JP2019210565A - Method for producing three-dimensional net-like structure, and three-dimensional net-like structure - Google Patents

Method for producing three-dimensional net-like structure, and three-dimensional net-like structure Download PDF

Info

Publication number
JP2019210565A
JP2019210565A JP2018106771A JP2018106771A JP2019210565A JP 2019210565 A JP2019210565 A JP 2019210565A JP 2018106771 A JP2018106771 A JP 2018106771A JP 2018106771 A JP2018106771 A JP 2018106771A JP 2019210565 A JP2019210565 A JP 2019210565A
Authority
JP
Japan
Prior art keywords
network structure
dimensional network
nonwoven fabric
composite
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018106771A
Other languages
Japanese (ja)
Other versions
JP7101973B2 (en
Inventor
典樹 森村
Noriki Morimura
典樹 森村
温 小浜
Atsushi Kohama
温 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimura Kousan KK
Original Assignee
Morimura Kousan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimura Kousan KK filed Critical Morimura Kousan KK
Priority to JP2018106771A priority Critical patent/JP7101973B2/en
Publication of JP2019210565A publication Critical patent/JP2019210565A/en
Priority to JP2022013927A priority patent/JP2022048266A/en
Application granted granted Critical
Publication of JP7101973B2 publication Critical patent/JP7101973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To simply and reliably bond nonwoven fabrics to a three-dimensional net-like structure.SOLUTION: In the process of placing nonwoven fabrics 6A and 6B on a pair of guide parts 3A and 3B, respectively, and moving them toward a coolant liquid surface 1a of a liquid coolant 1, a melted resin 22B heat-melted is extruded from a multi-hole die 24A on which melted-resin extrusion holes 24B are formed, thereby forming a plurality of melted threads 5A. The plurality of melted threads 5A are spirally dropped onto the coolant liquid surface 1a of the liquid coolant 1 in a state of being melted, and are stacked in a three-dimensional net-like shape while the melted threads 5A are heat-welded to one another, thereby forming a three-dimensional net-like structure 7A. At the same time, they are made to descend into the liquid coolant 1 at the same speed as the nonwoven fabrics 6A and 6B. In such a state that, while the melted threads 5A and the nonwoven fabrics 6A and 6B are brought into contact and welded, they are sandwiched between thickness-regulation plates 2A and 2B, they are cooled by the liquid coolant 1, thereby forming the solidified three-dimensional net-like structure 7A. Thus, the nonwoven fabrics 6A and 6B are welded to wide surfaces 7C and 7D of the three-dimensional net-like structure 7A.SELECTED DRAWING: Figure 1

Description

本発明は、合成樹脂製の立体網状構造体の製造過程で、立体網状構造体に不織布、強化網等を熱溶着させる立体網状構造体の製造方法及び立体網状構造体に関する。   The present invention relates to a method for manufacturing a three-dimensional network structure and a three-dimensional network structure in which a nonwoven fabric, a reinforcing network, or the like is thermally welded to the three-dimensional network structure in the process of manufacturing the three-dimensional network structure made of a synthetic resin.

この種の立体網状構造体を形成する過程で不織布を溶着させる製造方法は知られている。例えば、特許文献1及び2に記載されている製造方法では、垂直下向きに被搬送物を挟んで搬送するコンベアを水槽内に設置し、コンベアを進行させるベルトコンベア等の上端が水面から出る高さまで水を満たし、一対のコンベアに1枚又は2枚の不織布等を設置し、一対のコンベア間に合成樹脂の複数の溶融線条を螺旋状に垂直に投下しながらコンベアを下向きに進行させ、水中で冷却固化し、樹脂製の立体網状構造体と不織布の複合体を製造するようにしている。   A manufacturing method in which a nonwoven fabric is welded in the process of forming this type of three-dimensional network structure is known. For example, in the manufacturing methods described in Patent Documents 1 and 2, a conveyor that conveys a material to be conveyed vertically downward is installed in a water tank, and the upper end of a belt conveyor or the like that advances the conveyor is up to a height at which the conveyor comes out of the water surface. Filled with water, installed one or two non-woven fabrics on a pair of conveyors, and advancing the conveyor downward while dropping a plurality of synthetic resin strips spirally vertically between the pair of conveyors. And solidify by cooling to produce a composite of a resinous three-dimensional network structure and a nonwoven fabric.

特開平11−241263号公報Japanese Patent Laid-Open No. 11-241263 特開昭55−17527号公報JP-A-55-17527

しかしながら、上記特許文献1及び2の製造方法では、水面よりも上の部分での2枚の不織布の間隔は、水面下のコンベアの間隔よりも広く、立体網状構造体を構成する複数の溶融線条が水面付近で、2枚の不織布の間隔と同じ厚さの範囲で集積して相互に溶着して固まった場合、コンベアの間隔よりも大きな成形物が無理矢理にコンベアを通過することとなり、コンベアを前進させるモータや、途中に設置している減速装置に過大な負担がかかる。また、モータ等の動力の最大駆動力を超えると立体網状構造体は前進できなくなり、連続供給される溶融線条がコンベア入り口で固まってしまうことが考えられる。特に、不織布との溶着強度を上げるために、水面上での滞在時間を長くすると、水面付近で、まだコンベアの等間隔領域まで到達していない網目構成繊維の滞在時間も長くなり、コンベア等間隔部分の間隔よりも厚い立体網状構造体の固化物が形成され、コンベアの駆動装置に過大な負担をかけ、製品の形状(厚さや網目密度)も不均一となることが考えられる。   However, in the manufacturing methods of Patent Documents 1 and 2, the interval between the two nonwoven fabrics in the portion above the water surface is wider than the interval between the conveyors below the water surface, and a plurality of melting lines constituting the three-dimensional network structure. When the strips are accumulated in the vicinity of the water surface in the same thickness range as the interval between the two nonwoven fabrics and are welded and hardened together, a molded product that is larger than the interval between the conveyors is forced to pass through the conveyor. An excessive load is applied to the motor that moves the motor forward and the reduction gear installed on the way. In addition, when the maximum driving force of the power such as a motor is exceeded, the three-dimensional network structure cannot move forward, and it is considered that the continuously supplied molten filaments are hardened at the entrance of the conveyor. In particular, if the staying time on the water surface is increased in order to increase the welding strength with the nonwoven fabric, the staying time of the mesh constituent fibers that have not yet reached the equidistant region of the conveyor in the vicinity of the water surface is also increased, and the conveyor is evenly spaced. It is conceivable that a solid network structure that is thicker than the interval between the portions is formed, an excessive load is applied to the drive device of the conveyor, and the shape (thickness and mesh density) of the product becomes non-uniform.

また水面の水位を常に一定に保持し、さらに水温を一定に保持できなければ、溶融線条の冷却速度が変化し、立体網状構造体が冷却固化する位置や、固化した構造体の厚さが変動し、コンベアの前進用のモータへの負担、進行速度が変動し、均一な密度や厚さの立体網状構造体の安定生産が困難となることが考えられる。場合によっては駆動のためのモータや減速機器、コンベア等の故障や破損につながることも考えられる。   If the water level on the water surface is always kept constant and the water temperature cannot be kept constant, the cooling rate of the molten filaments changes, the position where the solid network structure cools and solidifies, and the thickness of the solidified structure Fluctuating, the burden on the motor for moving the conveyor forward, and the traveling speed fluctuate, making it difficult to stably produce a three-dimensional network structure having a uniform density and thickness. Depending on the case, it may be considered that it leads to a failure or breakage of a driving motor, a reduction gear, a conveyor or the like.

また網目密度を増やすとコンベア入り口で固まりやすくなるため、完成した立体網状構造体の網目密度は限定され、圧縮強度などを高くすることは困難である。   Further, if the mesh density is increased, it tends to harden at the entrance of the conveyor, so the mesh density of the completed three-dimensional network structure is limited and it is difficult to increase the compressive strength.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、不織布を簡単かつ確実に立体網状構造体に結合させることにある。   This invention is made | formed in view of this point, The place made into the objective is to couple | bond a nonwoven fabric to a three-dimensional network structure simply and reliably.

上記の目的を達成するために、この発明では、一対のガイド部を設けて不織布と溶融線条とを確実に熱溶着させるようにした。   In order to achieve the above object, in the present invention, a pair of guide portions is provided to reliably heat-bond the nonwoven fabric and the melted filament.

具体的には、第1の発明では、液体貯留槽(4)に満たした液体冷媒(1)内に一対の厚さ規定板(2A,2B)を設置し、
上記一対の厚さ規定板(2A,2B)上の冷媒液面(1a)よりも上方に、一対のガイド部(3A,3B)を設置し、
上記一対のガイド部(3A,3B)の下端の内幅が、上記一対の厚さ規定板(2A,2B)の内幅とほぼ等しくなるように調整し、
上記一対のガイド部(3A,3B)の上に不織布(6A,6B)をそれぞれ乗せて上記液体冷媒(1)の冷媒液面(1a)に向かって進行させている過程で、
加熱溶融した溶融樹脂(22B)を、溶融樹脂押出孔(24B)をあけた複数の多孔金型(24A)から押し出して複数の溶融線条(5A)とし、
上記複数の溶融線条(5A)が溶融している状態で上記液体冷媒(1)の冷媒液面(1a)上に螺旋状に落下させ、互いの溶融線条(5A)を相互に熱溶着させながら立体網状に積み重ねて立体網状構造体(7A)を形成しながら、上記不織布(6A,6B)と同じ速度で液体冷媒(1)の中に降下させ、
上記溶融線条(5A)と上記不織布(6A,6B)とが接触し溶着しながら上記厚さ規定板(2A,2B)に挟まれた状態で上記液体冷媒(1)で冷却させることにより、固化した立体網状構造体(7A)を形成し、
上記立体網状構造体(7A)の幅広面(7C,7D)に不織布(6A,6B)を溶着させて複合体(8A)を製造する構成とする。
Specifically, in the first invention, a pair of thickness defining plates (2A, 2B) is installed in the liquid refrigerant (1) filled in the liquid storage tank (4),
A pair of guide portions (3A, 3B) is installed above the coolant level (1a) on the pair of thickness regulating plates (2A, 2B),
Adjusting the inner width of the lower ends of the pair of guide portions (3A, 3B) to be substantially equal to the inner width of the pair of thickness defining plates (2A, 2B);
In the process in which the nonwoven fabric (6A, 6B) is placed on the pair of guide portions (3A, 3B) and is advanced toward the coolant level (1a) of the liquid coolant (1),
The molten resin (22B) heated and melted is extruded from a plurality of porous molds (24A) having a molten resin extrusion hole (24B) to form a plurality of molten filaments (5A),
In a state where the plurality of molten filaments (5A) are melted, they are spirally dropped onto the refrigerant liquid surface (1a) of the liquid refrigerant (1), and the molten filaments (5A) are thermally welded to each other. The three-dimensional network structure (7A) is formed by stacking in a three-dimensional network while lowering into the liquid refrigerant (1) at the same speed as the nonwoven fabric (6A, 6B).
By cooling with the liquid refrigerant (1) in a state sandwiched between the thickness regulating plates (2A, 2B) while the molten filament (5A) and the nonwoven fabric (6A, 6B) are in contact and welded, Forming a solid three-dimensional network (7A);
It is set as the structure which welds a nonwoven fabric (6A, 6B) to the wide surface (7C, 7D) of the said three-dimensional network structure (7A), and manufactures a composite_body | complex (8A).

上記の構成によると、不織布と立体網状構造体とをコンベア等で無理矢理液体冷媒内に引き込むのではなく、不織布をガイド部でガイドしながら、立体網状構造体と共に厚さ規定板の間を通過させるので、不織布が立体網状構造体に確実に溶着すると共に、厚さが一定で波打ち等のない平坦面を有する複合体が得られる。   According to the above configuration, the nonwoven fabric and the three-dimensional network structure are not drawn into the liquid refrigerant by a conveyor or the like, but the nonwoven fabric is guided by the guide portion while passing between the thickness regulation plates together with the three-dimensional network structure. A non-woven fabric is surely welded to the three-dimensional network structure, and a composite having a flat surface with a constant thickness and no undulation is obtained.

第2の発明では、第1の発明において、
上記一対のガイド部は、一対の板状の傾斜板(3A,3B)又は一対の棒状の不織布引き寄せ棒であり、
上記一対のガイド部の下端の高さは、上記冷媒液面(1a)から0.5mm以上200mm以下である。
In the second invention, in the first invention,
The pair of guide portions are a pair of plate-like inclined plates (3A, 3B) or a pair of rod-shaped nonwoven fabric pulling bars,
The height of the lower end of the pair of guide portions is 0.5 mm or more and 200 mm or less from the refrigerant liquid level (1a).

上記の構成によると、高すぎない位置で少なくとも冷媒液面から離れた位置で溶融線条と不織布とを接触させることで、確実に両者が溶着される。また、ある程度距離を保つことで、溶融線条と不織布との溶着力を高めることもできる。   According to said structure, both are reliably welded by making a fusion filament and a nonwoven fabric contact at the position which is not too high in the position away from the refrigerant | coolant liquid level at least. Moreover, the welding force of a fusion filament and a nonwoven fabric can also be raised by keeping a certain distance.

第3の発明では、第1又は第2の発明において、
上記不織布(6A,6B)は、構成繊維の外径が10μm以上200μm以下で、厚さが1mm以上20mm以下の合成樹脂製である。
In the third invention, in the first or second invention,
The non-woven fabric (6A, 6B) is made of a synthetic resin having an outer diameter of 10 to 200 μm and a thickness of 1 to 20 mm.

上記の構成によると、多様な用途の立体網状構造体が不織布で覆われた複合体が得られる。   According to said structure, the composite_body | complex with which the three-dimensional network structure for various uses was covered with the nonwoven fabric is obtained.

第4の発明では、第1から第3のいずれか1つの発明において、
上記加熱溶融した溶融樹脂(22B)を、太さ0.1mm以上20mm以下の溶融樹脂押出孔(24B)をあけた多孔金型(24A)から、秒速10mm以上500mm以下の速度で押し出して太さ0.1mm以上20mm以下の溶融線条(5A)とする。
In a fourth invention, in any one of the first to third inventions,
The heat-melted molten resin (22B) is extruded from a porous mold (24A) having a molten resin extrusion hole (24B) having a thickness of 0.1 mm to 20 mm at a speed of 10 mm to 500 mm per second. The molten filament (5A) is 0.1 mm to 20 mm.

上記の構成によると、細すぎず太すぎない溶融線条を適度な速度で供給することによって多様な用途の立体網状構造体が不織布で覆われた複合体が得られる。   According to said structure, the composite_body | complex with which the three-dimensional network structure for various uses was covered with the nonwoven fabric is obtained by supplying the molten filament which is not too thin and not too thick at an appropriate speed.

第5の発明では、第1から第4のいずれか1つの発明において、
溶融線条(5A)と接するよりも前に、上記不織布(6A,6B)の上面に、上記溶融線条(5A)と上記不織布(6A,6B)とを仕切る遮蔽板(12A,12B)を間欠的に出し入れし、
上記不織布(6A,6B)と、幅広面外縁の上記溶融線条(5A)との溶着を間欠的に阻止しながら、不織布(6A,6B)間に積み重なった溶融線条(5A)の立体網状構造体(7A)を連続形成させることにより、
任意の箇所で部分的に不織布(6A,6B)と立体網状構造体(7A)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する。
In a fifth invention, in any one of the first to fourth inventions,
Prior to contact with the molten filament (5A), a shielding plate (12A, 12B) for partitioning the molten filament (5A) and the nonwoven fabric (6A, 6B) on the upper surface of the nonwoven fabric (6A, 6B). Intermittently put in and out
Three-dimensional network of melted filaments (5A) stacked between the nonwoven fabrics (6A, 6B) while intermittently preventing welding of the nonwoven fabrics (6A, 6B) and the melted filaments (5A) at the outer edge of the wide surface. By continuously forming the structure (7A),
A composite body (8B) having a welding stop part (14A) in which the nonwoven fabric (6A, 6B) and the three-dimensional network structure (7A) are not partially welded at an arbitrary position is manufactured.

上記の構成によると、溶着中止部分を切断除去したときに、溶着していない不織布を用いて立体網状構造体の側面を覆うことができる。   According to said structure, when the welding stop part is cut and removed, the side surface of a three-dimensional network structure can be covered using the nonwoven fabric which has not been welded.

第6の発明では、第5の発明において、
上記遮蔽板(12A,12B)を使用して、上記不織布(6A,6B)と上記溶融線条(5A)の溶着を阻止している間に、厚さ規定板(2A,2B)とガイド部(3A,3B)と遮蔽板(12A,12B)を同時に下方に下げ、
上記遮蔽板(12A,12B)の下端が上記液体冷媒(1)の液面下の状態として、不織布(6A,6B)と溶融線条(5A)の溶着を阻止し、部分的に不織布(6A,6B)と立体網状構造体(7)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する。
In a sixth invention, in the fifth invention,
While the welding of the nonwoven fabric (6A, 6B) and the molten filament (5A) is prevented using the shielding plate (12A, 12B), the thickness defining plate (2A, 2B) and the guide portion (3A, 3B) and the shielding plate (12A, 12B) are simultaneously lowered downward,
The lower end of the shielding plate (12A, 12B) is in a state below the liquid level of the liquid refrigerant (1) to prevent the welding of the nonwoven fabric (6A, 6B) and the molten filament (5A), and partially the nonwoven fabric (6A , 6B) and a three-dimensional network structure (7) are produced, and a composite body (8B) having a welding stop portion (14A) in which welding is not performed is produced.

上記の構成によると、溶着中止部分を有する複合体を容易かつ確実に製造できる。   According to said structure, the composite_body | complex which has a welding stop part can be manufactured easily and reliably.

第7の発明では、第1から第4のいずれか1つの発明において、
上記不織布(6A,6B)が上記溶融線条(5A)に接する前に、不織布(6A,6B)に液体冷媒(1)を投下し、不織布(6A,6B)が液体冷媒(1)を含んだ状態で溶融線条(5A)と接し、溶融線条(5A)の表面が冷却されて該不織布(6A,6B)と熱溶着しないまま、他の溶融線条(5A)と熱溶着させながら、立体網状に積み重ねることにより、
上記不織布(6A,6B)に挟まれた立体網状構造体(7A)を連続形成し、部分的に上記不織布(6A,6B)と固化した立体網状構造体(7A)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する。
In a seventh invention, in any one of the first to fourth inventions,
Before the nonwoven fabric (6A, 6B) contacts the melted filament (5A), the liquid refrigerant (1) is dropped onto the nonwoven fabric (6A, 6B), and the nonwoven fabric (6A, 6B) contains the liquid refrigerant (1). While in contact with the molten filament (5A), the surface of the molten filament (5A) is cooled and is not thermally welded to the non-woven fabric (6A, 6B), while being thermally welded to the other molten filament (5A). By stacking in a three-dimensional network,
The solid network structure (7A) sandwiched between the nonwoven fabrics (6A, 6B) is continuously formed, and the nonwoven fabric (6A, 6B) and the solid network structure (7A) partially solidified are not welded. A composite body (8B) having a welding stop portion (14A) is produced.

上記の構成によると、溶着中止部分を有する複合体を容易かつ確実に製造できる。   According to said structure, the composite_body | complex which has a welding stop part can be manufactured easily and reliably.

