JP2019209359A - Manufacturing method of welded structure and welded structure - Google Patents

Manufacturing method of welded structure and welded structure Download PDF

Info

Publication number
JP2019209359A
JP2019209359A JP2018107905A JP2018107905A JP2019209359A JP 2019209359 A JP2019209359 A JP 2019209359A JP 2018107905 A JP2018107905 A JP 2018107905A JP 2018107905 A JP2018107905 A JP 2018107905A JP 2019209359 A JP2019209359 A JP 2019209359A
Authority
JP
Japan
Prior art keywords
base material
welded structure
modeling
cutting
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018107905A
Other languages
Japanese (ja)
Other versions
JP7010767B2 (en
Inventor
山田 岳史
Takeshi Yamada
岳史 山田
伸志 佐藤
Shinji Sato
伸志 佐藤
雄幹 山崎
Omiki Yamazaki
雄幹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018107905A priority Critical patent/JP7010767B2/en
Publication of JP2019209359A publication Critical patent/JP2019209359A/en
Application granted granted Critical
Publication of JP7010767B2 publication Critical patent/JP7010767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a manufacturing method of a welded structure and the welded structure capable of manufacturing the welded structure having improved fatigue strength of a forming part which is formed on base metal according to lamination forming.SOLUTION: A manufacturing method of a welded structure of manufacturing the welded structure W which forms a forming part 53 on the surface 55 of base metal 51 includes a lamination process of forming a laminate part 57 which becomes the forming part 53 by laminating weld beads 61 provided by melting and solidifying filler material M onto the surface 55 of the base metal 51 in layers and a cutting process of cutting the laminate part 57 to work the laminate part into the forming part 53. Therein, in the lamination process, when forming the weld beads 61 of at least the undermost layer, on the outer side of a joint area of the base metal 51 to which the forming part 53 is joined, weld bead 61a for heat input which is caused to continue with the weld beads 61 becoming the forming part 53 and does not become the forming part 53 is formed and, on the cutting process, the weld bead 61a for heat input is cut and removed.SELECTED DRAWING: Figure 1

Description

本発明は、溶接構造物の製造方法及び溶接構造物に関する。   The present invention relates to a method for manufacturing a welded structure and a welded structure.

近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで溶接構造物を製造する。   In recent years, there is an increasing need for modeling using a 3D printer as a production means, and research and development are being promoted toward the practical use of modeling using metal materials. A 3D printer that forms a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire, and manufactures a welded structure by laminating the molten metal.

ところで、バルク材等からなる母材へ溶着ビードを溶着して積層造形すると、母材の造形部近傍には、溶接時の熱の影響を受けて組織や特性が母材と異なる熱影響部(HAZ:Heat Affected Zone)が生じる。そして、熱影響部には、溶接時の熱の影響を受けてない母材と隣接する部分に、硬度が低下した軟化層が形成され、この軟化層で残留応力が大きくなる。このため、造形部に外力が作用した際の大きな引張応力が軟化層の位置に付加されると、この軟化層に作用する残留応力と引張応力とによって、疲労き裂が発生するおそれがある。   By the way, when a weld bead is welded to a base material made of a bulk material or the like and layered, a heat-affected zone in which the structure and characteristics are different from the base material due to the influence of heat at the time of welding in the vicinity of the base portion of the base material ( HAZ: Heat Affected Zone) occurs. In the heat affected zone, a softened layer with reduced hardness is formed in a portion adjacent to the base material that is not affected by heat during welding, and residual stress increases in the softened layer. For this reason, when a large tensile stress when an external force is applied to the modeling part is added to the position of the softened layer, there is a possibility that a fatigue crack may be generated due to the residual stress and the tensile stress acting on the softened layer.

特許文献1では、内外面からシーム溶接を行った鋼管のシーム溶接部の外表面に切削加工を行い、溶接残留応力による水素起因の横割れを防止することが知られている。また、溶接構造物において、溶接ビードの止端近傍での溶接残留応力の影響による疲労損傷を抑制する技術として、特許文献2には、溶接部の溶接ビードと隣接する母材表面に、溶接ビードに沿って打撃痕を形成し、溶接ビードの止端近傍に圧縮残留応力を導入することが知られている。これらの特許文献1及び2は、溶接による残留応力を低減する技術であるが、いずれも積層造形に関する技術ではない。   In Patent Document 1, it is known that cutting is performed on the outer surface of a seam welded portion of a steel pipe that has been seam welded from the inner and outer surfaces to prevent hydrogen-induced lateral cracking due to welding residual stress. As a technique for suppressing fatigue damage due to the influence of welding residual stress in the vicinity of the toe of the weld bead in a welded structure, Patent Document 2 discloses a weld bead on the surface of the base metal adjacent to the weld bead of the weld. It is known that a striking trace is formed along the edge of the weld bead and compressive residual stress is introduced in the vicinity of the toe of the weld bead. Although these patent documents 1 and 2 are the techniques which reduce the residual stress by welding, neither is the technique regarding additive manufacturing.

特開2012−051033号公報JP 2012-051033 A 特開2013−136096号公報JP2013-1336096A

本発明の目的は、積層造形によって母材上に形成される造形部の疲労強度が改善された溶接構造物を製造することが可能な溶接構造物の製造方法及び溶接構造物を提供することにある。   The objective of this invention is providing the manufacturing method of a welded structure and the welded structure which can manufacture the welded structure in which the fatigue strength of the modeling part formed on a base material by layered modeling was improved. is there.

