JP2019203543A - Vibration isolation device - Google Patents

Vibration isolation device Download PDF

Info

Publication number
JP2019203543A
JP2019203543A JP2018098066A JP2018098066A JP2019203543A JP 2019203543 A JP2019203543 A JP 2019203543A JP 2018098066 A JP2018098066 A JP 2018098066A JP 2018098066 A JP2018098066 A JP 2018098066A JP 2019203543 A JP2019203543 A JP 2019203543A
Authority
JP
Japan
Prior art keywords
liquid
pores
liquid chamber
barrier
current transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098066A
Other languages
Japanese (ja)
Other versions
JP6986490B2 (en
Inventor
湧太 馬場
Yuta Baba
湧太 馬場
植木 哲
Satoru Ueki
哲 植木
勇樹 佐竹
Yuki Satake
勇樹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2018098066A priority Critical patent/JP6986490B2/en
Publication of JP2019203543A publication Critical patent/JP2019203543A/en
Application granted granted Critical
Publication of JP6986490B2 publication Critical patent/JP6986490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To securely suppress abnormal noise caused by cavitation breaking without excessively decreasing inner diameters of pores.SOLUTION: A fluid encapsulated type vibration isolation device 1 includes a partition member 16 which partitions a fluid chamber 19 in a first attachment member 11 and encapsulating fluid L into a first fluid chamber 14 and a second fluid chamber 15, and a restriction passage 24 formed in the partition member so as to communicate the first fluid chamber and the second fluid chamber. The restriction passage includes a first communication part 26 opening to the first fluid chamber, a second communication part opening to the second fluid chamber, and a main body flow passage 25 communicating the first communication part and the second communication part. At least one of the first communication part and the second communication part includes a plurality of pores 26a, 26b penetrating the first barrier 38 facing the first fluid chamber or the second fluid chamber. The main body flow passage is provided with a flow change protrusion 41 with which liquid from the other of the first communication part and the second communication part is made to collide for changing a flow direction of the liquid. The flow change protrusion faces the first barrier in the opening direction of the pores.SELECTED DRAWING: Figure 1

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を減衰、吸収する防振装置に関する。   The present invention relates to a vibration isolator that is applied to, for example, automobiles, industrial machines, and the like and attenuates and absorbs vibration of a vibration generating unit such as an engine.

従来から、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、仕切部材に、第1液室と第2液室とを連通する制限通路が形成され、制限通路が、第1液室に開口する第1連通部、第2液室に開口する第2連通部、および第1連通部と第2連通部とを連通する本体流路を備える液体封入型の防振装置が知られている。   Conventionally, a cylindrical first mounting member connected to one of the vibration generating portion and the vibration receiving portion, and a second mounting member connected to the other, and these both mounting members are elastically connected. An elastic body, and a partition member that partitions the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and the partition member includes the first liquid chamber and the second liquid chamber. A restriction passage communicating with the liquid chamber is formed, and the restriction passage includes a first communication portion that opens to the first liquid chamber, a second communication portion that opens to the second liquid chamber, and a first communication portion and a second communication portion. There is known a liquid-encapsulated vibration isolator having a main body channel that communicates with each other.

この種の防振装置として、例えば下記特許文献1に示されるように、第1連通部および第2連通部のうちのいずれか一方が、第1液室または第2液室に面する第1障壁を貫く複数の細孔を備えた構成が知られている。
この防振装置では、大きな荷重(振動)が入力され、第1液室または第2液室が急激に負圧化されたときに、本体流路内で気泡が発生しても、この気泡を、複数の細孔を通過させることで、細かく分割して第1液室または第2液室に分散させることが可能になり、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
As this type of vibration isolator, for example, as shown in Patent Document 1 below, one of the first communication portion and the second communication portion is a first liquid chamber or a first liquid chamber facing the second liquid chamber. A configuration having a plurality of pores penetrating the barrier is known.
In this vibration isolator, even if a large load (vibration) is input and the first liquid chamber or the second liquid chamber is suddenly reduced to a negative pressure, even if bubbles are generated in the main body flow path, By passing through a plurality of fine pores, it becomes possible to finely divide and disperse them in the first liquid chamber or the second liquid chamber, and to reduce the generated abnormal noise even if cavitation collapse occurs where bubbles collapse Can be suppressed.

国際公開第2016/027606号International Publication No. 2016/027606

ところで、キャビテーション崩壊に起因した異音を確実に小さく抑えるために、細孔の内径をさらに小さくすることが考えられる。
しかしながら、この場合、仕切部材の製造が困難になるという新たな問題が生ずる。
By the way, it is conceivable to further reduce the inner diameter of the pores in order to reliably suppress the abnormal noise caused by the collapse of cavitation.
However, in this case, there arises a new problem that it becomes difficult to manufacture the partition member.

本発明は前記事情に鑑みてなされたもので、細孔の内径を過度に小さくしなくても、キャビテーション崩壊に起因した異音を確実に小さく抑えることができる防振装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vibration isolator capable of reliably suppressing abnormal noise caused by cavitation collapse without excessively reducing the inner diameter of the pores. And

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する第1障壁を貫く複数の細孔を備え、前記本体流路に、前記第1連通部および前記第2連通部のうちのいずれか他方側からの液体を衝突させてその流動方向を変化させる変流突部が配設され、前記変流突部は、前記第1障壁に前記細孔の開口方向で対向していることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
A vibration isolator according to the present invention includes a cylindrical first mounting member coupled to one of a vibration generating unit and a vibration receiving unit, a second mounting member coupled to the other, and both the mounting members. An elastic body that elastically connects the liquid chamber, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and the partition member A liquid-filled vibration isolator having a restriction passage communicating the first liquid chamber and the second liquid chamber, wherein the restriction passage opens to the first liquid chamber. A second communication part that opens to the second liquid chamber, and a main body channel that communicates the first communication part and the second communication part, and includes the first communication part and the second communication part. At least one includes a plurality of pores penetrating the first barrier facing the first liquid chamber or the second liquid chamber, The main body flow path is provided with a current-transforming protrusion that changes the flow direction by colliding liquid from either one of the first communication part and the second communication part, and The portion faces the first barrier in the opening direction of the pore.

本発明によれば、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位して第1液室および第2液室の液圧が変動し、液体が制限通路を通って第1液室と第2液室との間を流通しようとする。このとき液体は、第1連通部および第2連通部のうちの一方を通して制限通路に流入し、本体流路内を通過した後、第1連通部および第2連通部のうちの他方を通して制限通路から流出する。
ここで、液体が、複数の細孔を通して制限通路から第1液室または第2液室に流入する際に、これらの細孔が形成された第1障壁により圧力損失させられながら各細孔を流通するため、第1液室または第2液室に流入する液体の流速を抑えることができる。しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。これにより、仮に防振装置に大きな荷重(振動)が入力されたとしても、細孔を通過して第1液室または第2液室に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が第1液室や第2液室ではなく制限通路で発生しても、液体を、複数の細孔を通過させることで、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持し易くすることができる。
以上のように、気泡の発生そのものを抑えることができるうえ、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持し易くすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
According to the present invention, at the time of vibration input, both the attachment members are relatively displaced while elastically deforming the elastic body, the liquid pressure in the first liquid chamber and the second liquid chamber fluctuates, and the liquid passes through the restriction passage. An attempt is made to flow between the first liquid chamber and the second liquid chamber. At this time, the liquid flows into the restriction passage through one of the first communication portion and the second communication portion, passes through the main body flow path, and then passes through the other of the first communication portion and the second communication portion. Spill from.
Here, when the liquid flows into the first liquid chamber or the second liquid chamber from the restricting passage through the plurality of pores, each of the pores is caused to have a pressure loss by the first barrier in which these pores are formed. Since it circulates, the flow velocity of the liquid flowing into the first liquid chamber or the second liquid chamber can be suppressed. In addition, since the liquid flows through a plurality of pores instead of a single pore, it is possible to divide the liquid into a plurality of channels and reduce the flow rate of the liquid that has passed through the individual pores. Can do. Accordingly, even if a large load (vibration) is input to the vibration isolator, the liquid that has passed through the pores and has flowed into the first liquid chamber or the second liquid chamber, and the first liquid chamber or the second liquid chamber It is possible to suppress the difference in flow velocity generated between the liquid and the liquid and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices. Further, even if bubbles are generated not in the first liquid chamber or the second liquid chamber but in the restricted passage, the generated bubbles are caused to pass between the first liquid chamber or the second liquid by passing the liquid through the plurality of pores. It is possible to make the bubbles separate from each other in the liquid chamber, and it is possible to suppress the bubbles from joining and growing and to easily maintain the bubbles in a finely dispersed state.
As described above, the generation of bubbles itself can be suppressed, and even if bubbles are generated, the bubbles can be easily maintained in a finely dispersed state. However, it is possible to suppress the generated abnormal noise.

特に、本体流路に、第1連通部および第2連通部のうちのいずれか他方側からの液体を衝突させてその流動方向を変化させる変流突部が配設されているので、前記他方側からの液体を、第1障壁に到達させる前に変流突部に衝突させることで、液体に圧力損失を生じさせ、その流速を、第1障壁に到達する前に確実に低減することができる。これにより、細孔の内径を過度に小さくしなくても、キャビテーション崩壊に起因した異音を確実に小さく抑えることができる。
しかも、変流突部が、第1障壁に細孔の開口方向で対向していて、本体流路における第1連通部側と第2連通部側との間の中央部から離れた位置に配設されているので、変流突部を本体流路に設けたことに起因して、チューニングが困難になるのを抑えることができる。
In particular, the main body flow path is provided with a current transformation protrusion that changes the flow direction by colliding liquid from either one of the first communication portion and the second communication portion. By causing the liquid from the side to collide with the current transformation protrusion before reaching the first barrier, a pressure loss is caused in the liquid, and the flow velocity can be reliably reduced before reaching the first barrier. it can. Thereby, even if it does not make the internal diameter of a pore too small, the abnormal noise resulting from cavitation collapse can be suppressed small reliably.
In addition, the current transformation protrusion is opposed to the first barrier in the opening direction of the pores, and is disposed at a position away from the central portion between the first communication portion side and the second communication portion side in the main body flow path. Therefore, it is possible to prevent the tuning from becoming difficult due to the provision of the current transformation protrusion in the main body flow path.