第8の発明では、第7の発明において、
上記溶着中止部分(14A)の形成時に、液体冷媒(1)中での立体網状構造体(7)と不織布(6A,6B)を降下させる送りローラ(15A〜15D)及び送りドラム(16A)の進行速度を通常時よりも速い速度で回転させることにより、
上記立体網状構造体(7A)と上記不織布(6A,6B)が分離し、かつ隣り合う溶融線条(5A)が相互溶着せずに独立し、切り取り除去が容易な網目密度の低い間延び部分(14E)を有する複合体(8C)を製造する。
In the eighth invention, in the seventh invention,
Of the feed rollers (15A to 15D) and the feed drum (16A) for lowering the three-dimensional network structure (7) and the nonwoven fabric (6A, 6B) in the liquid refrigerant (1) at the time of forming the welding stop portion (14A). By rotating the progress speed faster than normal,
The three-dimensional network structure (7A) and the non-woven fabric (6A, 6B) are separated, and the adjacent molten filaments (5A) are independent without mutual welding, and are extended portions with a low network density that are easy to cut and remove ( 14E) is produced.

上記の構成によると、切断除去する部分の材料費を削減できる上、製造速度を速めることができる。また、間延び部分は、樹脂繊維の集積密度が低いので、ハサミ等で簡単に切断することができる。   According to said structure, the material cost of the part to cut and remove can be reduced, and a manufacturing speed can be accelerated. Moreover, since the extending portion has a low density of resin fibers, it can be easily cut with scissors or the like.

第9の発明では、第8の発明において、
上記溶着中止部分(14A)の形成時に、上記送りローラ(15A〜15D)及び送りドラム(16A)の進行速度を通常時の5倍以上50倍以下の範囲で増加させる構成とする。
In the ninth invention, in the eighth invention,
At the time of forming the welding stop portion (14A), the traveling speed of the feed rollers (15A to 15D) and the feed drum (16A) is increased in the range of 5 times to 50 times the normal speed.

上記の構成によると、進行速度を最適にすることで、材料費及び製造速度を適正化できる。   According to said structure, material cost and manufacturing speed can be optimized by optimizing advancing speed.

第10の発明では、第1から第9のいずれか1つの発明において、
不織布の代わりに、合成樹脂、金属又は炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)を溶融線条(5A)と溶着させて強化網(26A)又は有孔板(26B)と合成樹脂の立体網状構造体(7A)との複合体(8D)を製造する。
In a tenth invention, in any one of the first to ninth inventions,
Instead of non-woven fabric, a reinforcing net (26A) made of synthetic resin, metal or carbon fiber or a perforated plate (26B) made of fiber reinforced resin or metal is welded to the molten filament (5A) to strengthen the reinforcing net ( 26A) or a perforated plate (26B) and a synthetic resin solid network structure (7A) (8D).

上記の構成によると、多様な用途の複合体が容易に得られる。   According to said structure, the composite body of various uses is obtained easily.

第11の発明では、第1から第10のいずれか1つの発明において、
上記不織布(6A,6B)の上記溶融線条(5A)が接触する上面に、合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)を重ねながら、上記不織布(6A,6B)と強化網(26A)又は有孔板(26B)とを同じ速度で進行させながら、上記立体網状構造体(7A)を構成する溶融線条(5A)を降下させ、
上記不織布(6A,6B)と固化した立体網状構造体(7A)の間に上記強化網(26A)又は有孔板(26B)を有する複合体(8E)を製造する。
In an eleventh invention, in any one of the first to tenth inventions,
Reinforced net (26A) made of synthetic resin, synthetic fiber, metal fiber or carbon fiber or made of fiber reinforced resin or metal on the upper surface of the nonwoven fabric (6A, 6B) to which the molten filament (5A) contacts. The three-dimensional network structure (7A) is constructed while the non-woven fabric (6A, 6B) and the reinforcing net (26A) or the perforated plate (26B) are advanced at the same speed while overlapping the perforated plates (26B). Lowering the molten filament (5A),
A composite (8E) having the reinforcing network (26A) or the perforated plate (26B) between the nonwoven fabric (6A, 6B) and the solidified three-dimensional network structure (7A) is produced.

上記の構成によると、強化網又は有孔板を含む多様な用途の複合体を容易かつ確実に製造できる。   According to said structure, the composite_body | complex of various uses containing a reinforcement net | network or a perforated board can be manufactured easily and reliably.

第12の発明では、第1から第11のいずれか1つの発明において、
上記複合体(8A,8B,8C,8D,8E)のうちの少なくとも1枚を再び、上記ガイド部(3A,3B)の上から挿入し、
上記多孔金型(24A)から降下させた溶融線条(5A)とともに進行させることにより多層の複合体(8G)を形成する多層複合体形成工程を含む構成とする。
In a twelfth invention, in any one of the first to eleventh inventions,
At least one of the composites (8A, 8B, 8C, 8D, 8E) is again inserted from above the guide part (3A, 3B),
It is set as the structure including the multilayer composite formation process which forms a multilayer composite (8G) by making it advance with the molten filament (5A) lowered | hung from the said porous metal mold | die (24A).

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

第13の発明では、第12の発明において、
上記多層複合体形成工程を繰り返し、
上記不織布(6A,6B)、強化網(26A)及び有孔板(26B)の少なくとも1つと立体網状構造体(7A)との多層複合体(8G)を形成する。
In a thirteenth aspect, in the twelfth aspect,
Repeat the multilayer composite formation step,
A multilayer composite (8G) of at least one of the nonwoven fabric (6A, 6B), the reinforcing net (26A) and the perforated plate (26B) and the three-dimensional network structure (7A) is formed.

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

第14の発明では、第1から第12のいずれか1つの発明において、
上記多孔金型(24A)から溶融線条(5A)を降下させ立体網状構造体(7A)の複合体を形成する際に、他の側面に比べて面積の広い一対の幅広面の一方には、不織布(6A,6B)、強化網(26A)又は有孔板(26B)を挿入せず、冷媒液面(1a)から上にはガイド部(3A,3B)を設置せず、外面が不織布(6A,6B)で覆われていない立体網状構造体(7A)となっている多層複合体(8H)を形成する構成とする。
In a fourteenth invention, in any one of the first to twelfth inventions,
When forming the composite of the three-dimensional network structure (7A) by lowering the molten filament (5A) from the porous mold (24A), one of the pair of wide surfaces having a larger area than the other side surfaces is provided. The nonwoven fabric (6A, 6B), the reinforcing net (26A) or the perforated plate (26B) is not inserted, the guide portion (3A, 3B) is not installed above the coolant level (1a), and the outer surface is nonwoven fabric. The multilayer composite (8H) is formed as a three-dimensional network structure (7A) that is not covered with (6A, 6B).

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

第15の発明において、
多孔金型(24A)を装着している金型台(23A)に鉛直方向に連続し外気の流通する外気貫通空洞部(23C)を設け、この外気貫通空洞部(23C)から不織布(6A,6B)や強化網(26A)や有孔板(26B)や複合体(8A)を降下させ、
上記外気貫通空洞部(23C)を挟んで両側に配置した多孔金型(24A)から液体冷媒(1)に螺旋を描きながら降下する溶融線条(5A)と接触させながら進行させることにより、不織布(6A)、強化網(26A)及び有孔板(26B)の少なくとも1つと立体網状構造体(7A)の同時形成多層複合体(8I)を形成する。
In the fifteenth invention,
The mold base (23A) on which the porous mold (24A) is mounted is provided with an outside air through-cavity (23C) through which the outside air circulates in the vertical direction, and the nonwoven fabric (6A, 6B), reinforced net (26A), perforated plate (26B) and composite (8A),
The nonwoven fabric is made to advance by bringing it into contact with the molten filament (5A) that descends while drawing a spiral from the porous mold (24A) disposed on both sides of the outside air penetration cavity (23C), while drawing a spiral. (6A), at least one of the reinforcing network (26A) and the perforated plate (26B) and the three-dimensional network structure (7A) are formed at the same time as a multilayer composite (8I).

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

第16の発明では、第1から第15のいずれか1つの発明において、
上記不織布(6A,6B)は、構成繊維同士での融着をしないスパンボンド不織布である。
In a sixteenth invention, in any one of the first to fifteenth inventions,
The said nonwoven fabric (6A, 6B) is a spunbonded nonwoven fabric which does not melt | fuse between constituent fibers.

上記の構成によると、送りドラムの表面の針が不織布を貫通しても、不織布構成繊維が切れずに横にずれるだけであり、不織布の強度低下を生じず、横ズレした繊維が元の位置に戻れば、不織布本来の濾過性能を発揮できる点で有利である。   According to the above configuration, even if the needle on the surface of the feed drum penetrates the nonwoven fabric, the nonwoven fabric constituent fiber is not cut off, it is only shifted laterally, the nonwoven fabric strength is not reduced, and the laterally displaced fiber is in its original position. If it returns, it is advantageous at the point which can exhibit the original filtration performance of a nonwoven fabric.

第17の発明では、ポリプロピレン、ポリエチレン、エチレンプロピレンゴム、ポリオレフィンエラストマー、エチレン酢酸ビニル共重合体のいずれかを含む熱可塑性樹脂が螺旋状の溶融線条が相互に熱溶着されて立体網状に積み重ねられた立体網状構造体(7A)の少なくとも一方の面に合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)が溶着された複合体(8D)である。   In the seventeenth invention, a thermoplastic resin containing any one of polypropylene, polyethylene, ethylene propylene rubber, polyolefin elastomer, and ethylene vinyl acetate copolymer is laminated in a three-dimensional network by heat-sealing spiral fused filaments. A reinforcing net (26A) made of synthetic resin, synthetic fiber, metal fiber or carbon fiber or a perforated plate (26B) made of fiber reinforced resin or metal is formed on at least one surface of the three-dimensional network structure (7A). It is a welded composite (8D).

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

第18の発明では、螺旋状の溶融線条が相互に熱溶着されて立体網状に積み重ねられた立体網状構造体(7A)の少なくとも一方の面に合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)と不織布(6A,6B)とが積層された多層複合体(8G)である。   In the eighteenth invention, at least one surface of the three-dimensional network structure (7A) in which spiral fused filaments are heat-welded with each other and stacked in a three-dimensional network form is made of synthetic resin, synthetic fiber, metal fiber or carbon fiber. It is a multilayer composite (8G) in which a reinforced net (26A) or a fiber-reinforced resin or metal perforated plate (26B) and a nonwoven fabric (6A, 6B) are laminated.

上記の構成によると、多様な用途の多層の複合体が容易に得られる。   According to said structure, the multilayer composite_body | complex of various uses is obtained easily.

以上説明したように、本発明によれば、不織布を簡単かつ確実に立体網状構造体に結合させることができる。   As described above, according to the present invention, the nonwoven fabric can be easily and reliably bonded to the three-dimensional network structure.

本発明の実施形態1に係る立体網状構造体の製造装置全体を示す概略正面図である。It is a schematic front view which shows the whole manufacturing apparatus of the solid network structure based on Embodiment 1 of this invention. 傾斜板、厚さ規定板及びその周辺を拡大して示す概略正面図である。It is a schematic front view which expands and shows an inclination board, a thickness prescription | regulation board, and its periphery. 傾斜板、厚さ規定板及び幅規定板を示す正面図である。It is a front view which shows an inclination board, a thickness prescription board, and a width prescription board. 傾斜板、厚さ規定板及び幅規定板を示す側面図である。It is a side view which shows an inclination board, a thickness regulation board, and a width regulation board. 加工中の複合体を示す正面図である。It is a front view which shows the composite_body | complex in process. 間延び部分を形成したときの複合体を示す正面図である。It is a front view which shows a composite_body | complex when forming an extending part. 間延び部分を切断したときの分解正面図である。It is a disassembled front view when the extending part is cut | disconnected. 実施形態1の変形例1に係る製造装置を一部拡大して示す図2相当図である。FIG. 3 is a view corresponding to FIG. 2, illustrating a partially enlarged manufacturing apparatus according to Modification 1 of Embodiment 1; 実施形態1の変形例1に係る傾斜板及び遮蔽板の概略を拡大して示す正面図である。It is a front view which expands and shows the outline of the inclination board and shielding board which concern on the modification 1 of Embodiment 1. FIG. 実施形態1の変形例1に係る他の形態の傾斜板及び遮蔽板の概略を拡大して示す正面図である。It is a front view which expands and shows the outline of the inclination board of another form which concerns on the modification 1 of Embodiment 1, and a shielding board. 実施形態1の変形例3に係る加工中の複合体を示す側面図である。It is a side view which shows the complex in process which concerns on the modification 3 of Embodiment 1. FIG. 実施形態1の変形例3に係る加工中の複合体を示す平面図である。FIG. 10 is a plan view showing a complex being processed according to Modification 3 of Embodiment 1. 実施形態2に係る傾斜板、遮蔽板及びその周辺の概略を拡大して示す正面図である。It is a front view which expands and shows the outline of the inclination board which concerns on Embodiment 2, a shielding board, and its periphery. 実施形態2の変形例に係る傾斜板、遮蔽板及びその周辺の概略を拡大して示す正面図である。It is a front view which expands and shows the outline of the inclination board which concerns on the modification of Embodiment 2, a shielding board, and its periphery. 実施形態2の変形例に係る押さえ板を拡大して示す斜視図である。It is a perspective view which expands and shows the pressing plate which concerns on the modification of Embodiment 2. FIG. 実施形態2に係る有孔板を拡大して示す正面図である。It is a front view which expands and shows the perforated board which concerns on Embodiment 2. FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
−製造装置の構成−
図1及び図2に本発明の実施形態1に係る製造装置50を示すように、まず、水などの液体冷媒1を貯留した液体貯留槽4を用意する。液体冷媒1は、水以外に添加物を含む水溶液等でもよい。この液体冷媒1の冷媒液面1aよりも上に、加熱溶融した樹脂を供給する押出機20を配置する。この押出機20は、ポリプロピレン、ポリエチレン、エチレンプロピレンゴム、ポリオレフィンエラストマー、エチレン酢酸ビニル共重合体等のいずれかを含む熱可塑性樹脂を加熱溶融可能に構成されており、この溶融樹脂22Bを多孔金型24Aにあけた例えば10個以上10万個以下の溶融樹脂押出孔24Bから太さ0.1mm以上20mm以下の太さで押し出すように構成されている。本実施形態では、多孔金型24Aの溶融線条5Aの吹き出し面24Cから、液体冷媒1の冷媒液面1aまでの距離H1を例えば0.5mm以上200mm以下とする(0.5mm≦H1≦200mm)。
(Embodiment 1)
-Production equipment configuration-
As shown in FIG. 1 and FIG. 2 showing a manufacturing apparatus 50 according to Embodiment 1 of the present invention, first, a liquid storage tank 4 storing a liquid refrigerant 1 such as water is prepared. The liquid refrigerant 1 may be an aqueous solution containing additives in addition to water. An extruder 20 for supplying the heated and melted resin is disposed above the refrigerant liquid level 1a of the liquid refrigerant 1. This extruder 20 is configured to be able to heat and melt a thermoplastic resin containing any of polypropylene, polyethylene, ethylene propylene rubber, polyolefin elastomer, ethylene vinyl acetate copolymer, etc., and this molten resin 22B is made into a porous mold. For example, it is configured to extrude at a thickness of 0.1 mm or more and 20 mm or less from, for example, 10 to 100,000 molten resin extrusion holes 24B opened in 24A. In the present embodiment, the distance H1 from the blowing surface 24C of the melted filament 5A of the porous mold 24A to the refrigerant liquid surface 1a of the liquid refrigerant 1 is set to 0.5 mm to 200 mm, for example (0.5 mm ≦ H1 ≦ 200 mm). ).

また、詳しくは図示しないが、加熱された液体冷媒1を冷媒用ポンプで汲み上げて冷媒冷却装置に送り込み、規定温度まで冷却後、再び溶融線条5Aや立体網状構造体7Aの冷却用に使用する。冷媒が水であれば、上水道又は地下水を利用し、液体貯留槽A内の冷媒供給口から注入し、使用後の熱水は、すべてを外部に排水するか、一部を冷却して再利用して溶融線条5Aの冷却用として冷媒供給口(図示せず)から注入する。   Although not shown in detail, the heated liquid refrigerant 1 is pumped up by a refrigerant pump, sent to a refrigerant cooling device, cooled to a specified temperature, and then used again for cooling the molten filament 5A and the three-dimensional network structure 7A. . If the refrigerant is water, use water supply or groundwater, inject it from the refrigerant supply port in the liquid storage tank A, drain all the hot water after use, or cool and reuse part of it And it inject | pours from a refrigerant | coolant supply port (not shown) for the cooling of 5 A of molten filaments.

本実施形態では、液体貯留槽4の冷媒液面1a側に不織布6A,6Bを供給するために不織布6A,6Bが巻かれた不織布ロール6Dが適宜配置されている。不織布6A,6Bは、不織布供給ローラ6Eで適宜ガイドしながら所定の速度で供給するとよい。不織布6A,6Bは、例えば、構成繊維の外径が10μm以上200μm以下で、厚さが1mm以上20mm以下の合成樹脂製であり、押出機20内の熱可塑性樹脂と同じか互いに溶着しやすい材料が適している。   In this embodiment, in order to supply nonwoven fabric 6A, 6B to the refrigerant | coolant liquid surface 1a side of the liquid storage tank 4, the nonwoven fabric roll 6D around which nonwoven fabric 6A, 6B was wound is arrange | positioned suitably. The nonwoven fabrics 6A and 6B may be supplied at a predetermined speed while being appropriately guided by the nonwoven fabric supply roller 6E. The nonwoven fabrics 6A and 6B are made of a synthetic resin having an outer diameter of 10 μm or more and 200 μm or less and a thickness of 1 mm or more and 20 mm or less, and the same material as the thermoplastic resin in the extruder 20 or easily welded to each other. Is suitable.

そこで、押出機20から溶融している状態の溶融樹脂22Bを冷媒液面1a上に螺旋状に落下させ、互いの繊維を相互に熱溶着させて積み重ねながら、その外縁の溶融線条5Aに接する位置を通過する不織布6A,6Bと同じ速度で液体冷媒1中に降下させ、外縁の溶融線条5が冷媒液面1aに沈む以前の空気中で不織布6A,6Bに強固に溶着し、溶融線条5同士も強固に結着した、不織布6A,6Bと立体網状構造体7Aの複合体8Aを形成することができるようになっている。   Therefore, the molten resin 22B in a melted state from the extruder 20 is spirally dropped onto the refrigerant liquid surface 1a, and the fibers are thermally welded to each other and stacked to contact the outer peripheral molten filament 5A. It is lowered into the liquid refrigerant 1 at the same speed as the non-woven fabrics 6A and 6B passing through the position, and the melted wire 5 is firmly welded to the non-woven fabrics 6A and 6B in the air before the outer edge melted line 5 sinks to the refrigerant liquid surface 1a. The composite 8A of the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A, in which the strips 5 are firmly bound, can be formed.

本実施形態では、不織布6A,6Bと立体網状構造体7Aの複合体8Aの厚さが変動しないように、また完成した複合体8Aが、波打ち等のない平坦な複合体8Aとなるように、厚さを規定する厚さ規定板2A,2Bが設置されている。図3A及び図3Bに示すように、この厚さ規定板2A,2Bの他に、幅を一定とするための幅規定板2C,2Dを設置してもよい。   In this embodiment, so that the thickness of the composite 8A of the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A does not fluctuate, and the completed composite 8A becomes a flat composite 8A without undulation or the like. Thickness defining plates 2A and 2B for defining the thickness are installed. As shown in FIGS. 3A and 3B, in addition to the thickness defining plates 2A and 2B, width defining plates 2C and 2D for making the width constant may be installed.