本発明は下記構成からなる。
(1) 母材の表面に造形部を形成した溶接構造物を製造する溶接構造物の製造方法であって、
前記母材の表面に溶加材を溶融及び凝固させた溶着ビードを層状に積層させて前記造形部となる積層部を形成する積層工程と、
前記積層部を切削して前記造形部に加工する切削工程と、
を含み、
前記積層工程において、少なくも最下層の溶着ビードを形成する際に、前記造形部が接合される前記母材の接合領域の外側に、前記造形部となる前記溶着ビードに連続させて前記造形部とならない入熱用の前記溶着ビードを形成し、
前記切削工程において、前記入熱用の溶着ビードを切削して除去する
溶接構造物の製造方法。
(2) 母材と、
前記母材の表面に形成され、溶加材を溶融及び凝固させた複数の溶着ビードを積層した積層部を切削加工してなる造形部と、
を備え、
前記母材は、前記造形部が接合される前記母材の接合領域の外側に、前記積層部の一部を切削して除去した、前記溶着ビードのビード幅よりも大きな幅を有する切削領域を有する
溶接構造物。
The present invention has the following configuration.
(1) A method for manufacturing a welded structure for manufacturing a welded structure in which a shaped part is formed on the surface of a base material,
A laminating step of laminating a welding bead obtained by melting and solidifying a filler material on the surface of the base material in a layered manner to form a laminating portion that becomes the modeling portion;
A cutting step of cutting the laminated portion to process the shaped portion;
Including
In the laminating step, when forming a welding bead of the lowest layer at least, the modeling part is continuously connected to the welding bead serving as the modeling part outside the bonding region of the base material to which the modeling part is bonded. Forming the weld bead for heat input that does not become,
A method for manufacturing a welded structure, wherein the welding bead for heat input is removed by cutting in the cutting step.
(2) With the base material,
A shaped part formed by cutting a laminated part formed by laminating a plurality of welding beads formed on the surface of the base material and melted and solidified the filler material;
With
The base material has a cutting region having a width larger than the bead width of the welding bead, which is obtained by cutting and removing a part of the laminated portion outside the joining region of the base material to which the modeling portion is joined. Having welded structure.

本発明によれば、積層造形によって母材上に形成される造形部の疲労強度が改善された溶接構造物を製造することができる。   According to the present invention, it is possible to manufacture a welded structure in which the fatigue strength of a modeled portion formed on a base material by additive manufacturing is improved.

本発明の製造方法で製造する溶接構造物の断面図である。It is sectional drawing of the welded structure manufactured with the manufacturing method of this invention. 溶接構造物を製造する製造システムの模式的な概略構成図である。It is a typical schematic block diagram of the manufacturing system which manufactures a welded structure. 本発明の溶接構造物の製造方法における積層工程後の溶接構造物の断面図である。It is sectional drawing of the welded structure after the lamination process in the manufacturing method of the welded structure of this invention. 参考例に係る溶接構造物を示す図であって、(a)は溶接構造物の断面図、(b)は溶接構造物の母材における残留応力を示す模式図、(c)は造形部に外力が作用した際に母材に発生する応力を示す模式図である。It is a figure which shows the welded structure which concerns on a reference example, Comprising: (a) is sectional drawing of a welded structure, (b) is a schematic diagram which shows the residual stress in the base material of a welded structure, (c) is a modeling part. It is a schematic diagram which shows the stress which generate | occur | produces in a base material when external force acts. 本発明の溶接構造物を示す図であって、(a)は溶接構造物の断面図、(b)は溶接構造物の母材における残留応力を示す模式図、(c)は造形部に外力が作用した際に母材に発生する応力を示す模式図である。It is a figure which shows the welded structure of this invention, Comprising: (a) is sectional drawing of a welded structure, (b) is a schematic diagram which shows the residual stress in the preform | base_material of a welded structure, (c) is external force to a modeling part. It is a schematic diagram which shows the stress which generate | occur | produces in a base material when acted. 変形例1を説明する図であって、(a)は積層工程後の溶接構造物の断面図、(b)は切削工程後の溶接構造物の断面図である。It is a figure explaining the modification 1, Comprising: (a) is sectional drawing of the welded structure after a lamination process, (b) is sectional drawing of the welded structure after a cutting process. 変形例2を説明する図であって、(a)は積層工程後の溶接構造物の断面図、(b)は切削工程後の溶接構造物の断面図である。It is a figure explaining the modification 2, Comprising: (a) is sectional drawing of the welded structure after a lamination process, (b) is sectional drawing of the welded structure after a cutting process.

以下、本発明の一実施形態に係る溶接構造物の製造方法及び溶接構造物について、図面を参照して詳細に説明する。   Hereinafter, a manufacturing method of a welded structure and a welded structure according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態に係る製造方法によって製造される溶接構造物Wは、母材51と、造形部53とを備えている。母材51は、鋼材からなる板材である。造形部53は、板状に形成されており、母材51の表面55に立設されている。造形部53は、複数の溶着ビード61を積層させて構成されている。造形部53は、溶着ビード61を積層させた後述する積層部57(図3参照)を切削加工することで形成される。   As shown in FIG. 1, the welded structure W manufactured by the manufacturing method according to this embodiment includes a base material 51 and a modeling portion 53. The base material 51 is a plate material made of steel. The modeling portion 53 is formed in a plate shape and is erected on the surface 55 of the base material 51. The modeling part 53 is configured by laminating a plurality of welding beads 61. The modeling part 53 is formed by cutting a later-described laminated part 57 (see FIG. 3) in which the weld beads 61 are laminated.

母材51は、造形部53が接合される接合領域JAと、該接合領域JAの外側で、母材51の表面55に形成された積層部57の一部を切削して除去した切削領域SAと、を有する。この切削領域SAは、少なくとも溶着ビード61のビード幅Wbよりも大きな幅W3を有している。   The base material 51 includes a joining area JA to which the modeling portion 53 is joined, and a cutting area SA in which a part of the laminated portion 57 formed on the surface 55 of the base material 51 is cut and removed outside the joining area JA. And having. This cutting area SA has a width W3 that is at least larger than the bead width Wb of the weld bead 61.

また、母材51の表面55側には、溶着ビード61が溶接される、即ち、積層部57が形成される際の熱の影響を受けて組織や特性が母材51と異なる熱影響部(HAZ:Heat Affected Zone)HAが形成される。この熱影響部HAは、積層部57よりも広い範囲に形成される。特に、本実施形態では、造形部53の板幅方向において、熱影響部HAは、造形部53が形成されている接合領域JAの幅W1及び積層部57が形成されて切削除去された切削領域SAの幅W3の合計よりも広い幅W2の範囲に形成されている。   Further, a weld bead 61 is welded to the surface 55 side of the base material 51, that is, a heat-affected zone (having a different structure and characteristics from the base material 51 due to the influence of heat when the laminated portion 57 is formed ( HAZ: Heat Affected Zone) HA is formed. The heat affected zone HA is formed in a wider range than the stacked portion 57. In particular, in the present embodiment, in the plate width direction of the modeling portion 53, the heat-affected zone HA is a cutting region where the width W1 of the joining region JA where the modeling portion 53 is formed and the laminated portion 57 are formed and removed by cutting. It is formed in a range of the width W2 wider than the total of the SA widths W3.

