と同じになる。
第2層では、第1変換部分領域203に対して、第1層と同様に学習情報から決定される複数のフィルタ204とのコンボリューション(第2線型変換)と、活性化関数による非線型変換(第2非線型変換)とを行う。第2層で用いられるフィルタ204は、一般的に、第1層で用いられるフィルタ202と同一ではない。フィルタ204のサイズや数も、フィルタ204と一致しなくてもよい。ただし、フィルタ204のチャンネル数と第1変換部分領域203のチャンネル数とは互いに一致する。補正部102bは、同様の演算を第N層まで繰り返す(第n線型変換および第n非線型変換(n=1〜N)を実行する)ことにより、中間データ210を取得する。
最後に、第N+1層において、中間データ210と複数のフィルタ211のそれぞれとのコンボリューションに定数を加算すること(第N+1線型変換)により、焦点外れ像が補正された補正部分領域212が取得される。ここで用いられるフィルタ211および定数もそれぞれ、学習情報に基づいて決定される。補正部分領域212のチャンネル数は、部分領域201と同じである。このため、フィルタ211の数も部分領域201のチャンネル数と同じである。補正部分領域212の各チャンネルの成分は、中間データ210とフィルタ211のそれぞれ(フィルタ211が一つの場合もある)とのコンボリューションを含む演算から求められる。なお、部分領域201と補正部分領域212とのサイズは互いに一致しなくてもよい。コンボリューションの際に、部分領域201の外側にはデータが存在しないため、データの存在する領域のみで演算すると、コンボリューション結果はサイズが小さくなる。ただし、周期境界条件などを設定することにより、サイズを保つこともできる。
ディープラーニングが高い性能を発揮できる理由は、非線型変換を多層構造によって何度も実行することにより、高い非線型性が得られるためである。仮に、非線型変換を担う活性化関数が存在せず、線型変換のみでネットワークが構成されていた場合、いくら多層にしてもそれと等価な単層の線型変換が存在するため、多層構造にする意味がない。ディープラーニングは、より多層にする方が強い非線型を得られるため、高い性能が出やすいと言われている。一般に、少なくとも3層以上を有する場合がディープラーニングと呼ばれる。
続いて、図4のステップS104において、補正部102bは、撮影画像のうち所定の領域(部分領域)の全てに対して焦点外れ像の補正が完了したか否かを判定する。所定の領域の全てに対して補正部分領域212が生成されている場合、ステップS105へ進む。一方、焦点外れ像の補正が完了していない領域(部分領域)が残っている場合、ステップS102へ戻り、補正部102bは、まだ焦点外れ像が補正されていない部分領域を撮影画像から取得する。
ステップS105において、補正部102bは、焦点外れ像が補正された画像(補正画像)を出力する。焦点外れ像が補正された画像は、生成された複数の補正部分領域212を合成することにより生成される。ただし、部分領域が撮影画像の全体である場合、補正部102bは、補正部分領域212をそのまま焦点外れ像が補正された画像として出力する。以上の処理により、焦点外れ像が補正された画像(理想的な形状(例えば円形形状)の焦点外れ像)を取得することができる。
なお本実施例では、撮影画像(入力画像)、および、焦点外れ像が補正された画像(出力画像)が共に1枚の場合を説明した。しかし、本実施例はこれに限定されるものではない。例えば、複数の撮影画像(複数の入力画像)を入力し、複数の撮影画像のそれぞれの焦点外れ像が補正された複数の出力画像が一括で取得することができるように、CNNのネットワークを構成してもよい。また、複数の撮影画像を入力し、1枚の焦点外れ像が補正された画像を取得するように構成してもよい。複数の撮影画像を入力する場合、絞り値(F値)やピント位置の異なる複数の画像を用いることが好ましい。絞り値やピント位置が変化すると被写体中での焦点外れ像の大きさ、形状、輝度分布等が異なり、同一の被写体に対して、異なる焦点外れ像が生じた複数の画像を入力することにより、精度を向上することができる。また、入力する撮影画像として、複数の色のチャンネルを有する画像を用いることが好ましい。なお本実施例では、焦点外れ像を理想的な形状(円形形状)に補正する場合を説明したが、補正後の焦点外れ像の形状はこれに限定されるものではない。例えば、星型やハート型等のユーザが所望する形状に補正することも可能である。
次に、図5を参照して、本実施例における学習情報の学習について説明する。図5は、学習情報の学習を示すフローチャートである。図5の各ステップは、主に、画像処理部102の学習部102aにより行われる。ただし本実施例はこれに限定されるものではなく、学習情報の学習は、焦点外れ像の補正前であれば、撮像装置100とは別の装置(演算装置)に設けられた学習部で行ってもよい。本実施例では、撮像装置100の学習部102aが学習情報を学習する場合について説明する。
まずステップS201において、学習部102aは、少なくとも一対の学習画像を取得する。一対の学習画像とは、焦点外れ像の変形の状態(光学系の口径食や収差等の撮影条件に応じて変形した焦点外れ像の形状や輝度分布)が異なり、かつ同一の被写体が存在する画像である。焦点外れ像の変形が生じている画像は、焦点外れ像の変形が生じていない画像(理想的な焦点外れ像を含む画像)と一対一に対応しているか、または、1枚の焦点外れ像の変形が生じていない画像に対して複数枚存在していてもよい。後者の場合、焦点外れ像の変形が生じている画像は、焦点外れ像の大きさ、形状、または、輝度分布が異なる複数の画像である。
