JP2019206671A - Lubricant composition and method for producing the same, lubrication method for drive system equipment and drive system equipment - Google Patents

Lubricant composition and method for producing the same, lubrication method for drive system equipment and drive system equipment Download PDF

Info

Publication number
JP2019206671A
JP2019206671A JP2018103581A JP2018103581A JP2019206671A JP 2019206671 A JP2019206671 A JP 2019206671A JP 2018103581 A JP2018103581 A JP 2018103581A JP 2018103581 A JP2018103581 A JP 2018103581A JP 2019206671 A JP2019206671 A JP 2019206671A
Authority
JP
Japan
Prior art keywords
lubricating oil
oil composition
carbon atoms
group
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018103581A
Other languages
Japanese (ja)
Other versions
JP7099876B2 (en
Inventor
衆一 坂上
Shuichi Sakagami
衆一 坂上
達也 濱地
Tatsuya Hamachi
達也 濱地
翔太 門ノ澤
Shota Kadonosawa
翔太 門ノ澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2018103581A priority Critical patent/JP7099876B2/en
Priority to PCT/JP2019/019331 priority patent/WO2019230405A1/en
Publication of JP2019206671A publication Critical patent/JP2019206671A/en
Application granted granted Critical
Publication of JP7099876B2 publication Critical patent/JP7099876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Abstract

To provide a lubricant composition having excellent wear resistance and oxidation stability and a method for producing the same, and a lubrication method for drive system equipment, and drive system equipment, each of which uses the lubricant composition.SOLUTION: The present invention provides a lubricant composition containing a base oil, and a specific phosphorus-containing compound, and a method for producing the same; and a lubrication method for drive system equipment, and drive system equipment, each of which uses the lubricant composition.SELECTED DRAWING: None

Description

本発明は、潤滑油組成物及びその製造方法、駆動系機器の潤滑方法並びに駆動系機器に関する。   The present invention relates to a lubricating oil composition and a method for producing the same, a method for lubricating a drive system device, and a drive system device.

緩衝器、変速機、パワーステアリング等の駆動系機器、エンジン、油圧作動等の様々な用途に用いられる潤滑油組成物には、各用途に応じた特性が求められている。潤滑油組成物の特性は、使用する基油の性状、添加剤の種類等に大きく左右される場合が多く、要求された特性を発現し得る潤滑油組成物を製造するために、基油及び添加剤の開発、またこれらの配合の開発等が広く行われている。   Lubricating oil compositions used for various applications such as shock absorbers, transmissions, power steering and other drive system devices, engines, hydraulic operations, and the like are required to have characteristics corresponding to each application. The characteristics of the lubricating oil composition are often greatly affected by the properties of the base oil used, the type of additive, etc., and in order to produce a lubricating oil composition that can exhibit the required characteristics, the base oil and The development of additives and the development of these formulations are widely performed.

例えば、四輪車、二輪車等の自動車、住宅の耐震機構等に用いられる緩衝器、変速機等の駆動系機器には、滑り軸受け、ピストンリング等の部品が組み込まれており、これらの部品において生じる摺動箇所の潤滑に、潤滑油組成物が用いられる。緩衝器に用いられる潤滑油組成物には、緩衝器内の上記部品における摺動箇所を潤滑する性能はもちろんのこと、緩衝器内に充填され、ピストンが伸縮する際に流体抵抗を生じさせることにより、自動車用緩衝器であれば路面から車体に伝わる振動、住宅用緩衝器であれば地震等による振動、を減衰する性能も要求される。例えば、自動車用緩衝器において、滑り軸受けは緩衝器業界ではブッシュと呼ばれており、ピストンロッドと摺動する部品である。ピストンロッド−ブッシュ間、インナーチューブ−ピストンリング間等の摺動箇所における摩擦特性を最適化することにより、自動車の乗り心地を制御するとともに、部品の摩擦及び摩耗を防止し、耐久性が得られることとなる。   For example, parts such as sliding bearings and piston rings are incorporated in drive systems such as shock absorbers and transmissions used in automobiles such as automobiles and two-wheeled vehicles, and earthquake-resistant mechanisms in houses. Lubricating oil composition is used for lubrication of the sliding part which arises. The lubricating oil composition used in the shock absorber not only has the ability to lubricate the sliding parts of the above parts in the shock absorber, but also fills the shock absorber and creates fluid resistance when the piston expands and contracts. Therefore, the performance of attenuating the vibration transmitted from the road surface to the vehicle body in the case of a shock absorber for an automobile and the vibration due to an earthquake or the like is required for a shock absorber for a house. For example, in an automobile shock absorber, a sliding bearing is called a bush in the shock absorber industry, and is a component that slides with a piston rod. By optimizing the friction characteristics at the sliding parts such as between the piston rod and bushing and between the inner tube and piston ring, the ride quality of the automobile is controlled and the friction and wear of the parts are prevented, resulting in durability. It will be.

滑り軸受け、ピストンリング等の摺動箇所を伴う部品が組み込まれる緩衝器、変速機等の駆動系機器に用いられる潤滑油組成物には、とりわけ摺動箇所を潤滑する性能として、耐摩耗性が求められる。このような性能を有する潤滑油組成物として、例えば、基油にジアルキルジチオリン酸亜鉛(ZnDTP)等の耐摩耗剤等を配合した潤滑油組成物、また潤滑油基油にジオレイルハイドロジェンホスファイト、ジラウリルハイドロジェンホスファイト等の酸性亜リン酸ジエステル等を配合してなる自動車緩衝器用潤滑油組成物が提案されている(例えば、特許文献1参照)。   Lubricating oil compositions used in drive system equipment such as shock absorbers, transmissions and the like in which parts with sliding parts such as sliding bearings and piston rings are incorporated have wear resistance particularly as a performance to lubricate sliding parts. Desired. As a lubricating oil composition having such performance, for example, a lubricating oil composition in which an antiwear agent such as zinc dialkyldithiophosphate (ZnDTP) is blended with a base oil, or a dioleyl hydrogen phosphite is blended with a lubricating base oil. In addition, a lubricating oil composition for automobile shock absorbers has been proposed (see, for example, Patent Document 1) containing an acidic phosphite diester such as dilauryl hydrogen phosphite.

特開2003−147379号公報JP 2003-147379 A

ところで、滑り軸受け、ピストンリング等の部品に自己潤滑性を有するポリテトラフルオロエチレン(以下、「PTFE」と称することがある。)素材が用いられることがあり、例えば、青銅焼結材にPTFEコーティングされた滑り軸受け、PTFE素材製のピストンリング等が存在する。PTFE素材は、それ自体が柔らかい材料であることから、ガラス繊維、グラファイト、カーボン繊維といった強化材が配合されており、摺動箇所においてこれらの強化材に起因した摩耗により、駆動系機器の耐久性が低下するといった問題が生じる場合がある。耐久性の低下は、例えば強化材としてガラス繊維が配合されたPTFE素材のピストンリングに接するインナーチューブ上に摺動方向に生じる摩耗による摩耗量の増加に伴い、摺動箇所の隙間が広くなることで、減衰性能が低下し、結果として緩衝器の性能が損なわれることで発生する。よって、緩衝器等の駆動系機器の耐久性を向上させるには、潤滑油組成物の耐摩耗性を向上させて、摺動箇所における摩耗痕の発生を抑制することが重要となる。   By the way, self-lubricating polytetrafluoroethylene (hereinafter sometimes referred to as “PTFE”) material is sometimes used for parts such as a sliding bearing and a piston ring. For example, a PTFE coating is applied to a bronze sintered material. There are a sliding bearing, a piston ring made of PTFE material, and the like. Since PTFE material itself is a soft material, reinforcing materials such as glass fiber, graphite, and carbon fiber are blended, and the durability of the drive system equipment due to wear caused by these reinforcing materials at the sliding portion. In some cases, a problem such as lowering may occur. The decrease in durability is, for example, that the gap between the sliding portions becomes wider as the wear amount increases due to wear in the sliding direction on the inner tube contacting the piston ring made of PTFE mixed with glass fiber as a reinforcing material. Therefore, the damping performance is lowered, and as a result, the performance of the shock absorber is impaired. Therefore, in order to improve the durability of a drive system device such as a shock absorber, it is important to improve the wear resistance of the lubricating oil composition and suppress the occurrence of wear marks at the sliding portion.

駆動系機器における摺動箇所の潤滑には、金属間の潤滑とともに、PTFE素材を用いた部品の摺動箇所における潤滑、すなわち強化材を含むPTFE素材と金属との潤滑が存在する。また、滑り軸受け、ピストンリング等における摺動箇所の潤滑には、摺動箇所の中央部近傍におけるピストンロッド、インナーチューブ等の部品が連続的に動いている状態における潤滑と、摺動箇所の端部における該部品が止まった状態から動き出す状態における潤滑と、主に二種類の潤滑が存在する。そのため、潤滑油組成物には、これらの異なる潤滑に対応し得る耐摩耗性が求められるようになっている。   The lubrication of the sliding part in the drive system equipment includes the lubrication between the metal and the sliding part of the part using the PTFE material, that is, the lubrication of the PTFE material including the reinforcing material and the metal. Also, lubrication of sliding parts such as sliding bearings, piston rings, etc. includes lubrication in the state where the piston rod, inner tube and other parts in the vicinity of the center of the sliding part are continuously moving, and the end of the sliding part. There are mainly two types of lubrication, lubrication in a state where the part starts moving from a stopped state. Therefore, the lubricating oil composition is required to have wear resistance that can cope with these different types of lubrication.

また、自動車の大型化(排気量増加)や性能向上に伴い、これらに用いられる潤滑油組成物には高い酸化安定性が求められている。トランスミッションは、マニュアルトランスミッションからオートマチックトランスミッション、ベルト式無段変速機、チェーン式無段式変速機、デュアルトランスミッション等の様々な新しいトランスミッションが開発されている。かかるトランスミッションに適合した潤滑油組成物を開発するために、数多くの添加剤を配合することが必要となる。添加剤を加えると一般的には酸化安定性が悪くなる傾向にあるため、酸化安定性を向上させる添加剤を加えるか、または酸化安定性を悪化させない添加剤を選択する必要がある。緩衝器用潤滑油組成物に用いる添加剤においても、その種類によっては酸化安定性を悪化させるものがあり、その場合には、酸化安定性を向上させる添加剤を加えるか、または酸化安定性を悪化させない添加剤を選択する必要がある。   In addition, with the increase in size of automobiles (increase in displacement) and performance improvement, lubricating oil compositions used for these are required to have high oxidation stability. Various new transmissions have been developed, including manual transmissions, automatic transmissions, belt-type continuously variable transmissions, chain-type continuously variable transmissions, and dual transmissions. In order to develop a lubricating oil composition suitable for such transmissions, it is necessary to incorporate a number of additives. When an additive is added, the oxidation stability generally tends to deteriorate, so it is necessary to add an additive that improves the oxidation stability or to select an additive that does not deteriorate the oxidation stability. Depending on the type of additive used in the lubricating oil composition for shock absorbers, there are those that deteriorate the oxidation stability. In that case, an additive that improves the oxidation stability is added, or the oxidation stability is deteriorated. It is necessary to select additives that are not allowed.