次に、上記の溶接構造物Wを製造する製造システムについて図2を参照して説明する。
図2に示すように、本構成の製造システム100は、積層造形装置11と、切削装置12と、積層造形装置11及び切削装置12を統括制御するコントローラ15と、を備える。
Next, a manufacturing system for manufacturing the welded structure W will be described with reference to FIG.
As illustrated in FIG. 2, the manufacturing system 100 having this configuration includes a layered modeling apparatus 11, a cutting apparatus 12, and a controller 15 that performs overall control of the layered modeling apparatus 11 and the cutting apparatus 12.

積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部21とを有する。トーチ17は、溶加材Mを先端から突出した状態に保持する。   The additive manufacturing apparatus 11 includes a welding robot 19 having a torch 17 on a tip shaft, and a filler material supply unit 21 that supplies a filler material (welding wire) M to the torch 17. The torch 17 holds the filler material M in a state protruding from the tip.

溶接ロボット19は、多関節ロボットであり、先端軸に設けたトーチ17には、溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。   The welding robot 19 is an articulated robot, and the filler material M is supported on the torch 17 provided on the tip shaft so as to be continuously supplied. The position and orientation of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。本構成で用いられるアーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、製造する溶接構造物Wに応じて適宜選定される。   The torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle. The arc welding method used in this configuration may be either a consumable electrode type such as covered arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding. It is selected appropriately according to.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、後述の母材51上に溶加材Mの溶融凝固体である線状の溶着ビード61が形成される。   For example, in the case of the consumable electrode type, a contact tip is disposed inside the shield nozzle, and a filler material M to which a molten current is fed is held by the contact tip. The torch 17 generates an arc from the tip of the filler material M in a shield gas atmosphere while holding the filler material M. The melt material M is fed from the melt material supply unit 21 to the torch 17 by a feed mechanism (not shown) attached to a robot arm or the like. Then, when the melt material M that is continuously fed is melted and solidified while moving the torch 17, a linear weld bead 61 that is a melt-solidified body of the melt material M is formed on the base material 51 described later. Is done.

なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、溶接構造物Wの更なる品質向上に寄与できる。   The heat source for melting the filler material M is not limited to the arc described above. For example, a heat source using other methods such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted. When heating with an electron beam or a laser, the amount of heating can be controlled more finely, the state of the weld bead can be maintained more appropriately, and the quality of the welded structure W can be further improved.

溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。   As the melt material M, any commercially available welding wire can be used. For example, it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high strength steel and low temperature steel, arc welding flux cored wire (JIS Z 3313) for mild steel, high strength steel and low temperature steel. Can be used.

切削装置12は、切削ロボット41を備えている。切削ロボット41は、溶接ロボット19と同様に、多関節ロボットであり、先端アーム43の先端部に、例えば、エンドミルや研削砥石などの金属加工工具45を備える。これにより、切削ロボット41は、コントローラ15により、その加工姿勢が任意の姿勢を取り得るように、3次元的に移動可能となっている。   The cutting device 12 includes a cutting robot 41. The cutting robot 41 is an articulated robot similar to the welding robot 19, and includes a metal processing tool 45 such as an end mill or a grinding wheel at the tip of the tip arm 43. Thereby, the cutting robot 41 can be moved three-dimensionally by the controller 15 so that the processing posture can take an arbitrary posture.

切削ロボット41は、積層造形装置11の溶接ロボット19によって母材51に溶着ビード61を積層した積層部57を金属加工工具45で切削して造形部53に加工する。   The cutting robot 41 uses the metal processing tool 45 to cut the laminated portion 57 in which the welding bead 61 is laminated on the base material 51 by the welding robot 19 of the layered shaping apparatus 11 to process the shaped portion 53.

コントローラ15は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。   The controller 15 includes a CAD / CAM unit 31, a trajectory calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.

CAD/CAM部31は、製造しようとする溶接構造物Wの形状データを作成した後、複数の層に分割して各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データに基づいてトーチ17の移動軌跡を求める。また、軌道演算部33は、形状データに基づいて、金属加工工具45の移動軌跡を求める。記憶部35は、溶接構造物Wの形状データ、生成された層形状データ、トーチ17の移動軌跡及び金属加工工具45の移動軌跡等のデータを記憶する。   The CAD / CAM unit 31 creates shape data of the welded structure W to be manufactured, and then generates layer shape data representing the shape of each layer by dividing the data into a plurality of layers. The trajectory calculation unit 33 obtains the movement trajectory of the torch 17 based on the generated layer shape data. Further, the trajectory calculation unit 33 obtains the movement trajectory of the metal working tool 45 based on the shape data. The storage unit 35 stores data such as the shape data of the welded structure W, the generated layer shape data, the movement locus of the torch 17 and the movement locus of the metal working tool 45.

制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に基づく駆動プログラムを実行して、溶接ロボット19を駆動する。つまり、溶接ロボット19は、コントローラ15からの指令により、軌道演算部33で生成したトーチ17の移動軌跡に基づき、溶加材Mをアークで溶融させながらトーチ17を移動する。また、制御部37は、記憶部35に記憶された形状データや金属加工工具45の移動軌跡に基づく駆動プログラムを実行して、切削ロボット41を駆動する。これにより、切削ロボット41の先端アーム43に設けられた金属加工工具45によって溶接構造物Wに対して切削加工を行う。   The control unit 37 drives the welding robot 19 by executing a drive program based on the layer shape data stored in the storage unit 35 and the movement trajectory of the torch 17. That is, the welding robot 19 moves the torch 17 while melting the filler metal M with an arc based on the movement trajectory of the torch 17 generated by the trajectory calculation unit 33 according to a command from the controller 15. In addition, the control unit 37 drives the cutting robot 41 by executing a drive program based on the shape data stored in the storage unit 35 and the movement locus of the metal working tool 45. Accordingly, the welding structure W is cut by the metal working tool 45 provided on the tip arm 43 of the cutting robot 41.