学習画像を用意する方法として、シミュレーションや実写画像を用いてもよい。シミュレーションを行う場合、焦点外れ像の変形が生じていない画像に対して、口径食や収差の影響を考慮した撮像シミュレーションを行うことで焦点外れ像の変形が生じている画像を生成すればよい。一方、実写画像を用いる場合、同一の被写体を焦点外れ像の変形が異なる条件で撮影した画像を使用すればよい。例えば、焦点外れ像の変形が口径食の影響による場合、変形は絞り値やピント位置などに影響を受ける。または、点光源などの既知の被写体(焦点外れ像の変形が生じていない画像)を、光学系等の撮影条件を変えて撮影することで、焦点外れ像の変形が異なる学習画像を得てもよい。
また、焦点外れ像の変形が生じている画像に対してディープラーニング以外の手法を用いて焦点外れ像が補正された画像を推定し、学習画像を用意してもよい。なお学習画像は、様々な焦点外れ像(様々な変形した焦点外れ像の形状)が含まれる画像を含むことが好ましい。学習画像に含まれない変形の仕方をしている画像は、高精度に焦点外れ像を補正することができないためである。また、学習画像に含まれる焦点外れ像の変形が異なる画像は一対のみでもよいが、前述の理由により複数の画像を含むことが好ましい。
続いてステップS202において、学習部102aは、ステップS201にて取得した学習画像から、複数の学習ペアを取得する。学習ペアは、学習部分領域(学習領域)と学習補正部分領域とからなる。学習補正部分領域は焦点外れ像の変形が生じている画像から取得され、そのサイズはステップS102にて取得した撮影画像の部分領域と同じである。学習部分領域は焦点外れ像の変形が生じていない画像から取得され、学習部分領域の中心は画像において学習補正部分領域の中心と同じ位置である。そのサイズは、ステップS103にて生成された補正部分領域と同じである。前述と同様に、学習部分領域と学習補正部分領域のペア(学習ペア)は、一対一に対応している必要はない。一つの学習補正部分領域と、複数の学習部分領域とがペア(グループ)になっていてもよい。
続いてステップS203において、補正部102aは、複数の学習ペア(学習部分領域と学習補正部分領域)から、学習情報を学習によって取得(生成)する。学習では、焦点外れ像を補正するネットワーク構造と同じネットワーク構造を使用する。本実施例では、図1に示されるネットワーク構造に対して学習補正部分領域を入力し、その出力結果と学習部分領域との誤差を算出する。この誤差が最小となるように、例えば誤差逆伝播法(Backpropagation)などを用いて、第1乃至N+1層で用いる複数のフィルタのそれぞれの係数や加算する定数(学習情報)を更新して最適化する。各フィルタの係数および定数の初期値は任意に設定することができ、例えば乱数から決定される。または、各層ごとに初期値を事前学習するAuto Encoderなどのプレトレーニングを行ってもよい。Auto Encoderの詳細は、非特許文献4に説明されている。
学習ペアの全てをネットワーク構造へ入力し、それら全ての情報を使って学習情報を更新する手法をバッチ学習と呼ぶ。ただし、この学習方法は、学習ペアの数が増えるにつれて計算負荷が膨大になる。逆に、学習情報の更新に一つの学習ペアのみを使用し、更新ごとに異なる学習ペアを使用する学習手法をオンライン学習と呼ぶ。この手法は、学習ペアが増えても計算量が増大しないが、一つの学習ペアに存在するノイズの影響を大きく受ける。このため、これら2つの手法の中間に位置するミニバッチ法を用いて学習することが好ましい。ミニバッチ法は、全学習ペアの中から少数を抽出し、それらを用いて学習情報の更新を行う。次の更新では、異なる小数の学習ペアを抽出して使用する。これを繰り返すことにより、バッチ学習とオンライン学習の不利な点を小さくすることができ、高い補正効果を得やすくなる。
続いてステップS204において、補正部102aは、学習された学習情報を出力する。本実施例において、学習情報は記憶部103に記憶される。以上の処理により、高精度に焦点外れ像を補正するための学習情報を学習することができる。
また、以上の処理に加えて、CNNの性能を向上させる工夫を併用してもよい。例えば、ロバスト性の向上のためネットワークの各層において、ドロップアウト(Dropout)やダウンサンプリングであるプーリング(pooling)を行ってもよい。または、学習精度の向上のため、学習画像の画素の平均値を0、分散を1に正規化し、隣接する画素の冗長性をなくすZCAホワイトニング(ZCA whitening)などを併用してもよい。ドロップアウトおよびZCAホワイトニングの詳細はそれぞれ、非特許文献5および非特許文献6に説明されている。
本実施例によれば撮影画像から高精度に焦点外れ像(焦点外れ像の変形)を補正することが可能な撮像装置を提供することができる。
次に、本発明の実施例2における画像処理システムについて説明する。施例の画像処理システムにおいて、焦点外れ像(焦点外れ像の変形)を補正する画像処理装置と、撮影画像を取得する撮像装置、および、学習を行うサーバが個別に設けられている。また本実施例では、焦点外れ像(焦点外れ像領域)の大きさを判定することにより、使用する学習情報を切り替える。焦点外れ像領域の大きさに応じて、焦点外れ像の補正処理に使用する学習情報を個別に学習して使用することにより、より高精度な焦点外れ像の補正が可能となる。