本実施形態では、厚さ規定板2A,2Bと幅規定板2C,2Dについては、深さ方向鉛直方向の長さを例えば3cm以上とし、複合体8Aを前進させる送りローラ15A〜15Dや送りドラム16Aをこれらの厚さ規定板2A,2Bや幅規定板2C,2Dの下に配置し、複合体8Aの厚さや幅が一定の平坦な状態で液体冷媒1内で冷却固化された後に、送りローラ15A〜15Dや送りドラム16Aに挟まれて前進するようにする。   In this embodiment, the thickness defining plates 2A and 2B and the width defining plates 2C and 2D have a length in the depth direction vertical direction of, for example, 3 cm or more, and feed rollers 15A to 15D and feed drums that advance the composite 8A. 16A is placed under these thickness regulating plates 2A and 2B and width regulating plates 2C and 2D, and after the composite 8A is cooled and solidified in the liquid refrigerant 1 in a flat state with a constant thickness and width, It is sandwiched between rollers 15A to 15D and feed drum 16A so as to move forward.

厚さ規定板2A,2Bや幅規定板2C,2Dの上からは不織布6A,6Bと溶融線条5Aが連続して供給され続け、送りローラ15A〜15Dや送りドラム16Aが回転し続けることにより、不織布6A,6Bと立体網状構造体7Aの連続で相互溶着した複合体8Aが、連続して形成されるようになっている。   The nonwoven fabrics 6A and 6B and the melted filament 5A are continuously supplied from above the thickness defining plates 2A and 2B and the width defining plates 2C and 2D, and the feed rollers 15A to 15D and the feed drum 16A continue to rotate. The composite 8A in which the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A are continuously welded to each other is continuously formed.

液体貯留槽4内に設けた複合体8Aなどを進行させる送りローラ15A〜15D及び送りドラム16Aは、例えば直径10cm以上3m以下とし、例えば、その表面には1mm以上5mm以下の細かい凹凸の付いたゴムシートを貼るか、前後両方又は片方の送りローラ15A〜15Dの表面に太さ0.5mm以上2mm以下、長さ2mm以上30mm以下の針を面積1cm当たり2本から10本を並べて設置し、送りローラ15A〜15Dや送りドラム16Aと複合体8A等との滑りを防ぎ、送りの推進力を複合体8Aに確実に伝え、複合体8Aの厚さや密度を均一に保つようにしている。送りローラ15A〜15Dや送りドラム16Aが金属製の場合は、ローレットがけなどで複合体8Aとドラム表面の摩擦を増やし、滑りを防ぐようにしてもよい。 The feed rollers 15A to 15D and the feed drum 16A for advancing the composite 8A provided in the liquid storage tank 4 have a diameter of, for example, 10 cm to 3 m, and have, for example, fine irregularities of 1 mm to 5 mm on the surface. or put a rubber sheet, the following thickness 0.5mm 2mm or more on the surface before and after both or one of the feed rollers 15A-15D, placed side by side ten following needle 30mm or more in length 2mm from two per area 1 cm 2 Further, slipping between the feed rollers 15A to 15D and the feed drum 16A and the composite body 8A is prevented, the propulsion force of feed is reliably transmitted to the composite body 8A, and the thickness and density of the composite body 8A are kept uniform. When the feed rollers 15A to 15D and the feed drum 16A are made of metal, friction between the composite 8A and the drum surface may be increased by knurling to prevent slippage.

なお、完成した複合体8Aで、針付きドラム面に接していた面を区別しておき、複合体8Aを使用する用途により、設置表裏を区別してもよい。例えば、複合体8Aを液中の粒子濾過除去に使用する場合、大きめの粒子を予備除去する場合には、濾過水流の上流側に釘付きドラムに接触した面を向け、大きめの粒子を除去した後、もう一方の面の不織布6A,6Bで、より細かい粒子を濾過除去する方法に利用可能である。   The completed composite 8A may be distinguished from the surface that is in contact with the drum surface with the needle, and the installation front and back may be distinguished depending on the use of the composite 8A. For example, when the composite 8A is used for filtration removal of particles in the liquid, when preliminarily removing large particles, the surface in contact with the nail drum is directed to the upstream side of the filtered water flow to remove the large particles. Later, the nonwoven fabric 6A, 6B on the other side can be used for a method of filtering and removing finer particles.

また、針付きドラム接触面側を濾過用途以外の機械設置面や壁面への粘着固定面とする場合であれば針付きドラム面に接触した面で不織布6A,6Bの強度の低下程度に大きな差がないならば、使用に差し支えない。不織布6A,6Bの厚さよりも針長さが短い場合で、濾過性能には大きな差を生じない場合には、針接触面でも接触していない面でも同等に扱いが可能となる。   Further, if the drum contact surface with the needle is used as a machine installation surface other than the filter application surface or an adhesive fixing surface to the wall surface, there is a large difference in the degree of decrease in strength of the nonwoven fabrics 6A and 6B on the surface in contact with the needle drum surface. If there is no, it can be used. When the needle length is shorter than the thickness of the non-woven fabric 6A, 6B, and when there is no significant difference in the filtration performance, it is possible to treat the needle contact surface and the non-contact surface equally.

また、送りドラム16Aが、送りローラ15A〜15Dに比べて大径のドラムの場合、ドラム直径が増加する程曲率半径が増加し、曲がりが緩くなり、完成した複合体8Aの曲がり癖がつきにくく、かつ、複合体8Aとドラムの接触面積が増加するので、複合体8Aと送りドラム16A間のズレも少なくなる。   Further, when the feed drum 16A is a drum having a larger diameter than the feed rollers 15A to 15D, the radius of curvature increases as the drum diameter increases, the bend becomes loose, and the finished composite 8A is less likely to be bent. In addition, since the contact area between the composite 8A and the drum increases, the displacement between the composite 8A and the feed drum 16A is reduced.

後述するように、複合体8Cの途中切断のために網目密度を下げるために通常の引き取り速度に対して最大10倍の速度で引き取ってもよい。このような場合でも、複合体8Cとの滑りが生じにくく、接触面積が大きくなる大口径ドラムでの引き取りは、有利となる。   As will be described later, in order to reduce the mesh density for cutting the composite 8C halfway, the composite 8C may be taken up at a speed of up to 10 times the normal take-up speed. Even in such a case, slipping with the composite 8C is less likely to occur, and taking over with a large diameter drum that increases the contact area is advantageous.

なお、図1に示すように、送りローラ15Aと送りローラ15Bとの間及びローラ15Cとローラ15Dとの間に複合体8Aの巻き込み防止用の複合体進行ガイド17Aを設けてもよい。   As shown in FIG. 1, a composite advancing guide 17A for preventing the composite 8A from being caught may be provided between the feed roller 15A and the feed roller 15B and between the roller 15C and the roller 15D.

また立体網状構造体7Aを構成する溶融線条5Aとともに降下させる不織布6A,6Bを、不織布6A,6Bの構成繊維同士での融着をしないスパンボンド不織布とすることにより、ドラム表面の針が不織布6A,6Bを貫通しても、不織布構成繊維が切れずに横にずれるだけであり、不織布6A,6Bの強度低下を生じず、横ズレした繊維が元の位置に戻れば、不織布6A,6B本来の濾過性能を発揮できる点で有利である。   Further, the nonwoven fabrics 6A and 6B lowered together with the melted filaments 5A constituting the three-dimensional network structure 7A are spunbond nonwoven fabrics that do not fuse the constituent fibers of the nonwoven fabrics 6A and 6B, so that the needles on the drum surface are nonwoven fabrics. Even if it penetrates 6A and 6B, the non-woven fabric constituent fibers will not be cut and will only be shifted to the side, and the non-woven fabrics 6A and 6B will not be reduced in strength. This is advantageous in that the original filtration performance can be exhibited.

大径の送りドラム16Aでは、ドラム直径が増加する程曲率半径が増加し、曲がりが緩くなり、できた複合体8Aの曲がり癖がつきにくく、かつ、複合体8Aとドラムの接触面積が増加するので、複合体8Aとドラム間のズレも少なくなる。後述するように、複合体8Aの途中切断のために網目密度を下げるために通常の引き取り速度に対して最大50倍の速度で引き取る場合があり、このような用途でも、複合体8Aとの滑りが生じにくく、接触面積が大きくなる大口径ドラムでの引き取りは有利となる。   In the large-diameter feed drum 16A, as the drum diameter increases, the radius of curvature increases, the curve becomes loose, the resulting complex 8A is less likely to bend, and the contact area between the complex 8A and the drum increases. Therefore, the deviation between the composite 8A and the drum is also reduced. As will be described later, there is a case where the composite 8A is pulled at a speed of up to 50 times the normal take-off speed in order to reduce the mesh density for halfway cutting. Taking up with a large-diameter drum in which the contact area is large and the contact area is large is advantageous.

大径の送りドラム16Aを用いる代わりに、小径の送りドラムを複数用い、これらをできた複合体8A等が通過すべき経路に沿って配置する方法や、ベルトやチェーン片側に針やゴム突起を付けたものを配置し駆動することで対応が可能である。大径の送りドラム16Aでは冷媒液面上に出た送りドラム16Aが邪魔になるが、小径ドラムやベルト、チェーンでは複合体8Aを押さえる部分のみ液体冷媒1中にあれば複合体8Aの冷却や送りが可能であり、冷媒液面1a上の空間が他の機械部分のスペースに利用でき、製造装置50の設計上有利となる。   Instead of using the large-diameter feed drum 16A, a plurality of small-diameter feed drums are used and arranged along the path through which the composite 8A or the like that has been formed passes, or a needle or rubber protrusion is provided on one side of the belt or chain. This can be done by arranging and driving the attached ones. In the large-diameter feed drum 16A, the feed drum 16A that has come out on the surface of the coolant is in the way, but in the small-diameter drum, belt, and chain, if only the portion that holds the composite 8A is in the liquid refrigerant 1, the cooling of the composite 8A The space on the coolant liquid level 1a can be used as a space for other machine parts, which is advantageous in designing the manufacturing apparatus 50.

−傾斜板の構成−
さらに本実施形態では、図2〜図3Bに示すように、液体冷媒液面下の2枚、一対の厚さ規定板2A,2Bの上で、溶融線条5Aを形成させる多孔金型24Aとの間に、不織布6A,6Bが一定角度で冷媒液面内に進入するためのガイド部としての傾斜板3A,3Bが設置される。
-Composition of inclined plate-
Furthermore, in this embodiment, as shown in FIGS. 2 to 3B, a porous mold 24A for forming a melted line 5A on two sheets below the liquid refrigerant liquid level and a pair of thickness defining plates 2A, 2B; In the meantime, the inclined plates 3A and 3B are installed as guide portions for allowing the nonwoven fabrics 6A and 6B to enter the refrigerant liquid surface at a constant angle.

本実施形態では、厚さ規定板2A,2Bの上端、傾斜板3A,3Bの下端を冷媒液面1aよりも例えば、高さ0.5mm以上200mm以下だけ上方に配置し、溶融線条5が集積した立体網状構造体7Aが液体冷媒1に冷却される以前に、厚さ規定板2A,2Bと幅規定板2C,2Dの間を進行することにより、一定幅で一定厚さの複合体8Aの形成を可能としている。   In the present embodiment, the upper ends of the thickness regulating plates 2A, 2B and the lower ends of the inclined plates 3A, 3B are disposed above the refrigerant liquid surface 1a, for example, by a height of 0.5 mm or more and 200 mm or less, and the molten filament 5 Before the accumulated three-dimensional network-like structure 7A is cooled to the liquid refrigerant 1, the composite 8A having a constant width and a constant thickness is obtained by advancing between the thickness defining plates 2A and 2B and the width defining plates 2C and 2D. Can be formed.

また冷媒液面1aより上の、傾斜板3A,3Bの不織布接触部分の傾斜角度を、水平に対し5度から80度の範囲で調整ができる構造とすれば、角度調整により幅広面外縁の溶融線条5Aと不織布6A,6Bが接触した際の接触長さや接触溶着する繊維の本数を調整したり、液体冷媒1内での冷却固化時の、立体網状構造体7Aの積層状態を調整することが可能となる。   Further, if the structure is such that the inclination angle of the nonwoven fabric contact portion of the inclined plates 3A and 3B above the refrigerant liquid surface 1a can be adjusted in the range of 5 to 80 degrees with respect to the horizontal, the outer edge of the wide surface is melted by adjusting the angle. Adjusting the contact length when the filament 5A and the nonwoven fabrics 6A and 6B are in contact with each other, adjusting the number of fibers to be welded, and adjusting the lamination state of the three-dimensional network structure 7A at the time of cooling and solidifying in the liquid refrigerant 1 Is possible.

図2に示すように、厚さ規定板2A,2Bの上端と傾斜板3A,3B下端の冷媒液面1a付近の高さ部分には、溶融線条5Aで加熱された液体冷媒1の一定量を厚さ規定板2A,2Bの外に排除し、冷媒温度を一定に保つためのスリット10A,10Bが設けられている。詳しくは図示しないが、スリット10A,10Bの開口面積、水平方向の開口幅、鉛直方向の開口幅を調整できるように可動式のシャッターを取り付けてもよい。   As shown in FIG. 2, a certain amount of the liquid refrigerant 1 heated by the melted filament 5A is provided at the height portions near the refrigerant liquid surface 1a at the upper ends of the thickness regulating plates 2A and 2B and the lower ends of the inclined plates 3A and 3B. Are provided outside the thickness regulating plates 2A and 2B, and slits 10A and 10B are provided for keeping the refrigerant temperature constant. Although not shown in detail, a movable shutter may be attached so that the opening area of the slits 10A and 10B, the opening width in the horizontal direction, and the opening width in the vertical direction can be adjusted.

特に図示しないが、厚さ規定板2A,2Bと幅規定板2C,2Dに挟まれた部分の液体冷媒1の温度を効果的に下げる方法としては、厚さ規定板2A,2Bの一部に冷媒通過孔をあけ、この冷媒通過孔に冷媒配送管を接続し、この管から液体冷媒1を厚さ規定板2A,2B間に送り出すようにしてもよい。この部分の温度管理により、溶融線条5Aに使用する熱可塑性樹脂の溶融温度や冷却速度による硬度の違いに対応できる。   Although not particularly illustrated, as a method for effectively reducing the temperature of the liquid refrigerant 1 in the portion sandwiched between the thickness defining plates 2A and 2B and the width defining plates 2C and 2D, a part of the thickness defining plates 2A and 2B is used. A refrigerant passage hole may be formed, a refrigerant delivery pipe may be connected to the refrigerant passage hole, and the liquid refrigerant 1 may be sent out from the pipe between the thickness regulating plates 2A and 2B. By controlling the temperature of this portion, it is possible to cope with the difference in hardness depending on the melting temperature and the cooling rate of the thermoplastic resin used for the molten filament 5A.

逆に、厚さ規定板2A,2Bに挟まれた領域の複合体8Aに溜まった、加熱された液体冷媒1を冷媒通過孔から吸引し、冷媒配送管を経由して冷媒冷却装置に送り込み、冷却された後に液体貯留槽内に戻す方法もある。この方法ならば、加熱された液体冷媒1の吸引時に複合体8Aの表面の不織布6A,6Bが厚さ規定板2A,2Bに吸引されるので、複合体8Aの厚さの安定化に寄与する。   Conversely, the heated liquid refrigerant 1 collected in the composite 8A in the region sandwiched between the thickness regulating plates 2A and 2B is sucked from the refrigerant passage hole and sent to the refrigerant cooling device via the refrigerant delivery pipe. There is also a method of returning to the liquid storage tank after being cooled. With this method, the nonwoven fabric 6A, 6B on the surface of the composite 8A is sucked into the thickness regulating plates 2A, 2B when the heated liquid refrigerant 1 is sucked, which contributes to stabilization of the thickness of the composite 8A. .

−遮蔽板の構成−
図2に示すように、傾斜板3A,3Bの上方には、これら傾斜板3A,3Bとそれぞれ所定の間隔をあけて遮蔽板12A,12Bが移動可能に設けられている。遮蔽板12A,12Bは幅広面外縁の溶融線条5Aが付着しないように、表面をフッ素樹脂板とするか、フッ素樹脂加工テフロンコートなどが施されていてもよい(テフロンは登録商標)。
−Configuration of shielding plate−
As shown in FIG. 2, shielding plates 12A and 12B are movably provided above the inclined plates 3A and 3B at predetermined intervals from the inclined plates 3A and 3B. The shielding plates 12A and 12B may be made of a fluororesin plate or may be coated with a fluororesin-processed Teflon coating or the like so that the melted strip 5A at the outer edge of the wide surface does not adhere (Teflon is a registered trademark).

また遮蔽板12A,12Bの上には、冷媒滴下管12Eが配置されており、遮蔽板12A,12Bの表面に液体冷媒1を流して、この表面に接触した幅広面外縁の溶融線条5Aの側面のみを冷却し、不織布6A,6Bとの溶着をさせない溶着中止部分14Aを設けるように構成されている。   A refrigerant dropping pipe 12E is disposed on the shielding plates 12A and 12B. The liquid refrigerant 1 is allowed to flow on the surfaces of the shielding plates 12A and 12B, and the melted strip 5A on the outer edge of the wide surface in contact with the surfaces. Only a side surface is cooled, and a welding stop portion 14A that does not cause welding with the nonwoven fabrics 6A and 6B is provided.

この遮蔽板12A,12Bを傾斜板3A,3Bに沿って前進させて不織布6A,6Bの上に移動させる際の前進速度は、不織布6A,6Bの進行速度と同じ速度とし、すでに不織布6A,6Bに溶着中の幅広面外縁の溶融線条5Aを遮蔽板12A,12Bで乱さないようにするとよい。   The forward speed when the shielding plates 12A and 12B are advanced along the inclined plates 3A and 3B and moved onto the nonwoven fabrics 6A and 6B is the same as the traveling speed of the nonwoven fabrics 6A and 6B. In addition, it is preferable that the melted strip 5A at the outer edge of the wide surface being welded is not disturbed by the shielding plates 12A and 12B.

不織布6A,6Bと幅広面外縁の溶融線条5Aの相互溶着を再開させるために、遮蔽板12A,12Bを後退させる後退速度は、立体網状構造体7Aを構成する溶融樹脂22Bの種類や溶融温度により、秒速3mmから秒速300mmの範囲で調整する。   In order to restart mutual welding of the nonwoven fabrics 6A and 6B and the melted filament 5A at the outer edge of the wide surface, the retreating speed for retracting the shielding plates 12A and 12B depends on the type and melting temperature of the molten resin 22B constituting the three-dimensional network structure 7A. Thus, the speed is adjusted in the range of 3 mm / sec to 300 mm / sec.

なお、遮蔽板12A,12Bなどから出る液体冷媒1に冷却される幅広面外縁の溶融線条5Aは多数の溶融線条5Aのうちの外周部分の、遮蔽板12A,12Bに接する限られた部分のみであり、残りの大部分の溶融線条5Aは冷却されないまま液体冷媒1の液面に達する前に相互に絡み合い溶着するため、冷却されて完成した立体網状構造体7Aの強度への影響は少ない。   In addition, the melted strip 5A at the outer edge of the wide surface cooled by the liquid refrigerant 1 exiting from the shielding plates 12A, 12B, etc. is a limited portion in contact with the shielding plates 12A, 12B in the outer peripheral portion of the many melted strips 5A. Most of the remaining molten filaments 5A are entangled and welded before reaching the liquid level of the liquid refrigerant 1 without being cooled, and therefore the influence on the strength of the cooled three-dimensional network structure 7A is as follows. Few.

−複合体の製造手順−
まず、多孔金型24Aを装着した押出機20を液体貯留槽4から遠ざけて、液体貯留槽4内の厚さ規定板2A,2Bやその上の傾斜板3A,3Bが見える状態とする。液体冷媒1は予め液体貯留槽4から抜き取っておく。
-Procedure for producing the composite-
First, the extruder 20 equipped with the porous metal mold 24A is moved away from the liquid storage tank 4 so that the thickness regulating plates 2A and 2B and the inclined plates 3A and 3B thereon can be seen in the liquid storage tank 4. The liquid refrigerant 1 is previously extracted from the liquid storage tank 4.