次に、本実施形態の溶接構造物の製造方法について図1及び図3を参照して説明する。   Next, the manufacturing method of the welded structure of this embodiment is demonstrated with reference to FIG.1 and FIG.3.

(積層工程)
まず、製造システム100に、母材51をセットする。次いで、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、積層造形装置11のトーチ17を溶接ロボット19の駆動により移動させながら、溶加材Mを溶融させ、図3に示すように、溶融した溶加材Mを母材51の表面55に供給する。これにより、母材51の表面55に複数の線状の溶着ビード61をそれぞれ平行に配列して各層を形成し、さらに各層を積層させて積層部57を形成する。
(Lamination process)
First, the base material 51 is set in the manufacturing system 100. Next, the melt material M is melted while moving the torch 17 of the additive manufacturing apparatus 11 by driving the welding robot 19 along the movement trajectory of the torch 17 generated from the set layer shape data, and FIG. As shown, the melted filler material M is supplied to the surface 55 of the base material 51. As a result, a plurality of linear weld beads 61 are arranged in parallel on the surface 55 of the base material 51 to form each layer, and each layer is further laminated to form a laminated portion 57.

ここで、最下層の溶着ビード61を形成する際に、造形部53が接合される接合領域JAの外側に、造形部53となる溶着ビード61に連続させて造形部53とならない入熱用の溶着ビード61aを形成する。この入熱用の溶着ビード61aは、造形部53の板幅方向において、接合領域JAの外側に、少なくとも1つずつ形成されればよいが、好ましくは、母材51の接合領域JAの幅W1以上の範囲を形成するように複数ずつ形成される。   Here, when forming the lowest-layer weld bead 61, it is for heat input that does not become the modeling part 53 continuously with the welding bead 61 to be the modeling part 53 outside the joining area JA to which the modeling part 53 is joined. A weld bead 61a is formed. The heat input welding beads 61a may be formed at least one on the outer side of the bonding area JA in the plate width direction of the modeling portion 53, but preferably the width W1 of the bonding area JA of the base material 51. Multiple pieces are formed so as to form the above range.

例えば、造形部53の板幅方向において、最下層の積層部57の幅をW0、溶着ビード61のビード幅をWb、入熱用の溶着ビード61aの数をnとしたときに、次式(1)を満たすように、入熱用の溶着ビード61aを形成する。   For example, when the width of the lowermost layered portion 57 is W0, the bead width of the weld bead 61 is Wb, and the number of weld beads 61a for heat input is n in the plate width direction of the modeling portion 53, the following formula ( The welding bead 61a for heat input is formed so as to satisfy 1).

W0−W1≧n×Wb…(1)   W0−W1 ≧ n × Wb (1)

(切削工程)
切削ロボット41を駆動させて金属加工工具45によって積層部57を切削加工し、母材51の表面55に板状の造形部53が立設された溶接構造物Wを形成する。具体的には、造形部53の両側面の外側に位置する積層部57を切削するとともに、母材51の表面55に形成した積層部57の入熱用の溶着ビード61aを切削して除去する。
(Cutting process)
The cutting robot 41 is driven to cut the laminated portion 57 with the metal working tool 45, thereby forming the welded structure W in which the plate-shaped modeling portion 53 is erected on the surface 55 of the base material 51. Specifically, the laminated portion 57 located outside the both side surfaces of the modeling portion 53 is cut, and the welding bead 61a for heat input of the laminated portion 57 formed on the surface 55 of the base material 51 is cut and removed. .

そして、上記の積層工程及び切削工程によって製造された溶接構造物Wでは、母材51の表面55に板状の造形部53が形成され、母材51における造形部53の板幅方向の両側に、積層部57の一部を切削して除去した切削領域SAが形成される。したがって、この切削領域SAは、少なくとも溶着ビード61のビード幅Wbよりも大きな幅を有している。具体的には、造形部53の板幅方向において、切削領域SAは、接合領域JAの外側で、母材51の接合領域JAの幅W1以上の範囲に設けられる。同様に、造形部53の板幅方向において、熱影響部HAは、接合領域JAの外側で、母材51の接合領域JAの幅W1以上の範囲に設けられることになる。   And in the welding structure W manufactured by said lamination process and cutting process, the plate-shaped modeling part 53 is formed in the surface 55 of the base material 51, and the both sides of the board | substrate width direction of the modeling part 53 in the base material 51 are formed. Then, a cutting area SA is formed by cutting and removing a part of the laminated portion 57. Therefore, the cutting area SA has a width that is at least larger than the bead width Wb of the weld bead 61. Specifically, in the plate width direction of the modeling portion 53, the cutting area SA is provided outside the joining area JA in a range equal to or greater than the width W1 of the joining area JA of the base material 51. Similarly, in the plate width direction of the modeling portion 53, the heat affected zone HA is provided outside the bonding area JA and in a range equal to or larger than the width W1 of the bonding area JA of the base material 51.

ここで、図4(a)に示す参考例では、入熱用の溶着ビード61aを形成せずに積層部57を形成し、切削工程によって積層部57を切削して造形部53を形成している。この参考例では、入熱用の溶着ビード61aを形成せずに積層部57を形成していることから、母材51に形成される熱影響部HAは、積層部57の最下層の溶着ビード61が形成された箇所を含む造形部53の近傍部分にわたって形成される。   Here, in the reference example shown in FIG. 4 (a), the laminated portion 57 is formed without forming the heat input bead 61a, and the shaped portion 53 is formed by cutting the laminated portion 57 by a cutting process. Yes. In this reference example, since the laminated portion 57 is formed without forming the heat-input welding bead 61 a, the heat-affected zone HA formed in the base material 51 is the lowermost welding bead of the laminated portion 57. It is formed over the vicinity of the modeling part 53 including the place where 61 is formed.