ここで、前記変流突部は、前記本体流路の内面において、前記第1連通部および前記第2連通部のうちのいずれか一方側の端部に位置して、他方側を向く一端面に配設されてもよい。   Here, the current transformation protrusion is located at one end of the first communication portion and the second communication portion on the inner surface of the main body flow path, and is one end surface facing the other side. It may be arranged.

この場合、変流突部が、本体流路の前記一端面に配設され、かつ第1障壁に細孔の開口方向で対向しているので、本体流路の前記一端面付近に到達した前記他方側からの液体が、第1障壁に達する前に、変流突部に衝突することとなる。したがって、防振装置に大きな荷重が入力されたことにより、前記他方側からの液体が、本体流路の前記一端面付近に高速で到達しても、その流速を第1障壁に達する前に確実に低減することが可能になるとともに、この液体を拡散させることもできる。これにより、防振装置に大きな荷重が入力されたときに、前記他方側からの液体が、複数の細孔のうち、本体流路の前記一端面の近くに位置する細孔から集中して第1液室または第2液室に高速で流入するのを防ぐことができる。   In this case, since the current transformation protrusion is disposed on the one end face of the main body flow path and faces the first barrier in the opening direction of the pores, the current change protrusion has reached the vicinity of the one end face of the main body flow path. The liquid from the other side collides with the current transformation protrusion before reaching the first barrier. Therefore, even if the liquid from the other side reaches the vicinity of the one end surface of the main body flow path at a high speed by inputting a large load to the vibration isolator, the flow velocity is surely reached before reaching the first barrier. And the liquid can be diffused. Thus, when a large load is input to the vibration isolator, the liquid from the other side concentrates from the pores located near the one end surface of the main body flow passage among the plurality of pores. It is possible to prevent the liquid from flowing into the first liquid chamber or the second liquid chamber at a high speed.

また、複数の細孔のうち、前記変流突部と前記細孔の開口方向で対向する前記細孔の流通抵抗は、残りの前記細孔の流通抵抗より小さくてもよい。   In addition, among the plurality of pores, the flow resistance of the pores facing the current transformation protrusions in the opening direction of the pores may be smaller than the flow resistance of the remaining pores.

この場合、変流突部と細孔の開口方向で対向していて、前記他方側からの液体が到達しにくい細孔の流通抵抗が、変流突部と細孔の開口方向で対向しておらず、前記他方側からの液体が到達しやすい細孔の流通抵抗より小さいので、前記他方側からの液体を、複数の細孔に、変流突部と細孔の開口方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In this case, the flow resistance of the pore that is opposed to the current transformation protrusion in the opening direction of the pore and the liquid from the other side is difficult to reach is opposed to the current transformation protrusion in the opening direction of the pore. The flow from the other side is smaller than the flow resistance of the pores that the liquid from the other side can easily reach, so that the liquid from the other side is opposed to the plurality of pores in the opening direction of the current transformation protrusions and the pores. Regardless of whether it is present or not, it can flow evenly with little deviation.

また、前記第1障壁の、前記本体流路側を向く内面において、前記変流突部と前記細孔の開口方向で対向する部分の平面積に占める前記細孔の開口面積の割合が、残りの部分の平面積に占める前記細孔の開口面積の割合より大きくてもよい。   In addition, on the inner surface of the first barrier facing the main body channel, the ratio of the opening area of the pores to the plane area of the portion facing the current-transforming protrusion in the opening direction of the pores is the remaining It may be larger than the ratio of the opening area of the pores in the flat area of the portion.

この場合、第1障壁の内面において、変流突部と細孔の開口方向で対向していて、前記他方側からの液体が到達しにくい部分の平面積に占める細孔の開口面積の割合が、変流突部と細孔の開口方向で対向しておらず、前記他方側からの液体が到達しやすい部分の平面積に占める細孔の開口面積の割合より大きいので、前記他方側からの液体を、複数の細孔に、変流突部と細孔の開口方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In this case, on the inner surface of the first barrier, the ratio of the opening area of the pores to the plane area of the portion that is opposed to the current transformation protrusion in the opening direction of the pores and is difficult for the liquid from the other side to reach is , Because it is not opposed to the current transformation protrusion in the opening direction of the pores, and is larger than the ratio of the opening area of the pores to the flat area of the portion where the liquid from the other side is easy to reach, from the other side The liquid can be made to flow uniformly into the plurality of pores with little deviation regardless of whether or not they face the current transformation protrusions in the opening direction of the pores.

本発明によれば、細孔の内径を過度に小さくしなくても、キャビテーション崩壊に起因した異音を確実に小さく抑えることができる。   According to the present invention, even if the inner diameter of the pores is not excessively reduced, it is possible to reliably suppress abnormal noise caused by cavitation collapse.

本発明の第1実施形態に係る防振装置の縦断面図である。It is a longitudinal cross-sectional view of the vibration isolator which concerns on 1st Embodiment of this invention. 図1に示す防振装置の仕切部材の上面図である。It is a top view of the partition member of the vibration isolator shown in FIG. 図2のA−A線矢視断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 本発明の第1実施形態の第1変形例に係る防振装置の仕切部材の上面図である。It is a top view of the partition member of the vibration isolator which concerns on the 1st modification of 1st Embodiment of this invention. 本発明の第2実施形態に係る防振装置の縦断面図である。It is a longitudinal cross-sectional view of the vibration isolator which concerns on 2nd Embodiment of this invention. 図5に示す防振装置の仕切部材の上面図である。It is a top view of the partition member of the vibration isolator shown in FIG. 図6のB−B線矢視断面図である。FIG. 7 is a cross-sectional view taken along line B-B in FIG. 6. 本発明の第2実施形態の変形例に係る防振装置の仕切部材の上面図である。It is a top view of the partition member of the vibration isolator which concerns on the modification of 2nd Embodiment of this invention. 本発明の第1実施形態の第2変形例に係る防振装置の仕切部材の上面図である。It is a top view of the partition member of the vibration isolator which concerns on the 2nd modification of 1st Embodiment of this invention. 本発明の第1実施形態の第3変形例に係る防振装置の仕切部材の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the partition member of the vibration isolator which concerns on the 3rd modification of 1st Embodiment of this invention.

以下、本発明に係る防振装置の実施の形態について、図1から図3に基づいて説明する。
図1に示すように、防振装置1は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11、および他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、液体Lが封入された第1取付部材11内の液室19を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
Hereinafter, an embodiment of a vibration isolator according to the present invention will be described with reference to FIGS. 1 to 3.
As shown in FIG. 1, the vibration isolator 1 includes a cylindrical first mounting member 11 connected to one of the vibration generating unit and the vibration receiving unit, and a second mounting member 12 connected to the other, An elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12 to each other, and a liquid chamber 19 in the first mounting member 11 in which the liquid L is sealed are a main liquid chamber (first liquid chamber) described later. ) 14 and a partition member 16 that divides into a secondary liquid chamber (second liquid chamber) 15.

以下、第1取付部材11の中心軸線Oに沿う方向を軸方向という。また、軸方向に沿う第2取付部材12側を上側、仕切部材16側を下側という。また、防振装置1を軸方向から見た平面視において、中心軸線Oに交差する方向を径方向といい、中心軸線O周りに周回する方向を周方向という。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線Oと同軸に配置されている。
Hereinafter, the direction along the central axis O of the first mounting member 11 is referred to as an axial direction. Further, the second mounting member 12 side along the axial direction is referred to as an upper side, and the partition member 16 side is referred to as a lower side. Further, in a plan view of the vibration isolator 1 viewed from the axial direction, a direction intersecting the central axis O is referred to as a radial direction, and a direction around the central axis O is referred to as a circumferential direction.
The first mounting member 11, the second mounting member 12, and the elastic body 13 are each formed in a circular shape or an annular shape in a plan view, and are disposed coaxially with the central axis O.

この防振装置1が例えば自動車に装着される場合、第2取付部材12が振動発生部としてのエンジンに連結され、第1取付部材11が振動受部としての車体に連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。なお、第1取付部材11を振動発生部に連結し、第2取付部材12を振動受部に連結してもよい。   When the vibration isolator 1 is mounted on, for example, an automobile, the second mounting member 12 is connected to an engine as a vibration generating unit, and the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. This suppresses transmission of engine vibration to the vehicle body. In addition, the 1st attachment member 11 may be connected with a vibration generation part, and the 2nd attachment member 12 may be connected with a vibration receiving part.

第2取付部材12は、軸方向に延在する柱状部材であり、下端部が下方に向けて膨出する半球面状に形成されている。第2取付部材12において、半球面状の下端部より上方に位置する部分に、径方向の外側に向けて突出する鍔部12aが形成されている。第2取付部材12には、その上端面から下方に向かって延びるねじ孔12bが穿設され、このねじ孔12bにエンジン側の取付け具となるボルト(図示せず)が螺合される。第2取付部材12は、弾性体13を介して、第1取付部材11の上端開口部に配置されている。   The second mounting member 12 is a columnar member extending in the axial direction, and is formed in a hemispherical shape whose lower end bulges downward. In the second mounting member 12, a flange 12 a that protrudes outward in the radial direction is formed at a portion located above the lower end portion of the hemispherical shape. A screw hole 12b extending downward from the upper end surface of the second mounting member 12 is formed, and a bolt (not shown) serving as an engine-side mounting tool is screwed into the screw hole 12b. The second mounting member 12 is disposed in the upper end opening of the first mounting member 11 via the elastic body 13.