しかしながら、基油にジアルキルジチオリン酸亜鉛(ZnDTP)等の耐摩耗剤を配合した潤滑油組成物は、酸化安定性には効果を示すものの、耐摩耗性、とりわけ摺動端部におけるかじり痕についての耐摩耗性に劣るものである。また、特許文献1に記載されるジオレイルハイドロジェンホスファイト、ジラウリルハイドロジェンホスファイト等の酸性亜リン酸ジエステル等が配合される潤滑油組成物は、耐摩耗性には効果を示すものの、酸化安定性に劣るものである。このように、従来の潤滑油組成物では、耐摩耗性及び酸化安定性を高い次元で両立するものは存在していない状況にある。   However, a lubricating oil composition in which an antiwear agent such as zinc dialkyldithiophosphate (ZnDTP) is blended with a base oil is effective for oxidation stability, but it is resistant to wear resistance, particularly galling marks at the sliding end. It is inferior in wear resistance. Moreover, although the lubricating oil composition in which acidic phosphorous acid diesters such as dioleyl hydrogen phosphite and dilauryl hydrogen phosphite described in Patent Document 1 are blended has an effect on wear resistance, It is inferior in oxidation stability. As described above, there is no conventional lubricating oil composition that has a high level of both wear resistance and oxidation stability.

本発明は、上記事情に鑑みてなされたものであり、耐摩耗性及び酸化安定性に優れた潤滑油組成物及びその製造方法、該潤滑油組成物を用いた駆動系機器の潤滑方法並びに駆動系機器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a lubricating oil composition having excellent wear resistance and oxidation stability, a method for producing the same, a method for lubricating a drive system device using the lubricating oil composition, and driving The purpose is to provide system equipment.

本発明者らは、上記課題に鑑みて鋭意検討の結果、下記の発明により上記課題を解決できることを見出した。すなわち、本発明は、下記の構成を有する優れた潤滑油組成物及びその製造方法、該潤滑油組成物を用いた駆動系機器の潤滑方法並びに駆動系機器を提供するものである。   As a result of intensive studies in view of the above problems, the present inventors have found that the above problems can be solved by the following invention. That is, this invention provides the outstanding lubricating oil composition which has the following structure, its manufacturing method, the lubricating method of a drive system apparatus using this lubricating oil composition, and a drive system apparatus.

1.基油と、下記一般式(1)で表されるリン含有化合物と、を含有する潤滑油組成物。 1. A lubricating oil composition comprising a base oil and a phosphorus-containing compound represented by the following general formula (1).


(一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。)
2.基油と、下記一般式(1)で表されるリン含有化合物と、を配合する潤滑油組成物の製造方法。

(In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 represents Indicates an integer of 1 or 2.)
2. The manufacturing method of the lubricating oil composition which mix | blends base oil and the phosphorus containing compound represented by following General formula (1).


(一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。)
3.上記1に記載の潤滑油組成物を用いた駆動系機器の潤滑方法。
4.上記1に記載の潤滑油組成物を用いた駆動系機器。

(In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 represents Indicates an integer of 1 or 2.)
3. A method for lubricating a drive system device using the lubricating oil composition described in 1 above.
4). A drive system device using the lubricating oil composition described in 1 above.

本発明によれば、耐摩耗性及び酸化安定性に優れた潤滑油組成物及びその製造方法、該潤滑油組成物を用いた駆動系機器の潤滑方法並びに駆動系機器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lubricating oil composition excellent in abrasion resistance and oxidation stability, its manufacturing method, the lubricating method of a drive system apparatus using this lubricating oil composition, and a drive system apparatus can be provided.

以下、本発明の実施形態(以後、単に「本実施形態」と称する場合がある。)について説明する。なお、本明細書中において、数値範囲の記載に関する「以上」、「以下」及び「〜」に係る数値は任意に組み合わせできる数値である。   Hereinafter, an embodiment of the present invention (hereinafter simply referred to as “this embodiment”) will be described. In addition, in this specification, the numerical value concerning "above", "below", and "-" regarding description of a numerical range is a numerical value which can be combined arbitrarily.

[潤滑油組成物]
本実施形態の潤滑油組成物は、基油と、下記一般式(1)で表されるリン含有化合物とを含有するものである。以下、本実施形態の潤滑油組成物が含有し得る成分について具体的に説明する。
[Lubricating oil composition]
The lubricating oil composition of the present embodiment contains a base oil and a phosphorus-containing compound represented by the following general formula (1). Hereinafter, components that can be contained in the lubricating oil composition of the present embodiment will be specifically described.


(一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。)

(In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 represents Indicates an integer of 1 or 2.)

(リン含有化合物)
本実施形態の潤滑油組成物は、下記一般式(1)で表されるリン含有化合物(以下、単に「リン含有化合物」と称することがある。)を含有することを要する。本実施形態の潤滑油組成物がリン含有化合物を含有しないと、優れた耐摩耗性及び酸化安定性を同時に得られない。ここで、耐摩耗性には、摺動箇所の中央部近傍における潤滑に対する耐摩耗性(摩耗痕の発生抑制性能)と、摺動箇所の端部における潤滑に対する耐摩耗性(かじり痕の発生抑制性能)との両方が含まれる。また、耐摩耗性が優れているとは、摺動箇所に係る材質によらず、すなわち摺動箇所に係る材質が金属−金属に限られず、強化材が配合されたPTFE素材−金属であっても、摩耗痕の発生抑制性能とかじり痕の発生抑制性能とに優れていることを意味する。よって、本実施形態の潤滑油組成物は、上記リン含有化合物を含有することにより、摺動箇所に係る材質によらず、性質の異なる二つの痕の発生抑制性能、すなわち摩耗痕及びかじり痕の発生抑制性能を同時に発現する優れた耐摩耗性とともに、酸化安定性をも有するものとなり得る。
(Phosphorus-containing compound)
The lubricating oil composition of this embodiment is required to contain a phosphorus-containing compound represented by the following general formula (1) (hereinafter sometimes simply referred to as “phosphorus-containing compound”). If the lubricating oil composition of the present embodiment does not contain a phosphorus-containing compound, excellent wear resistance and oxidation stability cannot be obtained at the same time. Here, in terms of wear resistance, the wear resistance to lubrication near the center of the sliding part (the ability to suppress wear marks) and the wear resistance to lubrication at the end of the sliding part (to suppress the occurrence of galling marks) Performance) and both. Further, the excellent wear resistance is not limited to the material related to the sliding part, that is, the material related to the sliding part is not limited to metal-metal, but is a PTFE material-metal mixed with a reinforcing material. Also means excellent wear scar generation suppression performance and galling scar generation suppression performance. Therefore, the lubricating oil composition of the present embodiment contains the above phosphorus-containing compound, so that it does not depend on the material related to the sliding part, and the performance of suppressing the occurrence of two marks having different properties, i.e., wear marks and galling marks. In addition to excellent wear resistance that simultaneously exhibits generation suppression performance, it can also have oxidation stability.

一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。 In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 is 1 Or the integer of 2 is shown.

11の1価の炭化水素基としては、耐摩耗性及び酸化安定性を向上させる観点から、アルキル基、アルケニル基、シクロアルキル基、アリール基等が好ましく挙げられ、アルキル基、アルケニル基、シクロアルキル基の脂肪族炭化水素基がより好ましく、アルキル基、アルケニル基が更に好ましく、特にアルキル基が好ましい。これらの1価の炭化水素基がアルキル基、アルケニル基の場合は直鎖状、分岐状のいずれであってもよいが、耐摩耗性及び酸化安定性を向上させる観点から、分岐状のものが好ましい。また、シクロアルキル基、アリール基は例えばデカリル基、ナフチル基、ビシクロ環を有する基等の多環式の基であってもよい。 As the monovalent hydrocarbon group for R 11 , an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and the like are preferable from the viewpoint of improving wear resistance and oxidation stability. An aliphatic hydrocarbon group of an alkyl group is more preferable, an alkyl group or an alkenyl group is further preferable, and an alkyl group is particularly preferable. When these monovalent hydrocarbon groups are alkyl groups or alkenyl groups, they may be either linear or branched, but from the viewpoint of improving wear resistance and oxidation stability, branched ones may be used. preferable. In addition, the cycloalkyl group and the aryl group may be a polycyclic group such as a decalyl group, a naphthyl group, or a group having a bicyclo ring.

これらの1価の炭化水素基は、水酸基、カルボキシ基、アミノ基、アミド基、ニトロ基、シアノ基等の酸素原子及び/又は窒素原子を含む置換基を有するもの、また窒素原子、酸素原子、ハロゲン原子等により一部が置換されたものであってもよく、1価の炭化水素基がシクロアルキル基、アリール基の場合は更にアルキル基、アルケニル基等の置換基を有していてもよい。
また、n11が2の場合、複数のR11の1価の炭化水素基は同じでも異なっていてもよく、耐摩耗性及び酸化安定性を向上させる観点、また入手容易性を考慮すると、同じであることが好ましい。
These monovalent hydrocarbon groups are those having a substituent containing an oxygen atom and / or a nitrogen atom such as a hydroxyl group, a carboxy group, an amino group, an amide group, a nitro group, a cyano group, a nitrogen atom, an oxygen atom, It may be partially substituted with a halogen atom or the like, and when the monovalent hydrocarbon group is a cycloalkyl group or an aryl group, it may further have a substituent such as an alkyl group or an alkenyl group. .
In addition, when n 11 is 2, a plurality of R 11 monovalent hydrocarbon groups may be the same or different, and are the same from the viewpoint of improving wear resistance and oxidation stability and availability. It is preferable that

11の1価の炭化水素基の炭素数は、後述するX11が−R12OHで表される水酸基を含む有機基である場合であって、1価の炭化水素基がアルキル基の場合、耐摩耗性及び酸化安定性を向上させる観点から、好ましくは3以上、より好ましくは4以上、更に好ましくは6以上であり、上限として好ましくは20以下、より好ましくは16以下、更に好ましくは10以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上、より好ましくは3以上、更に好ましくは6以上であり、上限として好ましくは20以下、より好ましくは16以下、更に好ましくは10以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 The number of carbon atoms of the monovalent hydrocarbon group R 11 is a case where an organic group containing a hydroxyl group X 11 to be described later is represented by -R 12 OH, when the monovalent hydrocarbon group is an alkyl group From the viewpoint of improving wear resistance and oxidation stability, it is preferably 3 or more, more preferably 4 or more, still more preferably 6 or more, and the upper limit is preferably 20 or less, more preferably 16 or less, and still more preferably 10 When the monovalent hydrocarbon is an alkenyl group, it is preferably 2 or more, more preferably 3 or more, still more preferably 6 or more, and the upper limit is preferably 20 or less, more preferably 16 or less, still more preferably 10 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.

11の1価の炭化水素基の炭素数は、後述するX11が−OR13で表される有機基である場合であって、1価の炭化水素基がアルキル基の場合、耐摩耗性及び酸化安定性を向上させる観点から、好ましくは1以上であり、上限として好ましくは12以下、より好ましくは6以下、更に好ましくは3以下であり、1価の炭化水素がアルケニル基の場合、好ましくは2以上であり、上限として好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 The carbon number of the monovalent hydrocarbon group of R 11 is the case where X 11 described later is an organic group represented by —OR 13 , and when the monovalent hydrocarbon group is an alkyl group, the wear resistance From the viewpoint of improving oxidation stability, it is preferably 1 or more, and the upper limit is preferably 12 or less, more preferably 6 or less, still more preferably 3 or less, preferably when the monovalent hydrocarbon is an alkenyl group. Is 2 or more, and the upper limit is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.