したがって、この参考例では、熱影響部HAのうち、熱の影響を受けていない母材との境界付近に形成される軟化層Nの位置が造形部53の近傍となる。このため、図4(b)に示すように、母材51の残量応力σ1は、軟化層Nが形成された造形部53の近傍位置で最大となる。また、図4(c)に示すように、板幅方向に沿う外力Fが造形部53に作用すると、その外力Fによって母材51に付加される引張応力σ2は、造形部53に近付くにしたがって大きくなる。   Therefore, in this reference example, the position of the softened layer N formed in the vicinity of the boundary between the heat-affected portion HA and the base material not affected by heat is in the vicinity of the modeling portion 53. For this reason, as shown in FIG. 4B, the residual stress σ1 of the base material 51 is maximized in the vicinity of the modeling portion 53 where the softened layer N is formed. Further, as shown in FIG. 4C, when an external force F along the plate width direction acts on the modeling part 53, the tensile stress σ <b> 2 applied to the base material 51 by the external force F approaches the modeling part 53. growing.

したがって、この参考例では、造形部53に外力Fが作用した際に、大きな残留応力σ1を有する母材51における軟化層Nの近傍箇所に、大きな引張応力σ2が付加されることとなる。つまり、母材51における軟化層Nの位置には、残留応力σ1に大きな引張り応力σ2が加わった合計の応力(σ1+σ2)が集中的に付加されることとなり、疲労き裂が生じるおそれがある。   Therefore, in this reference example, when an external force F acts on the modeling portion 53, a large tensile stress σ2 is applied to a location near the softened layer N in the base material 51 having a large residual stress σ1. That is, the total stress (σ1 + σ2) obtained by adding the large tensile stress σ2 to the residual stress σ1 is concentrated at the position of the softened layer N in the base material 51, and there is a possibility that a fatigue crack is generated.

これに対して、本実施形態に係る製造方法で製造された溶接構造物Wでは、図5(a)に示すように、造形部53の板幅方向の両側に、造形部53となる溶着ビード61に連続させて造形部53とならない入熱用の溶着ビード61aを形成することで、熱影響部HAの範囲を広げ、熱影響部HAの軟化層Nを造形部53から離れた位置にすることができる。つまり、図5(b)に示すように、大きな残留応力σ1を有する軟化層Nの位置を造形部53からなるべく離れた位置に配置させることができる。一方、図5(c)に示すように、板幅方向に沿う外力Fが造形部53に作用することで母材51に付加される引張応力σ2は、前述したように、造形部53に近付くにしたがって大きくなる。したがって、軟化層Nが造形部53から大きく離れた位置にされた溶接構造物Wでは、軟化層Nの位置で付加される引張応力σ2が小さくなる。   On the other hand, in the welded structure W manufactured by the manufacturing method according to this embodiment, as shown in FIG. 5A, the weld bead that becomes the modeling portion 53 on both sides in the plate width direction of the modeling portion 53. By forming the welding bead 61a for heat input that does not become the modeling part 53 continuously with 61, the range of the heat affected part HA is expanded, and the softened layer N of the heat affected part HA is moved away from the modeled part 53. be able to. That is, as shown in FIG. 5B, the position of the softened layer N having a large residual stress σ <b> 1 can be arranged at a position as far as possible from the modeling portion 53. On the other hand, as shown in FIG. 5C, the tensile stress σ <b> 2 applied to the base material 51 by the external force F along the plate width direction acting on the modeling portion 53 approaches the modeling portion 53 as described above. It grows according to. Therefore, in the welded structure W in which the softened layer N is positioned far from the modeling portion 53, the tensile stress σ2 applied at the position of the softened layer N is small.

このように、本実施形態では、大きな残留応力σ1を有する軟化層Nの位置が、外力Fによって付加される引張応力σ2が小さくなる造形部53から十分に離れた位置とされている。つまり、母材51における軟化層Nの位置には、残留応力σ1に比較的小さな引張応力σ2が加わった合計の応力(σ1+σ2)が付加されることとなり、応力集中を抑えて疲労き裂を抑制することが可能となる。   Thus, in the present embodiment, the position of the softened layer N having a large residual stress σ1 is a position sufficiently separated from the modeling portion 53 where the tensile stress σ2 applied by the external force F becomes small. That is, the total stress (σ1 + σ2) obtained by adding a relatively small tensile stress σ2 to the residual stress σ1 is added to the position of the softened layer N in the base material 51, thereby suppressing stress concentration and suppressing fatigue cracks. It becomes possible to do.

以上、説明したように、本実施形態によれば、造形部53の板幅方向の両側に、造形部53となる溶着ビード61に連続させて造形部53とならない入熱用の溶着ビード61aを形成する。これにより、熱影響部HAの範囲を広げ、熱影響部HAの軟化層Nを造形部53から離れた位置にすることができる。したがって、大きな残留応力σ1が存在する軟化層Nの位置で生じる引張応力σ2を小さくすることができ、軟化層Nの位置における応力集中を抑えて、疲労き裂を抑制することができる。   As described above, according to the present embodiment, the welding bead 61a for heat input that does not become the modeling part 53 by being continuous with the welding bead 61 that becomes the modeling part 53 on both sides in the plate width direction of the modeling part 53. Form. Thereby, the range of the heat affected zone HA can be expanded, and the softened layer N of the heat affected zone HA can be positioned away from the modeling portion 53. Therefore, the tensile stress σ2 generated at the position of the softened layer N where the large residual stress σ1 exists can be reduced, and the stress concentration at the position of the softened layer N can be suppressed to suppress the fatigue crack.

また、軟化層Nの位置を造形部53から離すために形成する入熱用の溶着ビード61aは、積層部57を切削して造形部53に加工する際に併せて切削して除去するので、入熱用の溶着ビード61aを形成しても切削工程の手間を極力抑えることができる。   Further, the welding bead 61a for heat input that is formed in order to separate the position of the softening layer N from the modeling portion 53 is removed by cutting together with the laminated portion 57 when it is processed into the modeling portion 53. Even if the welding bead 61a for heat input is formed, the labor of the cutting process can be minimized.