図6および図7を参照して、本実施例における画像処理システムについて説明する。図6は、画像処理システム200のブロック図である。図7は、画像処理システム200の外観図である。図6および図7に示されるように、画像処理システム200は、撮像装置300、画像処理装置301、サーバ305、表示装置308、記録媒体309、および、出力装置310を備えて構成される。
撮像装置300の基本構成は、焦点外れ像の補正と学習情報の学習に関する画像処理部を除いて、図2を参照して説明した撮像装置100と同様である。撮像装置300を用いて撮影された撮影画像(入力画像)は、画像処理装置301に設けられた記憶部302に記憶される。画像処理装置301は、ネットワーク304と有線または無線で接続されており、ネットワーク304を介してサーバ305にアクセスすることができる。サーバ305は、撮影画像から焦点外れ像を補正するための学習情報を学習する学習部307と、学習情報を記憶する記憶部306とを有する。画像処理装置301に設けられた補正部303(画像処理部)は、サーバ305の記憶部306からネットワーク304を介して学習情報を取得し、撮影画像の焦点外れ像を補正する。補正部303により焦点外れ像が補正された画像等の出力画像は、表示装置308、記録媒体309、および、出力装置310の少なくとも一つに出力される。表示装置308は、例えば液晶ディスプレイやプロジェクタである。ユーザは、表示装置308を介して、処理途中の画像を確認しながら作業を行うことができる。記録媒体309は、例えば半導体メモリ、ハードディスク、ネットワーク上のサーバである。出力装置310は、例えばプリンタである。画像処理装置301は、必要に応じて現像処理やその他の画像処理を行う機能を有してもよい。
次に、図8を参照して、焦点外れ像の補正処理について説明する。図8は、焦点外れ像の補正処理を示すフローチャートである。図8の各ステップは、主に、画像処理装置301の補正部303(画像処理部)により実行される。
まずステップS301において、補正部303は、記憶部302から、撮影画像(入力画像)を取得する。続いてステップS302において、補正部303は、撮影画像に含まれる焦点外れ像領域の大きさを判定する。焦点外れ像領域の大きさとは、像面上のピントずれ量および絞り値に応じて変動する焦点外れ像が生じている領域の大きさである。本実施例では、これらの量を画素サイズで除すことで画素数に換算する。焦点外れ像領域の大きさを判定する方法として、以下に3つの例を示す。
第1の例は、ピント位置が異なる複数の画像を用いる方法である。焦点外れ像領域の大きさは像面上のピントずれ量に応じて変化するため、ピント位置が異なる撮影をすることで焦点外れ像領域の大きさが異なる画像を取得することができる。また、複数の画像から、部分領域ごとに最もコントラストが高くなる画像を選択すると、画像全域でピントが合ったパンフォーカス画像を得ることができる。そのパンフォーカス画像と補正を行う撮影画像とを比較することで、ピントずれによって大きく輝度変化している領域として、焦点外れ像領域を検出することができる。また部分領域ごとに、ボケ量と距離情報との相関を得ることが可能であるため、一般的にDFD(Depth from Defocus)として知られている手法により、部分領域ごとに被写体距離を算出することができる。被写体距離に基づいて像面上のピントずれ量を見積もることが可能であるため、前記手法による被写体距離と絞り値とに基づいて焦点外れ像領域の大きさを見積もることができる。
第2の例は、絞り値が異なる複数の画像を用いる方法である。焦点外れ像領域の大きさは絞り値に応じて変化するため、絞り値が異なる撮影をすることで焦点外れ像領域の大きさが異なる画像を取得することができる。また、複数の画像から、部分領域ごとに最もコントラストが高くなる画像を選択すると、画像全域でピントが合ったパンフォーカス画像を得ることができる。そのパンフォーカス画像と補正を行う撮影画像とを比較することで、ピントずれにより大きく輝度変化している領域として、焦点外れ像領域を検出することができる。また部分領域ごとに、ボケ量と距離情報との相関を得ることが可能であるため、一般的にDFD(Depth from Defocus)として知られている手法により、部分領域ごとに被写体距離を算出することができる。被写体距離に基づいて像面上のピントずれ量を見積もることが可能であるため、前記手法による被写体距離と絞り値とに基づいて焦点外れ像領域の大きさを見積もることができる。
第3の例は、被写体距離(被写体距離情報)を用いる方法である。被写体距離に基づいて像面上のピントずれ量を見積もることが可能であるため、後述する手法により被写体距離と絞り値とに基づいて焦点外れ像領域の大きさを見積もることができる。被写体距離情報は、例えば、撮像装置300を多眼構成とすることで、ステレオ原理により距離情報を取得することができる。また、既存のTOF装置等の測距ユニットを別途備えることで、被写体距離情報を取得することもできる。
なお、画像の位置に応じて焦点外れ像領域の大きさが変わる場合があるため、撮影画像内の複数の位置に対して大きさを判定し、部分領域の位置に応じて学習情報を切り替えてもよい。