11は酸素原子を含み、かつ炭素数1以上30以下の有機基を示す。一般式(1)で表されるように、本実施形態で用いられるリン含有化合物は、リン原子に連結する全ての基が酸素原子を含む有機基である(二重結合を介して結合する酸素原子を除く。)という構造を有している。このような構造を有するリン含有化合物を用いることで、優れた耐摩耗性及び酸化安定性が得られる。
また、X11について、X11が酸素原子を含み、かつ炭素数1以上30以下の有機基でないと、優れた酸化安定性が得られず、またリン原子に二重結合を介して連結する酸素原子を有しないと、優れた酸化安定性が得られない。
X 11 represents an organic group containing an oxygen atom and having 1 to 30 carbon atoms. As represented by the general formula (1), the phosphorus-containing compound used in the present embodiment is an organic group in which all groups linked to the phosphorus atom include oxygen atoms (oxygen bonded through a double bond). (Excluding atoms). By using a phosphorus-containing compound having such a structure, excellent wear resistance and oxidation stability can be obtained.
Further, the X 11, oxygen X 11 comprises an oxygen atom, and unless an organic group having 1 to 30 carbon atoms, can not be obtained excellent oxidation stability, also be linked via a double bond to the phosphorus atom Without an atom, excellent oxidation stability cannot be obtained.

11の酸素原子を含み、かつ炭素数1以上30以下の有機基としては、耐摩耗性及び酸化安定性を向上させる観点から、例えば−R12OH(R12は炭素数1以上30以下の2価の炭化水素基を示す。)で表される水酸基を含む有機基(以下、単に「水酸基を含む有機基」と称することがある。)、−OR13(R13は炭素数1以上30以下の1価の炭化水素基を示す。)で表される有機基(以下、「ヒドロカルビルオキシ基」と称することがある。)、−R14−O−R15(R14は炭素数1以上30以下の2価の炭化水素基を示し、R15は炭素数1以上30以下の1価の炭化水素基を示す。)で表されるエーテル結合を有する有機基が好ましく挙げられる。中でも、水酸基を含む有機基、ヒドロカルビルオキシ基が好ましく、更に優れた耐摩耗性を得ようとする場合は水酸基を含む有機基が好ましく、更に優れた酸化安定性を得ようとする場合はヒドロカルビルオキシ基が好ましい。 The organic group containing an oxygen atom of X 11 and having 1 to 30 carbon atoms is, for example, —R 12 OH (R 12 has 1 to 30 carbon atoms) from the viewpoint of improving wear resistance and oxidation stability. An organic group containing a hydroxyl group represented by (hereinafter, referred to simply as “an organic group containing a hydroxyl group”), —OR 13 (R 13 has 1 to 30 carbon atoms). An organic group represented by the following monovalent hydrocarbon group (hereinafter sometimes referred to as a “hydrocarbyloxy group”), —R 14 —O—R 15 (R 14 has 1 or more carbon atoms) Preferable is an organic group having an ether bond represented by a divalent hydrocarbon group having 30 or less and R 15 is a monovalent hydrocarbon group having 1 to 30 carbon atoms. Among them, an organic group containing a hydroxyl group and a hydrocarbyloxy group are preferable. An organic group containing a hydroxyl group is preferable when it is desired to obtain further excellent wear resistance. Groups are preferred.

11の有機基の−R12OHにおいて、R12は炭素数1以上30以下の2価の炭化水素基を示し、またX11の有機基の−OR13において、R13は炭素数1以上30以下の1価の炭化水素基を示す。
11が1の場合、複数のX11の有機基は同じでも異なっていてもよく、耐摩耗性及び酸化安定性を向上させる観点、また入手容易性を考慮すると、同じであることが好ましい。また、X11の有機基がヒドロカルビルオキシ基である場合、リン原子に連結する三つのヒドロカルビルオキシ基は同じでも異なっていてもよく、耐摩耗性及び酸化安定性を向上させる観点、また入手容易性を考慮すると、同じであることが好ましい。
In —R 12 OH of the organic group of X 11 , R 12 represents a divalent hydrocarbon group having 1 to 30 carbon atoms, and in —OR 13 of the organic group of X 11 , R 13 is 1 or more carbon atoms. 30 or less monovalent hydrocarbon groups are shown.
When n 11 is 1, the plurality of organic groups of X 11 may be the same or different, and are preferably the same from the viewpoint of improving wear resistance and oxidation stability and availability. In addition, when the organic group of X 11 is a hydrocarbyloxy group, the three hydrocarbyloxy groups linked to the phosphorus atom may be the same or different. From the viewpoint of improving wear resistance and oxidation stability, and availability. Are preferably the same.

12の2価の炭化水素基としては、上記R11の1価の炭化水素基として例示した基より水素原子を1つ除いた基、すなわちアルキレン基、アルケニレン基、シクロアルキレン基、アリーレン基等が好ましく挙げられる。中でも、耐摩耗性及び酸化安定性を向上させる観点から、アルキレン基、アルケニレン基が好ましく、アルキレン基がより好ましい。また、アルキレン基、アルケニレン基は直鎖状、分岐状のいずれであってもよいが、耐摩耗性及び酸化安定性を向上させる観点から、直鎖状のものが好ましい。 Examples of the divalent hydrocarbon group for R 12 include groups in which one hydrogen atom has been removed from the groups exemplified as the monovalent hydrocarbon group for R 11 , that is, alkylene groups, alkenylene groups, cycloalkylene groups, arylene groups, and the like. Is preferred. Among these, from the viewpoint of improving wear resistance and oxidation stability, an alkylene group and an alkenylene group are preferable, and an alkylene group is more preferable. The alkylene group and alkenylene group may be either linear or branched, but are preferably linear from the viewpoint of improving wear resistance and oxidation stability.

12の2価の炭化水素基の炭素数は、耐摩耗性及び酸化安定性を向上させる観点から、2価の炭化水素基がアルキレン基の場合は好ましくは1以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは3以下、特に好ましくは2以下である。2価の炭化水素基がアルケニレン基の場合は好ましくは2以上であり、上限として好ましくは12以下、より好ましくは8以下、更に好ましくは3以下である。また、2価の炭化水素がシクロアルキレン基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリーレン基の場合、炭素数は好ましくは6以上20以下である。 The carbon number of the divalent hydrocarbon group of R 12 is preferably 1 or more when the divalent hydrocarbon group is an alkylene group from the viewpoint of improving wear resistance and oxidation stability, and preferably as an upper limit. It is 12 or less, more preferably 8 or less, still more preferably 3 or less, and particularly preferably 2 or less. When the divalent hydrocarbon group is an alkenylene group, the number is preferably 2 or more, and the upper limit is preferably 12 or less, more preferably 8 or less, and still more preferably 3 or less. When the divalent hydrocarbon is a cycloalkylene group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an arylene group, the carbon number is preferably 6 or more and 20 or less.

13の炭素数1以上30以下の1価の炭化水素基としては、耐摩耗性及び酸化安定性を向上させる観点から、上記R11の1価の炭化水素基として例示した基と同じものが好ましく挙げられる。中でも、耐摩耗性及び酸化安定性を向上させる観点から、アルキル基、アルケニル基が好ましく、アルケニル基がより好ましい。 Examples of the monovalent hydrocarbon group having 1 to 30 carbon atoms of R 13 include the same groups as those exemplified as the monovalent hydrocarbon group of R 11 from the viewpoint of improving wear resistance and oxidation stability. Preferably mentioned. Among these, from the viewpoint of improving wear resistance and oxidation stability, an alkyl group and an alkenyl group are preferable, and an alkenyl group is more preferable.

13の1価の炭化水素基の炭素数は、1価の炭化水素基がアルキル基の場合、耐摩耗性及び酸化安定性を向上させる観点から、好ましくは4以上、より好ましくは7以上、更に好ましくは12以上、より更に好ましくは16以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。1価の炭化水素がアルケニル基の場合、好ましくは4以上、より好ましくは7以上、更に好ましくは12以上、より更に好ましくは16以上であり、上限として好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。また、1価の炭化水素がシクロアルキル基の場合、炭素数は好ましくは5以上20以下であり、1価の炭化水素がアリール基の場合、炭素数は好ましくは6以上20以下である。 When the monovalent hydrocarbon group is an alkyl group, the carbon number of the monovalent hydrocarbon group for R 13 is preferably 4 or more, more preferably 7 or more, from the viewpoint of improving wear resistance and oxidation stability. More preferably, it is 12 or more, More preferably, it is 16 or more, As an upper limit, Preferably it is 24 or less, More preferably, it is 22 or less, More preferably, it is 20 or less. When the monovalent hydrocarbon is an alkenyl group, it is preferably 4 or more, more preferably 7 or more, still more preferably 12 or more, still more preferably 16 or more, and the upper limit is preferably 24 or less, more preferably 22 or less, More preferably, it is 20 or less. When the monovalent hydrocarbon is a cycloalkyl group, the carbon number is preferably 5 or more and 20 or less, and when the monovalent hydrocarbon is an aryl group, the carbon number is preferably 6 or more and 20 or less.

また、R14の2価の炭化水素基としては、上記R12の2価の炭化水素基として例示したものが好ましく挙げられ、またR15の1価の炭化水素基としては、上記R13の1価の炭化水素基として例示したものが好ましく挙げられる。 The divalent hydrocarbon group R 14, those exemplified as the divalent hydrocarbon groups of R 12 are preferably exemplified, and as the monovalent hydrocarbon group of R 15, the R 13 What was illustrated as a monovalent hydrocarbon group is mentioned preferably.

11が水酸基を含む有機基であり、かつn11が1の場合、リン含有化合物はリン原子に1つのヒドロカルビルオキシ基と2つの水酸基を含む有機基とが連結した構造を有するホスフィン酸エステルとなり、n11が2の場合は2つのヒドロカルビルオキシ基と1つの水酸基を含む有機基とが連結した構造を有するホスホン酸エステルとなる。
11が水酸基を含む有機基である場合、n11は1又は2のいずれであってもよいが、耐摩耗性及び酸化安定性を向上させる観点から、n11は2であることが好ましい、すなわち、X11が水酸基を含む有機基である場合、リン含有化合物はヒドロカルビルオキシ基を二つ有し、一つの水酸基を含む有機基を有するホスホン酸エステルであることが好ましい。またこの場合、耐摩耗性及び酸化安定性を向上させる観点から、R11の炭素数がR12の炭素数よりも多いことが好ましい。
When X 11 is an organic group containing a hydroxyl group and n 11 is 1, the phosphorus-containing compound becomes a phosphinic acid ester having a structure in which one hydrocarbyloxy group and two organic groups containing a hydroxyl group are linked to a phosphorus atom. , N 11 is 2, it becomes a phosphonic acid ester having a structure in which two hydrocarbyloxy groups and an organic group containing one hydroxyl group are linked.
When X 11 is an organic group containing a hydroxyl group, n 11 may be either 1 or 2, but from the viewpoint of improving wear resistance and oxidation stability, n 11 is preferably 2. That is, when X 11 is an organic group containing a hydroxyl group, the phosphorus-containing compound is preferably a phosphonic acid ester having two hydrocarbyloxy groups and an organic group containing one hydroxyl group. In this case, from the viewpoint of improving wear resistance and oxidation stability, it is preferable that the carbon number of R 11 is larger than the carbon number of R 12 .

また、X11がヒドロカルビルオキシ基である場合、リン含有化合物はリン原子に三つのヒドロカルビルオキシ基が連結した構造を有するもの(リン酸エステル)となる。この場合、n11は1又は2のいずれであってもよいが、n11が2であり、R13の炭素数がR11の炭素数よりも多いことが好ましい。 When X 11 is a hydrocarbyloxy group, the phosphorus-containing compound has a structure in which three hydrocarbyloxy groups are linked to a phosphorus atom (phosphate ester). In this case, n 11 may be either 1 or 2, but it is preferable that n 11 is 2 and R 13 has more carbon atoms than R 11 .