しかも、本実施形態では、積層工程において、造形部53の板幅方向の両側に、入熱用の溶着ビード61aを、少なくとも接合領域JAの幅W1以上の範囲にわたって形成する。これにより、軟化層Nの位置を造形部53から十分に離すことができ、軟化層Nの位置における耐久性を確実に確保することができる。   Moreover, in the present embodiment, in the laminating step, the welding beads 61a for heat input are formed on both sides of the modeling portion 53 in the plate width direction over at least the width W1 or more of the joining area JA. Thereby, the position of the softening layer N can be sufficiently separated from the modeling portion 53, and the durability at the position of the softening layer N can be reliably ensured.

特に、造形部53の板幅方向において、接合領域JAの幅をW1、積層部の幅をW0、溶着ビード61のビード幅をWb、入熱用の溶着ビード61aの数をnとしたときに、W0−W1≧n×Wbを満たすように、入熱用の溶着ビード61aを形成する。これにより、十分な入熱用の溶着ビード61aを無駄なく形成して、軟化層Nの位置における耐久性を高めることができる。   In particular, when the width of the bonding area JA is W1, the width of the laminated portion is W0, the bead width of the weld bead 61 is Wb, and the number of weld beads 61a for heat input is n in the plate width direction of the modeling portion 53. , The welding bead 61a for heat input is formed so as to satisfy W0−W1 ≧ n × Wb. Thereby, the welding bead 61a for sufficient heat input can be formed without waste, and durability at the position of the softened layer N can be enhanced.

このように、本発明は上記実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。   As described above, the present invention is not limited to the above-described embodiments, and those skilled in the art can change and apply the configurations of the embodiments based on the combination of each other, the description of the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.

例えば、上記実施形態では、入熱用の溶着ビード61aは、母材51の表面55に接する最下層のみに形成されているが、本発明は、母材51に形成される熱影響部HAの範囲が造形部53から必要なだけ離れた位置まで形成されればよい。このため、入熱用の溶着ビード61aは、最下層から所定数の層に亘って、造形部となる溶着ビード61と共に形成されてもよい。具体的に、図6に示す変形例1のように、入熱用の溶着ビード61aは、最下層から所定数の層に亘って、板幅方向の幅が徐々に狭くなるように、斜めに積層されてもよい。或いは、図7に示す変形例2のように、入熱用の溶着ビード61aは、最下層から所定数の層に亘って、板幅方向の幅を変えずに、積層されてもよい。   For example, in the above-described embodiment, the welding bead 61a for heat input is formed only in the lowermost layer in contact with the surface 55 of the base material 51. However, the present invention is not limited to the heat affected zone HA formed in the base material 51. The range should just be formed to the position away from the modeling part 53 as much as necessary. For this reason, the welding bead 61a for heat input may be formed with the welding bead 61 used as a modeling part over a predetermined number of layers from the lowest layer. Specifically, as in Modification 1 shown in FIG. 6, the welding bead 61a for heat input is inclined so that the width in the plate width direction gradually decreases from the lowermost layer to a predetermined number of layers. It may be laminated. Alternatively, as in Modification 2 shown in FIG. 7, the welding beads 61a for heat input may be stacked from the lowest layer to a predetermined number of layers without changing the width in the plate width direction.

また、本実施形態では、母材51を板材とし、造形部53を板状に形成しているが、これに限らず、例えば、母材51は、柱状部材であってもよい。   Moreover, in this embodiment, although the base material 51 is made into the plate material and the modeling part 53 is formed in plate shape, it is not restricted to this, For example, the base material 51 may be a columnar member.

以上の通り、本明細書には次の事項が開示されている。
(1) 母材の表面に造形部を形成した溶接構造物を製造する溶接構造物の製造方法であって、
前記母材の表面に溶加材を溶融及び凝固させた溶着ビードを層状に積層させて前記造形部となる積層部を形成する積層工程と、
前記積層部を切削して前記造形部に加工する切削工程と、
を含み、
前記積層工程において、少なくも最下層の溶着ビードを形成する際に、前記造形部が接合される前記母材の接合領域の外側に、前記造形部となる前記溶着ビードに連続させて前記造形部とならない入熱用の前記溶着ビードを形成し、
前記切削工程において、前記入熱用の溶着ビードを切削して除去する
溶接構造物の製造方法。
この溶接構造物の製造方法によれば、熱影響部の範囲を広げ、熱影響部と熱の影響を受けていない部分との境界の軟化層を造形部から離れた位置にすることができる。したがって、板幅方向に沿う外力が造形部に作用した場合でも、大きな残留応力が存在する軟化層の位置で生じる引張応力を小さくすることができ、また、造形部での応力集中を抑えて造形部の疲労強度を改善することができる。
また、軟化層の位置を造形部から離すために形成する入熱用の溶着ビードは、積層部を切削して造形部に加工する際に併せて切削して除去するので、入熱用の溶着ビードを形成しても切削工程の手間を極力抑えることができる。
As described above, the following items are disclosed in this specification.
(1) A method for manufacturing a welded structure for manufacturing a welded structure in which a shaped part is formed on the surface of a base material,
A laminating step of laminating a welding bead obtained by melting and solidifying a filler material on the surface of the base material in a layered manner to form a laminating portion that becomes the modeling portion;
A cutting step of cutting the laminated portion to process the shaped portion;
Including
In the laminating step, when forming a welding bead of the lowest layer at least, the modeling part is continuously connected to the welding bead serving as the modeling part outside the bonding region of the base material to which the modeling part is bonded. Forming the weld bead for heat input that does not become,
A method for manufacturing a welded structure, wherein the welding bead for heat input is removed by cutting in the cutting step.
According to this method for manufacturing a welded structure, the range of the heat affected zone can be expanded, and the softened layer at the boundary between the heat affected zone and the portion not affected by the heat can be positioned away from the shaped portion. Therefore, even when an external force along the plate width direction acts on the modeling part, the tensile stress generated at the position of the softened layer where a large residual stress exists can be reduced, and the stress concentration at the modeling part can be suppressed and modeling can be performed. The fatigue strength of the part can be improved.
In addition, the welding bead for heat input formed in order to separate the position of the softened layer from the modeling part is removed by cutting when the laminated part is cut and processed into the modeling part. Even if the bead is formed, the labor of the cutting process can be minimized.