続いてステップS303において、補正部303は、ステップS302にて判定された焦点外れ像領域の大きさに基づいて、使用するネットワーク構造と学習情報、および、部分領域のサイズを決定する。本実施例において、補正部303は、図1に示されるCNNを利用して焦点外れ像を補正する。焦点外れ像領域が部分領域のサイズよりも大きいと、補正対象の被写体の情報が欠落してしまうため、高精度な焦点外れ像の補正を行うことができない。また、CNNでは各層でフィルタをコンボリューションして焦点外れ像を補正するため、それらのフィルタが影響する範囲を合わせた範囲が、撮影画像の焦点外れ像領域より小さいと、焦点外れ像を正しく補正することができない。例えば、全層数が2で、第1層のフィルタサイズが5×5、第2層のフィルタサイズが3×3である場合、ある画素の焦点外れ像の補正に使用できる範囲は、この画素を中心とした7×7画素である。このため、このネットワーク構造では、焦点外れ像領域の大きさが7画素以下になっていない場合、焦点外れ像を高精度に補正することができない。したがって、焦点外れ像領域の大きさに基づいて、ある画素の焦点外れ像の補正に使用される範囲(各層のフィルタのサイズに応じて決定される)を決定することが好ましい。
より詳細には、以下の条件式(4)を満足するように、各層のフィルタのサイズを決定することが好ましい。
条件式(4)において、dは撮影画像(入力画像)の画素に対する焦点外れ像領域の大きさであり、焦点外れ像領域の1次元方向における長さを画素数で表している。N+1は全層数である。s(m=1〜N+1)は、第m線型変換で使用するフィルタのサイズ(第m線型変換(m=1〜N+1)のそれぞれにおけるフィルタの1次元サイズ)である。第m線型変換で複数のサイズのフィルタが混合して使用される場合、sは最大のフィルタサイズである。条件式(4)の上限は、ある画素の焦点外れ像の補正に使用できる範囲が、焦点外れ像領域の大きさ以上であることを示している。一方、条件式(4)の下限は、理論的に超えることができない。
ネットワーク構造は、各層で使用するフィルタのサイズだけでなく、一つの層で使用されるフィルタの数や層数なども含む。焦点外れ像を高精度に補正するには、焦点外れ像領域が大きいほど層数やフィルタの数を増やす必要がある。学習情報は、焦点外れ像領域の大きさごとに学習されており、その中から撮影画像に含まれる焦点外れ像領域の大きさに対応した学習情報を使用する。これにより、より精度の高い焦点外れ像の補正が可能となる。なお、学習の詳細に関しては後述する。
続いてステップS304において、補正部303は、撮影画像から部分領域(撮影画像の少なくとも一部の領域)を取得する。続いてステップS305において、補正部303は、ステップS303にて決定された学習情報に基づいて、補正部分領域を生成する。続いてステップS306において、補正部303は、撮影画像のうち所定の領域(部分領域)の全てに対して焦点外れ像の補正処理が完了したか否かを判定する。所定の領域の全てに対して焦点外れ像の補正が完了した場合、ステップS307へ進む。一方、焦点外れ像の補正が完了していない領域(部分領域)が残っている場合、ステップS304へ戻り、補正部303は、まだ焦点外れ像が補正されていない部分領域(新たな部分領域)を撮影画像から取得する。ステップS307において、補正部303は、焦点外れ像が補正された画像を出力する。
なお、撮影画像中の位置に応じて焦点外れ像領域の大きさが大きく異なる場合、補正部303は、ステップS304をステップS302、S303の前に実行することが好ましい。このとき補正部303は、ステップS302、S303において、撮影画像の局所領域に対して焦点外れ像領域の大きさを取得し、対応する学習情報などを取得する。
次に、サーバ305の学習部307により行われる学習情報の学習に関して説明する。本実施例において、学習部307は、焦点外れ像領域の大きさに応じて異なる学習情報を学習する。学習方法は、図5を参照して実施例1にて説明した方法と基本的に同様であるが、学習画像の用意の仕方によりその前処理が異なる。
まず、焦点外れ像の変形(変形した焦点外れ像の形状)が異なる学習画像をシミュレーションにより生成する場合に関して説明する。この場合、焦点外れ像領域の大きさを設定して焦点外れ像の変形が生じていない画像から焦点外れ像の変形が生じている画像を生成し、一対の学習画像を得る。学習部307は、取得した学習画像に対してステップS201乃至S204を実行し、その後、異なる焦点外れ像領域の大きさに対して同様の手順を繰り返す。
次に、焦点外れ像の変形が生じている画像から焦点外れ像の変形が生じていない画像を求めて、学習画像を生成する場合に関して説明する。この場合、焦点外れ像の変形が生じていない画像を求める際に焦点外れ像領域の大きさが求まるため、これにより学習画像を複数のグループに分ける。グループ分けは画像単位で行うことができる。1枚の焦点外れ像の変形が生じている画像内で焦点外れ像領域の大きさが変化している場合、画像を分割してグループ分けを行ってもよい。各グループは焦点外れ像領域の大きさが近いものが含まれているため、グループごとにステップS201乃至S204を実行して、学習情報を生成する。
本実施例によれば、撮影画像から高精度に焦点外れ像(焦点外れ像の変形)を補正することが可能な画像処理システムを提供することができる。