予め作るべき複合体8Aの立体網状構造体7Aと厚さと幅が同じである立体網状構造体7Aの先端マット(図示せず)を別の装置で製造しておく。先端マットの長さは、厚さ規定板2A,2Bから送りドラム16Aを通り、液体貯留槽の出口の出口補助ドラム31に届く長さとする。   A tip mat (not shown) of the three-dimensional network structure 7A having the same thickness and width as the three-dimensional network structure 7A of the composite 8A to be prepared in advance is manufactured by another apparatus. The length of the front end mat is a length that reaches the outlet auxiliary drum 31 at the outlet of the liquid storage tank from the thickness regulating plates 2A and 2B through the feed drum 16A.

この先端マットに、不織布ロール6Dから引き出した不織布6A,6Bの先端を針金や両面テープ等で固定し、液体貯留槽4内の厚さ規定板2A,2Bの間を通し、送りローラ15A〜15Dや送りドラム16Aに入れた後に、送りローラ15A〜15Dや送りドラム16Aを駆動するモータ(図示せず)を駆動させ、送りドラム16Aと送りドラム外周製品押さえ(図示せず)の間を通って出口補助ドラム31に到達したところで、一度駆動を止める。   The leading ends of the nonwoven fabrics 6A and 6B drawn from the nonwoven fabric roll 6D are fixed to the leading end mat with a wire or a double-sided tape, and are passed between the thickness regulating plates 2A and 2B in the liquid storage tank 4 to feed rollers 15A to 15D. Or after feeding into the feed drum 16A, a motor (not shown) for driving the feed rollers 15A to 15D and the feed drum 16A is driven and passed between the feed drum 16A and the feed drum outer periphery product presser (not shown). When the outlet auxiliary drum 31 is reached, the driving is stopped once.

次いで、一度退去させた押出機20を、所定の位置に戻す。   Next, the extruder 20 that has been withdrawn once is returned to a predetermined position.

次いで、多孔金型24Aと2枚の厚さ規定板2A,2Bの水平方向の位置を調整する。   Next, the horizontal positions of the porous mold 24A and the two thickness defining plates 2A and 2B are adjusted.

次いで、液体貯留槽4に液体冷媒1を満たし、複合体8Aの製造に最も適した温度までヒーター等で昇温する。温度が高すぎる場合は、別の場所で冷却しておいた液体冷媒1を加える。   Next, the liquid storage tank 4 is filled with the liquid refrigerant 1, and the temperature is raised with a heater or the like to the temperature most suitable for the production of the composite 8A. When the temperature is too high, the liquid refrigerant 1 that has been cooled in another place is added.

次いで、押出機20を作動させ、多孔金型24Aから溶融線条5Aを落下させる。溶融線条5Aの先端を液体貯留槽4上の冷媒液面1aに出ている先端マットに積み重ねて、数秒間だけ静止させた後に送りドラム16Aを作動させる。   Next, the extruder 20 is operated to drop the molten filament 5A from the porous mold 24A. The front end of the melted filament 5A is stacked on a front end mat that is exposed to the refrigerant liquid level 1a on the liquid storage tank 4, and the feed drum 16A is actuated after resting for a few seconds.

次いで、数秒間、溶融線条5Aが先端マットや不織布6A,6Bと接触し、相互に溶着固化し、回転するローラ15A〜15Dや送りドラム16Aによって先端マットや不織布6A,6Bが前進すると同時に、螺旋を描いて降下する溶融線条5Aにより新たな立体網状構造体7Aが形成され、この立体網状構造体7Aの幅広面外縁溶融線条5Aと不織布6A,6Bが相互溶着することにより複合体8Aが連続生産される。このとき、送りローラ15A〜15Dや送りドラム16Aの進行外周速度は、溶融線条5Aの降下速度の1/3以上1/50以下の範囲で調整し、製造される立体網状構造体7Aの網目密度を調整する。   Next, for several seconds, the melted filament 5A comes into contact with the tip mat and the nonwoven fabrics 6A and 6B, and melts and solidifies with each other. At the same time, the tip mat and nonwoven fabrics 6A and 6B are advanced by the rotating rollers 15A to 15D and the feed drum 16A. A new three-dimensional network structure 7A is formed by the molten filament 5A descending while drawing a spiral, and the composite surface 8A is formed by mutually welding the wide surface outer edge molten filament 5A of this three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B. Is continuously produced. At this time, the traveling outer peripheral speed of the feed rollers 15A to 15D and the feed drum 16A is adjusted in the range of 1/3 to 1/50 of the descending speed of the melted filament 5A, and the mesh of the three-dimensional network structure 7A to be manufactured. Adjust the density.

立体網状構造体7Aの形成時に、不織布6A,6Bが溶融線条5に接する以前で、不織布6A,6Bを巻いた不織布ロール6Dを一定の張力で複合体8Aの進行方向を逆向きに引っ張ることで、厚さ規定板2A,2Bの内側に形成される立体網状構造体7Aの厚さ形成領域を一定幅に保持することにより、完成した複合体8Aが一定厚みとなる。引張力は、複合体8Aの進行方向に反対側の方向(逆方向)に幅1m換算で50Nから2kNの範囲で調整し、送りドラムなどによる。調整方法としては、不織布の供給領域でトルクリミッタ(図示せず)を装着したゴム付きドラム(図示せず)で不織布6A,6Bを挟むか、不織布ロール6Dを装着する回転軸にトルクリミッタを取り付け、トルクリミッタが滑り始めるトルクを調整し不織布の引張力を一定とする方法などがある。   When the three-dimensional network structure 7A is formed, before the nonwoven fabrics 6A and 6B come into contact with the melted filament 5, the nonwoven fabric roll 6D wound with the nonwoven fabrics 6A and 6B is pulled in a reverse direction with a constant tension. Thus, by maintaining the thickness forming region of the three-dimensional network structure 7A formed inside the thickness defining plates 2A and 2B at a constant width, the completed composite 8A has a constant thickness. The tensile force is adjusted in the range of 50 N to 2 kN in terms of 1 m width in the direction opposite to the traveling direction of the composite 8A (reverse direction), and is based on a feed drum or the like. As an adjustment method, the nonwoven fabrics 6A and 6B are sandwiched between drums with rubber (not shown) equipped with a torque limiter (not shown) in the nonwoven fabric supply area, or the torque limiter is attached to the rotating shaft to which the nonwoven fabric roll 6D is attached. Further, there is a method of adjusting the torque at which the torque limiter starts to slide and making the tensile force of the nonwoven fabric constant.

ここで、不織布6A,6Bを連続供給するため、不織布製品は1巻き長さ50mや100mの不織布ロール6Dを用意し、複合体8Aの製造開始前に不織布6A,6Bの不織布ロール6Dを1日生産量の長さの連続品とするため、粘着テープ等でつないでおく。不織布6A,6B同士の重ね合わせによる複合体8Aの厚みや、内部の立体網状構造体7Aの厚みの変動を避ける場合は、不織布6A,6Bを重ね合わせず、突き合わせとし、継ぎ目の連結に粘着テープを用いる。粘着テープの貼り付け面は、幅広面外縁溶融線条5Aが接触する面の反対側に完成した複合体8Aの外面とし、複合体8Aの形成後に剥がし取る。   Here, in order to continuously supply the non-woven fabrics 6A and 6B, the non-woven fabric product is prepared with a non-woven fabric roll 6D having a winding length of 50 m or 100 m, and the non-woven fabric roll 6D of the non-woven fabric 6A or 6B is prepared for one day before the production of the composite 8A. To produce a continuous product with a length of production, it is connected with adhesive tape. In order to avoid fluctuations in the thickness of the composite 8A due to the overlapping of the nonwoven fabrics 6A and 6B and the thickness of the internal three-dimensional network structure 7A, the nonwoven fabrics 6A and 6B are not overlapped but are abutted and adhesive tape is used for connecting the seams. Is used. The application surface of the adhesive tape is the outer surface of the completed composite 8A on the opposite side of the surface to which the wide surface outer edge fused filament 5A contacts, and is peeled off after the formation of the composite 8A.

なお、不織布6A,6Bの突き合わせ面から土などの微粒子が浸透しないよう、複合体8Aを製造後に、突き合わせ部分の上から幅一定の不織布6A,6Bを貼り足してもよい。貼り付けには接着剤を使用したり、あるいは別の熱可塑性樹脂の押出機と多孔金型で押し出した溶融線条で不織布6A,6B同士を貼り付けたりするとよい。   In addition, after manufacturing the composite 8A, the non-woven fabrics 6A and 6B having a constant width may be added from above the butted portions so that fine particles such as soil do not penetrate from the butted surfaces of the nonwoven fabrics 6A and 6B. Adhesive may be used for pasting, or the non-woven fabrics 6A and 6B may be pasted together by a melted filament extruded with another thermoplastic resin extruder and a porous mold.

具体的には、不織布6A,6Bは、冷媒液面1aよりも上の空気中で溶融線条5Aに接近しながら進行し、冷媒液面1a内に入る前に加熱溶融された多数の溶融線条5Aの中の幅広面に近い列の幅広面外縁の溶融線条5Aと接し、不織布6A,6Bを構成する繊維と立体網状構造体7Aを構成する幅広面の溶融線条5Aが互いに溶着するか、不織布6A,6Bを構成する1本又は複数の繊維の周囲全体を幅広面の溶融線条5Aが取り囲んだ後に、液体冷媒1内に入り、冷却されて固化して溶着部分13Aを形成する。   Specifically, the nonwoven fabrics 6A and 6B proceed while approaching the melted filament 5A in the air above the refrigerant liquid level 1a and are heated and melted before entering the refrigerant liquid level 1a. The fibers constituting the non-woven fabrics 6A and 6B and the melted strip 5A having a wide surface constituting the three-dimensional network structure 7A are welded to each other in contact with the melted strip 5A at the outer edge of the wide surface in the row close to the wide surface in the strip 5A. Or, after the wide surface of the melted filament 5A surrounds the entire circumference of one or a plurality of fibers constituting the nonwoven fabrics 6A and 6B, it enters the liquid refrigerant 1 and is cooled and solidified to form a welded portion 13A. .

また、不織布6A,6Bとは接しない、集団の内側に位置する溶融線条5Aは、螺旋を描きながら多孔金型24Aから冷媒液面1aに向かって落下する間に、隣り合う溶融線条5Aや幅広面外縁の溶融線条5Aと絡み付き、互いに溶着し、冷媒内で固化することにより、強固な立体網状構造体7Aを形成する。   Further, the melted filaments 5A located inside the group that do not contact the nonwoven fabrics 6A and 6B are adjacent to the melted filaments 5A adjacent to each other while falling from the porous mold 24A toward the refrigerant liquid surface 1a while drawing a spiral. Alternatively, a solid three-dimensional network structure 7A is formed by being entangled with the melted filament 5A on the outer edge of the wide surface, and welded to each other and solidified in the refrigerant.

冷媒液面1aから厚さ規定板2A,2Bの上端までの高低差2mmから30mmの間に、不織布6A,6Bと幅広面溶融線条5Aが、液体冷媒1に冷却されることなく、時間をかけて接して強固に溶着し、また幅広面溶融線条5Aや内部溶融線条5Aが、また溶融した状態で互いに溶着しながら、厚さ規定板2A,2Bの間を通過することで、一定厚さの複合体8Aを形成できる。   The nonwoven fabrics 6A and 6B and the wide surface melt filament 5A are not cooled by the liquid refrigerant 1 between the height difference 2 mm to 30 mm from the refrigerant liquid level 1a to the upper ends of the thickness regulating plates 2A and 2B. The wide surface melted filament 5A and the internal melted filament 5A are welded to each other in a melted state while passing between the thickness regulating plates 2A and 2B. A composite 8A having a thickness can be formed.

製造開始後は溶融樹脂22Bの熱で液体冷媒1の温度が上昇するので、液体冷媒1の温度変化に注意し、必要に応じて冷却された液体冷媒1を液体貯留槽4に供給する。   After the start of production, the temperature of the liquid refrigerant 1 is increased by the heat of the molten resin 22B. Therefore, attention is paid to the temperature change of the liquid refrigerant 1, and the cooled liquid refrigerant 1 is supplied to the liquid storage tank 4 as necessary.

液体貯留槽4から出た複合体8Aは、網目引き伸ばし部分で切り分け、乾燥機に入れて液体冷媒1を蒸発除去する。   The composite 8A that has come out of the liquid storage tank 4 is cut at the stretched portion of the mesh, and is put into a dryer to evaporate and remove the liquid refrigerant 1.

−独立分離領域の形成−
本実施形態では、傾斜板3A,3Bで不織布6A,6Bと溶融線条5が接触する部分の上に、一時的に遮蔽板12A,12Bを挿入し、溶融線条5と不織布6A,6Bの接触を阻止し、溶融線条5Aが集積固化した立体網状構造体7Aと、不織布6A,6Bを溶着させないことにより、溶着中止部分14Aを形成し、不織布6A,6Bのみの一部、又は立体網状構造体7Aのみの一部をそれぞれ独立で切り取ることや、どちらかを残すことが可能である。
-Formation of independent isolation regions-
In this embodiment, the shielding plates 12A and 12B are temporarily inserted on the portions where the nonwoven fabrics 6A and 6B and the molten filaments 5 are in contact with each other with the inclined plates 3A and 3B, and the molten filaments 5 and the nonwoven fabrics 6A and 6B are inserted. By preventing welding, the solid network structure 7A in which the melted filaments 5A are accumulated and solidified and the nonwoven fabrics 6A and 6B are not welded to form a welding stop portion 14A, and only a part of the nonwoven fabrics 6A and 6B, or a solid network structure. It is possible to cut out only a part of the structure 7A independently or leave one of them.

本実施形態では、一定角度の傾斜角を持つ傾斜板3A,3Bと近似した角度での概平面の遮蔽板12A,12Bの前後運動だけで、幅広面外縁の溶融線条5Aと不織布6A,6Bの隔離が可能であり、単純な動作となり、簡単容易な機構で可能となる。   In the present embodiment, the melted strip 5A and the nonwoven fabric 6A, 6B at the outer edge of the wide surface are obtained only by the back-and-forth movement of the substantially planar shielding plates 12A, 12B at an angle approximate to that of the inclined plates 3A, 3B having a constant tilt angle. Can be isolated, and the operation is simple, and an easy and easy mechanism is possible.

製造装置50の動作中に不織布6A,6Bが傾斜板3A,3Bの上で幅広面外縁の溶融線条5Aと接触して溶着している最中に、傾斜板3A,3B上の不織布6A,6Bのまだ幅広面外縁の溶融線条5Aから離れた傾斜板3A,3B上の上面に遮蔽板12A,12Bを近づけて、不織布6A,6Bの進行速度と同じ速度で不織布6A,6Bとともに幅広面外縁の溶融線条5Aに近づかせ、遮蔽板12A,12Bの下側先端が、厚さ規定板2A,2Bの真上に達したところで遮蔽板12A,12Bを停止させる。遮蔽板12A,12Bを停止させている最中にも、複合体を前進させる送りローラ15A〜15D及び送りドラム16Aを動作させ、不織布6A,6Bや、不織布6A,6Bと溶着した溶着部分13Aを連続して前進させる。   During the operation of the manufacturing apparatus 50, the nonwoven fabrics 6A and 6B are in contact with and welded to the melted strips 5A on the outer edges of the wide surfaces on the inclined plates 3A and 3B. Shield plate 12A, 12B is brought close to the upper surface on inclined plates 3A, 3B away from melted filament 5A at the outer edge of wide surface of 6B, and wide surface together with non-woven fabric 6A, 6B at the same speed as that of non-woven fabric 6A, 6B. The shield plates 12A and 12B are stopped when the outer ends of the melted filaments 5A are approached and the lower ends of the shield plates 12A and 12B reach directly above the thickness defining plates 2A and 2B. Even while the shielding plates 12A and 12B are stopped, the feed rollers 15A to 15D and the feed drum 16A for advancing the composite are operated so that the nonwoven fabrics 6A and 6B and the welded portions 13A welded to the nonwoven fabrics 6A and 6B are provided. Move forward continuously.

図4に示すように、傾斜板3A,3B上の不織布6A,6Bと幅広面外縁の溶融線条5Aとの接触を一時的に遮断して、不織布6A,6Bと幅広面外縁の溶融線条5Aとの接触を阻止し、不織布6A,6Bが溶着しない状態で溶融線条5Aが集積し相互溶着することで立体網状構造体7Aだけを形成することにより、溶着部分13Aの間に不織布6A,6Bと立体網状構造体7Aとが分離された網状構造体独立部14Bを有する溶着中止部分14Aを備えた複合体8Bが得られる。   As shown in FIG. 4, the contact between the nonwoven fabrics 6A and 6B on the inclined plates 3A and 3B and the melted filament 5A at the outer edge of the wide surface is temporarily blocked, and the melted filaments at the outer periphery of the nonwoven fabric 6A and 6B and the wide surface are The contact with 5A is prevented, and the non-woven fabrics 6A, 6B are not welded, and the melted filaments 5A are accumulated and welded together to form only the three-dimensional network structure 7A, whereby the nonwoven fabric 6A, A composite body 8B including a welding stop portion 14A having a network-structure independent portion 14B in which 6B and the three-dimensional network structure 7A are separated is obtained.

また、網状構造体独立部14Bには不織布6A,6Bが溶着していないので、独立している網状構造体独立部14Bを切り取り、不織布のみの不織布余長部分14Dを残すこともできる。   In addition, since the nonwoven fabrics 6A and 6B are not welded to the network structure independent portion 14B, the independent network structure independent portion 14B can be cut out to leave the nonwoven fabric surplus portion 14D of only the nonwoven fabric.

この不織布余長部分14Dは、地中に埋設する建築物で、建築物の垂直壁面に複合体8Aを貼り付けて、土中の水を排除する場合に、複合体8Bの端部で、内部通水空間への土砂侵入を防ぐために端部を包んだり、複合体8B同士の接合部分で土砂侵入を防ぐために、不織布余長部分14Dを隣りの複合体8Bの不織布6の上に重ねて、接着材などで固定するなどの用途に用いることができる。   This non-woven fabric surplus portion 14D is a building to be embedded in the ground. When the composite 8A is pasted on the vertical wall surface of the building to remove the soil water, In order to prevent the invasion of earth and sand into the water passage space, or to wrap the end portion on the nonwoven fabric 6 of the adjacent composite 8B, in order to prevent the invasion of earth and sand at the joint portion between the composites 8B, It can be used for applications such as fixing with an adhesive.

−間延び部分の形成−
遮蔽板12A,12Bを挿入している間に、冷媒液中での立体網状構造体7Aと不織布6A,6Bを前進降下させる送りローラ15A〜15Dと送りドラム16Aの進行速度を一時的に通常時の5倍以上50倍以下の範囲で増加させることにより、図5A及び図5Bに示すように、連続する立体網状構造体7Aを構成する溶融線条5Aは間延びして密度が粗い間延び部分14Eを有するものとすることができる。また不織布6A,6Bと幅広面外縁の溶融線条5Aの間には遮蔽板12A,12Bが介在するので、幅広面外縁の溶融線条5Aは不織布6A,6Bには溶着しない溶着中止部分14Aがある複合体8Cが得られる。このため、この部分で複合体8Cの切断加工の際には、不織布6A,6Bに適した刃物と立体網状構造体7Aに適した刃物の使い分けが可能となり、複合体8Cの切断が容易となる。
-Formation of the extended part-
While the shielding plates 12A and 12B are inserted, the traveling speeds of the feed rollers 15A to 15D and the feed drum 16A for advancing and lowering the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B in the refrigerant liquid are temporarily set at normal times. As shown in FIGS. 5A and 5B, the melted filament 5A constituting the continuous three-dimensional network structure 7A extends to form an extended portion 14E having a coarse density. It can have. Further, since the shielding plates 12A and 12B are interposed between the nonwoven fabrics 6A and 6B and the melted strip 5A at the outer edge of the wide surface, the melt strip 5A at the outer edge of the wide surface has a welding stop portion 14A that is not welded to the nonwoven fabrics 6A and 6B. A composite 8C is obtained. For this reason, when cutting the composite 8C at this portion, it is possible to selectively use a blade suitable for the nonwoven fabrics 6A and 6B and a blade suitable for the three-dimensional network structure 7A, and the composite 8C can be easily cut. .