(2) 前記造形部は、板状に形成され、
前記積層工程は、前記造形部の板幅方向において、前記母材の接合領域の外側に、前記入熱用の溶着ビードを、前記母材の接合領域の幅以上の範囲にわたって形成する(1)に記載の溶接構造物の製造方法。
この溶接構造物の製造方法によれば、軟化層の位置を造形部から十分に離すことができ、造形部の疲労強度を改善することができる。
(2) The modeling portion is formed in a plate shape,
In the laminating step, the welding bead for heat input is formed over a range equal to or larger than the width of the joining region of the base material on the outside of the joining region of the base material in the plate width direction of the modeling part (1). The manufacturing method of the welded structure as described in 2.
According to this method for manufacturing a welded structure, the position of the softened layer can be sufficiently separated from the modeling part, and the fatigue strength of the modeling part can be improved.

(3) 前記造形部は、板状に形成され、
前記造形部の板幅方向において、前記母材の接合領域の幅をW1、前記積層部の幅をW0、前記溶着ビードのビード幅をWb、前記入熱用の溶着ビードの数をnとしたときに、
W0−W1≧n×Wb
を満たすように、前記積層工程において、前記入熱用の溶着ビードを形成する(1)または(2)に記載の溶接構造物の製造方法。
この溶接構造物の製造方法によれば、十分な入熱用の溶着ビードを無駄なく形成して、造形部の疲労強度を改善することができる。
(3) The modeling part is formed in a plate shape,
In the plate width direction of the modeling part, the width of the bonding region of the base material is W1, the width of the laminated part is W0, the bead width of the welding bead is Wb, and the number of welding beads for heat input is n. sometimes,
W0-W1 ≧ n × Wb
The method for manufacturing a welded structure according to (1) or (2), wherein the welding bead for heat input is formed in the laminating step so as to satisfy the condition.
According to this method for manufacturing a welded structure, a sufficient weld bead for heat input can be formed without waste, and the fatigue strength of the shaped part can be improved.

(4) 母材と、
前記母材の表面に形成され、溶加材を溶融及び凝固させた複数の溶着ビードを積層した積層部を切削加工してなる造形部と、
を備え、
前記母材は、前記造形部が接合される前記母材の接合領域の外側に、前記積層部の一部を切削して除去した、前記溶着ビードのビード幅よりも大きな幅を有する切削領域を有する
溶接構造物。
この溶接構造物によれば、母材における熱影響部の範囲が広げられ、熱影響部と熱の影響を受けていない部分との境界の軟化層が造形部から離れた位置にされる。したがって、板幅方向に沿う外力が造形部に作用した場合でも、大きな残留応力が存在する軟化層の位置で生じる引張応力を小さくすることができ、また、造形部での応力集中を抑えて造形部の疲労強度を改善することができる。
また、切削領域は、積層部を切削して造形部に加工する際に併せて切削して形成することができるので、切削領域を形成するための手間を極力抑えることができる。
(4) With the base material,
A shaped part formed by cutting a laminated part formed by laminating a plurality of welding beads formed on the surface of the base material and melted and solidified the filler material;
With
The base material has a cutting region having a width larger than the bead width of the welding bead, which is obtained by cutting and removing a part of the laminated portion outside the joining region of the base material to which the modeling portion is joined. Having welded structure.
According to this welded structure, the range of the heat-affected zone in the base material is expanded, and the softened layer at the boundary between the heat-affected zone and the portion not affected by heat is positioned away from the modeling portion. Therefore, even when an external force along the plate width direction acts on the modeling part, the tensile stress generated at the position of the softened layer where a large residual stress exists can be reduced, and the stress concentration at the modeling part can be suppressed and modeling can be performed. The fatigue strength of the part can be improved.
Moreover, since the cutting region can be formed by cutting together with the laminated portion when it is cut into a modeling portion, the labor for forming the cutting region can be minimized.

(5) 前記造形部は、板状に形成され、
前記切削領域は、造形部の板幅方向において、前記母材の接合領域の外側に、前記母材の接合領域の幅以上の範囲にわたって設けられている(4)に記載の溶接構造物。
この溶接構造物によれば、軟化層の位置を造形部から十分に離すことができ、造形部の疲労強度を改善することができる。
(5) The modeling portion is formed in a plate shape,
The welding structure according to (4), wherein the cutting region is provided outside the bonding region of the base material over a range equal to or larger than the width of the bonding region of the base material in the plate width direction of the modeling portion.
According to this welded structure, the position of the softened layer can be sufficiently separated from the modeling part, and the fatigue strength of the modeling part can be improved.

51 母材
53 造形部
55 表面
57 積層部
61,61a 溶着ビード
M 溶加材
n 入熱用の溶着ビードの数
SA 切削領域
W 溶接構造物
W0 積層部の幅
W1 接合領域の幅
Wb ビード幅
51 Base material 53 Modeling part 55 Surface 57 Laminating part 61, 61a Welding bead M Filling material n Number of welding beads for heat input SA Cutting area W Welded structure W0 Width of laminating part W1 Width of joining area Wb Bead width

Claims (5)