一般式(1)で表されるリン含有化合物としては、一つのヒドロカルビルオキシ基及び二つの水酸基を含む有機基を有するホスフィン酸エステル、二つのヒドロオカルビルオキシ基及び一つの水酸基を含む有機基を有するホスホン酸エステル、三つのヒドロカルビルオキシ基を有するリン酸エステルが挙げられ、耐摩耗性及び酸化安定性を向上させる観点から、二つのヒドロオカルビルオキシ基及び一つの水酸基を含む有機基を有するホスホン酸エステル、三つのヒドロカルビルオキシ基を有するリン酸エステルが好ましく、中でも、更に優れた耐摩耗性を得ようとする場合はホスホン酸エステルが好ましく、更に優れた酸化安定性を得ようとする場合はリン酸エステルが好ましい。   The phosphorus-containing compound represented by the general formula (1) includes a phosphinic acid ester having an organic group containing one hydrocarbyloxy group and two hydroxyl groups, an organic group containing two hydroocarbyloxy groups and one hydroxyl group. Phosphonic acid esters having three hydrocarbyloxy groups, and phosphones having two hydroocarbyloxy groups and an organic group containing one hydroxyl group from the viewpoint of improving wear resistance and oxidation stability. An acid ester and a phosphate ester having three hydrocarbyloxy groups are preferred. Among them, a phosphonic acid ester is preferred when it is desired to obtain further superior wear resistance, and a further superior oxidation stability is desired. Phosphate esters are preferred.

本実施形態において、リン含有化合物としてホスフィン酸エステル、ホスホン酸エステル、リン酸エステルのいずれとするかは、所望の性能に応じて選択すればよい。また、リン含有化合物としては、一種のホスフィン酸エステル、ホスホン酸エステル、リン酸エステルを用いてもよいし、複数のホスフィン酸エステル、ホスホン酸エステル、リン酸エステルを用いてもよいし、これらを組み合わせて用いてもよい。   In the present embodiment, the phosphorous compound may be selected from phosphinic acid ester, phosphonic acid ester, and phosphoric acid ester according to desired performance. As the phosphorus-containing compound, a kind of phosphinic acid ester, phosphonic acid ester, and phosphoric acid ester may be used, or a plurality of phosphinic acid esters, phosphonic acid esters, and phosphoric acid esters may be used. You may use it in combination.

リン含有化合物の組成物全量基準の含有量は、耐摩耗性及び酸化安定性をより向上させる観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、上限として好ましくは3.0質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.0質量%以下である。   The content of the phosphorus-containing compound based on the total amount of the composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0, from the viewpoint of further improving the wear resistance and oxidation stability. The upper limit is preferably 3.0% by mass or less, more preferably 2.0% by mass or less, and still more preferably 1.0% by mass or less.

(基油)
本実施形態の潤滑油組成物に含まれる基油としては、鉱油、合成油のいずれであってもよい。
鉱油としては、パラフィン基系、ナフテン基系、中間基系の原油を常圧蒸留して得られる常圧残油;該常圧残油を減圧蒸留して得られた留出油;該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等のうちの1つ以上の処理を行って精製した鉱油、例えば、軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油、ブライトストック、またフィッシャー・トロプシュ法等により製造されるワックス(GTLワックス)を異性化することで得られる鉱油等が挙げられる。
また、鉱油としては、API(米国石油協会)の基油カテゴリーにおいて、グループ1、2、3のいずれに分類されるものでもよいが、スラッジ生成をより抑制することができる観点から、グループ2、3に分類されるものが好ましい。
(Base oil)
The base oil contained in the lubricating oil composition of the present embodiment may be either mineral oil or synthetic oil.
Mineral oil includes atmospheric residual oil obtained by atmospheric distillation of paraffinic, naphthenic and intermediate-based crude oil; distillate obtained by vacuum distillation of the atmospheric residual oil; Mineral oil refined by subjecting the oil to one or more of solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, etc., for example, light neutral oil, medium neutral oil Examples thereof include mineral oils obtained by isomerizing oils, heavy neutral oils, bright stocks, and waxes (GTL waxes) produced by the Fischer-Tropsch process or the like.
Further, the mineral oil may be classified into any of groups 1, 2, and 3 in the API (American Petroleum Institute) base oil category, but from the viewpoint of further suppressing sludge formation, Those classified into 3 are preferred.

合成油としては、例えば、ポリブテン、エチレン−α−オレフィン共重合体、α−オレフィン単独重合体又は共重合体等のポリα−オレフィン類;ポリオールエステル、二塩基酸エステル、リン酸エステル等の各種エステル油;ポリフェニルエーテル等の各種エーテル;ポリグリコール;アルキルベンゼン;アルキルナフタレン等が挙げられる。   Synthetic oils include, for example, polyα-olefins such as polybutene, ethylene-α-olefin copolymer, α-olefin homopolymer or copolymer; various types such as polyol ester, dibasic acid ester, and phosphate ester. Examples include ester oils; various ethers such as polyphenyl ether; polyglycols; alkyl benzenes;

本実施形態においては、基油は、少なくとも一種の鉱油、少なくとも一種の合成油、又は少なくとも一種の鉱油と少なくとも一種の合成油とを混合した混合油でもよい。本実施形態においては、安価であり、より優れた粘度特性を得る観点から、鉱油が好ましい。   In the present embodiment, the base oil may be at least one mineral oil, at least one synthetic oil, or a mixed oil obtained by mixing at least one mineral oil and at least one synthetic oil. In the present embodiment, mineral oil is preferable from the viewpoint of being inexpensive and obtaining more excellent viscosity characteristics.

基油の粘度については特に制限はないが、高温時の焼付き防止の観点から、40℃動粘度は、3.0mm/s以上が好ましく、4.0mm/s以上がより好ましく、5.0mm/s以上が更に好ましい。また、低温流動性の確保の観点から、30.0mm/s以下が好ましく、20.0mm/s以下がより好ましく、10.0mm/s以下が更に好ましい。これと同様の観点から、基油の100℃動粘度は、1.0mm/s以上が好ましく、1.5mm/s以上がより好ましく、2.0mm/s以上が更に好ましい。また上限は、15.0mm/s以下が好ましく、10.0mm/s以下がより好ましく、5.0mm/s以下が更に好ましい。基油の粘度指数は、70以上が好ましく、71以上がより好ましく、72以上が更に好ましい。本明細書において、動粘度、及び粘度指数は、JIS K 2283:2000に準拠し、ガラス製毛管式粘度計を用いて測定した値である。基油の動粘度、粘度指数が上記範囲内であると、潤滑油組成物としてより適正な粘度特性を有するものとなり、また耐摩耗性及び酸化安定性が向上する。 The viscosity of the base oil is not particularly limited, but from the viewpoint of preventing seizure at high temperatures, the 40 ° C. kinematic viscosity is preferably 3.0 mm 2 / s or more, more preferably 4.0 mm 2 / s or more, 5 0.0 mm 2 / s or more is more preferable. From the viewpoint of securing low-temperature fluidity, is preferably from 30.0 mm 2 / s, more preferably not more than 20.0 mm 2 / s, more preferably not more than 10.0 mm 2 / s. From the same viewpoint as this, 100 ° C. kinematic viscosity of the base oil is preferably at least 1.0 mm 2 / s, more preferably at least 1.5 mm 2 / s, more preferably more than 2.0 mm 2 / s. The upper limit is preferably not more than 15.0 mm 2 / s, more preferably not more than 10.0 mm 2 / s, more preferably not more than 5.0 mm 2 / s. The viscosity index of the base oil is preferably 70 or more, more preferably 71 or more, and still more preferably 72 or more. In this specification, kinematic viscosity and viscosity index are values measured using a glass capillary viscometer in accordance with JIS K 2283: 2000. When the kinematic viscosity and the viscosity index of the base oil are within the above ranges, the lubricating oil composition has more appropriate viscosity characteristics, and wear resistance and oxidation stability are improved.

また、基油の15℃密度は、潤滑油組成物としてより適正な潤滑性能を発揮する観点から、好ましくは0.80g/cm以上、より好ましくは0.82g/cm以上、更に好ましくは0.83g/cm以上であり、上限として好ましくは0.95g/cm以下、より好ましくは0.93/cm以下、更に好ましくは0.88g/cm以下である。本明細書において、15℃密度は、JIS K2249:2011に準拠して測定した値である。 Further, the 15 ° C. density of the base oil is preferably 0.80 g / cm 3 or more, more preferably 0.82 g / cm 3 or more, and still more preferably, from the viewpoint of exerting more appropriate lubricating performance as the lubricating oil composition. and at 0.83 g / cm 3 or more, preferably the upper limit is 0.95 g / cm 3 or less, more preferably 0.93 / cm 3 or less, further preferably 0.88 g / cm 3 or less. In this specification, the 15 ° C. density is a value measured in accordance with JIS K2249: 2011.

基油の組成物全量基準の含有量は、潤滑油組成物としてより適正な粘度を有するものとし、また耐摩耗性及び酸化安定性を向上させる観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは85質量%以上である。また上限として好ましくは99.95質量%以下、より好ましくは99.9質量%以下であり、更に好ましくは99.5質量%以下である。   The content of the base oil composition based on the total amount is preferably 60% by mass or more, more preferably from the viewpoint of having a more appropriate viscosity as the lubricating oil composition and improving wear resistance and oxidation stability. It is 70 mass% or more, More preferably, it is 85 mass% or more. Further, the upper limit is preferably 99.95% by mass or less, more preferably 99.9% by mass or less, and further preferably 99.5% by mass or less.

(その他添加剤)
本実施形態の潤滑油組成物は、上記基油及びリン含有化合物を含むものであり、基油及びリン含有化合物からなるものであってもよいし、また、基油及びリン含有化合物以外に、例えば、粘度指数向上剤、分散剤、酸化防止剤、極圧剤、金属不活性化剤、消泡剤、摩擦低減剤、油性剤等のその他添加剤を含むものであってもよい。これらのその他添加剤は、単独で、又は複数種を組み合わせて用いることができる。
その他添加剤の合計含有量は、所望に応じて適宜決定すればよく、特に制限はないが、その他添加剤を添加する効果を考慮すると、組成物全量基準で、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、上限として好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
(Other additives)
The lubricating oil composition of the present embodiment contains the above base oil and phosphorus-containing compound, and may consist of the base oil and phosphorus-containing compound. In addition to the base oil and phosphorus-containing compound, For example, it may contain other additives such as a viscosity index improver, a dispersant, an antioxidant, an extreme pressure agent, a metal deactivator, an antifoaming agent, a friction reducing agent, and an oily agent. These other additives can be used alone or in combination of two or more.
The total content of other additives may be appropriately determined as desired, and is not particularly limited. However, in consideration of the effect of adding other additives, preferably 0.1% by mass or more based on the total amount of the composition. The upper limit is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.

粘度指数向上剤としては、例えば、質量平均分子量(Mw)が好ましくは500〜1,000,000、より好ましくは5,000〜800,000、更に好ましくは10,000〜700,000の非分散型ポリメタクリレート、分散型ポリメタクリレート等のポリメタクリレート;質量平均分子量(Mw)が好ましくは800〜300,000、より好ましくは10,000〜200,000、更に好ましくは20,000〜150,000のオレフィン系共重合体(例えば、エチレン−プロピレン共重合体等)、分散型オレフィン系共重合体、スチレン系共重合体(例えば、スチレン−ジエン共重合体、スチレン−イソプレン共重合体等)等の重合体;などが挙げられる。   As the viscosity index improver, for example, a non-dispersion having a mass average molecular weight (Mw) of preferably 500 to 1,000,000, more preferably 5,000 to 800,000, still more preferably 10,000 to 700,000. Type polymethacrylate, polymethacrylate such as dispersed polymethacrylate; the mass average molecular weight (Mw) is preferably 800 to 300,000, more preferably 10,000 to 200,000, still more preferably 20,000 to 150,000. Such as olefin copolymer (for example, ethylene-propylene copolymer), dispersed olefin copolymer, styrene copolymer (for example, styrene-diene copolymer, styrene-isoprene copolymer), etc. Polymer; and the like.