弾性体13は、第1取付部材11の上部の内周面と第2取付部材12の下部の外周面とにそれぞれ加硫接着されて、これらの間に介在させられたゴム体であって、第1取付部材11の上端開口部を上側から閉塞している。弾性体13の上端部には、鍔部12aにおける下面、外周面、および上面を覆う第1ゴム膜13aが一体に形成されている。弾性体13の下端部には、第1取付部材11の内周面を液密に被覆する第2ゴム膜13bが一体に形成されている。なお、弾性体13としては、ゴム以外にも合成樹脂等からなる弾性体を用いることも可能である。   The elastic body 13 is a rubber body that is vulcanized and bonded to the inner peripheral surface of the upper portion of the first mounting member 11 and the outer peripheral surface of the lower portion of the second mounting member 12, respectively, and interposed therebetween. The upper end opening of the first mounting member 11 is closed from above. A first rubber film 13 a that covers the lower surface, outer peripheral surface, and upper surface of the flange portion 12 a is integrally formed on the upper end portion of the elastic body 13. A second rubber film 13 b that covers the inner peripheral surface of the first mounting member 11 in a liquid-tight manner is integrally formed at the lower end of the elastic body 13. As the elastic body 13, an elastic body made of synthetic resin or the like can be used in addition to rubber.

第1取付部材11は、円筒状に形成され、図示されないブラケットを介して振動受部としての車体等に連結される。第1取付部材11の下端開口部は、ダイヤフラム20により閉塞されている。
ダイヤフラム20は、ゴムや軟質樹脂等の弾性材料からなり、有底円筒状に形成されている。ダイヤフラム20の外周面は、ダイヤフラムリング21の内周面に加硫接着されている。ダイヤフラムリング21は、第1取付部材11の下端部内に、第2ゴム膜13bを介して嵌合されている。ダイヤフラムリング21は、第1取付部材11の下端部内に加締められて固定されている。ダイヤフラム20およびダイヤフラムリング21それぞれの上端開口縁は、仕切部材16の下面に液密に当接している。
The first attachment member 11 is formed in a cylindrical shape, and is connected to a vehicle body or the like as a vibration receiving portion via a bracket (not shown). The lower end opening of the first mounting member 11 is closed by the diaphragm 20.
The diaphragm 20 is made of an elastic material such as rubber or soft resin, and has a bottomed cylindrical shape. The outer peripheral surface of the diaphragm 20 is vulcanized and bonded to the inner peripheral surface of the diaphragm ring 21. The diaphragm ring 21 is fitted in the lower end portion of the first mounting member 11 via the second rubber film 13b. The diaphragm ring 21 is swaged and fixed in the lower end portion of the first mounting member 11. The upper end opening edge of each of the diaphragm 20 and the diaphragm ring 21 is in liquid-tight contact with the lower surface of the partition member 16.

そして、このように第1取付部材11にダイヤフラム20が取り付けられたことにより、第1取付部材11内が、弾性体13とダイヤフラム20とにより液密に封止された液室19となっている。この液室19に液体Lが封入(充填)されている。
なお図示の例では、ダイヤフラム20の底部が、外周側で深く中央部で浅い形状になっている。ただし、ダイヤフラム20の形状としては、このような形状以外にも、従来公知の種々の形状を採用することができる。
And since the diaphragm 20 was attached to the 1st attachment member 11 in this way, the inside of the 1st attachment member 11 becomes the liquid chamber 19 sealed with the elastic body 13 and the diaphragm 20 liquid-tightly. . The liquid chamber 19 is filled (filled) with the liquid L.
In the illustrated example, the bottom portion of the diaphragm 20 has a shape that is deep on the outer peripheral side and shallow at the center. However, as the shape of the diaphragm 20, various conventionally known shapes can be adopted in addition to such a shape.

液室19は、仕切部材16によって主液室14と副液室15とに区画されている。主液室14は、弾性体13の下面13cを壁面の一部に有し、弾性体13と第1取付部材11の内周面を液密に覆う第2ゴム膜13bと仕切部材16とによって囲まれた空間であり、弾性体13の変形によって内容積が変化する。副液室15は、ダイヤフラム20と仕切部材16とによって囲まれた空間であり、ダイヤフラム20の変形によって内容積が変化する。このような構成からなる防振装置1は、主液室14が鉛直方向上側に位置し、副液室15が鉛直方向下側に位置するように取り付けられて用いられる、圧縮式の装置である。   The liquid chamber 19 is divided into a main liquid chamber 14 and a sub liquid chamber 15 by a partition member 16. The main liquid chamber 14 has the lower surface 13c of the elastic body 13 as a part of the wall surface, and the second rubber film 13b and the partition member 16 that cover the elastic body 13 and the inner peripheral surface of the first mounting member 11 in a liquid-tight manner. It is an enclosed space, and the internal volume changes due to the deformation of the elastic body 13. The auxiliary liquid chamber 15 is a space surrounded by the diaphragm 20 and the partition member 16, and the internal volume changes due to the deformation of the diaphragm 20. The vibration isolator 1 having such a configuration is a compression-type device that is mounted and used so that the main liquid chamber 14 is positioned on the upper side in the vertical direction and the sub liquid chamber 15 is positioned on the lower side in the vertical direction. .

仕切部材16には、主液室14と副液室15とを連通する制限通路24が設けられている。制限通路24は、例えば周波数が10Hz前後のシェイク振動が防振装置1に入力されたときに共振(液柱共振)が発生するようにチューニングされている。制限通路24は、図2に示されるように、主液室14に開口する第1連通部26、副液室15に開口する第2連通部27、および第1連通部26と第2連通部27とを連通する本体流路25を備える。   The partition member 16 is provided with a restriction passage 24 that allows the main liquid chamber 14 and the sub liquid chamber 15 to communicate with each other. The restriction passage 24 is tuned so that resonance (liquid column resonance) occurs when, for example, a shake vibration having a frequency of around 10 Hz is input to the vibration isolator 1. As shown in FIG. 2, the restriction passage 24 includes a first communication portion 26 that opens to the main liquid chamber 14, a second communication portion 27 that opens to the auxiliary liquid chamber 15, and the first communication portion 26 and the second communication portion. 27 is provided with a main body flow path 25 communicating with 27.

本体流路25は、第1連通部26および第2連通部27のうちのいずれか一方から、周方向の一方側に向けて延びる主流路31と、主流路31における周方向の一方側の端部から径方向の内側に向けて突出する端室34と、を備える。
図示の例では、主流路31は、第2連通部27から周方向の一方側に向けて延びている。端室34と第1連通部26とが軸方向に直結されており、端室34は、本体流路25における第1連通部26側の端部となっている。
The main body channel 25 includes a main channel 31 extending from one of the first communication unit 26 and the second communication unit 27 toward one side in the circumferential direction, and one end in the circumferential direction of the main channel 31. And an end chamber 34 projecting radially inward from the portion.
In the illustrated example, the main flow path 31 extends from the second communication portion 27 toward one side in the circumferential direction. The end chamber 34 and the first communication portion 26 are directly connected in the axial direction, and the end chamber 34 is an end portion of the main body flow path 25 on the first communication portion 26 side.

主流路31は、仕切部材16の外周面に形成されている。主流路31は、仕切部材16に、中心軸線Oを中心とする360°未満の角度範囲に配置されている。図示の例では、主流路31は、仕切部材16に、中心軸線Oを中心とする180°を超える角度範囲に配置されている。   The main flow path 31 is formed on the outer peripheral surface of the partition member 16. The main flow path 31 is disposed in the partition member 16 in an angle range of less than 360 ° with the central axis O as the center. In the illustrated example, the main flow path 31 is disposed in the partition member 16 in an angle range exceeding 180 ° with the central axis O as the center.

主流路31は、中心軸線Oと同軸に配置され、上側に位置して表裏面が軸方向を向く環状の上側障壁35の下面と、中心軸線Oと同軸に配置され、下側に位置して表裏面が軸方向を向く環状の下側障壁36の上面と、上側障壁35および下側障壁36それぞれの内周縁同士を連結し、径方向の外側を向く溝底面37と、により画成されている。
上側障壁35は主液室14に面している。下側障壁36は副液室15に面しており、第2連通部27は、下側障壁36を軸方向に貫く1つの開口により構成されている。
The main channel 31 is disposed coaxially with the central axis O, and is disposed on the lower side of the annular upper barrier 35 that is positioned on the upper side and the front and rear surfaces face the axial direction, and coaxial with the central axis O. The upper surface of the annular lower barrier 36 whose front and back surfaces are directed in the axial direction and the groove bottom surface 37 that connects the inner peripheral edges of the upper barrier 35 and the lower barrier 36 and faces radially outward are defined. Yes.
The upper barrier 35 faces the main liquid chamber 14. The lower barrier 36 faces the secondary liquid chamber 15, and the second communication portion 27 is configured by one opening that penetrates the lower barrier 36 in the axial direction.

端室34は、軸方向から見た平面視で円形状を呈し、端室34の中心軸線は、軸方向に延びている。端室34は、中心軸線Oから離れた位置に配置されている。
端室34と主流路31とを連結する外連通部46は、前記平面視で直線状に延びている。外連通部46は、前記平面視で端室34の内周面の接線方向に延びている。外連通部46の周方向の大きさは、端室34の内径より小さい。端室34は、外連通部46に対して、主流路31における周方向の他方側に張り出している。外連通部46および端室34それぞれの軸方向の大きさは、互いに同等になっている。
The end chamber 34 has a circular shape in a plan view as viewed from the axial direction, and the central axis of the end chamber 34 extends in the axial direction. The end chamber 34 is disposed at a position away from the central axis O.
The outer communication portion 46 that connects the end chamber 34 and the main channel 31 extends linearly in the plan view. The outer communication portion 46 extends in the tangential direction of the inner peripheral surface of the end chamber 34 in the plan view. The size of the outer communication portion 46 in the circumferential direction is smaller than the inner diameter of the end chamber 34. The end chamber 34 projects to the other side in the circumferential direction of the main flow path 31 with respect to the outer communication portion 46. The sizes of the outer communication portion 46 and the end chamber 34 in the axial direction are equal to each other.