次に、本発明の実施例3における撮像装置について説明する。本実施例の撮像装置は、撮影画像(入力画像)から焦点外れ像の変形(変形した焦点外れ像の形状)を推定する。なお、本実施例における撮像装置の構成および外観は、図2および図3を参照して実施例1にて説明した撮像装置100と同様である。ただし本実施例の撮像装置には、画像処理部として、補正部102bに代えて推定部が設けられている。
図9を参照して、撮影画像(入力画像)から焦点外れ像の変形を推定する処理について説明する。図9は、焦点外れ像の変形の推定処理を示すフローチャートである。図9の各ステップは、主に、画像処理部102の推定部により実行される。
まずステップS401において、画像処理部102(推定部)は、撮影画像(入力画像)と学習情報とを取得する。学習情報の学習に関しては後述する。この学習により、撮影画像の部分領域と部分領域に生じている焦点外れ像の変形とを結び付ける学習情報が取得されている。続いてステップS402において、推定部は、撮影画像から、焦点外れ像の変形を推定するための部分領域を取得する。本実施例において、推定部は、部分領域に含まれる画素(例えば中心画素)に焦点外れ像の変化が生じているか否かを、その周辺画素(部分領域に含まれている画素)の情報も利用して推定する。
続いてステップS403において、推定部は、ステップS401にて取得した学習情報に基づいて、焦点外れ像の変形を推定する。本実施例において、推定部は、図10に示されるネットワーク構造を使用して推定を行う。図10は、本実施例における焦点外れ像の変形を推定するネットワーク構造を示す図である。図10において、中間データ410の生成までの工程は、図1を参照して実施例1で説明した工程と同様であるため、それらの説明を省略する。すなわち、図10の部分領域401、フィルタ402、第1変換部分領域403、フィルタ404、および、中間データ410はそれぞれ、図1の部分領域201、フィルタ202、第1変換部分領域203、フィルタ204、および、中間データ210に相当する。
本実施例では、第N+1層における第N+1線型変換として、フルコネクション411を実行する。フルコネクション411は、入力される中間データ410の全信号の線型結合をとる。この際、各信号にかかる係数と加算される定数は、学習情報によって決定される。また、係数と定数は複数種類が存在し、それぞれの係数と定数に対して線型結合が計算され、複数の結果が出力される。フルコネクション411で出力された複数の値は、活性化関数によって変換され(第N+1非線型変換)、ソフトマックス412に入力される。ソフトマックス412は、以下の式(5)で表されるソフトマックス関数を計算する。
式(5)において、ベクトルxは第N+1非線型変換で出力された複数の値を成分とする列ベクトル、ベクトルwは学習情報から決定される係数を成分とした列ベクトルである。ベクトルwの右肩に付いたTは、転置を表す。式(5)によって、部分領域401に生じている焦点外れ像の変形が、分布413a〜413d(413e以降は省略)のいずれであるかの確率を求めることができる。ここで分布とは、部分領域に焦点外れ像の変形が存在するか否かを示したものであり、分布413aは大きなリングボケ、分布413bは小さなリングボケ、分布413c、413dは口径食による周辺部の変形をそれぞれ示している。式(5)のKは分布の総数、jとkは分布の番号を示すインデックスである。
続いて、図9のステップS404において、推定部は、撮影画像のうち所定の領域(部分領域)の全てに対して焦点外れ像の変形の推定が完了したか否かを判定する。所定の領域の全てに対して推定が完了した場合、ステップS405へ進む。一方、推定が完了していない領域(部分領域)が残っている場合、ステップS402へ戻り、推定部は、まだ焦点外れ像の変形が推定されていない部分領域(新たな部分領域)を撮影画像から取得する。
ステップS405において、推定部は、所定の領域内の各部分領域における焦点外れ像の変形の推定結果を出力する。焦点外れ像の変形の推定結果は、焦点外れ像の変形が生じた光学系(結像光学系)の撮影状態を解析するためや、撮影画像から焦点外れ像を補正するため等に用いることができる。焦点外れ像を補正する場合、ディープラーニング以外の手法を用いてもよい。以上の処理により、焦点外れ像の変形が生じている撮影画像から、焦点外れ像の変形を高精度に推定することができる。
次に、図11を参照して、本実施例における学習情報の生成に関して説明する。図11は、学習情報の学習を示すフローチャートである。図11の各ステップは、主に、画像処理部102の学習部102aにより行われる。ただし本実施例はこれに限定されるものではなく、学習情報の学習は、撮像装置100とは別の装置(演算装置)に設けられた学習部で行ってもよい。本実施例では、実施例1と同様に、撮像装置100の学習部102aが学習情報を学習する場合について説明する。
まずステップS501において、学習部102aは、学習画像を取得する。本実施例では、焦点外れ像の変形が生じていない画像に対してシミュレーションを用いて口径食のよる焦点外れ像の変形を付与した画像を学習画像とする。学習画像は単数でも複数でもよい。ただし、様々な大きさや形状の焦点外れ像の変形を精度よく推定するには、異なる口径食による焦点外れ像の変形が学習画像に含まれている必要がある。