また、網状構造体独立部14Bに対応する間延び部分14Eでは、立体網状構造体7Aを切断しても、切断ロスの樹脂量が少なくて済む。また樹脂繊維の集積密度が低いので、ハサミ等で簡単に切断することが可能となる。   Further, in the extended portion 14E corresponding to the network structure independent portion 14B, even if the three-dimensional network structure 7A is cut, the resin amount of the cutting loss may be small. In addition, since the density of the resin fibers is low, it can be easily cut with scissors or the like.

間延びさせた後に再び送りローラ15A〜15Dと送りドラム16Aの進行速度を通常密度の網目形成時の速度に戻し、一定時間後に遮蔽板12A,12Bを後退させて不織布6A,6Bと幅広面外縁の溶融線条5Aを接触させれば、遮蔽板12A,12Bの挿入前と同様に、一定幅、一定厚さ、一定密度の立体網状構造体7Aの表面に不織布6A,6Bが溶着した溶着部分13Aが再び形成される。このため、間延び部分14Eがあっても機械を止めずに連続生産が可能となる。   After the extension, the traveling speed of the feed rollers 15A to 15D and the feed drum 16A is returned to the speed at the time of forming the normal density mesh, and after a certain time, the shielding plates 12A and 12B are retracted and the nonwoven fabrics 6A and 6B and the outer edges of the wide surfaces are If the molten filament 5A is brought into contact, the welded portion 13A in which the nonwoven fabrics 6A and 6B are welded to the surface of the three-dimensional network structure 7A having a constant width, a constant thickness, and a constant density, as before insertion of the shielding plates 12A and 12B. Is formed again. For this reason, even if there is the extended portion 14E, continuous production is possible without stopping the machine.

そして、間延び部分14Eを切り取れば、残った溶着部分13Aの網目密度は全域均一であり、その周辺に不織布6A,6Bのみの部分よりなる不織布余長部分14Dを持つ複合体8Aが得られる。この複合体8Aでは、溶着部分13Aの被覆されていない側面を覆ったり、複合体8Aをつないで設置する場合の、継ぎ目部分の被覆に使用できる。   Then, if the extending portion 14E is cut off, the remaining welded portion 13A has a uniform mesh density over the entire area, and a composite 8A having a non-woven fabric surplus portion 14D composed of only the non-woven fabric 6A and 6B is obtained at the periphery. This composite 8A can be used for covering the seam portion when the uncovered side surface of the welded portion 13A is covered or the composite 8A is connected and installed.

遮蔽板12A,12Bを用いて不織布6A,6Bと溶融線条5とを隔離している間は、間延び部分14Eでも通常網目密度部分でも不織布6A,6Bは連続しているため、この間延び部分14Eで立体網状構造体7Aを切り取り、不織布6A,6Bと分離独立した網状構造体独立部14Bの一部を切り取り、連続した不織布の不織布独立分14Cを間延び部分14Eの中間で切断すれば、1枚の複合体8Aで内部の立体網状構造体7Aの密度は均一で、長さ方向の両端に不織布余長部分14Dを有する複合体8Aとすることが可能となる。   While the non-woven fabrics 6A and 6B and the melted filament 5 are separated using the shielding plates 12A and 12B, the non-woven fabrics 6A and 6B are continuous in the extended portion 14E and the normal mesh density portion. If the three-dimensional network structure 7A is cut out, a part of the network structure independent part 14B separated and independent from the nonwoven fabrics 6A and 6B is cut, and the nonwoven fabric independent portion 14C of the continuous nonwoven fabric is cut in the middle of the extended portion 14E. In the composite 8A, the density of the internal three-dimensional network structure 7A is uniform, and the composite 8A having the nonwoven fabric surplus portions 14D at both ends in the length direction can be obtained.

網目構造が間伸びした間延び部分14Eでは、網目密度の低下により送りローラ15A〜15Dや送りドラム16Aと複合体との接触圧力が低下し、送りローラ15A〜15Dの駆動力が立体網状構造体7Aにかかりにくくなるので、送りローラは2列以上配置し、個々のローラの間隔は、空疎部分の長さよりも広くとり、2箇所以上で送り力が複合体にかかるような配置、構造等とすることが望ましい。又は、複合体との接触長さが空疎部分の長さよりも長い、外径の大きな送りドラム16Aとし、複合体をドラム円筒に沿わせて、送りドラム16Aと複合体の接触長さを増やす方法もある。   In the extended portion 14E where the mesh structure is elongated, the contact pressure between the feed rollers 15A to 15D and the feed drum 16A and the composite is lowered due to the reduction of the mesh density, and the driving force of the feed rollers 15A to 15D is increased by the three-dimensional network structure 7A. The feed rollers are arranged in two or more rows, and the distance between the individual rollers is wider than the length of the sparse part, so that the feed force is applied to the composite at two or more locations. It is desirable. Alternatively, a method of increasing the contact length between the feed drum 16A and the composite by using the feed drum 16A having a large outer diameter whose contact length with the composite is longer than the length of the vacant portion, and having the composite along the drum cylinder. There is also.

したがって、本実施形態に係る製造方法によると、不織布6A,6Bを簡単かつ確実に立体網状構造体7Aに結合させることができる。また、主に液中の粒子を透水性の不織布6A,6Bで捕捉し、濾過した水や液のみを、内部空間を持つ立体網状構造体7Aの通水空間に導く濾過ユニットや、土木分野での排水材、透水材を製造する過程で、立体網状構造体7Aの形成と不織布6A,6Bの溶着とを同時に行うことができる。さらに、遮蔽板12A,12Bを調整することで、不織布6A,6Bと立体網状構造体7Aの結合箇所、結合部分の面積を自由に変更できる。   Therefore, according to the manufacturing method according to the present embodiment, the nonwoven fabrics 6A and 6B can be easily and reliably bonded to the three-dimensional network structure 7A. Moreover, in the civil engineering field, a filtration unit that mainly captures particles in the liquid with the water-permeable nonwoven fabrics 6A and 6B and guides only the filtered water and liquid to the water flow space of the three-dimensional network structure 7A having an internal space. In the process of manufacturing the drainage material and the water permeable material, the formation of the three-dimensional network structure 7A and the welding of the nonwoven fabrics 6A and 6B can be performed simultaneously. Furthermore, by adjusting the shielding plates 12A and 12B, the joining location of the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A and the area of the joining portion can be freely changed.

−実施形態1の変形例1−
図6〜図7Aは本発明の実施形態1の変形例1を示し、ガイド部としての傾斜板3A,3Bの形状が異なる点、遮蔽板12F,12Gの形状が異なる点で上記実施形態1と異なる。なお、以下の各変形例及び各実施形態では、図1〜図5Bと同じ部分については同じ符号を付してその詳細な説明は省略する。
-Modification 1 of Embodiment 1-
6 to 7A show a first modification of the first embodiment of the present invention, which differs from the first embodiment in that the inclined plates 3A and 3B as the guide portions are different in shape and the shielding plates 12F and 12G are different in shape. Different. In addition, in each following modification and each embodiment, the same code | symbol is attached | subjected about the same part as FIGS. 1-5B, and the detailed description is abbreviate | omitted.

すなわち、本変形例では、遮蔽板12F,12Gを中空とし、内部に液体冷媒1を通過させるようにしている。   That is, in this modification, the shielding plates 12F and 12G are hollow, and the liquid refrigerant 1 is allowed to pass through the inside.

具体的には図7Aに示すように、遮蔽板12F,12G下側先端に、多数の冷媒流出孔12Hをあけて適量の液体冷媒1を出し、不織布6A,6Bに液体冷媒1を浸透させ、幅広面外縁の溶融線条5Aとの溶着を防いで確実に溶着中止部分14Aを設けるようにしている。   Specifically, as shown in FIG. 7A, at the lower ends of the shielding plates 12F and 12G, a large amount of the refrigerant outflow holes 12H are opened and an appropriate amount of the liquid refrigerant 1 is taken out, and the liquid refrigerant 1 is infiltrated into the nonwoven fabrics 6A and 6B. The welding stop portion 14A is surely provided by preventing welding with the melted filament 5A on the outer edge of the wide surface.

又は図7Bに示すように、遮蔽板12F,12Gの上面に複数の冷媒流出孔12Hをあけて液体冷媒1をこの冷媒流出孔12Hから流出させ、この液体冷媒1で幅広面の溶融線条5Aの側面を予め冷却して確実に溶着中止部分14Aを設けるようにしている。   Alternatively, as shown in FIG. 7B, a plurality of refrigerant outflow holes 12H are formed on the upper surfaces of the shielding plates 12F and 12G to allow the liquid refrigerant 1 to flow out of the refrigerant outflow holes 12H. The side surface of this is cooled in advance so as to reliably provide the welding stop portion 14A.

さらに本変形例では、傾斜板3A,3Bの傾斜部分の下端に鉛直平板3C,3Dを付け加え、図6に示すように、傾斜板3A,3Bと鉛直平板3C,3Dとをつなぐ連結部分(折曲部)の高さを、冷媒液面1aの液面高さから5以上30mm以下だけ高い位置までの間で適宜調整できる構造としている。これにより、溶融線条5Aが液体冷媒1で冷却される前に、不織布6A,6Bと幅広面外縁の溶融線条5Aが十分に溶着され、また、溶融線条5Aが液体冷媒1中で冷却固化される前に鉛直平板3C,3Dや厚さ規定板2A,2Bに挟まれることにより、複合体8Aの厚さが一対の厚さ規定板2A,2Bの間隔と同一となる効果をもたらすことができる。   Furthermore, in this modified example, vertical flat plates 3C and 3D are added to the lower ends of the inclined portions of the inclined plates 3A and 3B, and as shown in FIG. 6, the connecting portion (folding) connecting the inclined plates 3A and 3B and the vertical flat plates 3C and 3D. The height of the (curved portion) can be adjusted as appropriate between the liquid level height of the refrigerant liquid level 1a and a position higher by 5 to 30 mm. Thereby, before the molten filament 5A is cooled by the liquid refrigerant 1, the nonwoven fabrics 6A and 6B and the molten filament 5A at the outer edge of the wide surface are sufficiently welded, and the molten filament 5A is cooled in the liquid refrigerant 1. By being sandwiched between the vertical flat plates 3C and 3D and the thickness defining plates 2A and 2B before being solidified, the composite 8A has the same effect as the distance between the pair of thickness defining plates 2A and 2B. Can do.

−実施形態1の変形例2−
本発明の実施形態1の変形例2は、ガイド部の構成が異なる点で上記実施形態1と異なる。
-Modification 2 of Embodiment 1
Modification 2 of Embodiment 1 of the present invention differs from Embodiment 1 in that the configuration of the guide portion is different.

特に図示しないが、本変形例では、冷媒液面1a下の一対の厚さ規定板2A,2Bの上で、溶融線条5Aを形成させる多孔金型24Aとの間に、不織布6A,6Bが一定角度で冷媒液面1a内に進入するためのガイド部としての不織布引き寄せ棒が設置されている。   Although not particularly illustrated, in this modification, the non-woven fabrics 6A and 6B are disposed between the pair of thickness regulating plates 2A and 2B below the refrigerant liquid level 1a and the porous mold 24A that forms the melted filament 5A. A non-woven fabric pulling rod is installed as a guide for entering the refrigerant liquid surface 1a at a certain angle.

こうすれば、冷媒液面1aから不織布引き寄せ棒の上端までの高低差0.5mmから200mmの間に、不織布6A,6Bと幅広面溶融線条5Aが、液体冷媒1に冷却されることなく、時間をかけて接して強固に溶着し、また幅広面溶融線条5Aや内部溶融線条5Aが、また溶融した状態で互いに溶着しながら、不織布引き寄せ棒の間を通過することで、一定厚さの複合体8Aを形成できる。   In this way, the nonwoven fabric 6A, 6B and the wide surface melted filament 5A are not cooled by the liquid refrigerant 1 between the height difference 0.5mm to 200mm from the refrigerant liquid surface 1a to the upper end of the nonwoven fabric pulling rod, A certain thickness is obtained by passing through the non-woven pulling rod while the wide surface melt filament 5A and the internal melt filament 5A are welded to each other in a melted state while being in contact with each other over time and firmly welding. The composite 8A can be formed.

冷媒液面1aより上の、不織布接触部分の傾斜角度を、水平に対し5度から80度の範囲で調整ができる構造とすれば、角度調整により幅広面外縁の溶融線条5Aと不織布6A,6Bが接触した際の接触長さや接触溶着する繊維の本数を調整したり、液体冷媒1内での冷却固化時の、立体網状構造体7Aの積層状態を調整することが可能となる。   If the inclination angle of the nonwoven fabric contact portion above the refrigerant liquid surface 1a can be adjusted within a range of 5 to 80 degrees with respect to the horizontal, the melted strip 5A and the nonwoven fabric 6A at the outer edge of the wide surface are adjusted by the angle adjustment. It is possible to adjust the contact length when 6B comes into contact and the number of fibers to be contact-welded, and to adjust the stacked state of the three-dimensional network structure 7A when cooled and solidified in the liquid refrigerant 1.

−実施形態1の変形例3−
本発明の実施形態1の変形例3は、遮蔽板の構成が異なる点で上記実施形態1と異なる。
-Modification 3 of Embodiment 1-
Modification 3 of Embodiment 1 of the present invention differs from Embodiment 1 in that the configuration of the shielding plate is different.

図8A及び図8Bに示すように、傾斜板3A,3Bの上の不織布6A,6Bの一定幅のみを連続して連続遮蔽板(図示せず)で常時遮蔽することにより、複合体の一定幅で、立体網状構造体7Aと不織布6A,6Bが長さ方向で連続して分離した不織布余長部分14D(図4B参照)を有する複合体を製造することが可能となる。使用場所や条件により、完成した複合体のうち、立体網状構造体7Aの幅を切断した上で、不織布6A,6Bはそのまま残したい場合に適応可能となる。   As shown in FIGS. 8A and 8B, the constant width of the composite is obtained by continuously shielding only a certain width of the nonwoven fabrics 6A and 6B on the inclined plates 3A and 3B continuously with a continuous shielding plate (not shown). Thus, it becomes possible to manufacture a composite having a nonwoven fabric surplus portion 14D (see FIG. 4B) in which the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B are continuously separated in the length direction. Depending on the place of use and conditions, the non-woven fabric 6A, 6B can be left as it is after cutting the width of the three-dimensional network structure 7A in the completed composite.

(実施形態2)
図9は本発明の実施形態2を示し、強化網26A,有孔板26Bなどをさらに設ける点で上記実施形態1と異なる。
(Embodiment 2)
FIG. 9 shows a second embodiment of the present invention, which differs from the first embodiment in that a reinforcing net 26A, a perforated plate 26B and the like are further provided.

−製造手順−
まず、不織布6A,6Bと立体網状構造体7Aの間に有孔板26B(例えば図10Cに示す)を挟む場合は、不織布6A,6Bと有孔板26Bを予めホットメルト樹脂を溶融塗布して溶着させたものを製造装置50に装填する。
-Manufacturing procedure-
First, when a perforated plate 26B (for example, shown in FIG. 10C) is sandwiched between the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A, the non-woven fabric 6A, 6B and the perforated plate 26B are previously melt-coated with a hot melt resin. The welded product is loaded into the manufacturing apparatus 50.

次いで、不織布6A,6B上に密着させた後に溶融線条5Aに接触させる有孔板26Bを、繊維強化プラスチック板(FRP板)とする場合は、FRP板の構成繊維は、立体網状構造体7Aを構成する溶融線条5Aの原料樹脂よりも融点の高い樹脂、又は熱溶融しない材質の繊維とすることにより、立体網状構造体7Aを構成する溶融線条5Aに有孔板26Bの構成繊維が溶かされず、強度を保つことが可能なため、繊維強化プラスチック板としても強度が維持される。熱溶融しない材質の繊維としては、例えば炭素繊維やポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリアミド繊維、アラミド繊維、ポリイミド繊維、ポリフェニレンサルファイド繊維、ポリアリレート繊維等があり、これらの繊維を、FRP板の強化用の繊維とし、FRP板の構成樹脂は立体網状構造体7Aの構成線条と同じ樹脂か、網目構造構成樹脂よりも低融点とすることにより、相互溶着力を高めることができる。   Next, when the perforated plate 26B that is brought into close contact with the nonwoven fabrics 6A and 6B and then brought into contact with the molten filament 5A is a fiber reinforced plastic plate (FRP plate), the constituent fiber of the FRP plate is a three-dimensional network structure 7A. The fibers of the perforated plate 26B are included in the molten filaments 5A constituting the three-dimensional network structure 7A. Since it is not melt | dissolved and it can maintain intensity | strength, intensity | strength is maintained also as a fiber reinforced plastic board. Examples of fibers that are not heat-melted include carbon fibers, polyparaphenylene benzobisoxazole (PBO) fibers, polyamide fibers, aramid fibers, polyimide fibers, polyphenylene sulfide fibers, polyarylate fibers, and the like. The mutual welding power can be increased by using fibers for reinforcing the plate and making the constituent resin of the FRP plate the same resin as the constituent filaments of the three-dimensional network structure 7A or having a lower melting point than that of the network constituent resin.

なお、有孔板26Bが溶融線条5Aに接する直前に、赤外線ヒーター等で予備加熱し、有孔板26Bと溶融線条5Aとの溶着力を高める方法もある。   There is also a method in which the perforated plate 26B is preheated with an infrared heater or the like immediately before coming into contact with the molten filament 5A to increase the welding force between the perforated plate 26B and the molten filament 5A.

図9に示すように、外気貫通空洞部23Cから不織布6A,6Bや強化網26Aを降下させる場合、溶融線条5Aに不織布6A,6Bや強化網26Aが接する直前の高さまで、2枚のガイド板(図示せず)間を通し、位置などがずれないようにする。必要に応じて内部を中空にして液体冷媒1を通して冷却したり、表面をテフロンなどで処理し溶融線条5の接触付着を避けるとよい(テフロンは登録商標)。   As shown in FIG. 9, when the nonwoven fabrics 6A and 6B and the reinforcing net 26A are lowered from the open air through-cavity 23C, the two guides are brought to a height immediately before the nonwoven fabrics 6A and 6B and the reinforcing net 26A are in contact with the melted filament 5A. Pass between the plates (not shown) so that the position does not shift. If necessary, the inside may be hollowed and cooled through the liquid refrigerant 1, or the surface may be treated with Teflon or the like to avoid contact adhesion of the molten filaments 5 (Teflon is a registered trademark).

複合体8Bの引張強度を持たせるための強化網26Aの代わりに有孔板26Bを挿入する場合で、有孔板26BをFRP繊維強化プラスチックとする場合は、FRPの構成樹脂を、溶融線条5Aの樹脂と同じ種類の樹脂とするか、FRPの構成樹脂の融点を溶融線条5Aの構成樹脂の融点と同等か、それ以下のものを選定することにより、有孔板26Bと溶融線条5Aが相互に強固に溶着し、剥離強度を高めることも可能となる。   When the perforated plate 26B is inserted instead of the reinforcing net 26A for giving the tensile strength of the composite 8B, and the perforated plate 26B is made of FRP fiber reinforced plastic, the constituent resin of FRP is made of molten filaments. By selecting the same type of resin as 5A resin, or the melting point of the constituent resin of FRP is equal to or lower than the melting point of the constituent resin of 5A, the perforated plate 26B and the molten filament are selected. 5A can be firmly welded to each other, and the peel strength can be increased.