分散剤としては、例えば、ホウ素非含有コハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類等の無灰系分散剤が挙げられる。   Examples of the dispersant include monovalent or divalent compounds represented by boron-free succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic esters, fatty acids or succinic acid. Examples include ashless dispersants such as carboxylic acid amides.

酸化防止剤としては、例えば、ジフェニルアミン系酸化防止剤、ナフチルアミン系酸化防止剤等のアミン系酸化防止剤;モノフェノール系酸化防止剤、ジフェノール系酸化防止剤、ヒンダードフェノール系酸化防止剤等のフェノール系酸化防止剤;三酸化モリブデン及び/又はモリブデン酸とアミン化合物とを反応させてなるモリブデンアミン錯体等のモリブデン系酸化防止剤;などが挙げられる。   Examples of the antioxidant include amine-based antioxidants such as diphenylamine-based antioxidants and naphthylamine-based antioxidants; monophenol-based antioxidants, diphenol-based antioxidants, hindered phenol-based antioxidants, etc. Phenolic antioxidants; molybdenum trioxides and / or molybdenum antioxidants such as molybdenum amine complexes formed by reacting molybdic acid with amine compounds; and the like.

極圧剤としては、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チアジアゾール化合物、アルキルチオカルバモイル化合物、チオカーバメート化合物等の硫黄系極圧剤;ジアルキルチオカルバミン酸亜鉛(Zn−DTC)、ジアルキルチオカルバミン酸モリブデン(Mo−DTC)等の硫黄−窒素系極圧剤;ジアルキルジチオリン酸亜鉛(Zn−DTP)、ジアルキルジチオリン酸モリブデン(Mo−DTP)等の硫黄−リン系極圧剤;などが挙げられる。   As extreme pressure agents, sulfur-based extreme pressure agents such as sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiadiazole compounds, alkylthiocarbamoyl compounds, thiocarbamate compounds; zinc dialkylthiocarbamates (Zn-DTC) Sulfur-nitrogen extreme pressure agents such as molybdenum dialkylthiocarbamate (Mo-DTC); sulfur-phosphorus extreme pressure agents such as zinc dialkyldithiophosphate (Zn-DTP) and molybdenum dialkyldithiophosphate (Mo-DTP); Etc.

また、金属不活性化剤としては、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等が挙げられ、消泡剤としては、シリコーン油、フルオロシリコーン油等のシリコーン系消泡剤、フルオロアルキルエーテル等のエーテル系消泡剤が挙げられ、摩擦低減剤としては、例えば脂肪族アルコール、脂肪酸、脂肪酸エステル、脂肪族アミン、脂肪族アミン塩、脂肪族アミド等が挙げられ、また油性剤としてはグリセロールモノオレエート、グリセロールジオレエート等のグリセロールエステル等が挙げられる。   Examples of the metal deactivator include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds. Examples of the antifoaming agent include silicone antifoaming agents such as silicone oil and fluorosilicone oil, Ether-based antifoaming agents such as fluoroalkyl ethers can be mentioned, and examples of friction reducing agents include aliphatic alcohols, fatty acids, fatty acid esters, aliphatic amines, aliphatic amine salts, aliphatic amides, etc., and oily agents Examples thereof include glycerol esters such as glycerol monooleate and glycerol dioleate.

(潤滑油組成物の各種物性)
本実施形態の潤滑油組成物の40℃における動粘度は、高温時の焼付き防止及び低温流動性の確保の観点から、好ましくは3.0mm/s以上、より好ましくは4.0mm/s以上、更に好ましくは5.0mm/s以上であり、上限として好ましくは30.0mm/s以下、より好ましくは20.0mm/s以下、更に好ましくは10.0mm/s以下である。これと同様の観点から、本実施形態の潤滑油組成物の100℃における動粘度は、好ましくは1.0mm/s以上、より好ましくは1.5mm/s以上、更に好ましくは2.0mm/s以上であり、上限として好ましくは15.0mm/s以下、より好ましくは10.0mm/s以下、更に好ましくは5.0mm/s以下である。また、本実施形態の潤滑油組成物の粘度指数は、好ましくは70以上、より好ましくは71以上、更に好ましくは72以上である。
(Various physical properties of lubricating oil composition)
Kinematic viscosity at 40 ° C. of the lubricating oil composition of the present embodiment, from the viewpoint of anti-seizing and low temperature fluidity of securing at high temperatures, preferably 3.0 mm 2 / s or more, more preferably 4.0 mm 2 / s or more, more preferably at 5.0 mm 2 / s or more, upper limit is preferably 30.0 mm 2 / s or less, more preferably 20.0 mm 2 / s or less, more preferably 10.0 mm 2 / s or less is there. From the same viewpoint, the kinematic viscosity at 100 ° C. of the lubricating oil composition of the present embodiment is preferably 1.0 mm 2 / s or more, more preferably 1.5 mm 2 / s or more, and further preferably 2.0 mm. The upper limit is preferably 15.0 mm 2 / s or less, more preferably 10.0 mm 2 / s or less, and still more preferably 5.0 mm 2 / s or less. Further, the viscosity index of the lubricating oil composition of the present embodiment is preferably 70 or more, more preferably 71 or more, and further preferably 72 or more.

本実施形態の潤滑油組成物の摩耗痕幅は、0.55mm以下となることが好ましく、0.50mm以下となることがより好ましく、0.40mm以下となることが更に好ましい。また、かじり痕は発生しないことが好ましい。ここで、摩耗痕幅及びかじり痕は、実施例に記載される方法により測定されるものである。   The wear scar width of the lubricating oil composition of this embodiment is preferably 0.55 mm or less, more preferably 0.50 mm or less, and even more preferably 0.40 mm or less. Moreover, it is preferable that no galling mark is generated. Here, the wear scar width and the galling scar are measured by the method described in the examples.

また、本実施形態の潤滑油組成物の酸化安定性について、銅溶出量は少なければ少ないほど好ましく、具体的には、10.0質量ppm以下が好ましく、8.0質量ppm以下がより好ましく、3.0質量ppm以下が更に好ましい。鉄溶出量は少なければ少ないほど好ましく、具体的には、5.0質量ppm以下が好ましく、3.0質量ppm以下がより好ましく、1.0質量ppm以下が更に好ましい。
ラッカー度は1以下であることが好ましい。
n−ペンタンの不溶解分は少なければ少ないほど好ましく、具体的には、0.02質量%未満が好ましく、0.01質量%以下がより好ましく、0.005質量%以下が更に好ましい。
ミリポア値は少なければ少ないほど好ましく、具体的には、5.0mg/100ml未満が好ましく、3.0mg/100ml以下がより好ましく、2.0mg/100ml以下が更に好ましい。
また、40℃動粘度変化率は小さければ小さいほど好ましく、具体的には±1.0%未満が好ましく、±0.8%以下がより好ましく、±0.6%以下が更に好ましい。
上記銅溶出量、鉄溶出量、ラッカー度、n−ペンタンの不溶解分、ミリポア値及び40℃動粘度変化率は、実施例に記載される方法により決定されるものである。
Further, for the oxidation stability of the lubricating oil composition of the present embodiment, the smaller the copper elution amount, the more preferable. Specifically, 10.0 mass ppm or less is preferable, and 8.0 mass ppm or less is more preferable. 3.0 mass ppm or less is more preferable. The smaller the iron elution amount, the better. Specifically, 5.0 mass ppm or less is preferred, 3.0 mass ppm or less is more preferred, and 1.0 mass ppm or less is even more preferred.
The lacquer degree is preferably 1 or less.
The smaller the insoluble content of n-pentane, the better. More specifically, it is preferably less than 0.02% by mass, more preferably 0.01% by mass or less, and still more preferably 0.005% by mass or less.
The smaller the Millipore value, the better. Specifically, it is preferably less than 5.0 mg / 100 ml, more preferably 3.0 mg / 100 ml or less, and even more preferably 2.0 mg / 100 ml or less.
The rate of change in kinematic viscosity at 40 ° C. is preferably as small as possible. Specifically, it is preferably less than ± 1.0%, more preferably ± 0.8% or less, and even more preferably ± 0.6% or less.
The copper elution amount, iron elution amount, lacquer degree, insoluble content of n-pentane, millipore value, and 40 ° C. kinematic viscosity change rate are determined by the method described in the examples.

(潤滑油組成物の用途)
本実施形態の潤滑油組成物は、耐摩耗性及び酸化安定性に優れるものであるため、例えば、緩衝器、変速機、パワーステアリング等の駆動系機器用、エンジン用、油圧作動用、タービン用、圧縮機用、工作機械用、切削用、ギヤ用、流体軸受け用、転がり軸受け用等の様々な機器、部品等の用途に好適に用いられる。耐摩耗性及び酸化安定性に優れるという特徴を考慮すると、駆動系機器に用いられることが好ましく、緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に用いられることが好ましい。
また、優れた耐摩耗性を有効に活用する観点から、上記機器で、ガラス繊維、グラファイト、カーボン繊維といった強化材が配合されたポリテトラフルオロエチレン(PTFE)素材が用いられる部品を備える機器に好適に用いることができ、例えば青銅焼結材にPTFEコーティングされた滑り軸受け、PTFE素材製のピストンリング等が用いられる機器で、ピストンロッド−ブッシュ間、インナーチューブ−ピストンリング間の潤滑が必要となる駆動系機器、好ましくは緩衝器、中でも四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器に好適に用いられる。
(Use of lubricating oil composition)
Since the lubricating oil composition of the present embodiment is excellent in wear resistance and oxidation stability, for example, for drive system equipment such as a shock absorber, a transmission, and a power steering, for an engine, for hydraulic operation, for turbine It is suitably used for various devices and parts such as compressors, machine tools, cuttings, gears, fluid bearings, and rolling bearings. Considering the characteristics of excellent wear resistance and oxidation stability, it is preferably used for drive system equipment, and used for shock absorbers, especially automobile shock absorbers such as automobiles and motorcycles, especially automobile shock absorbers. It is preferred that
Also, from the viewpoint of effectively utilizing excellent wear resistance, the above equipment is suitable for equipment provided with parts using polytetrafluoroethylene (PTFE) material mixed with reinforcing materials such as glass fiber, graphite, and carbon fiber. For example, in equipment using a sliding bearing coated with PTFE on a bronze sintered material, a piston ring made of PTFE, etc., lubrication between the piston rod and bushing and between the inner tube and piston ring is required. It is suitably used for a drive system device, preferably a shock absorber, particularly a shock absorber for automobiles such as a four-wheeled vehicle and a two-wheeled vehicle, particularly a shock absorber for a four-wheeled vehicle.

[潤滑油組成物の製造方法]
本実施形態の潤滑油組成物の製造方法は、基油と、下記一般式(1)で表されるリン含有化合物と、を配合することを特徴とするものである。
[Method for producing lubricating oil composition]
The manufacturing method of the lubricating oil composition of this embodiment is characterized by blending a base oil and a phosphorus-containing compound represented by the following general formula (1).

一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。 In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 is 1 Or the integer of 2 is shown.