端室34を画成する壁面のうち、上側に位置して下方を向く上壁面は、上面が主液室14に面する第1障壁38の下面とされ、下側に位置して上方を向く下壁面は、下面が副液室15に面する第2障壁39の上面となっている。第1障壁38の下面、および第2障壁39の上面は、軸方向に直交する方向に延びる平坦面となっている。第1障壁38、および第2障壁39は、端室34の中心軸線と同軸に配置された円板状となっている。   Of the wall surfaces defining the end chamber 34, the upper wall surface positioned on the upper side and facing downward is the lower surface of the first barrier 38 whose upper surface faces the main liquid chamber 14, and is positioned on the lower side and facing upward. The lower wall surface is the upper surface of the second barrier 39 whose lower surface faces the auxiliary liquid chamber 15. The lower surface of the first barrier 38 and the upper surface of the second barrier 39 are flat surfaces extending in a direction orthogonal to the axial direction. The first barrier 38 and the second barrier 39 are in the shape of a disc disposed coaxially with the central axis of the end chamber 34.

ここで、本実施形態では、本体流路25の、第2連通部27側から第1連通部26側に向かう延在方向Rの終端面(一端面)25aが、本体流路25における第1連通部26側の端部である端室34の壁面のうち、外連通部46と前記延在方向Rで対向する部分となっている。本体流路25の終端面25aは、前記延在方向Rに沿う第2連通部27側を向いている。この終端面25aは、第2連通部27側からの液体Lに対向する。本体流路25の終端面25aは前記平面視で凹曲線状を呈する。終端面25aは、端室34の内周面の一部となっている。   Here, in the present embodiment, the end face (one end face) 25a in the extending direction R from the second communication part 27 side to the first communication part 26 side of the main body flow path 25 is the first flow path in the main body flow path 25. Of the wall surface of the end chamber 34 that is the end portion on the communication portion 26 side, it is a portion that faces the outer communication portion 46 in the extending direction R. The end surface 25a of the main body flow path 25 faces the second communication portion 27 side along the extending direction R. The end surface 25a faces the liquid L from the second communication portion 27 side. The end face 25a of the main body channel 25 has a concave curve shape in the plan view. The end surface 25 a is a part of the inner peripheral surface of the end chamber 34.

第1連通部26は、主液室14に面する第1障壁38を貫く複数の細孔26a、26bを備える。細孔26a、26bは、第1障壁38を軸方向に貫いている。すなわち、細孔26a、26bの開口方向は、軸方向と一致しており、本体流路25の前記延在方向Rに対して直交している。なお、細孔26a、26bを、副液室15に面する下側障壁36に形成し、第2連通部27に備えさせてもよい。細孔26a、26bの開口方向を、本体流路25の前記延在方向R、および軸方向に対して傾斜する方向としてもよい。   The first communication portion 26 includes a plurality of pores 26 a and 26 b that penetrate the first barrier 38 that faces the main liquid chamber 14. The pores 26a and 26b penetrate the first barrier 38 in the axial direction. That is, the opening direction of the pores 26 a and 26 b coincides with the axial direction and is orthogonal to the extending direction R of the main body channel 25. The pores 26 a and 26 b may be formed in the lower barrier 36 facing the sub liquid chamber 15 and provided in the second communication portion 27. The opening direction of the pores 26a and 26b may be a direction inclined with respect to the extending direction R of the main body flow path 25 and the axial direction.

図3に示されるように、複数の細孔26a、26bの各流路長は互いに同等になっている。細孔26a、26bの内径は、全長にわたって同等になっている。複数の細孔26a、26bはいずれも、主流路31の流路断面積より小さく、軸方向から見た平面視において端室34の内側に配置されている。
複数の細孔26a、26bそれぞれにおける流路断面積の総和は、主流路31の流路断面積の最小値の例えば1.5倍以上4.0倍以下としてもよい。図示の例では、主流路31の流路断面積は、全長にわたって同等となっている。細孔26a、26bの流路断面積は、例えば25mm以下、好ましくは0.7mm以上17mm以下としてもよい。
As shown in FIG. 3, the flow path lengths of the plurality of pores 26a and 26b are equal to each other. The inner diameters of the pores 26a and 26b are the same over the entire length. Each of the plurality of pores 26a and 26b is smaller than the channel cross-sectional area of the main channel 31, and is disposed inside the end chamber 34 in a plan view viewed from the axial direction.
The sum total of the channel cross-sectional areas in each of the plurality of pores 26a and 26b may be, for example, 1.5 times to 4.0 times the minimum value of the channel cross-sectional area of the main channel 31. In the illustrated example, the channel cross-sectional area of the main channel 31 is the same over the entire length. The cross-sectional area of the pores 26a and 26b may be, for example, 25 mm 2 or less, preferably 0.7 mm 2 or more and 17 mm 2 or less.

制限通路24を画成し、かつ主液室14に面する上側障壁35、および第1障壁38、並びに、制限通路24を画成し、かつ副液室15に面する下側障壁36、および第2障壁39のうち、複数の細孔26a、26bが形成された第1障壁38の厚さが、上側障壁35、下側障壁36、および第2障壁39の各厚さより厚くなっている。複数の細孔26a、26bが位置する第1障壁38の厚さは、全域にわたって同等になっている。第1障壁38の上面および下面は軸方向に直交する方向に延びる平坦面となっている。   An upper barrier 35 and a first barrier 38 defining a restriction passage 24 and facing the main liquid chamber 14; a lower barrier 36 defining a restriction passage 24 and facing the sub-liquid chamber 15; and Of the second barrier 39, the thickness of the first barrier 38 in which the plurality of pores 26 a and 26 b are formed is greater than the thickness of the upper barrier 35, the lower barrier 36, and the second barrier 39. The thickness of the first barrier 38 in which the plurality of pores 26a and 26b are located is the same over the entire region. The upper and lower surfaces of the first barrier 38 are flat surfaces extending in a direction orthogonal to the axial direction.

そして、本実施形態では、本体流路25に、第1連通部26および第2連通部27のうちのいずれか他方側からの液体Lを衝突させてその流動方向を変化させる変流突部41が配設されている。
図示の例では、変流突部41は、第2連通部27側からの液体Lを衝突させる。変流突部41は、本体流路25の端室34に配設されている。変流突部41は、本体流路25の終端面25aに配設されている。変流突部41は、第1障壁38に軸方向で対向している。変流突部41は、第1障壁38のうち、その中央部よりも、本体流路25の前記延在方向Rに沿う第1連通部26側に位置する半分未満の部分と軸方向で対向している。変流突部41は、第2連通部27側からの液体Lを衝突させて逆流させる。
And in this embodiment, the current transformation protrusion 41 which makes the main body flow path 25 collide with the liquid L from the other one of the 1st communication part 26 and the 2nd communication part 27, and changes the flow direction. Is arranged.
In the illustrated example, the current transformation protrusion 41 collides the liquid L from the second communication portion 27 side. The current transformation protrusion 41 is disposed in the end chamber 34 of the main body flow path 25. The current transformation protrusion 41 is disposed on the end surface 25 a of the main body flow path 25. The current transformation protrusion 41 is opposed to the first barrier 38 in the axial direction. The current transformation protrusion 41 is opposed in the axial direction to a less than half portion of the first barrier 38 located on the first communication portion 26 side along the extending direction R of the main body flow path 25 with respect to the central portion thereof. doing. The current transformation projection 41 causes the liquid L from the second communication portion 27 side to collide and flow backward.

変流突部41は、表裏面が軸方向を向く板状に形成されている。前記平面視において、変流突部41の外周縁は、端室34の終端面25aに接続され、かつ終端面25aに沿って延びる第1弧部41bと、第1弧部41bの両端部同士を連結し、かつ直線状に延びる第1弦部41cと、により構成されている。第1弦部41cは、前記平面視で前記延在方向Rにほぼ直交し、外連通部46とほぼ平行になっている。変流突部41は、前記平面視において終端面25aから第1弦部41cに直交する方向に離れるに従い漸次、下方に向けて延びている。変流突部41は、前記平面視において第1弦部41cの延びる方向に沿ってその中央部に向かうに従い漸次、下方に向かうように湾曲している。変流突部41は、制限通路24内を流通する液体Lの流動圧では変形、および変位しない剛体となっている。   The current transformation protrusion 41 is formed in a plate shape whose front and back faces in the axial direction. In the plan view, the outer peripheral edge of the current transformation protrusion 41 is connected to the end surface 25a of the end chamber 34 and extends along the end surface 25a, and both ends of the first arc portion 41b. And a first string portion 41c that extends linearly. The first string portion 41 c is substantially orthogonal to the extending direction R in the plan view and is substantially parallel to the outer communication portion 46. The current transformation protrusion 41 is gradually extended downward as it leaves | separates in the direction orthogonal to the 1st chord part 41c from the terminal surface 25a in the said planar view. The current transformation protrusion 41 is curved so as to gradually go downward as it goes toward the center along the direction in which the first chord 41c extends in the plan view. The current transformation protrusion 41 is a rigid body that is not deformed or displaced by the flow pressure of the liquid L flowing in the restriction passage 24.

複数の細孔26a、26bのうち、変流突部41と軸方向で対向する細孔(以下、対向細孔という)26aの流通抵抗は、残りの、変流突部41と軸方向で対向していない細孔(以下、非対向細孔という)26bの流通抵抗より小さい。   Among the plurality of pores 26a and 26b, the flow resistance of the pore 26a (hereinafter referred to as the opposed pore) 26a facing the current transformation protrusion 41 in the axial direction is opposed to the remaining current transformation protrusion 41 in the axial direction. It is smaller than the flow resistance of the non-perforated pores (hereinafter referred to as non-opposing pores) 26b.