続いてステップS502において、学習部102aは、ステップS501にて取得した学習画像から、複数の学習ペアを取得する。本実施例において、学習ペアは、学習画像(焦点外れ像の変形が生じている画像)の部分領域(学習用変形部分領域)、および、この部分領域に作用している分布に関する情報である。分布に関する情報とは、複数の変形分布のうち特定の分布を示す番号である。複数の分布は、図10に示される分布413a〜413d(413e以降は省略)であり、これらは事前に用意されて記憶部103に記憶されている。
続いてステップS503において、学習部102aは、学習ペア(変形分布に関する情報と学習用変形部分領域)に基づいて、学習情報を生成する。学習情報の生成には、図10のネットワーク構造が用いられる。続いてステップS504において、学習部102aは、生成された学習情報を出力する。本実施例において、実施例2と同様に、焦点外れ像領域の大きさごとに学習情報を用意してもよい。
本実施例によれば、撮影画像から高精度に焦点外れ像の変形を推定することが可能な撮像装置を提供することができる。
(その他の実施例)
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
各実施例によれば、撮影画像から高精度に焦点外れ像の変形を推定または補正することが可能な画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体を提供することができる。
以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されたものではなく、その要旨の範囲内で様々な変形、及び変更が可能である。
102 画像処理部
102b、303 補正部(画像処理部)
103、302 記憶部
301 画像処理装置

Claims (17)

  1. 焦点外れ像の変形が生じている入力画像の少なくとも一部の領域を取得する工程と、
    前記焦点外れ像の変形に関して予め学習された学習情報を取得する工程と、
    前記学習情報を用いて前記領域における前記焦点外れ像の変形を推定または補正する工程と、を有し、
    前記焦点外れ像の変形を推定または補正する工程は、Nを2以上の整数、nを1からNまでの整数とするとき、
    前記領域に対して、前記学習情報に基づく複数の線型関数のそれぞれによる第n線型変換と、非線型関数による第n非線型変換とをnが1からNになるまで順に実行することで中間データを生成する工程と、
    前記中間データに対して、前記学習情報に基づく少なくとも一つの線型関数による第N+1線型変換を実行する工程と、を含むことを特徴とする画像処理方法。
  2. 前記焦点外れ像の変形が生じている焦点外れ像領域の大きさを取得する工程を更に有し、
    前記領域の大きさまたは前記学習情報は、前記焦点外れ像領域の大きさに基づいて決定されることを特徴とする請求項1に記載の画像処理方法。
  3. 前記焦点外れ像領域の大きさは、前記入力画像とは異なる絞り値またはピント位置の画像を用いて算出されることを特徴とする請求項2に記載の画像処理方法。
  4. 前記焦点外れ像の変形が生じている前記画像は、理想的な焦点外れ像の形状から変形した焦点外れ像を含む画像であり、
    前記焦点外れ像の変形を推定または補正する工程において、前記焦点外れ像の変形を推定、または、前記焦点外れ像の形状を前記理想的な焦点外れ像の形状に近づけるように前記焦点外れ像を補正することを特徴とする請求項1乃至3のいずれか1項に記載の画像処理方法。
  5. 前記理想的な焦点外れ像は、光学系の口径食または収差の影響がない状態で取得された焦点外れ像であり、
    前記焦点外れ像の変形が生じている前記入力画像は、前記口径食または前記収差の影響により前記理想的な焦点外れ像から変形した焦点外れ像を含む画像であることを特徴とする請求項4に記載の画像処理方法。
  6. 前記第n線型変換(n=1〜N)のそれぞれは、前記学習情報に基づく複数のフィルタの各々とのコンボリューションを含むことを特徴とする請求項1乃至5のいずれか一項に記載の画像処理方法。
  7. 前記領域における前記焦点外れ像の変形を補正する工程において、前記第N+1線型変換は、前記学習情報に基づくフィルタとのコンボリューションを含むことを特徴とする請求項6に記載の画像処理方法。
  8. 前記第n線型変換(n=1〜N)および前記第N+1線型変換のそれぞれにおける前記フィルタのサイズは、焦点外れ像領域の大きさに基づいて決定されることを特徴とする請求項7に記載の画像処理方法。
  9. 前記入力画像の画素に対する焦点外れ像領域の大きさをd、前記第n線型変換(n=1〜N)および前記第N+1線型変換のそれぞれにおける前記フィルタの1次元サイズをs(m=1〜N+1)とするとき、

    なる条件式を満足することを特徴とする請求項7または8に記載の画像処理方法。
  10. 前記学習情報は、前記焦点外れ像の変形の状態が異なり、かつ同一の被写体が存在する少なくとも一対の学習画像を用いて学習された情報であることを特徴とする請求項1乃至9のいずれか1項に記載の画像処理方法。
  11. 前記一対の学習画像は、前記焦点外れ像の変形が生じている画像と、前記焦点外れ像の変形が生じていない画像と、を含むことを特徴とする請求項10に記載の画像処理方法。
  12. 前記学習画像のうち前記焦点外れ像の変形が生じていない前記画像は、前記同一の被写体を異なる絞り値またはピント位置で撮影した画像であることを特徴とする請求項11に記載の画像処理方法。