また、多孔金型24Aを装着している金型台23Aに鉛直方向に連続し外気の流通する複数の外気貫通空洞部23Cを設け、これら複数の外気貫通空洞部23Cから不織布6A,6B、強化網26A、有孔板26B及び複合体8Aの少なくとも1つを降下させ、外気貫通空洞部23Cを挟んで両側に配置した多孔金型24Aから液体冷媒1に螺旋を描きながら降下する溶融線条5Aと接触させながら進行させることにより、不織布6A、強化網26A及び有孔板26Bの少なくとも1つと立体網状構造体7Aの同時形成多層複合体8Iを形成してもよい。   In addition, a plurality of outside air penetration cavities 23C through which outside air circulates are provided in the mold base 23A on which the porous mold 24A is mounted, and the nonwoven fabrics 6A and 6B are reinforced from the plurality of outside air penetration cavities 23C. At least one of the net 26A, the perforated plate 26B, and the composite 8A is lowered, and the molten filament 5A that descends while drawing a spiral from the porous mold 24A disposed on both sides with the outside air through-hole 23C sandwiched between them. The multi-layer composite 8I may be formed simultaneously with at least one of the nonwoven fabric 6A, the reinforcing net 26A, and the perforated plate 26B and the three-dimensional network structure 7A.

また、強化網26Aと不織布6A,6Bを重ねたところに幅広面の溶融線条5Aを降下させ、1本の溶融線条5Aが不織布6A,6B面に溶着した直後に強化網26Aの網目上を通過し、その直後に不織布6A,6Bに溶着するなどにより、複数の溶融線条5Aが強化網26Aをまたいで不織布6A,6Bに溶着することで、不織布6A,6Bが強化網26Aに広域で均等に補強された複合体8Eを製造してもよい。   Further, when the reinforced mesh 26A and the nonwoven fabrics 6A and 6B are overlapped, the wide surface of the molten filament 5A is lowered, and immediately after the one molten filament 5A is welded to the nonwoven fabric 6A and 6B surface, The melted filaments 5A are welded to the nonwoven fabrics 6A and 6B across the reinforcing network 26A by, for example, welding to the nonwoven fabrics 6A and 6B immediately thereafter, so that the nonwoven fabrics 6A and 6B are widespread on the reinforcing network 26A. The composite 8E reinforced evenly may be manufactured.

多孔金型24Aを取り付ける金型台23Aの構造を、内部の溶融樹脂通過領域23Bが複数配列され、さらに複数の溶融樹脂通過領域23Bの外側に、上下方向に連続し、外気が通る外気貫通空洞部23Cを複数設けた形状とし、外気貫通空洞部23Cから不織布6Aや強化網26Aを降下させながら、多孔金型24Aの孔から溶融線条5Aを降下させ、不織布6Aや強化網26Aの降下速度よりも溶融線条5Aの流下速度を速くして、液体冷媒1の液面付近で溶融線条5Aがループを描きながら、相互に溶着しながら積層することにより、溶融線条5Aが立体網状構造体7Aを形成しながら不織布6Aや強化網26Aと相互溶着したり、強化網26Aの開口部分で強化網26Aを挟む溶融線条5A同士が相互溶着しながら立体網状構造体7Aを形成する。こうすれば、1回の工程で立体網状構造体7A内部に強化網26Aや不織布6A,6Bを複数持つ複合体8Dが形成できる。   The structure of the mold base 23A to which the porous mold 24A is attached has a plurality of internal molten resin passage regions 23B arranged therein, and further outside the plurality of molten resin passage regions 23B. The shape is provided with a plurality of portions 23C, and while the nonwoven fabric 6A and the reinforcing net 26A are lowered from the open air through-cavity 23C, the molten filament 5A is lowered from the hole of the porous mold 24A, and the descent speed of the nonwoven fabric 6A and the reinforcing net 26A The flow rate of the melted line 5A is increased, and the melted line 5A forms a loop in the vicinity of the liquid surface of the liquid refrigerant 1 and is laminated while being welded to each other, so that the melted line 5A has a three-dimensional network structure. The three-dimensional network structure 7 is formed by mutual welding with the non-woven fabric 6A and the reinforcing net 26A while forming the body 7A, or while the fused filaments 5A sandwiching the reinforcing net 26A at the opening of the reinforcing net 26A are mutually welded. To form. If it carries out like this, the composite_body | complex 8D which has two or more reinforcement | strengthening net | network 26A and nonwoven fabric 6A, 6B in the solid network structure 7A can be formed in one process.

複合体の片面又は両面を最終的に不織布6A,6Bで覆われない立体網状構造体7Aとする場合は、傾斜板3A,3Bの一方には不織布6A,6Bをせず、遮蔽板12A,12Bを連続して使用し遮蔽板12A,12B上の冷媒滴下管12Eから液体冷媒を滴下するか、遮蔽板12A,12Bの冷媒流出孔12Hから液体冷媒1を吹き出させて、幅広面溶融線条5Aの遮蔽板への溶着や溶融線条5Aの乱れを防ぎ、幅広面溶融線条5Aのループの外縁を仕上げるとよい。複合体の表面が立体網状構造体である場合、土中で使用すると、表層の網目内に土が充填され、充填された土が立体網状構造体7Aに保持され、複合体の表面は周囲の土の表面と同質となり、土と不織布6A,6Bが接する場合よりも摩擦抵抗が強くなる。   When one side or both sides of the composite are finally formed into a three-dimensional network structure 7A that is not covered with the nonwoven fabrics 6A and 6B, the nonwoven fabrics 6A and 6B are not provided on one of the inclined plates 3A and 3B, and the shielding plates 12A and 12B. Are continuously used and liquid refrigerant is dropped from the refrigerant dripping pipes 12E on the shielding plates 12A and 12B, or the liquid refrigerant 1 is blown out from the refrigerant outflow holes 12H of the shielding plates 12A and 12B, so that the wide surface molten filament 5A is obtained. It is good to prevent welding to the shielding plate and disturbance of the molten filament 5A, and finish the outer edge of the loop of the wide surface molten filament 5A. When the surface of the composite is a three-dimensional network structure, when used in the soil, the surface mesh is filled with the soil, the filled soil is held in the three-dimensional network structure 7A, and the surface of the composite is the surrounding surface. It becomes the same quality as the surface of the soil, and the frictional resistance becomes stronger than when the soil and the nonwoven fabrics 6A and 6B are in contact.

−実施形態2の変形例−
図10Aは、本発明の実施形態2の変形例に係る製造装置50の一部を示し、本変形例では、主として不織布6A,6B等ではなく、予め成形した複合体8Aを溶着させる点で上記実施形態1と異なる。
-Modification of Embodiment 2-
FIG. 10A shows a part of the manufacturing apparatus 50 according to the modified example of Embodiment 2 of the present invention. In this modified example, not the nonwoven fabrics 6A, 6B, etc., but the above-described composite 8A is welded in advance. Different from the first embodiment.

すなわち、上記実施形態1のように両側から不織布6A,6Bを供給するのではなく、一方側で、予め上記実施形態1で製作した立体網状構造体7Aと不織布6A,6Bの複合体8Aを挿入する場合は、予め用意した立体網状構造体7Aに複合体8Aを重ねて針金などでの先端を両面テープや針金などで固定し、装置内に挿入し送りドラム16Aで挟んだ後、複合体8Aを厚さ規定板2A,2Bと平行に進めるための押さえ枠18A(図10Bに示す)を装着する。   That is, the nonwoven fabrics 6A and 6B are not supplied from both sides as in the first embodiment, but the composite network 8A of the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B manufactured in advance in the first embodiment is inserted on one side. In this case, the composite 8A is overlapped on the three-dimensional network structure 7A prepared in advance, and the tip of the wire is fixed with a double-sided tape or wire, inserted into the apparatus and sandwiched between the feed drums 16A, and then the composite 8A. Is attached with a holding frame 18A (shown in FIG. 10B) for advancing in parallel with the thickness regulating plates 2A and 2B.

図10Aに示すように、本実施形態の多層複合体8Gの製作時は、不織布6A,6B、強化網26A、有孔板26B等を多孔金型24Aのそばの連続空洞(図示せず)に通し、予め製造装置50で製作しておいた立体網状構造体7Aと不織布6A,6Bとの複合体8Aを、必要枚数重ねて、液体貯留槽4内の厚さ規定板2A,2Bから送りドラム16A、出口補助ドラム31にかけて通しておき、連続空洞側と厚さ規定板2A,2B側との不織布6A,6B、強化網26A、有孔板26B等を互いに針金、テープ等で固定しておく。このような準備を行った後に、液体冷媒1を液体貯留槽4に入れ、押出機20を稼動させ、上記実施形態1と同様に各層での溶融線条5の立体網状構造体7Aを連続成形する。   As shown in FIG. 10A, when the multilayer composite 8G of the present embodiment is manufactured, the nonwoven fabrics 6A and 6B, the reinforcing net 26A, the perforated plate 26B, and the like are placed in a continuous cavity (not shown) near the porous mold 24A. Through the required number of composites 8A of the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B, which have been manufactured in advance by the manufacturing apparatus 50, are fed from the thickness regulating plates 2A and 2B in the liquid storage tank 4. 16A is passed through the outlet auxiliary drum 31, and the non-woven fabric 6A, 6B, the reinforcing net 26A, the perforated plate 26B, etc. on the continuous cavity side and the thickness regulating plates 2A, 2B side are fixed to each other with a wire, tape or the like. . After making such preparation, the liquid refrigerant 1 is put into the liquid storage tank 4, the extruder 20 is operated, and the three-dimensional network structure 7A of the molten filament 5 in each layer is continuously formed as in the first embodiment. To do.

多層複合体8Hの外面を立体網状構造体7Aにする場合は上述の通り、予め傾斜板3A,3Bの上に遮蔽板12A,12Bや冷媒滴下管12E等を設置しておくか、傾斜板3A,3Bなどの代わりに上端幅広面の厚さ規定板2A,2Bを設置しておく。上端幅広面の厚さ規定板2A,2Bの厚さは、溶融線条5の太さや螺旋の大きさから3mm以上200mm以下の範囲で、多孔金型24Aから押し出される溶融線条5Aの線径や、溶融状態でのループの状態に合わせて決めるとよい。   When the outer surface of the multilayer composite 8H is made into the three-dimensional network structure 7A, as described above, the shielding plates 12A and 12B, the refrigerant dropping pipe 12E, etc. are previously installed on the inclined plates 3A and 3B, or the inclined plate 3A. , 3B, etc., the thickness defining plates 2A, 2B having a wide upper end surface are installed. The thickness of the upper end wide surface thickness regulating plates 2A and 2B is within the range of 3 mm to 200 mm from the thickness of the molten filament 5 and the spiral size, and the diameter of the molten filament 5A extruded from the porous mold 24A. Alternatively, it may be determined according to the state of the loop in the molten state.

−多層複合体の形成−
上記の工法では、傾斜板3A,3B上にそれぞれ1枚の不織布6A,6Bを載せて、多孔金型24Aから螺旋を描いて降下している溶融線条5を不織布6A,6Bと溶着させながら立体網状構造体7Aと不織布6A,6Bの複合体8Aを形成している。この製造装置50で一度、複合体8Aを形成し、この予め成形した複合体8Aを再び傾斜板3A,3B又は不織布引き寄せ棒上から、不織布6A,6B面を上にして装置内に送り込み、多孔金型24Aから溶出した溶融線条5に溶着させながら装置内を進行させることにより、1枚の複合体に不織布と立体網状構造体が複数重なった多層複合体8G,8Hを形成することが可能となる。
-Formation of multilayer composites-
In the above construction method, one nonwoven fabric 6A, 6B is placed on each of the inclined plates 3A, 3B, and the melted filament 5 descending in a spiral manner from the porous mold 24A is welded to the nonwoven fabrics 6A, 6B. The composite 8A of the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B is formed. The manufacturing apparatus 50 once forms a composite 8A, and again feeds the pre-formed composite 8A from the inclined plates 3A, 3B or the nonwoven fabric pulling bar into the apparatus with the nonwoven fabrics 6A, 6B facing up. It is possible to form multilayer composites 8G and 8H in which a nonwoven fabric and a three-dimensional network structure are overlapped on one composite by advancing the inside of the apparatus while being welded to the melted filament 5 eluted from the mold 24A. It becomes.

多層複合体8G,8Hを形成する場合に、傾斜板3A,3Bから予め成形した複合体8Aを挿入する際に、傾斜板3A,3Bや不織布引き寄せ棒から厚さ規定板2A,2Bに入る折れ曲がり部分では、予め成形した複合体8Aの剛性により曲がりにくくなり、厚さ規定板2A,2B付近でそり返るので、装置内で形成される立体網状構造体7Aの厚さが不均一になることが想定される。このため、傾斜板3A,3Bや不織布引き寄せ棒に乗った予め成形した複合体8Aの上から、図10Bに示した形状の押さえ枠18Aを当て、予め成形した複合体8Aが傾斜板3A,3Bから厚さ規定板2A,2Bに入る際に、厚さ規定板2A,2Bに沿って下に進むようにする。この押さえ枠18Aは、多層複合体8G,8Hの製造だけでなく立体網状構造体7Aが1層の場合でも、強化網26Aや有孔板26Bが曲げ強度が強くなった場合に、厚さ規定板2A,2Bに沿わせるためにも使用できる。   When the multilayer composites 8G and 8H are formed, when the composite 8A formed in advance from the inclined plates 3A and 3B is inserted, the bent into the thickness defining plates 2A and 2B from the inclined plates 3A and 3B and the nonwoven fabric pulling rod In the portion, since it is difficult to bend due to the rigidity of the pre-molded composite body 8A and it is bent near the thickness defining plates 2A and 2B, the thickness of the three-dimensional network structure 7A formed in the apparatus may be uneven. is assumed. For this reason, the pressing frame 18A having the shape shown in FIG. 10B is applied to the inclined plate 3A, 3B or the non-woven fabric pulling rod on the pre-formed composite 8A, and the pre-formed composite 8A is inclined to the inclined plates 3A, 3B. When entering the thickness defining plates 2A and 2B from the bottom, the process proceeds downward along the thickness defining plates 2A and 2B. This presser frame 18A is not limited to the production of the multilayer composites 8G and 8H, but also when the reinforcing net 26A and the perforated plate 26B have an increased bending strength even when the three-dimensional network structure 7A is a single layer. It can also be used to follow the plates 2A and 2B.

押さえ枠18Aにおける、多孔金型24Aから押し出される溶融線条5Aが当たる部分は、細長い金属の棒などを、間隔をあけて多数並べた構造とする。これは、押さえ枠18A下の予め成形した複合体8Aなどの表層の不織布6A,6Bと溶融線条5Aの溶着面積を減らさないようにして、立体網状構造体7Aと不織布6A,6Bの溶着強度を高めるのに役立つ。   The portion of the presser frame 18A where the molten filament 5A extruded from the porous mold 24A hits has a structure in which a number of elongated metal bars and the like are arranged at intervals. This is because the welding strength of the three-dimensional network structure 7A and the nonwoven fabrics 6A and 6B is not reduced so as not to reduce the welding area of the surface layer nonwoven fabrics 6A and 6B such as the pre-formed composite 8A under the presser frame 18A. To help increase.

多孔金型24Aから降下した溶融線条5Aが押さえ枠18Aに付着すると、完成した複合体の網目に乱れが生じるので、溶融線条5Aが付着しないよう、押さえ枠18Aの上面はフッ素樹脂製とするか、内部を中空として表面から直径0.5mmから2mm程度の冷媒吹き出し孔18Bをあけ、内部から液体冷媒1を吹き出させる。又は押さえ枠18Aのそばに冷媒滴下管12Eを新たに配置する方法がある。   When the molten filament 5A descending from the porous mold 24A adheres to the holding frame 18A, the mesh of the completed composite is disturbed. Therefore, the upper surface of the holding frame 18A is made of a fluororesin so that the molten filament 5A does not adhere. Alternatively, the inside is hollow and a coolant blowing hole 18B having a diameter of about 0.5 mm to 2 mm is opened from the surface, and the liquid coolant 1 is blown out from the inside. Alternatively, there is a method in which the refrigerant dropping pipe 12E is newly arranged near the holding frame 18A.

(複合体の主な用途)
次いで、上記各実施形態に従って上記製造装置50で製造された複合体の主な用途について説明する。
(Main applications of composites)
Next, main applications of the composite manufactured by the manufacturing apparatus 50 according to the above embodiments will be described.

例えば、複合体を河川から水道水を取水する際に、逆浸透膜や限外濾過膜で濾過する前の段階で、水中の土粒子やプランクトンなどを濾過除去する予備フィルターとして用いる。不織布6A,6Bと立体網状構造体7Aが強固に溶着した複合体8Aなので、不織布6A,6Bの表層に集積した土粒子を除去するために、濾過下流側浄化された側から水圧をかけて表層に体積した土粒子を除去する際、不織布6A,6Bと溶融線条5が多数の接点で強固に溶着されており、不織布6A,6Bにかかる水圧を多くの接点で分担できるため、繰り返し水圧に対しても剥離が生じにくく、また不織布6A,6Bの単独箇所に集中荷重がかかることもないため、濾過材としての寿命も長くなる。   For example, when taking the composite water from a river, the composite is used as a preliminary filter for filtering and removing soil particles and plankton in water at a stage before filtration with a reverse osmosis membrane or an ultrafiltration membrane. Since the composite 8A is formed by firmly bonding the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A, in order to remove the soil particles accumulated on the surface layer of the nonwoven fabrics 6A and 6B, the surface layer is subjected to water pressure from the purified side downstream of the filtration. When removing the soil particles that are volumetric, the nonwoven fabrics 6A and 6B and the molten filaments 5 are firmly welded at a large number of contact points, and the water pressure applied to the nonwoven fabrics 6A and 6B can be shared by the many contact points. On the other hand, peeling hardly occurs and no concentrated load is applied to the single portions of the nonwoven fabrics 6A and 6B, so that the life as a filtering material is extended.

また、多数の溶着点で不織布6A,6Bと立体網状構造体7Aが溶着しているため、表面に付着した固形物を取り除くために内部から外部に向けて圧力をかけて逆洗する場合でも不織布6A,6Bは立体網状構造体7Aから離れないので、狭い空間に多数の複合体8Aを配置して水中の土砂を濾過除去する際にも、隣り合う複合体8Aの不織布6A,6B同士が癒着せず、複合体8A同士の間の通水空間も保持されるので、逆洗時に表面の付着物が確実に除去される。また、多数の濾過ユニットを濾過性能を低下させずに狭い空間に配置できる。   Further, since the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A are welded at a large number of welding points, the nonwoven fabric is used even when backwashing is performed by applying pressure from the inside to the outside in order to remove the solid matter attached to the surface. Since 6A and 6B are not separated from the three-dimensional network structure 7A, the non-woven fabrics 6A and 6B of the adjacent composite 8A are adhered to each other even when a large number of composites 8A are arranged in a narrow space and the soil in the water is removed by filtration. In addition, since the water passing space between the composites 8A is also maintained, the surface deposits are reliably removed during backwashing. In addition, a large number of filtration units can be arranged in a narrow space without degrading the filtration performance.