図示の例では、非対向細孔26bは、変流突部41を介さず端室34の下壁面(本体流路25の内面)と軸方向で対向している。対向細孔26aは、第1障壁38において、その中央部よりも、本体流路25の前記延在方向Rに沿う第1連通部26側に位置する部分に配設されている。対向細孔26aの数は、非対向細孔26bの数より少ない。対向細孔26aの数は、第1障壁38に形成された複数の細孔26a、26bの半数未満となっている。対向細孔26aの内径が、非対向細孔26bの内径より大きくなっている。対向細孔26aおよび非対向細孔26bそれぞれの流路長は互いに同等になっている。複数の対向細孔26aは、互いに同じ形状で同じ大きさとなっている。複数の非対向細孔26bも互いに同じ形状で同じ大きさとなっている。   In the example shown in the figure, the non-opposing pores 26 b are opposed to the lower wall surface of the end chamber 34 (the inner surface of the main body flow path 25) in the axial direction without the current transformation protrusion 41. The opposed pore 26a is disposed in a portion of the first barrier 38 that is located closer to the first communication portion 26 along the extending direction R of the main body flow path 25 than the central portion thereof. The number of opposed pores 26a is smaller than the number of non-opposed pores 26b. The number of opposed pores 26 a is less than half of the plurality of pores 26 a and 26 b formed in the first barrier 38. The inner diameter of the opposed pore 26a is larger than the inner diameter of the non-opposed pore 26b. The channel lengths of the opposed pore 26a and the non-opposed pore 26b are equal to each other. The plurality of opposed pores 26a have the same shape and the same size. The plurality of non-opposing pores 26b have the same shape and the same size.

なお、対向細孔26aの流路長を、非対向細孔26bの流路長より短くしてもよいし、また、対向細孔26aの内周面を平滑面にする一方、非対向細孔26bの内周面に凹凸部を形成してもよく、その他、内径、および流路長等の少なくとも1つを適宜調整することで、対向細孔26aの流通抵抗を、非対向細孔26bの流通抵抗より小さくしてもよい。   The flow path length of the opposed pore 26a may be shorter than the flow path length of the non-opposed pore 26b, and the inner peripheral surface of the opposed pore 26a is made smooth, while the non-opposed pore An uneven portion may be formed on the inner peripheral surface of 26b. In addition, by appropriately adjusting at least one of the inner diameter, the channel length, and the like, the flow resistance of the opposed pore 26a can be reduced. It may be smaller than the distribution resistance.

ここで、仕切部材16は、上側部材47と中間部材42と下側部材48とが軸方向に重ねられて構成されている。上側部材47、中間部材42および下側部材48はそれぞれ、表裏面が軸方向を向く板状に形成されている。上側部材47および下側部材48はそれぞれ、中心軸線Oと同軸に配設された円板状に形成されている。なお、仕切部材16は、全体が一体に形成されてもよい。   Here, the partition member 16 is configured by an upper member 47, an intermediate member 42, and a lower member 48 being stacked in the axial direction. Each of the upper member 47, the intermediate member 42, and the lower member 48 is formed in a plate shape whose front and back surfaces face the axial direction. The upper member 47 and the lower member 48 are each formed in a disk shape that is disposed coaxially with the central axis O. Note that the partition member 16 may be integrally formed as a whole.

上側部材47の外周面、および中間部材42の後述する第2弧部42aが溝底面37となっている。上側部材47の下面に第1凹部が形成され、下側部材48の上面において、第1凹部と対向する位置に、第2凹部が形成されている。第1凹部および第2凹部それぞれの内面により、端室34が画成されている。上側部材47のうち第1凹部が位置する部分に、第1連通部26が形成され、この部分が第1障壁38となっている。下側部材48のうち第2凹部が位置する部分が、第2障壁39となっている。
下側部材48の上端部の外周面に、径方向の外側に向けて突出し、かつ第2連通部27が形成された環状の下側障壁36が形成されている。上側部材47の上端部の外周面に、径方向の外側に向けて突出し、下側部材48の下側障壁36と軸方向で対向する上側障壁35が形成されている。
The outer peripheral surface of the upper member 47 and the second arc portion 42a described later of the intermediate member 42 serve as the groove bottom surface 37. A first recess is formed on the lower surface of the upper member 47, and a second recess is formed on the upper surface of the lower member 48 at a position facing the first recess. An end chamber 34 is defined by the inner surfaces of the first recess and the second recess. The first communication portion 26 is formed in a portion of the upper member 47 where the first recess is located, and this portion serves as the first barrier 38. A portion of the lower member 48 where the second recess is located is a second barrier 39.
On the outer peripheral surface of the upper end portion of the lower member 48, an annular lower barrier 36 is formed that protrudes outward in the radial direction and in which the second communication portion 27 is formed. On the outer peripheral surface of the upper end portion of the upper member 47, an upper barrier 35 that protrudes outward in the radial direction and faces the lower barrier 36 of the lower member 48 in the axial direction is formed.

中間部材42は、上側部材47の下面と下側部材48の上面との間に挟まれて配設されている。中間部材42の全体が、上側部材47の前記第1凹部の底面、つまり第1障壁38より下方に位置している。中間部材42の外周面は、前記平面視において、溝底面37の一部をなす第2弧部42aと、第2弧部42aの両端部同士を連結し、かつ直線状に延びる第2弦部42bと、により構成されている。中間部材42のうち、端室34内に位置する一部が変流突部41となっており、中間部材42の第2弦部42bのうち、端室34内に位置する一部が、変流突部41の第1弦部41cとなっている。中間部材42の表裏面のうち、変流突部41以外の部分は、軸方向に直交する方向に延びる平坦面となっている。   The intermediate member 42 is disposed between the lower surface of the upper member 47 and the upper surface of the lower member 48. The entire intermediate member 42 is positioned below the bottom surface of the first recess of the upper member 47, that is, below the first barrier 38. The outer peripheral surface of the intermediate member 42 has a second arc portion 42a that forms part of the groove bottom surface 37 in the plan view, and a second chord portion that connects both ends of the second arc portion 42a and extends linearly. 42b. A part of the intermediate member 42 located in the end chamber 34 is a current transformation protrusion 41, and a part of the second chord part 42b of the intermediate member 42 located in the end chamber 34 is changed. The first chord 41c of the flow projection 41 is formed. Of the front and back surfaces of the intermediate member 42, portions other than the current transformation protrusion 41 are flat surfaces extending in a direction orthogonal to the axial direction.

このような構成からなる防振装置1では、振動入力時に、両取付部材11、12が弾性体13を弾性変形させながら相対的に変位する。すると、主液室14の液圧が変動し、主液室14内の液体Lが制限通路24を通って副液室15に流入し、また、副液室15内の液体Lが制限通路24を通って主液室14に流入する。   In the vibration isolator 1 having such a configuration, both attachment members 11 and 12 are relatively displaced while elastically deforming the elastic body 13 at the time of vibration input. Then, the liquid pressure in the main liquid chamber 14 fluctuates, the liquid L in the main liquid chamber 14 flows into the sub liquid chamber 15 through the restriction passage 24, and the liquid L in the sub liquid chamber 15 flows into the restriction passage 24. Through the main liquid chamber 14.

以上説明したように、本実施形態に係る防振装置1によれば、液体Lが、複数の細孔26a、26bを通して制限通路24から主液室14に流入する際に、これらの細孔26a、26bが形成された第1障壁38により圧力損失させられながら各細孔26a、26bを流通するため、主液室14に流入する液体Lの流速を抑えることができる。しかも、液体Lが、単一の細孔26a、26bではなく複数の細孔26a、26bを流通するので、液体Lを複数に分岐させて流通させることが可能になり、個々の細孔26a、26bを通過した液体Lの流速を低減させることができる。これにより、仮に防振装置1に大きな荷重(振動)が入力されたとしても、細孔26a、26bを通過して主液室14に流入した液体Lと、主液室14内の液体Lと、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。   As described above, according to the vibration isolator 1 according to the present embodiment, when the liquid L flows into the main liquid chamber 14 from the restriction passage 24 through the plurality of pores 26a and 26b, these pores 26a. , 26b is circulated through each of the pores 26a, 26b while being subjected to pressure loss by the first barrier 38 formed with the first barrier 38, so that the flow velocity of the liquid L flowing into the main liquid chamber 14 can be suppressed. In addition, since the liquid L flows through the plurality of pores 26a and 26b instead of the single pores 26a and 26b, the liquid L can be branched and distributed, and the individual pores 26a, 26b, The flow rate of the liquid L that has passed through 26b can be reduced. Thereby, even if a large load (vibration) is input to the vibration isolator 1, the liquid L that has flowed into the main liquid chamber 14 through the pores 26a and 26b, and the liquid L in the main liquid chamber 14 It is possible to suppress the flow velocity difference generated between the two vortices, and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices can be suppressed.

また、仮に気泡が主液室14ではなく制限通路24で発生しても、液体Lを、複数の細孔26a、26bを通過させることで、発生した気泡同士を、主液室14内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持し易くすることができる。
以上のように、気泡の発生そのものを抑えることができるうえ、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持し易くすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
Even if bubbles are generated in the restriction passage 24 instead of the main liquid chamber 14, the generated bubbles are separated from each other in the main liquid chamber 14 by passing the liquid L through the plurality of pores 26 a and 26 b. It is possible to prevent the bubbles from joining and growing, and to easily maintain the bubbles in a finely dispersed state.
As described above, the generation of bubbles itself can be suppressed, and even if bubbles are generated, the bubbles can be easily maintained in a finely dispersed state. However, it is possible to suppress the generated abnormal noise.

特に、本体流路25に、第2連通部27側からの液体Lを衝突させてその流動方向を変化させる変流突部41が配設されているので、第2連通部27側からの液体Lを、第1障壁38に到達させる前に変流突部41に衝突させることで、液体Lに圧力損失を生じさせることができる。
しかも、変流突部41に衝突した液体Lが逆流するため、この液体Lを、変流突部41に向けて第2連通部27側から流れてくる液体Lに、正面から衝突させることが可能になり、発生する圧力損失を確実に高めることができる。
以上より、第2連通部27側からの液体Lの流速を、第1障壁38に到達する前に確実に低減することが可能になり、細孔26a、26bの内径を過度に小さくしなくても、キャビテーション崩壊に起因した異音を確実に小さく抑えることができる。
In particular, the main body flow path 25 is provided with the current transformation protrusion 41 that collides the liquid L from the second communication portion 27 side and changes the flow direction thereof, so that the liquid from the second communication portion 27 side is disposed. By causing L to collide with the current transformation protrusion 41 before reaching the first barrier 38, a pressure loss can be caused in the liquid L.
Moreover, since the liquid L that collided with the current transformation protrusion 41 flows backward, the liquid L can be collided from the front with the liquid L flowing from the second communication portion 27 toward the current transformation protrusion 41. This is possible, and the generated pressure loss can be reliably increased.
As described above, the flow rate of the liquid L from the second communication portion 27 side can be reliably reduced before reaching the first barrier 38, and the inner diameters of the pores 26a and 26b can be reduced excessively. However, it is possible to reliably suppress the abnormal noise caused by the collapse of cavitation.