  13. 前記学習画像は、シミュレーションにより生成された画像であることを特徴とする請求項10乃至12のいずれか1項に記載の画像処理方法。
  14. 焦点外れ像の変形に関する学習情報を記憶する記憶部と、
    前記学習情報を用いて入力画像の少なくとも一部の領域における前記焦点外れ像の変形を推定または補正する画像処理部と、を有し、
    前記画像処理部は、Nを2以上の整数、nを1からNまでの整数とするとき、
    前記領域に対して、前記学習情報に基づく複数の線型関数のそれぞれによる第n線型変換と、非線型関数による第n非線型変換とをnが1からNになるまで順に実行することで中間データを生成し、
    前記中間データに対して、前記学習情報に基づく少なくとも一つの線型関数による第N+1線型変換を実行する、ことを特徴とする画像処理装置。
  15. 被写体空間の像を入力画像として取得する撮像部と、
    請求項14に記載の画像処理装置と、を有することを特徴とする撮像装置。
  16. 請求項1乃至13のいずれか1項に記載の画像処理方法をコンピュータに実行させることを特徴とするプログラム。
  17. 請求項16に記載のプログラムを記憶していることを特徴とする記憶媒体。
JP2018109126A 2018-06-07 2018-06-07 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体 Active JP7129229B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018109126A JP7129229B2 (ja) 2018-06-07 2018-06-07 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体
PCT/JP2019/020641 WO2019235258A1 (ja) 2018-06-07 2019-05-24 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109126A JP7129229B2 (ja) 2018-06-07 2018-06-07 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体

Publications (3)

Publication Number Publication Date
JP2019212139A true JP2019212139A (ja) 2019-12-12
JP2019212139A5 JP2019212139A5 (ja) 2021-07-26
JP7129229B2 JP7129229B2 (ja) 2022-09-01

Family

ID=68770832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109126A Active JP7129229B2 (ja) 2018-06-07 2018-06-07 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体

Country Status (2)

Country Link
JP (1) JP7129229B2 (ja)
WO (1) WO2019235258A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003256771A (ja) * 2002-03-06 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> 情景内文字撮像方法とその装置及び情景内文字撮像プログラムとそのプログラムを記録した記録媒体。
JP2009020844A (ja) * 2007-07-13 2009-01-29 Morpho Inc 画像データ処理方法および撮像装置
JP2009069996A (ja) * 2007-09-11 2009-04-02 Sony Corp 画像処理装置および画像処理方法、認識装置および認識方法、並びに、プログラム
JP2010045819A (ja) * 2000-02-28 2010-02-25 Eastman Kodak Co 顔を検出するカメラ及び方法
WO2018037521A1 (ja) * 2016-08-25 2018-03-01 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、記憶媒体
JP2018055516A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP2018084982A (ja) * 2016-11-24 2018-05-31 キヤノン株式会社 画像処理装置、情報処理方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045819A (ja) * 2000-02-28 2010-02-25 Eastman Kodak Co 顔を検出するカメラ及び方法
JP2003256771A (ja) * 2002-03-06 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> 情景内文字撮像方法とその装置及び情景内文字撮像プログラムとそのプログラムを記録した記録媒体。