本実施形態の潤滑油組成物の製造方法において、基油、リン含有化合物は、本実施形態の潤滑油組成物に含まれるものとして説明したものと同じであり、これらの含有量は、本実施形態の潤滑油組成物における含有量として説明したものと同じである。また、本実施形態の潤滑油組成物の製造方法において、基油、リン含有化合物以外の成分、例えば本実施形態の潤滑油組成物に含み得る成分として説明したその他添加剤を配合してもよい。   In the manufacturing method of the lubricating oil composition of the present embodiment, the base oil and the phosphorus-containing compound are the same as those described as being included in the lubricating oil composition of the present embodiment, and the content thereof is It is the same as what was demonstrated as content in the lubricating oil composition of a form. In addition, in the method for producing the lubricating oil composition of the present embodiment, components other than the base oil and the phosphorus-containing compound, for example, other additives described as components that can be included in the lubricating oil composition of the present embodiment may be blended. .

潤滑油組成物を製造するに際し、基油とリン含有化合物との配合において、配合順序は特に制限はなく、どのような順序で配合してもよい。また、その他添加剤を配合する場合、その配合順序には特に制限はなく、例えば、その他添加剤として用いる各種添加剤を、基油とリン含有化合物とを配合したものに、逐次配合すればよい。   In producing the lubricating oil composition, the blending order of the base oil and the phosphorus-containing compound is not particularly limited, and may be blended in any order. Further, when other additives are blended, the blending order is not particularly limited. For example, various additives used as other additives may be blended sequentially into a blend of base oil and phosphorus-containing compound. .

[駆動系機器の潤滑方法]
本実施形態の駆動系機器の潤滑方法は、上記の本実施形態の潤滑油組成物を用いることを特徴とするものである。
上記の本実施形態の潤滑油組成物は、耐摩耗性及び酸化安定性に優れるものであるため、本実施形態の潤滑方法は、緩衝器、変速機、パワーステアリング等の駆動系機器、中でも緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器の潤滑に好適に採用することができる。これらの駆動系機器は、通常ガラス繊維、グラファイト、カーボン繊維といった強化材が配合されたポリテトラフルオロエチレン(PTFE)素材が用いられる部品、例えば青銅焼結材にPTFEコーティングされた滑り軸受け、PTFE素材製のピストンリング等の部品が備えられており、これらの部品における潤滑、より具体的には、ピストンロッド−ブッシュ間、インナーチューブ−ピストンリング間の潤滑が必要となる。本実施形態の潤滑油組成物を用いることで、これら部品の摺動箇所に係る材質によらず、すなわち摺動箇所に係る材質が金属−金属に限られず、PTFE素材−金属であっても、摩耗痕及びかじり痕の発生を抑制することができ、駆動系機器の耐久性を向上させることができる。よって、本実施形態の駆動系機器の潤滑方法は、駆動系機器の中でも、ポリテトラフルオロエチレンが用いられた部品を備える駆動系機器に特に好適に採用される。
[Lubrication method of drive system equipment]
The lubrication method of the drive system device of the present embodiment is characterized by using the lubricating oil composition of the present embodiment.
Since the lubricating oil composition of the present embodiment described above is excellent in wear resistance and oxidation stability, the lubricating method of the present embodiment is applied to drive system equipment such as a shock absorber, a transmission, and a power steering, particularly a buffer. It can be suitably used for lubricating a shock absorber for automobiles such as automobiles, especially automobiles such as automobiles and motorcycles, especially automobile automobile shock absorbers. These drive system devices are usually parts that use polytetrafluoroethylene (PTFE) material mixed with reinforcing materials such as glass fiber, graphite, and carbon fiber, such as sliding bearings coated with PTFE on bronze sintered material, PTFE material Parts such as made piston rings are provided, and lubrication in these parts, more specifically, between the piston rod and the bush and between the inner tube and the piston ring is required. By using the lubricating oil composition of this embodiment, regardless of the material related to the sliding part of these parts, that is, the material related to the sliding part is not limited to metal-metal, even if PTFE material-metal, Generation | occurrence | production of a wear trace and a galling trace can be suppressed and durability of a drive system apparatus can be improved. Therefore, the drive system lubrication method of the present embodiment is particularly preferably employed in drive system equipment including parts using polytetrafluoroethylene among the drive system equipment.

[駆動系機器]
本実施形態の駆動系機器は、上記本実施形態の潤滑油組成物を用いたものである。本実施形態の駆動系機器としては、緩衝器、変速機、パワーステアリング等の駆動系機器、中でも緩衝器、とりわけ四輪車、二輪車等の自動車用緩衝器、特に四輪車用緩衝器が好適に挙げられる。
上記の本実施形態の潤滑油組成物は、摺動箇所に係る材質が金属−金属に限られず、PTFE素材−金属であっても、摩耗痕及びかじり痕の発生を抑制できる、優れた耐摩耗性を有していることから、結果として本実施形態の駆動系機器は耐久性が高いものとなる。本実施形態の駆動系機器に用いられる潤滑油組成物の特徴を考慮すると、本実施形態の駆動系機器は、ガラス繊維、グラファイト、カーボン繊維といった強化材が配合されたポリテトラフルオロエチレン(PTFE)素材が用いられる部品、例えば青銅焼結材にPTFEコーティングされた滑り軸受け、PTFE素材製のピストンリング等の部品を備えるものであることが好ましい。
[Drive system equipment]
The drive system device of the present embodiment uses the lubricating oil composition of the present embodiment. As the drive system device of the present embodiment, a drive system device such as a shock absorber, a transmission, and a power steering, particularly a shock absorber, particularly a shock absorber for automobiles such as four-wheeled vehicles and two-wheeled vehicles, particularly a shock absorber for four-wheeled vehicles is suitable. It is mentioned in.
The lubricating oil composition of the present embodiment is not limited to metal-metal as the material related to the sliding part, and even if it is a PTFE material-metal, excellent wear resistance can suppress the generation of wear marks and galling marks. As a result, the drive system device of this embodiment has high durability. Considering the characteristics of the lubricating oil composition used in the drive system device of the present embodiment, the drive system device of the present embodiment includes polytetrafluoroethylene (PTFE) in which a reinforcing material such as glass fiber, graphite, and carbon fiber is blended. It is preferable to include parts such as a sliding bearing coated with PTFE on a bronze sintered material and a piston ring made of PTFE material.

次に、実施例により本発明をさらに具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited at all by these examples.

基油、潤滑油組成物の性状、性能の測定及び評価は以下の方法で行った。
(1)動粘度
JIS K 2283:2000に準拠し、40℃、100℃における動粘度を測定した。
(2)粘度指数(VI)
JIS K 2283:2000に準拠して測定した。
(3)15℃密度
JIS K2249:2011に準拠して測定した。
The properties and performance of the base oil and lubricating oil composition were measured and evaluated by the following methods.
(1) Kinematic viscosity Based on JISK2283: 2000, the kinematic viscosity in 40 degreeC and 100 degreeC was measured.
(2) Viscosity index (VI)
It measured based on JISK2283: 2000.
(3) Density at 15 ° C. Measured according to JIS K2249: 2011.

(4)耐摩耗性の評価(摩耗痕幅)
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、ボール・オン・ディスク型の往復動摩擦試験機(バウデン・レーベン式)使い、荷重29.4N、温度100℃、すべり速度50mm/s、ストローク10mm、時間30分で摩擦試験を行い、ディスク上の摩耗痕幅を測定した。ボールは、ガラス球(直径12mm)であり、ディスクは材質SPCC−SBである。摩耗痕幅が小さいほど、耐摩耗性に優れているといえる。
(5)耐摩耗性の評価(かじり痕)
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、上記(4)耐摩耗性の評価と同じ摩擦試験を行い、ディスク上の往復動させる端部におけるかじり痕の有無を目視にて確認した。かじり痕が無ければ、耐摩耗性に優れているといえる。
(4) Evaluation of wear resistance (wear scar width)
With respect to the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1, a ball-on-disk type reciprocating friction tester (Bowden-Leven type) was used, and the load was 29.4 N. A friction test was conducted at a temperature of 100 ° C., a sliding speed of 50 mm / s, a stroke of 10 mm, and a time of 30 minutes, and the wear scar width on the disk was measured. The balls are glass spheres (diameter 12 mm), and the disks are made of material SPCC-SB. It can be said that the smaller the wear scar width, the better the wear resistance.
(5) Evaluation of wear resistance (galling marks)
For the lubricating oil compositions of the examples and comparative examples obtained by mixing the components shown in Table 1, the same friction test as in the above (4) evaluation of wear resistance was performed, and the end of reciprocation on the disk The presence or absence of galling marks in the part was visually confirmed. If there is no galling mark, it can be said that the wear resistance is excellent.

(6)酸化安定性の評価
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、以下(a)〜(e)の試験を行い得られた、銅の溶出量(質量ppm)をA、鉄の溶出量(質量ppm)をB、ラッカー色評点をC、n−ペンタン不溶解分(質量%)をD、ミリポア値(mg/100ml)をE、及び40℃動粘度変化率(%)をFとして、Aは10.0質量ppm以下を、Bは5.0質量ppm以下を、Cは1以下を、Dは0.02質量%未満を、Eは5.0mg/100ml未満を、Fは±1.0%未満を合格とした。A〜Fの6項目についての合格数合格数について、以下の基準で評価し、酸化安定性の総合評価とした。評価1であれば合格とする。
1:A〜Fの6項目の全てが合格となった。
2:A〜Fの4つ以上5つ以下の項目で合格となった。
3:A〜Fの3つ以下の項目で合格となった。
(6) Evaluation of oxidation stability About the lubricating oil composition of each Example obtained by mixing each component of Table 1, and the comparative example, it obtained by conducting the following tests (a)-(e). , Copper elution amount (mass ppm) A, iron elution amount (mass ppm) B, lacquer color score C, n-pentane insoluble matter (mass%) D, millipore value (mg / 100 ml) E and 40 ° C kinematic viscosity change rate (%) as F, A is 10.0 mass ppm or less, B is 5.0 mass ppm or less, C is 1 or less, and D is less than 0.02 mass%. , E was less than 5.0 mg / 100 ml, and F was less than ± 1.0%. The number of passes for the six items A to F was evaluated according to the following criteria to obtain a comprehensive evaluation of oxidation stability. If it is evaluation 1, it will be a pass.
1: All six items of A to F passed.
2: Passed 4 to 5 items of A to F.
3: Passed 3 or less items of A to F.