さらに、変流突部41が、第1障壁38に軸方向で対向していて、本体流路25における第1連通部26側と第2連通部27側との間の中央部から離れた位置に配設されているので、変流突部41を本体流路25に設けたことに起因して、チューニングが困難になるのを抑えることができる。   Furthermore, the current transformation protrusion 41 is opposed to the first barrier 38 in the axial direction, and is located away from the central portion between the first communication portion 26 side and the second communication portion 27 side in the main body flow path 25. Therefore, it is possible to prevent the tuning from becoming difficult due to the provision of the current transformation protrusion 41 in the main body flow path 25.

また、変流突部41が、本体流路25の終端面25aに配設され、かつ第1障壁38に軸方向で対向しているので、本体流路25の終端面25a付近に到達した第2連通部27側からの液体Lが、第1障壁38に達する前に、変流突部41に衝突することとなる。したがって、防振装置1に大きな荷重が入力されたことにより、第2連通部27側からの液体Lが、本体流路25の終端面25a付近に高速で到達しても、その流速を第1障壁38に達する前に確実に低減することが可能になるとともに、この液体Lを拡散させることもできる。これにより、防振装置1に大きな荷重が入力されたときに、第2連通部27側からの液体Lが、複数の細孔26a、26bのうち、本体流路25の終端面25aの近くに位置する細孔26a、26bから集中して主液室14に高速で流入するのを防ぐことができる。   Further, since the current transformation protrusion 41 is disposed on the end face 25a of the main body flow path 25 and is opposed to the first barrier 38 in the axial direction, the first current reaching the vicinity of the end face 25a of the main body flow path 25 is reached. The liquid L from the second communicating portion 27 side collides with the current transformation protrusion 41 before reaching the first barrier 38. Therefore, even if the liquid L from the second communication portion 27 side reaches the vicinity of the end face 25a of the main body flow path 25 at a high speed due to the input of a large load to the vibration isolator 1, the flow velocity is reduced to the first flow rate. Before reaching the barrier 38, the liquid L can be surely reduced and the liquid L can be diffused. Thus, when a large load is input to the vibration isolator 1, the liquid L from the second communication portion 27 side is close to the end face 25a of the main body flow path 25 among the plurality of pores 26a and 26b. It is possible to prevent concentration from the positioned pores 26a and 26b and flow into the main liquid chamber 14 at high speed.

また、変流突部41と軸方向で対向していて、第2連通部27側からの液体Lが到達しにくい対向細孔26aの流通抵抗が、変流突部41と軸方向で対向しておらず、第2連通部27側からの液体Lが到達しやすい非対向細孔26bの流通抵抗より小さいので、第2連通部27側からの液体Lを、複数の細孔26a、26bに、変流突部41と軸方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In addition, the flow resistance of the opposed pore 26a that is opposed to the current transformation protrusion 41 in the axial direction and is difficult for the liquid L from the second communication portion 27 side to reach is opposed to the current transformation protrusion 41 in the axial direction. However, since the flow resistance of the non-facing pores 26b from which the liquid L from the second communication portion 27 side can easily reach is smaller, the liquid L from the second communication portion 27 side is supplied to the plurality of pores 26a and 26b. Regardless of whether or not it is opposed to the current transformation protrusion 41 in the axial direction, it can be made to flow evenly with little deviation.

ここで、前記実施形態では、対向細孔26aの流通抵抗を、非対向細孔26bの流通抵抗より小さくしたが、これに限らず例えば、図4に示されるように、第1障壁38の下面(本体流路25側を向く内面)において、変流突部41と軸方向で対向する部分の平面積に占める対向細孔26aの開口面積の割合を、残りの、変流突部41と軸方向で対向していない部分の平面積に占める非対向細孔26bの開口面積の割合より大きくしてもよい。
図示の例では、非対向細孔26bは、変流突部41を介さず端室34の下壁面と軸方向で対向している。対向細孔26aおよび非対向細孔26bそれぞれの内径が互いに同等となっている。
Here, in the above-described embodiment, the flow resistance of the opposed pores 26a is made smaller than the flow resistance of the non-opposed pores 26b. However, the present invention is not limited to this, for example, as shown in FIG. In the (inner surface facing the main body flow path 25 side), the ratio of the opening area of the opposed pores 26a occupying the plane area of the portion facing the current transformation protrusion 41 in the axial direction is set as the remaining current transformation protrusion 41 and shaft. You may make it larger than the ratio of the opening area of the non-opposing pore 26b which occupies the flat area of the part which is not facing by the direction.
In the illustrated example, the non-facing fine pores 26 b are opposed to the lower wall surface of the end chamber 34 in the axial direction without the current-transforming protrusion 41. The inner diameters of the opposed pore 26a and the non-opposed pore 26b are equal to each other.

この場合、第1障壁38の下面において、変流突部41と軸方向で対向していて、第2連通部27側からの液体Lが到達しにくい部分の平面積に占める対向細孔26aの開口面積の割合が、変流突部41と軸方向で対向しておらず、第2連通部27側からの液体Lが到達しやすい部分の平面積に占める非対向細孔26bの開口面積の割合より大きいので、第2連通部27側からの液体Lを、複数の細孔26a、26bに、変流突部41と軸方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In this case, on the lower surface of the first barrier 38, the opposed pores 26a occupy the plane area of the portion that is opposed to the current transformation protrusion 41 in the axial direction and is difficult for the liquid L from the second communication portion 27 side to reach. The ratio of the opening area is the opening area of the non-facing pores 26b that occupies the flat area of the portion where the liquid L from the second communication portion 27 side easily reaches without being opposed to the current transformation protrusion 41 in the axial direction. Since it is larger than the ratio, the liquid L from the second communication portion 27 side flows evenly into the plurality of pores 26a, 26b with little deviation regardless of whether or not it is opposed to the current transformation protrusion 41 in the axial direction. Can be made.

また、対向細孔26aの流通抵抗を、非対向細孔26bの流通抵抗より小さくしたうえで、図4に示されるように、第1障壁38の下面において、変流突部41と軸方向で対向する部分の平面積に占める対向細孔26aの開口面積の割合を、残りの、変流突部41と軸方向で対向していない部分の平面積に占める非対向細孔26bの開口面積の割合より大きくしてもよい。   In addition, the flow resistance of the opposed pore 26a is made smaller than the flow resistance of the non-opposed pore 26b, and as shown in FIG. The ratio of the opening area of the opposed pore 26a to the flat area of the facing portion is the opening area of the non-facing pore 26b that occupies the remaining flat area of the portion that is not opposed to the current transformation protrusion 41 in the axial direction. It may be larger than the ratio.

また、前記実施形態では、変流突部41が、終端面25aに配設された構成を示したが、これに限らず例えば、図9に示されるように、端室34の内周面のうち、終端面25aより主流路31における周方向の他方側に位置する張出部分34aに配設してもよい。図示の例では、前記平面視において、端室34の張出部分34aは、主流路31における周方向の他方側に突となる円弧状を呈し、変流突部41は、端室34の張出部分34aにおける全長にわたって配設されている。
変流突部41の第1弧部41bは、前記平面視において、端室34の張出部分34aに接続され、かつ張出部分34aに沿って延びている。変流突部41の第1弦部41cは、前記平面視において、外連通部46の周方向の両端部のうち、主流路31における周方向の他方側に位置する端部に接し、前記延在方向Rに延びている。
Moreover, in the said embodiment, although the structure which the current transformation protrusion 41 was arrange | positioned by the termination | terminus surface 25a was shown, it is not restricted to this, For example, as FIG. 9 shows, the inner peripheral surface of the end chamber 34 is shown. Of these, the protruding portion 34a may be disposed on the other side in the circumferential direction of the main channel 31 from the end face 25a. In the illustrated example, the projecting portion 34 a of the end chamber 34 has an arcuate shape projecting to the other side in the circumferential direction of the main flow path 31 in the plan view, and the current transformation projection 41 is the tension of the end chamber 34. It arrange | positions over the full length in the protrusion part 34a.
The first arc portion 41b of the current transformation protrusion 41 is connected to the extension portion 34a of the end chamber 34 and extends along the extension portion 34a in the plan view. The first chord portion 41c of the current transformation protrusion 41 is in contact with an end portion located on the other side in the circumferential direction of the main flow channel 31 among both circumferential end portions of the outer communication portion 46 in the plan view, and the extension It extends in the present direction R.

また、前記実施形態では、上側部材47の下面に第1凹部を形成し、中間部材42の全体が、上側部材47の前記第1凹部の底面、つまり第1障壁38より下方に位置する構成を示したが、これに限らず例えば、図10に示されるように、上側部材47の下面に第1凹部を形成せず、上側部材47の下面のうち、第1障壁38が位置する部分と、中間部材42の上面に当接して固定する部分と、をほぼ面一にすることで、変流突部41を、第1障壁38の下面に近付け、かつ第2障壁39の上面から上方に離間させてもよい。
この場合、主流路31から端室34に流入した液体の多くを、第1障壁38に到達させる前に変流突部41に衝突させることが可能になり、発生する圧力損失をより一層確実に高めることができる。
In the embodiment, the first recess is formed on the lower surface of the upper member 47, and the entire intermediate member 42 is positioned below the bottom surface of the first recess of the upper member 47, that is, the first barrier 38. Although not limited to this, for example, as shown in FIG. 10, the first recess is not formed on the lower surface of the upper member 47, and the portion where the first barrier 38 is located on the lower surface of the upper member 47, The current abutting protrusion 41 is brought close to the lower surface of the first barrier 38 and spaced upward from the upper surface of the second barrier 39 by making the portion that contacts and fixes the upper surface of the intermediate member 42 substantially flush with each other. You may let them.
In this case, most of the liquid flowing into the end chamber 34 from the main flow path 31 can collide with the current transformation protrusion 41 before reaching the first barrier 38, and the generated pressure loss can be more reliably ensured. Can be increased.