母材の表面に造形部を形成した溶接構造物を製造する溶接構造物の製造方法であって、
前記母材の表面に溶加材を溶融及び凝固させた溶着ビードを層状に積層させて前記造形部となる積層部を形成する積層工程と、
前記積層部を切削して前記造形部に加工する切削工程と、
を含み、
前記積層工程において、少なくも最下層の溶着ビードを形成する際に、前記造形部が接合される前記母材の接合領域の外側に、前記造形部となる前記溶着ビードに連続させて前記造形部とならない入熱用の前記溶着ビードを形成し、
前記切削工程において、前記入熱用の溶着ビードを切削して除去する
溶接構造物の製造方法。
A manufacturing method of a welded structure for manufacturing a welded structure in which a shaped part is formed on the surface of a base material,
A laminating step of laminating a welding bead obtained by melting and solidifying a filler material on the surface of the base material in a layered manner to form a laminating portion that becomes the modeling portion;
A cutting step of cutting the laminated portion to process the shaped portion;
Including
In the laminating step, when forming a welding bead of the lowest layer at least, the modeling part is continuously connected to the welding bead serving as the modeling part outside the bonding region of the base material to which the modeling part is bonded. Forming the weld bead for heat input that does not become,
A method for manufacturing a welded structure, wherein the welding bead for heat input is removed by cutting in the cutting step.
前記造形部は、板状に形成され、
前記積層工程は、前記造形部の板幅方向において、前記母材の接合領域の外側に、前記入熱用の溶着ビードを、前記母材の接合領域の幅以上の範囲にわたって形成する請求項1に記載の溶接構造物の製造方法。
The modeling part is formed in a plate shape,
The said lamination process forms the welding bead for said heat input over the range beyond the width | variety of the joining area | region of the said base material in the board width direction of the said modeling part on the outer side of the joining area | region of the said base material. The manufacturing method of the welded structure as described in 2.
前記造形部は、板状に形成され、
前記造形部の板幅方向において、前記母材の接合領域の幅をW1、前記積層部の幅をW0、前記溶着ビードのビード幅をWb、前記入熱用の溶着ビードの数をnとしたときに、
W0−W1≧n×Wb
を満たすように、前記積層工程は、前記入熱用の溶着ビードを形成する請求項1または請求項2に記載の溶接構造物の製造方法。
The modeling part is formed in a plate shape,
In the plate width direction of the modeling part, the width of the bonding region of the base material is W1, the width of the laminated part is W0, the bead width of the welding bead is Wb, and the number of welding beads for heat input is n. sometimes,
W0-W1 ≧ n × Wb
The said lamination process is a manufacturing method of the welded structure of Claim 1 or Claim 2 which forms the said welding bead for heat input so that it may satisfy | fill.
母材と、
前記母材の表面に形成され、溶加材を溶融及び凝固させた複数の溶着ビードを積層した積層部を切削加工してなる造形部と、
を備え、
前記母材は、前記造形部が接合される前記母材の接合領域の外側に、前記積層部の一部を切削して除去した、前記溶着ビードのビード幅よりも大きな幅を有する切削領域を有する
溶接構造物。
With the base material,
A shaped part formed by cutting a laminated part formed by laminating a plurality of welding beads formed on the surface of the base material and melted and solidified the filler material;
With
The base material has a cutting region having a width larger than the bead width of the welding bead, which is obtained by cutting and removing a part of the laminated portion outside the joining region of the base material to which the modeling portion is joined. Having welded structure.
前記造形部は、板状に形成され、
前記切削領域は、前記造形部の板幅方向において、前記母材の接合領域の外側に、前記母材の接合領域の幅以上の範囲にわたって設けられている請求項4に記載の溶接構造物。
The modeling part is formed in a plate shape,
The welded structure according to claim 4, wherein the cutting region is provided outside the bonding region of the base material over a range equal to or larger than the width of the bonding region of the base material in the plate width direction of the modeling portion.
JP2018107905A 2018-06-05 2018-06-05 Welded structure manufacturing method and welded structure Active JP7010767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018107905A JP7010767B2 (en) 2018-06-05 2018-06-05 Welded structure manufacturing method and welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107905A JP7010767B2 (en) 2018-06-05 2018-06-05 Welded structure manufacturing method and welded structure

Publications (2)

Publication Number Publication Date
JP2019209359A true JP2019209359A (en) 2019-12-12
JP7010767B2 JP7010767B2 (en) 2022-01-26

Family

ID=68844431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107905A Active JP7010767B2 (en) 2018-06-05 2018-06-05 Welded structure manufacturing method and welded structure

Country Status (1)

Country Link
JP (1) JP7010767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281963A1 (en) * 2021-07-09 2023-01-12 株式会社神戸製鋼所 Fault-monitoring device, fault-monitoring method, welding assistance system, and welding system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036971A (en) * 2012-08-13 2014-02-27 Babcock-Hitachi Co Ltd Method for welding tube body to header and welded structure of header with tube body welded thereto

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036971A (en) * 2012-08-13 2014-02-27 Babcock-Hitachi Co Ltd Method for welding tube body to header and welded structure of header with tube body welded thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281963A1 (en) * 2021-07-09 2023-01-12 株式会社神戸製鋼所 Fault-monitoring device, fault-monitoring method, welding assistance system, and welding system

Also Published As

Publication number Publication date
JP7010767B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP6619300B2 (en) Welding equipment
JP5822376B2 (en) Laser welding method for steel sheet
JP2015526295A (en) Hybrid welding system and welding method using a wire feeder arranged between a laser and an electric arc welder
WO2019098006A1 (en) Method and apparatus for manufacturing layered model
WO2014140763A2 (en) System and method of welding stainless steel to copper
WO2019176759A1 (en) Method for producing shaped article and shaped article
JP7010767B2 (en) Welded structure manufacturing method and welded structure
JP7028737B2 (en) Manufacturing method of modeled object, manufacturing equipment and modeled object
JP6810018B2 (en) Manufacturing method of laminated model
JP6802773B2 (en) Manufacturing method of laminated model and laminated model
JP7193423B2 (en) Laminate-molded article manufacturing method
JP7123738B2 (en) LAMINATED PRODUCT MANUFACTURING METHOD AND LAMINATED MOLDED PRODUCT
US11738401B2 (en) Method for manufacturing t-shaped structures
JP2019063858A (en) Method for manufacturing laminated molding and laminated molding
WO2019181556A1 (en) Method for producing shaped article and shaped article
JP2020082287A (en) Welding robot
JP2019130574A (en) Bonding structure and bonding method of pipe
WO2019098021A1 (en) Method for producing molded article, production device, and molded article
KR101906370B1 (en) Wide gap butt welding method
JP7007237B2 (en) Manufacturing method of laminated model and laminated model
JP7355672B2 (en) Manufacturing method for additively manufactured objects
JP6859471B1 (en) Manufacturing method of laminated model
JP2019076912A (en) Manufacturing method for laminate-molded component, joint method for laminate-molded component, laminate-molded component, and structure
JP7355701B2 (en) Additive manufacturing method
WO2020085492A1 (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150