また例えば、建物の一部が土中となる建物や土に接する垂直壁面などの裏面の土中の地下水位を下げるために、埋め戻し前に予め壁面に貼り付け、周囲地盤土や裏込め土の中の水を立体網状構造体7Aの空間内に導いて敷地外に排水する排水材として複合体8Aを使用できる。この場合、複合体8Aの表面に接する土は不織布6A,6Bで保持し、立体網状構造体7A内部の通水空間へは水だけを導入し、複合体8Aの先に接続した水抜きパイプ等で敷地外に排水するか、壁面に予め設置した水抜きパイプで排出する。立体網状構造体7Aのみでは、周囲からの土粒子などが立体網状構造体7Aの通水空間に流入するため、濾過材や土中の平面排水材としては使用できない。立体網状構造体7Aをこれらの用途に使用するには不織布6A,6Bなどのフィルター材を周囲に装着する必要があるが、上記各実施形態の工法では、立体網状構造体7Aの形成と周囲の不織布6A,6Bなどを装着する工程とを一度の工程で行うことができる。   Also, for example, in order to lower the groundwater level in the soil on the back side of a building where a part of the building is in the soil or a vertical wall surface that touches the soil, it is affixed to the wall surface in advance before backfilling, and the surrounding ground soil or backfill soil The composite 8A can be used as a drainage material that guides the water in the interior to the space of the three-dimensional network structure 7A and drains it outside the site. In this case, the soil in contact with the surface of the composite 8A is held by the nonwoven fabrics 6A and 6B, only water is introduced into the water flow space inside the three-dimensional network structure 7A, and the drainage pipe connected to the tip of the composite 8A. Drain off the premises or drain with a drain pipe installed on the wall in advance. Only the three-dimensional network structure 7A cannot be used as a filtering material or a flat drainage material in the soil because soil particles from the surroundings flow into the water flow space of the three-dimensional network structure 7A. In order to use the three-dimensional network structure 7A for these applications, it is necessary to attach filter materials such as the nonwoven fabrics 6A and 6B to the periphery. However, in the construction methods of the above embodiments, the formation of the three-dimensional network structure 7A and the surroundings The process of attaching the nonwoven fabrics 6A, 6B and the like can be performed in a single process.

また片面のみに不織布6A,6Bを溶着した複合体8Aを再び製造ラインに投入し、この1次的な複合体8Aの不織布6A,6B上に立体網状構造体7Aを形成させ、不織布6A,6Bを挟む形式で不織布6A,6B両面に立体網状構造体7Aのみを形成させる場合、この2次的な多層複合体8Gの片側の立体網状構造体7A内に種子や肥料を混ぜた土を充填した後、建物屋上の防水床面に敷き詰めることで屋上緑化が可能である。不織布6A,6Bよりも下側の立体網状構造体7Aは、屋上床面に溜まった水を屋上外縁の排水口まで導く透水層となり、屋上床面を乾燥させることで床面表層の防水塗装の劣化防止に役立つ。不織布6A,6Bよりも上の植生土部分は、立体網状構造体7Aが土の移動や脱落を防ぐ効果をもたらす。不織布余長部分14Dは、端部ふち部分で盛土の土のこぼれ防止用に利用できる。   Further, the composite 8A in which the nonwoven fabrics 6A and 6B are welded only on one side is again put into the production line, and the three-dimensional network structure 7A is formed on the nonwoven fabrics 6A and 6B of the primary composite 8A, and the nonwoven fabrics 6A and 6B are formed. When only the three-dimensional network structure 7A is formed on both surfaces of the nonwoven fabrics 6A and 6B in such a manner as to sandwich the three-dimensional network structure 7A on one side of the secondary multilayer composite 8G, the soil mixed with seeds and fertilizer is filled. Later, rooftop greening is possible by spreading on the waterproof floor of the building roof. The three-dimensional network structure 7A below the non-woven fabrics 6A and 6B becomes a water permeable layer that guides water accumulated on the rooftop floor surface to the drainage port on the outer edge of the rooftop. Helps prevent deterioration. The vegetation soil portion above the nonwoven fabrics 6A and 6B has an effect that the three-dimensional network structure 7A prevents the movement and dropping of the soil. The extra length portion 14D of the nonwoven fabric can be used for preventing spillage of the embankment at the edge of the end portion.

両面に不織布6A,6Bを有し、内部に強化網26Aや有孔板26Bを有する多層複合体8Gで、2次工程や3次工程で複合体両面の不織布6A,6Bの上に溶融樹脂で立体網状構造体7Aを形成した多層複合体8Gを盛土内に設置し、盛土土内の水を排除する用途に用いることができる。立体網状構造体7Aの密度を高くすれば圧縮荷重下でも変形しにくく、内部の通水空間を保持できる。またこの多層複合体8Gは、表と裏の両側の不織布6A,6Bの表面に立体網状の繊維のループが溶着して立っており、この立体網状構造体7A内に土が充填され固定され、多層複合体8Gと周囲土の摩擦抵抗の向上に寄与する。内部の強化網26Aは多層複合体8Gの引っ張り強度を高める。   A multilayer composite 8G having non-woven fabrics 6A and 6B on both sides and a reinforced net 26A and a perforated plate 26B inside, and a molten resin on the non-woven fabrics 6A and 6B on both sides of the composite in the secondary and tertiary steps. The multilayer composite 8G in which the three-dimensional network structure 7A is formed can be installed in the embankment and used for the purpose of removing water in the embankment. If the density of the three-dimensional network structure 7A is increased, it is difficult to be deformed even under a compressive load, and the internal water passage space can be maintained. In addition, this multilayer composite 8G has three-dimensional network-like fiber loops welded to the surfaces of the nonwoven fabrics 6A and 6B on both sides of the front and back, and this three-dimensional network-like structure 7A is filled with soil and fixed. It contributes to the improvement of the frictional resistance between the multilayer composite 8G and the surrounding soil. The internal reinforcing net 26A increases the tensile strength of the multilayer composite 8G.

多層複合体8G内部の強化網26Aや有孔板26Bの孔に鉄やステンレス、コンクリートの柱を通し、柱の下端を土中の安定な岩盤や地盤に固定すれば、多層複合体8Gの横すべりを防止できる。このような多層複合体8Gに孔をあける部分では、表層の不織布6A,6Bで柱と内部の立体網状構造体7Aの開口部を被覆し、内部の立体網状構造体7Aへの土砂侵入を防ぐのに使用できるように、必要に応じ遮蔽板12A,12Bを使用し、不織布6A,6Bを立体網状構造体7Aから分離しておく。   If a pillar of iron, stainless steel or concrete is passed through the holes of the reinforcing net 26A or the perforated plate 26B inside the multilayer composite 8G and the lower end of the pillar is fixed to a stable rock or ground in the soil, the lateral slip of the multilayer composite 8G Can be prevented. In such a portion where a hole is formed in the multilayer composite 8G, the non-woven fabric 6A, 6B on the surface layer covers the pillar and the opening of the internal three-dimensional network structure 7A to prevent intrusion of earth and sand into the internal three-dimensional network structure 7A. The non-woven fabrics 6A and 6B are separated from the three-dimensional network structure 7A by using shielding plates 12A and 12B as necessary.

片面のみに不織布6A,6Bを溶着した複合体の立体網状構造体7A内に、植物の種子や肥料を含む土を充填し、植物を生育させて手軽なプランターとしての利用が可能である。溶融線条5Aの材質を柔軟性にすぐれた熱可塑性樹脂の、ポリエチレン、ポリエステル、エチレンプロピレンゴム、熱可塑性エラストマーなどとして、土を充填する立体網状構造体7Aが手の力で自由に曲げられれば、屈曲面や円柱の側面に合わせて屈曲でき、固定する場合も、不織布余長部分14Dを固定金具で挟んだり、不織布6A,6B面に接着剤を塗布することで固定できる。立体網状構造体7Aが不織布6A,6Bに溶着しており、土を充填しても、土の重みがかかっても立体網状構造体7Aが破損しにくい。不織布6A,6B上に強化網26A、有孔板26Bなどを付けて立体網状構造体7Aを形成した多層複合体8Gであれば、強化網26Aや有孔板26Bに固定ネジ等を通す孔などをあけておけば壁面などの固定に便利となる。   The composite three-dimensional network structure 7A in which the nonwoven fabrics 6A and 6B are welded only on one side is filled with soil containing plant seeds and fertilizer, and the plant can be grown and used as an easy planter. If the material of the molten filament 5A is made of a thermoplastic resin excellent in flexibility, such as polyethylene, polyester, ethylene propylene rubber, thermoplastic elastomer, etc., the three-dimensional network structure 7A filled with soil can be bent freely by hand force. In addition, it can be bent in accordance with the bent surface or the side surface of the cylinder, and when it is fixed, it can be fixed by sandwiching the extra length 14D of the nonwoven fabric with a fixing bracket or applying an adhesive to the surfaces of the nonwoven fabric 6A, 6B. The three-dimensional network structure 7A is welded to the non-woven fabrics 6A and 6B, and the three-dimensional network structure 7A is not easily damaged even if it is filled with soil or the weight of the soil is applied. In the case of the multilayer composite 8G in which the three-dimensional network structure 7A is formed by attaching the reinforcing net 26A, the perforated plate 26B, etc. on the non-woven fabrics 6A, 6B, holes for passing fixing screws or the like through the reinforcing net 26A or the perforated plate 26B, etc. If you leave it open, it will be convenient for fixing walls.

EVAやポリエチレン、ポリオレフィンエラストマー、エチレンプロピレンゴムなどの柔軟樹脂で立体網状構造体7Aを構成する場合、立体網状構造体7A部分の樹脂の片面や内部に不織布6A,6Bが溶着していれば、破断や引き延ばしに強く、かつ不織布6A,6Bで柔軟性は変わらず、タオルに柔軟な立体網状構造体7Aが付いたようなものになる。この場合、洗濯を繰り返しても立体網状構造体7A部分が損傷しにくいので、マットレス、クッション、枕の他、エプロン、作業着、足ふきマットの下敷きなど、人体や動物周囲のものに使用できる。   When the three-dimensional network structure 7A is composed of a flexible resin such as EVA, polyethylene, polyolefin elastomer, ethylene propylene rubber, etc., if the nonwoven fabrics 6A and 6B are welded to one side or the inside of the resin of the three-dimensional network structure 7A, the breakage occurs. It is strong against stretching, and the non-woven fabrics 6A and 6B do not change the flexibility, so that the towel is provided with a flexible three-dimensional network structure 7A. In this case, the three-dimensional network structure 7A portion is not easily damaged even after repeated washing, so that it can be used for mattresses, cushions, pillows, aprons, work clothes, underlaying mats for the human body and animals.

(その他の実施形態)
本発明は、上記実施形態について、以下のような構成としてもよい。
(Other embodiments)
The present invention may be configured as follows with respect to the above embodiment.

すなわち、不織布6A,6Bと立体網状構造体7Aとの間の溶着を降下させる傾斜板3A,3B全体を水面下に沈めることにより、空気中での溶融線条との接触を防ぎ、不織布6A,6Bと立体網状構造体7Aとが溶着しない領域を形成してもよい。   That is, the entire inclined plates 3A and 3B for lowering the welding between the nonwoven fabrics 6A and 6B and the three-dimensional network structure 7A are submerged under the surface of the water, thereby preventing contact with the molten filaments in the air. A region where 6B and the three-dimensional network structure 7A are not welded may be formed.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or a use.

1 液体冷媒
1a 冷媒液面
2A,2B 厚さ規定板
2C,2D 幅規定板
3A,3B 傾斜板(ガイド部)
3C,3D 鉛直平板
4 液体貯留槽
5A 溶融線条
6A,6B 不織布
6D 不織布ロール
6E 不織布供給ローラ
7A 立体網状構造体
7C,7D 幅広面
8A,8B,8C,8D,8E 複合体
8G 多層複合体
8H 多層複合体
8I 同時形成多層複合体
10A,10B スリット
12A,12B 遮蔽板
12E 冷媒滴下管
12F,12G 遮蔽板
12H 冷媒流出孔
13A 溶着部分
14A 溶着中止部分
14B 網状構造体独立部
14C 不織布独立分
14D 不織布余長部分
14E 間延び部分
15A〜15D ローラ
16A ドラム
18A 押さえ枠
18B 冷媒吹き出し孔
20 押出機
22B 溶融樹脂
23A 金型台
23B 溶融樹脂通過領域
23C 外気貫通空洞部
24A 多孔金型
24B 溶融樹脂押出孔
24C 吹き出し面
26A 強化網
26B 有孔板
28A,28B ガイド板
31 出口補助ドラム
50 製造装置
1 Liquid refrigerant
1a Refrigerant liquid level
2A, 2B thickness regulation plate
2C, 2D width regulation plate
3A, 3B inclined plate (guide part)
3C, 3D vertical flat plate
4 Liquid storage tank
5A fused filament
6A, 6B non-woven fabric
6D non-woven roll
6E Nonwoven fabric supply roller
7A Three-dimensional network structure
7C, 7D Wide surface
8A, 8B, 8C, 8D, 8E complex
8G multilayer composite
8H multilayer composite
8I Co-formed multilayer composite
10A, 10B slit
12A, 12B Shield plate
12E Refrigerant dripping pipe
12F, 12G Shield plate
12H Refrigerant outflow hole
13A welded part
14A Welding cancellation part
14B Independent part of network structure
14C Non-woven fabric independent part
14D Non-woven fabric extra length
14E Extended part
15A ~ 15D Roller
16A drum
18A Presser frame
18B Refrigerant outlet
20 Extruder
22B Molten resin
23A Mold stand
23B Molten resin passage area
23C Open air through cavity
24A perforated mold
24B Molten resin extrusion hole
24C blowing face
26A Reinforcement network
26B Perforated plate
28A, 28B Guide plate
31 Exit auxiliary drum
50 Production equipment

Claims (18)