JP2009020844A (ja) * 2007-07-13 2009-01-29 Morpho Inc 画像データ処理方法および撮像装置
JP2009069996A (ja) * 2007-09-11 2009-04-02 Sony Corp 画像処理装置および画像処理方法、認識装置および認識方法、並びに、プログラム
WO2018037521A1 (ja) * 2016-08-25 2018-03-01 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、記憶媒体
JP2018055516A (ja) * 2016-09-30 2018-04-05 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP2018084982A (ja) * 2016-11-24 2018-05-31 キヤノン株式会社 画像処理装置、情報処理方法及びプログラム

Also Published As

Publication number Publication date
JP7129229B2 (ja) 2022-09-01
WO2019235258A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6728365B2 (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、記憶媒体
CN110858871B (zh) 图像处理方法、图像处理装置、成像装置、镜头装置、存储介质、以及图像处理系统
JP6910780B2 (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP2018084982A (ja) 画像処理装置、情報処理方法及びプログラム
US11508038B2 (en) Image processing method, storage medium, image processing apparatus, learned model manufacturing method, and image processing system
JP4566591B2 (ja) 画像変形推定方法および画像変形推定装置
TWI507808B (zh) 攝影裝置
JP2020036310A (ja) 画像処理方法、画像処理装置、撮像装置、レンズ装置、プログラム、記憶媒体、および、画像処理システム
KR101889886B1 (ko) 심도 정보 생성 방법 및 장치
JP2019074777A (ja) 画像処理方法、画像処理装置、および撮像装置
US10084978B2 (en) Image capturing apparatus and image processing apparatus
JP7146461B2 (ja) 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体
JP6642998B2 (ja) 像ズレ量算出装置、撮像装置、および像ズレ量算出方法
JP7191588B2 (ja) 画像処理方法、画像処理装置、撮像装置、レンズ装置、プログラム、および、記憶媒体
JP7129229B2 (ja) 画像処理方法、画像処理装置、撮像装置、プログラム、および、記憶媒体
US11080832B2 (en) Image processing method, image processing apparatus, imaging apparatus, and storage medium
JP2011254262A (ja) 画像処理装置、画像処理方法
JP7009219B2 (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP2019068378A (ja) 高解像度撮像装置
JP2018133064A (ja) 画像処理装置、撮像装置、画像処理方法および画像処理プログラム
JP2020057373A (ja) 画像処理方法、画像処理装置、撮像装置、プログラム、記憶媒体、画像処理システム、および、学習済みモデルの製造方法
JP2019139694A (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
US20230128856A1 (en) Image processing method, storage medium, image processing apparatus, manufacturing method of trained model, and image processing system
JP2013034068A (ja) 画像処理方法、画像処理装置および画像処理プログラム
JP2017034595A (ja) 画像処理装置、撮像装置および画像処理プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R151 Written notification of patent or utility model registration

Ref document number: 7129229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151