(a)銅及び鉄の溶出量の測定
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、JIS K2514−1:2013に準拠するISOT試験にて、該潤滑油組成物に触媒である板状の鉄触媒及び銅触媒を加えて、試験温度120℃、試験時間24時間、撹拌速度1300rpmとして試料を劣化させた後、銅の溶出量(質量ppm)、及び鉄の溶出量(質量ppm)を測定した。銅の溶出量をAとし、鉄の溶出量をBとした。
(b)ラッカー度の測定
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物について、JIS K2514−1:2013に準拠する酸化試験を行い、評価見本(カラースケール)と比較してラッカー度を求め、Cとした。
(c)n−ペンタン不溶解分の測定
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物を試料油とし、上記(a)銅及び鉄の溶出量の測定で行ったISOT試験と同じ試験を行った後、n−ペンタン不溶解分(A法)(質量%)を測定した。n−ペンタン不溶解分(A法)(質量%)をDとした。
(d)ミリポア値の測定
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物を試料油とし、試料容器に、試料油300mlをシリンダ容器に入れ、触媒である板状の鉄触媒及び銅触媒を加え、空気吹き込み管によって空気を10L/hで吹き込みながら、150℃にて24時間加熱して、インディアナ酸化試験を行った。次いで、SAE−ARP−785−63:1996に準拠して、インディアナ酸化試験後の試料油300ml中の析出物をろ過採取(平均孔径:0.8μm)し、その質量をミリポア値(mg/100ml)として測定した。ミリポア値(mg/100ml)をEとした。
(e)40℃動粘度変化率の測定
表1に記載の各成分を混合して得られた各実施例及び比較例の潤滑油組成物を試料油とし、JASO M347−95に準拠し、超音波を60分間照射して得られた超音波処理品、及び未処理の試料油について、JIS K2283:2000に準拠して40℃動粘度を測定し、処理品の40℃動粘度をv、未処理品の40℃動粘度をvとしたときの低下率((v−v)/v×100)を40℃動粘度変化率とし、Fとした。
(A) Measurement of elution amounts of copper and iron The lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1 were subjected to an ISOT test in accordance with JIS K2514-1: 2013. Then, a plate-like iron catalyst and a copper catalyst, which are catalysts, were added to the lubricating oil composition to degrade the sample at a test temperature of 120 ° C., a test time of 24 hours, and a stirring speed of 1300 rpm. ppm) and the elution amount (mass ppm) of iron. The elution amount of copper was A, and the elution amount of iron was B.
(B) Measurement of Lacquer Degree Oxidation tests based on JIS K2514-1: 2013 are conducted on the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1, and an evaluation sample is obtained. The degree of lacquer was determined by comparing with (color scale) and designated as C.
(C) Measurement of n-pentane insoluble matter Using the lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1 as sample oils, (a) Elution of copper and iron After performing the same test as the ISOT test performed by measuring the amount, n-pentane insoluble matter (Method A) (mass%) was measured. n-pentane insoluble matter (Method A) (mass%) was defined as D.
(D) Measurement of Millipore Value Lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1 were used as sample oil, and 300 ml of sample oil was placed in a cylinder container. A plate-like iron catalyst and a copper catalyst as catalysts were added, and an Indiana oxidation test was performed by heating at 150 ° C. for 24 hours while blowing air at 10 L / h through an air blowing tube. Next, in accordance with SAE-ARP-785-63: 1996, the precipitate in 300 ml of sample oil after the Indiana oxidation test was collected by filtration (average pore size: 0.8 μm), and the mass was measured in millipore value (mg / 100 ml). ). E. Millipore value (mg / 100 ml).
(E) Measurement of Kinematic Viscosity Change Rate at 40 ° C. The lubricating oil compositions of Examples and Comparative Examples obtained by mixing the components shown in Table 1 were used as sample oils in accordance with JASO M347-95. The sonicated product obtained by irradiating the sonic wave for 60 minutes and the untreated sample oil were measured for 40 ° C. kinematic viscosity according to JIS K2283: 2000, and the treated product 40 ° C. kinematic viscosity was v 1 , The rate of decrease ((v 0 −v 1 ) / v 0 × 100) when the 40 ° C. kinematic viscosity of the untreated product was v 0 was defined as 40 ° C. kinematic viscosity change rate.

(実施例1、2、及び比較例1〜12の潤滑油組成物の調製)
下記表1に示す配合処方に従い配合して、潤滑油組成物を調製した。得られた各潤滑油組成物について、上記方法により測定した各性状及び性能の評価結果を表1に示す。
(Preparation of lubricating oil compositions of Examples 1 and 2 and Comparative Examples 1 to 12)
A lubricating oil composition was prepared by blending according to the blending formulation shown in Table 1 below. Table 1 shows the evaluation results of the properties and performances measured by the above methods for the obtained lubricating oil compositions.

本実施例で用いた表1に示される各成分の詳細は以下の通りである。
・基油:パラフィン系鉱油(40℃動粘度:8.386mm/s、100℃動粘度:2.300mm/s、粘度指数:78、15℃密度:0.8682g/cm
・リン含有化合物1:一般式(1)において、R11:2−エチルヘキシル基、X11:−R12OH(R12:メチレン基)、n11:2のホスホン酸エステル(ヒドロキシメチルホスホン酸ジ−2−エチルヘキシル)
・リン含有化合物2:一般式(1)において、R11:エチル基、X11:−OR13(R13:オレイル基)、n11:2のリン酸エステル(リン酸ジエチルオレイル)
・添加剤1:ジ−t−ブチルパラクレゾール(酸化防止剤)
・添加剤2:セスキオレイルアシッドホスフェート(モノオレイルアシッドホスフェートとジオレイルアシッドホスフェートとの混合物)
・添加剤3:酸性リン酸エステルのアミン塩(モノメチルアシッドホスフェートのアミン塩及びモノエチルアシッドホスフェートモノエチルの混合物)
・添加剤4:ジアルキルジチオリン酸亜鉛(第1級プロピル基、ブチル基及びヘキシル基含有)
・添加剤5:ジステアリルペンタエリスリトールジホスファイト
・添加剤6:ジアルキルジチオリン酸亜鉛(第2級プロピル基及びヘキシル基含有)
・添加剤7:3−(ジ−イソブトキシ−チオホスホリルスルファニル)−2−メチル−プロピオン酸
・添加剤8:2,5−ビス〔(1,1,3,3−テトラメチルブチル)ジチオ〕−1,3,4−チアジアゾール
・添加剤9:ジラウリルハイドロジェンホスファイト
・添加剤10:セスキラウリルハイドロジェンホスファイト(モノラウリルハイドロジェンホスファイトとジラウリルハイドロジェンホスファイトとの混合物、酸価:60mgKOH/g)
・添加剤11:セスキラウリルハイドロジェンホスファイト(モノラウリルハイドロジェンホスファイトとジラウリルハイドロジェンホスファイトとの混合物、酸価:70mgKOH/g)
・添加剤12:セスキラウリルハイドロジェンホスファイト(モノラウリルハイドロジェンホスファイトとジラウリルハイドロジェンホスファイトとの混合物、酸価:80mgKOH/g)
The details of each component shown in Table 1 used in this example are as follows.
Base oil: paraffinic mineral oil (40 ° C. kinematic viscosity: 8.386 mm 2 / s, 100 ° C. kinematic viscosity: 2.300 mm 2 / s, viscosity index: 78, 15 ° C. density: 0.8682 g / cm 3 )
Phosphorus-containing compound 1: Phosphonic acid ester (hydroxymethylphosphonic acid di--) of general formula (1): R 11 : 2-ethylhexyl group, X 11 : -R 12 OH (R 12 : methylene group), n 11 : 2 2-ethylhexyl)
Phosphorus-containing compound 2: In general formula (1), R 11 : ethyl group, X 11 : -OR 13 (R 13 : oleyl group), n 11 : 2 phosphate ester (diethyloleyl phosphate)
Additive 1: Di-t-butylparacresol (antioxidant)
Additive 2: Sesquioleyl acid phosphate (mixture of monooleyl acid phosphate and dioleyl acid phosphate)
Additive 3: Amine salt of acidic phosphate (mixture of amine salt of monomethyl acid phosphate and monoethyl acid phosphate monoethyl)
Additive 4: Zinc dialkyldithiophosphate (containing primary propyl group, butyl group and hexyl group)
Additive 5: Distearyl pentaerythritol diphosphite Additive 6: Zinc dialkyldithiophosphate (containing secondary propyl group and hexyl group)
Additive 7: 3- (Di-isobutoxy-thiophosphorylsulfanyl) -2-methyl-propionic acid Additive 8: 2,5-bis [(1,1,3,3-tetramethylbutyl) dithio]- 1,3,4-thiadiazole / additive 9: dilauryl hydrogen phosphite / additive 10: sesquilauryl hydrogen phosphite (mixture of monolauryl hydrogen phosphite and dilauryl hydrogen phosphite, acid value: 60mgKOH / g)
Additive 11: Sesquilauryl hydrogen phosphite (mixture of monolauryl hydrogen phosphite and dilauryl hydrogen phosphite, acid value: 70 mg KOH / g)
Additive 12: Sesquilauryl hydrogen phosphite (mixture of monolauryl hydrogen phosphite and dilauryl hydrogen phosphite, acid value: 80 mgKOH / g)

実施例1及び2の潤滑油組成物は、摩擦痕幅が0.55mm以下であり、かつかじり痕が発生せず、また銅溶出量が10.0質量ppm以下、鉄溶出量が5.0質量ppm以下、ラッカー度1以下、n−ペンタン不溶解分が0.02質量%未満、ミリポア値が5.0mg/100ml未満、かつ40℃動粘度変化率が±1.0%未満であることから、本実施形態の潤滑油組成物は優れた耐摩耗性及び酸化安定性を有するものであることが確認された。また、実施例1と2との対比から、リン含有化合物が水酸基を含む有機基を有するホスホン酸エステルであるとより優れた耐摩耗性が得られ、リン含有化合物がリン酸エステルであるとより優れた酸化安定性が得られることが分かる。   The lubricating oil compositions of Examples 1 and 2 have a friction mark width of 0.55 mm or less, no galling mark is generated, copper elution amount is 10.0 mass ppm or less, and iron elution amount is 5.0. Mass ppm or less, lacquer degree 1 or less, n-pentane insoluble content is less than 0.02 mass%, millipore value is less than 5.0 mg / 100 ml, and 40 ° C. kinematic viscosity change rate is less than ± 1.0%. From this, it was confirmed that the lubricating oil composition of the present embodiment has excellent wear resistance and oxidation stability. Further, in comparison with Examples 1 and 2, when the phosphorus-containing compound is a phosphonic acid ester having an organic group containing a hydroxyl group, more excellent wear resistance is obtained, and when the phosphorus-containing compound is a phosphoric acid ester, It can be seen that excellent oxidation stability is obtained.

一方、一般式(1)で表されるリン含有化合物を含まない比較例1〜12の潤滑油組成物は、耐摩耗性及び酸化劣化指数のいずれかの性能を満足することができず、優れた耐摩耗性及び酸化安定性を有するものとはいえないものであった。
また例えば、比較例4及び6の潤滑油組成物は、これまで耐摩耗剤として慣用されてきたジアルキルジチオリン酸亜鉛(ZnDTP)を含むものであるが、いずれもかじり痕が発生しており優れた耐摩耗性を有するものとはいえないものであった。比較例2の潤滑油組成物は、オレイルアシッドホスフェートを含むものであるが、水酸基がリン原子に連結している点で一般式(1)で表されるリン含有化合物と異なっており、優れた酸化安定性を有するものとはいえないものであった。比較例9〜12の潤滑油組成物は、ラウリルハイドロジェンホスファイトを含むものであるが、水素原子がリン原子に連結している点で一般式(1)で表されるリン含有化合物と異なっており、優れた酸化安定性を有するものとはいえないものであった。
また、比較例4、5及び6の結果から、耐摩耗性において、摩耗痕幅及びかじり痕の一方を満足させれば他方も満足するというものではないことが分かる。
On the other hand, the lubricating oil compositions of Comparative Examples 1 to 12 that do not contain the phosphorus-containing compound represented by the general formula (1) cannot satisfy any performance of wear resistance and oxidation degradation index, and are excellent. Further, it could not be said to have high wear resistance and oxidation stability.
Further, for example, the lubricating oil compositions of Comparative Examples 4 and 6 contain zinc dialkyldithiophosphate (ZnDTP), which has been conventionally used as an antiwear agent, both of which show galling marks and have excellent wear resistance. It could not be said to have a property. The lubricating oil composition of Comparative Example 2 contains oleyl acid phosphate, but is different from the phosphorus-containing compound represented by the general formula (1) in that the hydroxyl group is linked to the phosphorus atom, and has excellent oxidation stability. It could not be said to have a property. The lubricating oil compositions of Comparative Examples 9 to 12 contain lauryl hydrogen phosphite, but differ from the phosphorus-containing compound represented by the general formula (1) in that a hydrogen atom is connected to a phosphorus atom. It cannot be said that it has excellent oxidation stability.
Further, from the results of Comparative Examples 4, 5, and 6, it can be seen that in wear resistance, if one of the wear mark width and the galling mark is satisfied, the other is not satisfied.