次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。   Next, a second embodiment according to the present invention will be described. The basic configuration is the same as that of the first embodiment. For this reason, the same code | symbol is attached | subjected to the same structure, the description is abbreviate | omitted, and only a different point is demonstrated.

本実施形態に係る防振装置2の変流突部141では、図5から図7に示されるように、第1連通部126および第2連通部27のうちのいずれか他方側からの液体Lを衝突させて分岐させる。   In the current transformation protrusion 141 of the vibration isolator 2 according to the present embodiment, as shown in FIGS. 5 to 7, the liquid L from the other side of the first communication portion 126 and the second communication portion 27. Fork.

図示の例では、変流突部141は、第2連通部27側からの液体Lを衝突させて分岐させる。変流突部141は、図7に示されるように、軸方向の内側から外側に向かうに従い漸次、縮径された2つの円錐状体の底面同士が突き合わされて一体とされ、かつ径方向の外側から見て菱形状を呈する構成となっている。変流突部141は、端室34の中心軸線と同軸に配設されている。
以下、前記平面視において、端室34の中心軸線に交差する方向を端室径方向といい、端室34の中心軸線回りに周回する方向を端室周方向という。
変流突部141の表面は、端室34を画成する壁面と非接触となっている。前記平面視において、端室34に占める変流突部141の平面積の割合は半分程度となっている。変流突部141は、制限通路24内を流通する液体Lの流動圧では変形、および変位しない剛体となっている。
なお例えば、変流突部141は、2つの角錐状体の底面同士が突き合わされて一体とされ、かつ端室径方向の外側から見て菱形状を呈する構成、柱状、若しくは板状等であってもよい。
In the illustrated example, the current transformation projection 141 causes the liquid L from the second communication portion 27 side to collide and branch off. As shown in FIG. 7, the current-transformation protrusion 141 is formed by abutting the bottom surfaces of two conical bodies whose diameters are gradually reduced from the inner side toward the outer side in the axial direction. It is the structure which exhibits a rhombus shape seeing from the outside. The current transformation protrusion 141 is disposed coaxially with the central axis of the end chamber 34.
Hereinafter, in the plan view, a direction intersecting with the central axis of the end chamber 34 is referred to as an end chamber radial direction, and a direction around the central axis of the end chamber 34 is referred to as an end chamber circumferential direction.
The surface of the current transformation protrusion 141 is not in contact with the wall surface that defines the end chamber 34. In the plan view, the ratio of the flat area of the current transformation protrusion 141 occupying the end chamber 34 is about half. The current transformation protrusion 141 is a rigid body that is not deformed or displaced by the flow pressure of the liquid L flowing through the restriction passage 24.
In addition, for example, the current transformation protrusion 141 has a configuration, a columnar shape, a plate shape, or the like in which the bottom surfaces of two pyramids are brought into contact with each other and are formed in a diamond shape when viewed from the outside in the end chamber radial direction. May be.

変流突部141の表面のうち、軸方向の中央部から下方に向かうに従い漸次、端室径方向の内側に向けて延びる表面は、第2連通部27側からの液体Lを変流突部141の下方から衝突させて分岐させる分岐面141aとなっている。変流突部141の表面のうち、軸方向の中央部から上方に向かうに従い漸次、端室径方向の内側に向けて延びる表面は、分岐面141aによって分岐された液体Lを合流させて変流突部141を上方に通過させ、第1障壁38に案内する案内面141bとなっている。分岐面141a、および案内面141bそれぞれの、端室34の中心軸線に対する傾斜角度の大きさは、互いに同等になっている。   Of the surface of the current transformation protrusion 141, the surface that gradually extends inward in the radial direction of the end chamber as it goes downward from the central portion in the axial direction causes the liquid L from the second communication portion 27 side to flow. 141 is a branch surface 141a that is caused to collide from below and branch off. Of the surface of the current transformation protrusion 141, the surface that gradually extends inward in the end chamber radial direction as it goes upward from the central portion in the axial direction joins the liquid L branched by the branch surface 141 a to change the current. A guide surface 141b that guides the first barrier 38 through the protrusion 141 is formed. The inclination angles of the branch surface 141a and the guide surface 141b with respect to the center axis of the end chamber 34 are equal to each other.

変流突部141の表面に、変流突部141を端室34の壁面に固定する連結片143が配設されている。連結片143は、変流突部141の表面に、端室周方向に間隔をあけて複数配設されている。連結片143は、変流突部141を、端室34を画成する壁面のうち、端室径方向の内側を向く内周面に固定している。連結片143は、変流突部141の軸方向の中央部に配設されている。複数の連結片143の端室周方向の大きさの総和は、変流突部141の軸方向の中央部において、連結片143が配設されていない部分の端室周方向の大きさの総和より小さい。変流突部141は、外連通部46に連結片143を介さず対向している。   A connecting piece 143 that fixes the current transformation protrusion 141 to the wall surface of the end chamber 34 is disposed on the surface of the current transformation protrusion 141. A plurality of the connecting pieces 143 are arranged on the surface of the current transformation protrusion 141 at intervals in the circumferential direction of the end chamber. The connecting piece 143 fixes the current transformation protrusion 141 to the inner peripheral surface facing the inner side in the end chamber radial direction among the wall surfaces defining the end chamber 34. The connecting piece 143 is disposed at the central portion in the axial direction of the current transformation protrusion 141. The total sum of the sizes in the end chamber circumferential direction of the plurality of connecting pieces 143 is the sum of the sizes in the end chamber circumferential direction of the portion where the connecting piece 143 is not provided in the central portion in the axial direction of the current transformation protrusion 141. Smaller than. The current transformation protrusion 141 faces the outer communication part 46 without the connection piece 143 interposed therebetween.

複数の細孔126a、126bのうち、変流突部141と軸方向で対向する対向細孔126aの流通抵抗は、残りの、変流突部141と軸方向で対向していない非対向細孔126bの流通抵抗より大きい。   Among the plurality of pores 126a and 126b, the flow resistance of the opposed pore 126a that faces the current transformation protrusion 141 in the axial direction is the remaining non-opposed pore that does not face the current transformation projection 141 in the axial direction. It is greater than the flow resistance of 126b.

図示の例では、非対向細孔126bは、変流突部141を介さず端室34の下壁面(本体流路25の内面)と軸方向で対向している。非対向細孔126bは、第1障壁38の外周部に配設され、対向細孔126aは、第1障壁38において外周部より径方向の内側に位置する中央部に配設されている。対向細孔126aの内径が、非対向細孔126bの内径より小さくなっている。対向細孔126aおよび非対向細孔126bそれぞれの流路長は互いに同等になっている。複数の対向細孔126aは、互いに同じ形状で同じ大きさとなっている。複数の非対向細孔126bも互いに同じ形状で同じ大きさとなっている。   In the illustrated example, the non-opposing fine hole 126b is opposed to the lower wall surface of the end chamber 34 (the inner surface of the main body flow path 25) in the axial direction without the current-transforming protrusion 141 interposed therebetween. The non-opposing pore 126b is disposed in the outer peripheral portion of the first barrier 38, and the opposing pore 126a is disposed in the central portion of the first barrier 38 that is located radially inward from the outer peripheral portion. The inner diameter of the opposed pore 126a is smaller than the inner diameter of the non-opposed pore 126b. The channel lengths of the opposing pore 126a and the non-opposing pore 126b are equal to each other. The plurality of opposed pores 126a have the same shape and the same size. The plurality of non-facing pores 126b have the same shape and the same size.

なお、対向細孔126aの流路長を、非対向細孔126bの流路長より長くしてもよいし、また、非対向細孔126bの内周面を平滑面にする一方、対向細孔126aの内周面に凹凸部を形成してもよく、その他、内径、および流路長等の少なくとも1つを適宜調整することで、対向細孔126aの流通抵抗を、非対向細孔126bの流通抵抗より大きくしてもよい。   The flow path length of the opposed pore 126a may be longer than the flow path length of the non-opposed pore 126b, and the inner peripheral surface of the non-opposed pore 126b is made smooth, while the opposed pore An uneven portion may be formed on the inner peripheral surface of 126a. In addition, by appropriately adjusting at least one of the inner diameter, the flow path length, and the like, the flow resistance of the opposed pore 126a can be reduced. It may be larger than the distribution resistance.

仕切部材16の中間部材142の外周面は、前記平面視において、溝底面37の一部をなす第2弧部142aと、第2弧部142aの両端部同士を連結し、かつ直線状に延びる第2弦部142bと、により構成されている。中間部材142に、前記平面視において、第2弦部142bに開口する半円形状の開口142cが形成されており、この開口142cの内周面が、端室34の内周面の一部をなしている。開口142cの内周面に、連結片143を介して変流突部141が連結されている。連結片143の表裏面は、中間部材142の表裏面と面一となっている。連結片143および変流突部141は、中間部材142と一体に形成されている。   The outer peripheral surface of the intermediate member 142 of the partition member 16 connects the second arc portion 142a forming a part of the groove bottom surface 37 and both ends of the second arc portion 142a in a plan view and extends linearly. The second string portion 142b. The intermediate member 142 is formed with a semicircular opening 142c that opens to the second chord portion 142b in the plan view. The inner peripheral surface of the opening 142c is a part of the inner peripheral surface of the end chamber 34. There is no. The current transformation protrusion 141 is connected to the inner peripheral surface of the opening 142c through a connecting piece 143. The front and back surfaces of the connecting piece 143 are flush with the front and back surfaces of the intermediate member 142. The connecting piece 143 and the current transformation protrusion 141 are formed integrally with the intermediate member 142.