液体貯留槽(4)に満たした液体冷媒(1)内に一対の厚さ規定板(2A,2B)を設置し、
上記一対の厚さ規定板(2A,2B)上の冷媒液面(1a)よりも上方に、一対のガイド部(3A,3B)を設置し、
上記一対のガイド部(3A,3B)の下端の内幅が、上記一対の厚さ規定板(2A,2B)の内幅とほぼ等しくなるように調整し、
上記一対のガイド部(3A,3B)の上に不織布(6A,6B)をそれぞれ乗せて上記液体冷媒(1)の冷媒液面(1a)に向かって進行させている過程で、
加熱溶融した溶融樹脂(22B)を、溶融樹脂押出孔(24B)をあけた複数の多孔金型(24A)から押し出して複数の溶融線条(5A)とし、
上記複数の溶融線条(5A)が溶融している状態で上記液体冷媒(1)の冷媒液面(1a)上に螺旋状に落下させ、互いの溶融線条(5A)を相互に熱溶着させながら立体網状に積み重ねて立体網状構造体(7A)を形成しながら、上記不織布(6A,6B)と同じ速度で液体冷媒(1)の中に降下させ、
上記溶融線条(5A)と上記不織布(6A,6B)とが接触し溶着しながら上記厚さ規定板(2A,2B)に挟まれた状態で上記液体冷媒(1)で冷却させることにより、固化した立体網状構造体(7A)を形成し、
上記立体網状構造体(7A)の幅広面(7C,7D)に不織布(6A,6B)を溶着させて複合体(8A)を製造する
ことを特徴とする立体網状構造体の製造方法。
A pair of thickness regulating plates (2A, 2B) are installed in the liquid refrigerant (1) filled in the liquid storage tank (4),
A pair of guide portions (3A, 3B) is installed above the coolant level (1a) on the pair of thickness regulating plates (2A, 2B),
Adjusting the inner width of the lower ends of the pair of guide portions (3A, 3B) to be substantially equal to the inner width of the pair of thickness defining plates (2A, 2B);
In the process in which the nonwoven fabric (6A, 6B) is placed on the pair of guide portions (3A, 3B) and is advanced toward the coolant level (1a) of the liquid coolant (1),
The molten resin (22B) heated and melted is extruded from a plurality of porous molds (24A) having a molten resin extrusion hole (24B) to form a plurality of molten filaments (5A),
In a state where the plurality of molten filaments (5A) are melted, they are spirally dropped onto the refrigerant liquid surface (1a) of the liquid refrigerant (1), and the molten filaments (5A) are thermally welded to each other. The three-dimensional network structure (7A) is formed by stacking in a three-dimensional network while lowering into the liquid refrigerant (1) at the same speed as the nonwoven fabric (6A, 6B).
By cooling with the liquid refrigerant (1) in a state sandwiched between the thickness regulating plates (2A, 2B) while the molten filament (5A) and the nonwoven fabric (6A, 6B) are in contact and welded, Forming a solid three-dimensional network (7A);
A method for producing a three-dimensional network structure, wherein a non-woven fabric (6A, 6B) is welded to the wide surfaces (7C, 7D) of the three-dimensional network structure (7A) to produce a composite (8A).
請求項1に記載の立体網状構造体の製造方法において、
上記一対のガイド部は、一対の板状の傾斜板(3A,3B)又は一対の棒状の不織布引き寄せ棒であり、
上記一対のガイド部の下端の高さは、上記冷媒液面(1a)から0.5mm以上200mm以下である
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure of Claim 1,
The pair of guide portions are a pair of plate-like inclined plates (3A, 3B) or a pair of rod-shaped nonwoven fabric pulling bars,
The height of the lower end of said pair of guide part is 0.5 mm or more and 200 mm or less from the said refrigerant | coolant liquid level (1a), The manufacturing method of the solid network structure characterized by the above-mentioned.
請求項1又は2に記載の立体網状構造体の製造方法において、
上記不織布(6A,6B)は、構成繊維の外径が10μm以上200μm以下で、厚さが1mm以上20mm以下の合成樹脂製である
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure of Claim 1 or 2,
The nonwoven fabric (6A, 6B) is made of a synthetic resin having an outer diameter of constituent fibers of 10 µm to 200 µm and a thickness of 1 mm to 20 mm.
請求項1から3のいずれか1つに記載の立体網状構造体の製造方法において、
上記加熱溶融した溶融樹脂(22B)を、太さ0.1mm以上20mm以下の溶融樹脂押出孔(24B)をあけた多孔金型(24A)から、秒速10mm以上500mm以下の速度で押し出して太さ0.1mm以上20mm以下の溶融線条(5A)とする
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure as described in any one of Claim 1 to 3,
The heat-melted molten resin (22B) is extruded from a porous mold (24A) having a molten resin extrusion hole (24B) having a thickness of 0.1 mm to 20 mm at a speed of 10 mm to 500 mm per second. A method for producing a three-dimensional network structure, characterized in that the molten filaments (5A) have a size of 0.1 mm to 20 mm.
請求項1から4のいずれか1つに記載の立体網状構造体の製造方法において、
溶融線条(5A)と接するよりも前に、上記不織布(6A,6B)の上面に、上記溶融線条(5A)と上記不織布(6A,6B)とを仕切る遮蔽板(12A,12B)を間欠的に出し入れし、
上記不織布(6A,6B)と、幅広面外縁の上記溶融線条(5A)との溶着を間欠的に阻止しながら、不織布(6A,6B)間に積み重なった溶融線条(5A)の立体網状構造体(7A)を連続形成させることにより、
任意の箇所で部分的に不織布(6A,6B)と立体網状構造体(7A)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure as described in any one of Claim 1 to 4,
Prior to contact with the molten filament (5A), a shielding plate (12A, 12B) for partitioning the molten filament (5A) and the nonwoven fabric (6A, 6B) on the upper surface of the nonwoven fabric (6A, 6B). Intermittently put in and out
Three-dimensional network of melted filaments (5A) stacked between the nonwoven fabrics (6A, 6B) while intermittently preventing welding of the nonwoven fabrics (6A, 6B) and the melted filaments (5A) at the outer edge of the wide surface. By continuously forming the structure (7A),
A three-dimensional structure characterized by producing a composite (8B) having a welding stop part (14A) in which a nonwoven fabric (6A, 6B) and a three-dimensional network structure (7A) are not partially welded at an arbitrary position. A method for producing a network structure.
請求項5に記載の立体網状構造体の製造方法において、
上記遮蔽板(12A,12B)を使用して、上記不織布(6A,6B)と上記溶融線条(5A)の溶着を阻止している間に、厚さ規定板(2A,2B)とガイド部(3A,3B)と遮蔽板(12A,12B)を同時に下方に下げ、
上記遮蔽板(12A,12B)の下端が上記液体冷媒(1)の液面下の状態として、不織布(6A,6B)と溶融線条(5A)の溶着を阻止し、部分的に不織布(6A,6B)と立体網状構造体(7)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the solid network structure according to claim 5,
While the welding of the nonwoven fabric (6A, 6B) and the molten filament (5A) is prevented using the shielding plate (12A, 12B), the thickness defining plate (2A, 2B) and the guide portion (3A, 3B) and the shielding plate (12A, 12B) are simultaneously lowered downward,
The lower end of the shielding plate (12A, 12B) is in a state below the liquid level of the liquid refrigerant (1) to prevent the welding of the nonwoven fabric (6A, 6B) and the molten filament (5A), and partially the nonwoven fabric (6A , 6B) and a composite network (8B) having a welding stop portion (14A) in which the solid network structure (7) is not welded is manufactured.
請求項1から4のいずれか1つに記載の立体網状構造体の製造方法において、
上記不織布(6A,6B)が上記溶融線条(5A)に接する前に、不織布(6A,6B)に液体冷媒(1)を投下し、不織布(6A,6B)が液体冷媒(1)を含んだ状態で溶融線条(5A)と接し、溶融線条(5A)の表面が冷却されて該不織布(6A,6B)と熱溶着しないまま、他の溶融線条(5A)と熱溶着させながら、立体網状に積み重ねることにより、
上記不織布(6A,6B)に挟まれた立体網状構造体(7A)を連続形成し、部分的に上記不織布(6A,6B)と固化した立体網状構造体(7A)との溶着がされていない溶着中止部分(14A)を有する複合体(8B)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure as described in any one of Claim 1 to 4,
Before the nonwoven fabric (6A, 6B) contacts the melted filament (5A), the liquid refrigerant (1) is dropped onto the nonwoven fabric (6A, 6B), and the nonwoven fabric (6A, 6B) contains the liquid refrigerant (1). While in contact with the molten filament (5A), the surface of the molten filament (5A) is cooled and is not thermally welded to the non-woven fabric (6A, 6B), while being thermally welded to the other molten filament (5A). By stacking in a three-dimensional network,
The solid network structure (7A) sandwiched between the nonwoven fabrics (6A, 6B) is continuously formed, and the nonwoven fabric (6A, 6B) and the solid network structure (7A) partially solidified are not welded. A method for producing a three-dimensional network structure, comprising producing a composite (8B) having a welding stop portion (14A).
請求項7に記載の立体網状構造体の製造方法において、
上記溶着中止部分(14A)の形成時に、液体冷媒(1)中での立体網状構造体(7)と不織布(6A,6B)を降下させる送りローラ(15A〜15D)及び送りドラム(16A)の進行速度を通常時よりも速い速度で回転させることにより、
上記立体網状構造体(7A)と上記不織布(6A,6B)が分離し、かつ隣り合う溶融線条(5A)が相互溶着せずに独立し、切り取り除去が容易な網目密度の低い間延び部分(14E)を有する複合体(8C)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure according to claim 7,
Of the feed rollers (15A to 15D) and the feed drum (16A) for lowering the three-dimensional network structure (7) and the nonwoven fabric (6A, 6B) in the liquid refrigerant (1) at the time of forming the welding stop portion (14A). By rotating the progress speed faster than normal,
The three-dimensional network structure (7A) and the non-woven fabric (6A, 6B) are separated, and the adjacent molten filaments (5A) are independent without mutual welding, and are extended portions with a low network density that are easy to cut and remove ( 14E) is manufactured, The manufacturing method of the solid network structure characterized by manufacturing the composite (8C).
請求項8に記載の立体網状構造体の製造方法において、
上記溶着中止部分(14A)の形成時に、上記送りローラ(15A〜15D)及び送りドラム(16A)の進行速度を通常時の5倍以上50倍以下の範囲で増加させる
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the solid network structure according to claim 8,
A three-dimensional net-like structure characterized in that when the welding stop portion (14A) is formed, the traveling speed of the feed rollers (15A to 15D) and the feed drum (16A) is increased in the range of 5 times to 50 times the normal speed. Manufacturing method of structure.
請求項1から9のいずれか1つに記載の立体網状構造体の製造方法において、
不織布の代わりに、合成樹脂、金属又は炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)を溶融線条(5A)と溶着させて強化網(26A)又は有孔板(26B)と合成樹脂の立体網状構造体(7A)との複合体(8D)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure as described in any one of Claim 1 to 9,
Instead of non-woven fabric, a reinforcing net (26A) made of synthetic resin, metal or carbon fiber or a perforated plate (26B) made of fiber reinforced resin or metal is welded to the molten filament (5A) to strengthen the reinforcing net ( 26A) or a perforated plate (26B) and a synthetic resin three-dimensional network structure (7A) (8D).
請求項1から10のいずれか1つに記載の立体網状構造体の製造方法において、
上記不織布(6A,6B)の上記溶融線条(5A)が接触する上面に、合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)を重ねながら、上記不織布(6A,6B)と強化網(26A)又は有孔板(26B)とを同じ速度で進行させながら、上記立体網状構造体(7A)を構成する溶融線条(5A)を降下させ、
上記不織布(6A,6B)と固化した立体網状構造体(7A)の間に上記強化網(26A)又は有孔板(26B)を有する複合体(8E)を製造する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the solid network structure according to any one of claims 1 to 10,
Reinforced net (26A) made of synthetic resin, synthetic fiber, metal fiber or carbon fiber or made of fiber reinforced resin or metal on the upper surface of the nonwoven fabric (6A, 6B) to which the molten filament (5A) contacts. The three-dimensional network structure (7A) is constructed while the non-woven fabric (6A, 6B) and the reinforcing net (26A) or the perforated plate (26B) are advanced at the same speed while overlapping the perforated plates (26B). Lowering the molten filament (5A),
A three-dimensional network having the reinforcing network (26A) or the perforated plate (26B) between the nonwoven fabric (6A, 6B) and the solid three-dimensional network (7A). Manufacturing method of structure.
請求項1から11のいずれか1つに記載の立体網状構造体の製造方法において、
上記複合体(8A,8B,8C,8D,8E)のうちの少なくとも1枚を再び、上記ガイド部(3A,3B)の上から挿入し、
上記多孔金型(24A)から降下させた溶融線条(5A)とともに進行させることにより多層の複合体(8G)を形成する多層複合体形成工程を含む
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the solid network structure according to any one of claims 1 to 11,
At least one of the composites (8A, 8B, 8C, 8D, 8E) is again inserted from above the guide part (3A, 3B),
Production of a three-dimensional network structure comprising a multilayer composite forming step of forming a multilayer composite (8G) by proceeding with the molten filament (5A) lowered from the porous mold (24A) Method.
請求項12の立体網状構造体の製造方法において、
上記多層複合体形成工程を繰り返し、
上記不織布(6A,6B)、強化網(26A)及び有孔板(26B)の少なくとも1つと立体網状構造体(7A)との多層複合体(8G)を形成する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure of Claim 12,
Repeat the multilayer composite formation step,
A three-dimensional network structure characterized by forming a multilayer composite (8G) of the three-dimensional network structure (7A) and at least one of the nonwoven fabric (6A, 6B), the reinforcing network (26A) and the perforated plate (26B). Body manufacturing method.
請求項1から12のいずれか1つに記載の立体網状構造体の製造方法において、
上記多孔金型(24A)から溶融線条(5A)を降下させ立体網状構造体(7A)の複合体を形成する際に、他の側面に比べて面積の広い一対の幅広面の一方には、不織布(6A,6B)、強化網(26A)又は有孔板(26B)を挿入せず、冷媒液面(1a)から上にはガイド部(3A,3B)を設置せず、外面が不織布(6A,6B)で覆われていない立体網状構造体(7A)となっている多層複合体(8H)を形成する
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the solid network structure according to any one of claims 1 to 12,
When forming the composite of the three-dimensional network structure (7A) by lowering the molten filament (5A) from the porous mold (24A), one of the pair of wide surfaces having a larger area than the other side surfaces is provided. The nonwoven fabric (6A, 6B), the reinforcing net (26A) or the perforated plate (26B) is not inserted, the guide portion (3A, 3B) is not installed above the coolant level (1a), and the outer surface is nonwoven fabric. A method for producing a three-dimensional network structure, comprising forming a multilayer composite (8H) that is a three-dimensional network structure (7A) that is not covered with (6A, 6B).
多孔金型(24A)を装着している金型台(23A)に鉛直方向に連続し外気の流通する外気貫通空洞部(23C)を設け、
上記外気貫通空洞部(23C)から不織布(6A,6B)、強化網(26A)、有孔板(26B)及び複合体(8A)の少なくとも1つを降下させ、
上記外気貫通空洞部(23C)を挟んで両側に配置した多孔金型(24A)から液体冷媒(1)に螺旋を描きながら降下する溶融線条(5A)と接触させながら進行させることにより、不織布(6A)、強化網(26A)及び有孔板(26B)の少なくとも1つと立体網状構造体(7A)の同時形成多層複合体(8I)を形成する
ことを特徴とする立体網状構造体の製造方法。
The mold base (23A) on which the porous mold (24A) is mounted is provided with an outside air penetration cavity (23C) that is continuous in the vertical direction and through which the outside air flows.
Lowering at least one of the nonwoven fabric (6A, 6B), the reinforcing net (26A), the perforated plate (26B) and the composite (8A) from the outside air penetration cavity (23C),
The nonwoven fabric is made to advance by bringing it into contact with the molten filament (5A) that descends while drawing a spiral from the porous mold (24A) disposed on both sides of the outside air penetration cavity (23C), while drawing a spiral. (6A), production of a three-dimensional network structure characterized by forming a multi-layer composite (8I) of a three-dimensional network structure (7A) and at least one of a reinforcing network (26A) and a perforated plate (26B) Method.
請求項1から15のいずれか1つに記載の立体網状構造体の製造方法において、
上記不織布(6A,6B)は、構成繊維同士での融着をしないスパンボンド不織布である
ことを特徴とする立体網状構造体の製造方法。
In the manufacturing method of the three-dimensional network structure as described in any one of Claim 1 to 15,
The said nonwoven fabric (6A, 6B) is the spun bond nonwoven fabric which does not melt | fuse between constituent fibers, The manufacturing method of the three-dimensional network structure characterized by the above-mentioned.
ポリプロピレン、ポリエチレン、エチレンプロピレンゴム、ポリオレフィンエラストマー、エチレン酢酸ビニル共重合体のいずれかを含む熱可塑性樹脂が螺旋状の溶融線条が相互に熱溶着されて立体網状に積み重ねられた立体網状構造体(7A)の少なくとも一方の面に合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)、繊維強化樹脂製若しくは金属製の有孔板(26B)又は不織布(6A,6B)が溶着された複合体(8D)である
ことを特徴とする立体網状構造体。
A three-dimensional network structure in which a thermoplastic resin containing any one of polypropylene, polyethylene, ethylene propylene rubber, polyolefin elastomer, and ethylene-vinyl acetate copolymer is stacked in a three-dimensional network form by heat-sealing spiral fused filaments. 7A) on at least one surface of a reinforcing resin (26A) made of synthetic resin, synthetic fiber, metal fiber or carbon fiber, perforated plate (26B) or non-woven fabric (6A, 6B) made of fiber reinforced resin or metal A three-dimensional network structure characterized in that it is a composite (8D) in which is welded.
ポリプロピレン、ポリエチレン、エチレンプロピレンゴム、ポリオレフィンエラストマー、エチレン酢酸ビニル共重合体のいずれかを含む熱可塑性樹脂が螺旋状の溶融線条が相互に熱溶着されて立体網状に積み重ねられた立体網状に積み重ねられた立体網状構造体(7A)の少なくとも一方の面に合成樹脂、合成繊維、金属繊維若しくは炭素繊維で作られた強化網(26A)又は繊維強化樹脂製若しくは金属製の有孔板(26B)と不織布(6A,6B)とが積層された多層複合体(8G)である
ことを特徴とする立体網状構造体。
A thermoplastic resin containing any of polypropylene, polyethylene, ethylene propylene rubber, polyolefin elastomer, and ethylene vinyl acetate copolymer is stacked in a three-dimensional network, in which spiral fused filaments are heat-bonded to each other and stacked in a three-dimensional network. A reinforcing net (26A) made of synthetic resin, synthetic fiber, metal fiber or carbon fiber or a perforated plate made of fiber reinforced resin or metal (26B) on at least one surface of the three-dimensional network structure (7A) A three-dimensional network structure comprising a multilayer composite (8G) in which nonwoven fabrics (6A, 6B) are laminated.
JP2018106771A 2018-06-04 2018-06-04 Manufacturing method of three-dimensional network structure Active JP7101973B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018106771A JP7101973B2 (en) 2018-06-04 2018-06-04 Manufacturing method of three-dimensional network structure
JP2022013927A JP2022048266A (en) 2018-06-04 2022-02-01 Method for manufacturing three-dimensional network structure and three-dimensional network structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106771A JP7101973B2 (en) 2018-06-04 2018-06-04 Manufacturing method of three-dimensional network structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022013927A Division JP2022048266A (en) 2018-06-04 2022-02-01 Method for manufacturing three-dimensional network structure and three-dimensional network structure

Publications (2)

Publication Number Publication Date
JP2019210565A true JP2019210565A (en) 2019-12-12
JP7101973B2 JP7101973B2 (en) 2022-07-19

Family

ID=68844621

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018106771A Active JP7101973B2 (en) 2018-06-04 2018-06-04 Manufacturing method of three-dimensional network structure
JP2022013927A Pending JP2022048266A (en) 2018-06-04 2022-02-01 Method for manufacturing three-dimensional network structure and three-dimensional network structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022013927A Pending JP2022048266A (en) 2018-06-04 2022-02-01 Method for manufacturing three-dimensional network structure and three-dimensional network structure

Country Status (1)

Country Link
JP (2) JP7101973B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230191680A1 (en) * 2021-12-20 2023-06-22 Lear Corporation System and method of making a mesh cushion
WO2023122018A3 (en) * 2021-12-20 2023-08-17 Lear Corporation System and method of making a mesh cushion
US11807143B2 (en) 2021-12-02 2023-11-07 Lear Corporation Vehicle seating system and method for producing same
WO2024006286A1 (en) * 2022-06-28 2024-01-04 Lear Corporation Method for producing a vehicle interior component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517527A (en) * 1978-07-26 1980-02-07 Mitsui Petrochemical Ind Preparation of laminating material
JPH11241263A (en) * 1998-02-25 1999-09-07 Maeda Kousen Kk Production of three-dimensional netty composite
JPH11350326A (en) * 1998-06-02 1999-12-21 Toa Boshoku Kk Three-dimensional net-like fiber aggregate and its continuous production and device therefor
JP2001055719A (en) * 1999-08-13 2001-02-27 Maeda Kosen Kk Three-dimensional net structure sheet, and wave absorbing block and breakwater using the sheet
JP2003200128A (en) * 2001-12-28 2003-07-15 Mitsuboshi Belting Ltd Method for bonding seepage control sheet and seepage control structure
JP2011152779A (en) * 2010-01-26 2011-08-11 Morimura Kosan Kk Composite and manufacturing method thereof
JP2017150100A (en) * 2016-02-23 2017-08-31 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050501A (en) * 2009-10-02 2012-05-18 엑손모빌 케미칼 패턴츠 인코포레이티드 Multi-layered meltblown composite and methods for making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517527A (en) * 1978-07-26 1980-02-07 Mitsui Petrochemical Ind Preparation of laminating material
JPH11241263A (en) * 1998-02-25 1999-09-07 Maeda Kousen Kk Production of three-dimensional netty composite
JPH11350326A (en) * 1998-06-02 1999-12-21 Toa Boshoku Kk Three-dimensional net-like fiber aggregate and its continuous production and device therefor
JP2001055719A (en) * 1999-08-13 2001-02-27 Maeda Kosen Kk Three-dimensional net structure sheet, and wave absorbing block and breakwater using the sheet
JP2003200128A (en) * 2001-12-28 2003-07-15 Mitsuboshi Belting Ltd Method for bonding seepage control sheet and seepage control structure
JP2011152779A (en) * 2010-01-26 2011-08-11 Morimura Kosan Kk Composite and manufacturing method thereof
JP2017150100A (en) * 2016-02-23 2017-08-31 株式会社エアウィーヴマニュファクチャリング Apparatus for manufacturing filament three-dimensional conjugate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807143B2 (en) 2021-12-02 2023-11-07 Lear Corporation Vehicle seating system and method for producing same
US20230191680A1 (en) * 2021-12-20 2023-06-22 Lear Corporation System and method of making a mesh cushion
WO2023122018A3 (en) * 2021-12-20 2023-08-17 Lear Corporation System and method of making a mesh cushion
WO2024006286A1 (en) * 2022-06-28 2024-01-04 Lear Corporation Method for producing a vehicle interior component

Also Published As

Publication number Publication date
JP2022048266A (en) 2022-03-25
JP7101973B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
JP7101973B2 (en) Manufacturing method of three-dimensional network structure
EP2376693B1 (en) Patterned spunbond fibrous webs and methods of making and using the same
CN103189560B (en) Laying device and laying method
PL198293B1 (en) Method for making a composite extruded profile formed with thermoplastic organic material reinforced with reinforcing fibres
US4411722A (en) Method for producing a non-woven fabric of cross-laminated warp and weft webs of elongated stocks
US7468113B2 (en) Method for producing non-woven fabric
KR20010014620A (en) Large surface area geogrids with a high tensile strength, a method and apparatus for producing them, and their use as drain and reinforcement grids and as fences
JPH01207463A (en) Mat consisting of filament loop aggregate and production thereof
KR100935817B1 (en) Apparatus for manufacturing drain board
KR101259738B1 (en) Artificial turf enhancing durability and polyploidy
US9752312B2 (en) Fabricating a quilted drainage unit using a flat bed
JPS623263B2 (en)
CZ2010373A3 (en) Method of increasing strength and abrasion resistance of nanofiber layer, composite comprising nanofiber layer and nanofiber layer per se
US9365993B1 (en) Drainage unit having a quilt exterior
CN102490363A (en) Production method and equipment of drip irrigation pipe/belt with water permeable side seam interlayers
KR102458765B1 (en) Method for manufacturing granular confinement honeycomb reinforcement
US6883213B2 (en) Apparatus for producing non-woven fabric
EP1106739A2 (en) Combined soil reinforcement and drainage grid
EP0724674A1 (en) High shear strength clay liner, method and apparatus for its production
KR101912147B1 (en) Asphalt reinforcement and method for manufacturing the same
KR101977180B1 (en) Recycling method for recycling of artificial grass mats in manufacturing process
CN102490359B (en) Production method and equipment of drip irrigation pipe/belt with water permeable side seams
US8147166B2 (en) Drainage element with laminated membrane material
KR20230173760A (en) Manufacturing apparatus for prefabricated vertical drain having tension controller for core member
JP3307832B2 (en) Mud removal mat with water removal and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220629

R150 Certificate of patent or registration of utility model

Ref document number: 7101973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150