以上、実施例及び比較例の結果から、本実施形態の潤滑油組成物は、特定のリン含有化合物を含有することで、耐摩耗性について、異なる性質の潤滑に対して優れた性能を発揮し得るだけでなく、酸化安定性にも優れたものであることが確認された。   As described above, from the results of Examples and Comparative Examples, the lubricating oil composition of the present embodiment exhibits excellent performance with respect to lubrication having different properties in terms of wear resistance by containing a specific phosphorus-containing compound. It was confirmed that it not only obtained but also excellent in oxidation stability.

Claims (15)

基油と、下記一般式(1)で表されるリン含有化合物と、を含有する潤滑油組成物。

(一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。)
A lubricating oil composition comprising a base oil and a phosphorus-containing compound represented by the following general formula (1).

(In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 represents Indicates an integer of 1 or 2.)
前記一般式(1)中、X11が−R12OH又は−OR13を示し、R12は2価の炭素数1以上30以下の炭化水素基を示し、R13は1価の炭素数1以上30以下の炭化水素基を示す請求項1に記載の潤滑油組成物。 In the general formula (1), X 11 represents —R 12 OH or —OR 13 , R 12 represents a divalent hydrocarbon group having 1 to 30 carbon atoms, and R 13 represents a monovalent carbon number of 1 The lubricating oil composition according to claim 1, which shows 30 or less hydrocarbon groups. 前記一般式(1)中、R11が炭素数3以上20以下の1価の脂肪族炭化水素基であり、X11が−R12OHであり、R12が炭素数1以上12以下の2価の脂肪族炭化水素基である請求項2に記載の潤滑油組成物。 In the general formula (1), R 11 is a monovalent aliphatic hydrocarbon group having 3 to 20 carbon atoms, X 11 is —R 12 OH, and R 12 is 2 having 1 to 12 carbon atoms. The lubricating oil composition according to claim 2, which is a valent aliphatic hydrocarbon group. 前記一般式(1)中、R11の炭素数がR12の炭素数より多い請求項3に記載の潤滑油組成物。 The lubricating oil composition according to claim 3, wherein, in the general formula (1), R 11 has more carbon atoms than R 12 . 前記一般式(1)中、R11が炭素数4以上16以下のアルキル基であり、R12が炭素数1以上3以下のアルキレン基であり、n11が2である請求項3又は4に記載の潤滑油組成物。 In the general formula (1), R 11 is an alkyl group having 4 to 16 carbon atoms, R 12 is an alkylene group having 1 to 3 carbon atoms, and n 11 is 2. 5 or The lubricating oil composition described. 前記一般式(1)中、R11が炭素数1以上12以下の1価の脂肪族炭化水素基であり、X11が−OR13であり、R13が炭素数4以上24以下の1価の脂肪族炭化水素基である請求項2に記載の潤滑油組成物。 In the general formula (1), R 11 is a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, X 11 is —OR 13 , and R 13 is a monovalent carbon having 4 to 24 carbon atoms. The lubricating oil composition according to claim 2, which is an aliphatic hydrocarbon group. 前記一般式(1)中、n11が2であり、R13の炭素数がR11の炭素数よりも多い請求項6に記載の潤滑油組成物。 The lubricating oil composition according to claim 6, wherein in the general formula (1), n 11 is 2, and R 13 has more carbon atoms than R 11 . 前記一般式(1)中、R11が炭素数1以上6以下のアルキル基であり、R13が炭素数7以上20以下のアルケニル基である請求項6又は7に記載の潤滑油組成物。 The lubricating oil composition according to claim 6 or 7, wherein, in the general formula (1), R 11 is an alkyl group having 1 to 6 carbon atoms, and R 13 is an alkenyl group having 7 to 20 carbon atoms. 前記リン含有化合物の組成物全量基準の含有量が、0.05質量%以上3.0質量%以下である請求項1〜8のいずれか1項に記載の潤滑油組成物。   The lubricating oil composition according to any one of claims 1 to 8, wherein a content of the phosphorus-containing compound based on the total amount of the composition is 0.05% by mass or more and 3.0% by mass or less. 駆動系機器用である請求項1〜9のいずれか1項に記載の潤滑油組成物。   The lubricating oil composition according to any one of claims 1 to 9, which is used for drive system equipment. 基油と、下記一般式(1)で表されるリン含有化合物と、を配合する潤滑油組成物の製造方法。

(一般式(1)中、R11は炭素数1以上30以下の1価の炭化水素基を示し、X11は酸素原子を含み、炭素数1以上30以下の有機基を示し、n11は1又は2の整数を示す。)
The manufacturing method of the lubricating oil composition which mix | blends base oil and the phosphorus containing compound represented by following General formula (1).

(In the general formula (1), R 11 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, X 11 represents an oxygen atom, an organic group having 1 to 30 carbon atoms, and n 11 represents Indicates an integer of 1 or 2.)
請求項1〜10のいずれか1項に記載の潤滑油組成物を用いた駆動系機器の潤滑方法。   A method for lubricating a drive train using the lubricating oil composition according to any one of claims 1 to 10. 請求項1〜10のいずれか1項に記載の潤滑油組成物を用いた駆動系機器。   The drive system apparatus using the lubricating oil composition of any one of Claims 1-10. ポリテトラフルオロエチレンが用いられた部品を備える請求項13に記載の駆動系機器。   The drive system apparatus of Claim 13 provided with the components in which the polytetrafluoroethylene was used. 緩衝器である請求項13又は14に記載の駆動系機器。   The drive system apparatus according to claim 13 or 14, which is a shock absorber.
JP2018103581A 2018-05-30 2018-05-30 Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment Active JP7099876B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018103581A JP7099876B2 (en) 2018-05-30 2018-05-30 Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment
PCT/JP2019/019331 WO2019230405A1 (en) 2018-05-30 2019-05-15 Lubricating oil composition, production method thereof, method for lubricating drive system device, and drive system device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103581A JP7099876B2 (en) 2018-05-30 2018-05-30 Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment

Publications (2)

Publication Number Publication Date
JP2019206671A true JP2019206671A (en) 2019-12-05
JP7099876B2 JP7099876B2 (en) 2022-07-12

Family

ID=68696731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103581A Active JP7099876B2 (en) 2018-05-30 2018-05-30 Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment

Country Status (2)

Country Link
JP (1) JP7099876B2 (en)
WO (1) WO2019230405A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536305A (en) * 1976-07-06 1978-01-20 Sakai Chem Ind Co Ltd Additives for lubricating oils
JPH05148491A (en) * 1991-04-24 1993-06-15 Nippon San Sekiyu Kk Lubricating oil composition for refrigerating machine
JPH05302093A (en) * 1992-04-28 1993-11-16 Tonen Corp Lubricating oil composition
JPH06145688A (en) * 1992-11-10 1994-05-27 Nippon San Sekiyu Kk Lubricating oil composition for refrigerator
JPH0734081A (en) * 1993-07-23 1995-02-03 Tonen Corp Lubricating oil composition
JPH10292190A (en) * 1997-02-19 1998-11-04 Idemitsu Kosan Co Ltd Hydraulic fluid composition for shock absorber
JP2004035624A (en) * 2002-06-28 2004-02-05 Nippon Oil Corp Hydraulic oil composition for shock absorber
JP2006524734A (en) * 2003-04-28 2006-11-02 グレート レイクス ケミカル(ヨーロッパ)ゲーエムベーハー Lubricant composition
JP2008121845A (en) * 2006-11-15 2008-05-29 Nok Corp Seal ring
WO2016170707A1 (en) * 2015-04-24 2016-10-27 Jxエネルギー株式会社 Lubricating oil composition
WO2017168868A1 (en) * 2016-03-31 2017-10-05 出光興産株式会社 Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536305A (en) * 1976-07-06 1978-01-20 Sakai Chem Ind Co Ltd Additives for lubricating oils
JPH05148491A (en) * 1991-04-24 1993-06-15 Nippon San Sekiyu Kk Lubricating oil composition for refrigerating machine
JPH05302093A (en) * 1992-04-28 1993-11-16 Tonen Corp Lubricating oil composition
JPH06145688A (en) * 1992-11-10 1994-05-27 Nippon San Sekiyu Kk Lubricating oil composition for refrigerator
JPH0734081A (en) * 1993-07-23 1995-02-03 Tonen Corp Lubricating oil composition
JPH10292190A (en) * 1997-02-19 1998-11-04 Idemitsu Kosan Co Ltd Hydraulic fluid composition for shock absorber
JP2004035624A (en) * 2002-06-28 2004-02-05 Nippon Oil Corp Hydraulic oil composition for shock absorber
JP2006524734A (en) * 2003-04-28 2006-11-02 グレート レイクス ケミカル(ヨーロッパ)ゲーエムベーハー Lubricant composition
JP2008121845A (en) * 2006-11-15 2008-05-29 Nok Corp Seal ring
WO2016170707A1 (en) * 2015-04-24 2016-10-27 Jxエネルギー株式会社 Lubricating oil composition
WO2017168868A1 (en) * 2016-03-31 2017-10-05 出光興産株式会社 Mineral oil-based base oil, lubricating oil composition, equipment, lubricating method, and grease composition

Also Published As

Publication number Publication date
WO2019230405A1 (en) 2019-12-05
JP7099876B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP2011512432A (en) Grease composition used for constant velocity joints
WO2019230412A1 (en) Lubricating oil composition for drive system device, production method thereof, method for lubricating drive system device, and drive system device
JP6035175B2 (en) Lubricating oil composition
JP2017155191A (en) Lubricant composition, lubrication method, and gearbox
WO2019069878A1 (en) Gear oil composition for automobile, and lubrication method
JP2017155079A (en) Lubricant composition, lubrication method, and transmission
JP6913704B2 (en) Lubricating oil composition
CN109477026A (en) Lubricating oil composition, lubricating method and gear
WO2020218366A1 (en) Lubricating oil composition for drive system equipment, method for producing same, method for lubricating drive system equipment, and drive system equipment
WO2018074128A1 (en) Lubricating oil composition, lubrication method, and transmission
WO2017159363A1 (en) Lubricating oil composition, lubricating method, and transmission
JP7089899B2 (en) Lubricating oil composition, manufacturing method of lubricating oil composition and drive system equipment
JP7099876B2 (en) Lubricating oil composition and its manufacturing method, lubrication method of drive system equipment, and drive system equipment
JP4079509B2 (en) Lubricating oil composition
EP3760697B1 (en) Lubricant composition, its method of producing and use in a mechanical device
JP7126357B2 (en) lubricating oil composition
WO2020085153A1 (en) Lubricating oil composition, mechanical device equipped with lubricating oil composition, and method for producing lubricating oil composition
JP6857317B2 (en) Lubricating oil composition
JP7348747B2 (en) Lubricating oil composition for transmissions, method for producing the same, lubrication method using the lubricating oil composition for transmissions, and transmissions
JP2022022721A (en) Lubricant composition, shock absorber, and method of use of lubricant composition
WO2023214505A1 (en) Lubricating oil composition, lubrication method, and transmission
WO2023058440A1 (en) Lubricating oil composition, lubrication method, and transmission
WO2021014965A1 (en) Lubricant oil composition, method for producing lubricant oil composition, and method for lubricating transmission gear or reduction gear
CN116391016A (en) Lubricating oil composition
CN115698242A (en) Lubricating oil composition, buffer and method for using lubricating oil composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7099876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150