以上説明したように、本実施形態に係る防振装置2によれば、本体流路25に、第2連通部27側からの液体Lを衝突させて分岐させる変流突部141が配設されているので、第2連通部27側からの液体Lを、第1障壁38に到達させる前に変流突部141に衝突させ分岐させることで、液体Lに圧力損失を生じさせることができる。これにより、第2連通部27側からの液体Lの流速を、第1障壁38に到達する前に確実に低減することが可能になり、細孔126a、126bの内径を過度に小さくしなくても、キャビテーション崩壊に起因した異音を確実に小さく抑えることができる。   As described above, according to the vibration isolator 2 according to the present embodiment, the current transformation protrusion 141 that causes the liquid L from the second communication portion 27 side to collide and branch is provided in the main body flow path 25. Therefore, the liquid L from the second communication portion 27 side collides with the current transformation protrusion 141 and branches before reaching the first barrier 38, thereby causing a pressure loss in the liquid L. As a result, the flow rate of the liquid L from the second communication portion 27 side can be reliably reduced before reaching the first barrier 38, and the inner diameters of the pores 126a and 126b are not excessively reduced. However, it is possible to reliably suppress the abnormal noise caused by the collapse of cavitation.

また、変流突部141に案内面141bが形成されているので、第2連通部27側からの液体Lが、変流突部141に衝突して分岐した後に、案内面141bにより合流させられることで、分岐した液体L同士が衝突し、圧力損失が生ずることとなる。したがって、第2連通部27側からの液体Lを、変流突部141を通過させることで、この液体Lの流速を、第1障壁38に到達する前により一層確実に低減することができる。   Moreover, since the guide surface 141b is formed in the current transformation protrusion 141, the liquid L from the 2nd communication part 27 side collides with the current transformation protrusion 141, and is made to merge by the guide surface 141b. This causes the branched liquids L to collide with each other, resulting in a pressure loss. Therefore, by allowing the liquid L from the second communication portion 27 side to pass through the current transformation protrusion 141, the flow velocity of the liquid L can be more reliably reduced before reaching the first barrier 38.

また、変流突部141と軸方向で対向していて、変流突部141を通過して合流し、比較的流量の大きい液体Lが流入する対向細孔126aの流通抵抗が、変流突部141と軸方向で対向しておらず、比較的流量の小さい液体Lが流入する非対向細孔126bの流通抵抗より大きいので、第2連通部27側からの液体Lを、複数の細孔126a、126bに、変流突部141と軸方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In addition, the flow resistance of the opposed pore 126a that faces the current transformation protrusion 141 in the axial direction, passes through the current transformation protrusion 141, joins, and flows in the liquid L having a relatively large flow rate flows. Since the flow resistance of the non-facing pore 126b into which the liquid L having a relatively small flow rate does not flow is not opposed to the portion 141 in the axial direction, the liquid L from the second communication portion 27 side is allowed to flow into the plurality of pores. 126a and 126b can be made to flow evenly with little deviation regardless of whether or not they are opposed to the current transformation protrusion 141 in the axial direction.

ここで、前記実施形態では、対向細孔126aの流通抵抗を、非対向細孔126bの流通抵抗より大きくしたが、これに限らず例えば、図8に示されるように、第1障壁38の下面(本体流路25側を向く内面)において、変流突部141と軸方向で対向する部分の平面積に占める対向細孔126aの開口面積の割合を、残りの、変流突部141と軸方向で対向していない部分の平面積に占める非対向細孔126bの開口面積の割合より小さくしてもよい。
図示の例では、非対向細孔126bは、変流突部141を介さず端室34の下壁面と軸方向で対向している。対向細孔126aおよび非対向細孔126bそれぞれの内径が互いに同等となっている。
Here, in the above-described embodiment, the flow resistance of the opposed pore 126a is larger than the flow resistance of the non-opposed pore 126b. However, the present invention is not limited to this, for example, as shown in FIG. In the (inner surface facing the main body flow path 25 side), the ratio of the opening area of the opposed pore 126a occupying the flat area of the portion facing the current transformation protrusion 141 in the axial direction is the remaining current transformation protrusion 141 and the shaft. You may make it smaller than the ratio of the opening area of the non-opposing pore 126b which occupies the plane area of the part which is not facing by the direction.
In the illustrated example, the non-opposing fine hole 126b is opposed to the lower wall surface of the end chamber 34 in the axial direction without passing through the current-transforming protrusion 141. The inner diameters of the opposed pore 126a and the non-opposed pore 126b are equal to each other.

この場合、第1障壁38の下面において、変流突部141と軸方向で対向していて、変流突部141を通過して合流し、比較的流量の大きい液体Lが導かれる部分の平面積に占める対向細孔126aの開口面積の割合が、変流突部141と軸方向で対向しておらず、比較的流量の小さい液体Lが導かれる部分の平面積に占める非対向細孔126bの開口面積の割合より小さいので、第2連通部27側からの液体Lを、複数の細孔126a、126bに、変流突部141と軸方向で対向しているか否かを問わず、偏り少なく均等に流入させることができる。   In this case, the lower surface of the first barrier 38 is opposed to the current transformation protrusion 141 in the axial direction, passes through the current transformation protrusion 141, merges, and the flat portion of the portion where the liquid L having a relatively large flow rate is guided. The ratio of the opening area of the opposed pore 126a to the area is not opposed to the current transformation protrusion 141 in the axial direction, and the non-facing pore 126b occupies the flat area of the portion where the liquid L having a relatively small flow rate is guided. Therefore, the liquid L from the second communication portion 27 side is biased regardless of whether or not it faces the plurality of pores 126a and 126b in the axial direction of the current transformation protrusion 141. It can be made to flow evenly with a small amount.

また、対向細孔126aの流通抵抗を、非対向細孔126bの流通抵抗より大きくしたうえで、図8に示されるように、第1障壁38の下面において、変流突部141と軸方向で対向する部分の平面積に占める対向細孔126aの開口面積の割合を、残りの、変流突部141と軸方向で対向していない部分の平面積に占める非対向細孔126bの開口面積の割合より小さくしてもよい。
また、変流突部141は、第1障壁38の下面に近付け、かつ第2障壁39の上面から上方に離間させてもよい。
この場合、主流路31から端室34に流入した液体の多くを、第1障壁38に到達させる前に変流突部141に衝突させることが可能になり、発生する圧力損失をより一層確実に高めることができる。
In addition, the flow resistance of the opposed pore 126a is made larger than the flow resistance of the non-opposed pore 126b, and as shown in FIG. The ratio of the opening area of the opposed pore 126a to the flat area of the opposing portion is the opening area of the non-facing pore 126b that occupies the remaining flat area of the portion that is not opposed to the current transformation protrusion 141 in the axial direction. You may make it smaller than a ratio.
The current transformation protrusion 141 may be close to the lower surface of the first barrier 38 and spaced upward from the upper surface of the second barrier 39.
In this case, most of the liquid flowing into the end chamber 34 from the main flow path 31 can collide with the current transformation protrusion 141 before reaching the first barrier 38, and the generated pressure loss is more reliably ensured. Can be increased.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前記実施形態では、変流突部41、141を本体流路25の端室34に配設したが、主流路31若しくは外連通部46に配設してもよく、変流突部41、141は、第1連通部26、126側からの液体Lを衝突させてその流動方向を変化させてもよい。
また、変流突部41、141は、液体Lを衝突させてその流動方向を変化させればよく、液体Lを逆流させたり、分岐させたりしなくてもよい。
また、第1連通部26、126および第2連通部27の双方が、細孔26a、26b、126a、126bを有する構成を採用してもよい。
また、主流路31として、仕切部材16を約1周する構成を示したが、仕切部材16を1周より長く周回する構成を採用してもよい。
また、本体流路25として、例えば軸方向に延びる構成、若しくは端室34を有しない構成等を採用してもよい。
For example, in the above-described embodiment, the current transformation protrusions 41 and 141 are disposed in the end chamber 34 of the main body flow path 25, but may be disposed in the main flow path 31 or the outer communication portion 46. , 141 may cause the liquid L from the first communication portion 26, 126 side to collide and change the flow direction thereof.
Moreover, the current transformation protrusions 41 and 141 may change the flow direction by causing the liquid L to collide, and may not cause the liquid L to reversely flow or branch off.
Moreover, you may employ | adopt the structure in which both the 1st communication parts 26 and 126 and the 2nd communication part 27 have pore 26a, 26b, 126a, 126b.
Moreover, although the structure which makes the partition member 16 1 round as the main flow path 31 was shown, the structure which circulates the partition member 16 longer than 1 round may be employ | adopted.
Further, as the main body channel 25, for example, a configuration extending in the axial direction or a configuration without the end chamber 34 may be employed.

また、前記第2実施形態では、変流突部141に案内面141bを形成したが、案内面141bを有しない変流突部141を採用してもよい。
この場合、第2連通部27側からの液体Lが、非対向細孔126bよりも対向細孔126aに到達しにくくなるので、対向細孔126aの流通抵抗を、非対向細孔126bの流通抵抗より小さくしてもよく、また、第1障壁38の下面において、変流突部141と軸方向で対向する部分の平面積に占める対向細孔126aの開口面積の割合を、残りの、変流突部141と軸方向で対向していない部分の平面積に占める非対向細孔126bの開口面積の割合より大きくしてもよい。
Moreover, in the said 2nd Embodiment, although the guide surface 141b was formed in the current transformation protrusion 141, you may employ | adopt the current transformation protrusion 141 which does not have the guide surface 141b.
In this case, since the liquid L from the second communication portion 27 side is less likely to reach the counter pore 126a than the non-opposed pore 126b, the flow resistance of the counter pore 126a is reduced to the flow resistance of the non-opposed pore 126b. Further, the ratio of the opening area of the opposed pores 126a in the plane area of the portion facing the current transformation protrusion 141 in the axial direction on the lower surface of the first barrier 38 may be the remaining current transformation. You may make it larger than the ratio of the opening area of the non-opposing pore 126b which occupies the flat area of the part which is not facing the protrusion 141 in the axial direction.

また、前記実施形態では、支持荷重が作用することで主液室14に正圧が作用する圧縮式の防振装置1、2について説明したが、主液室14が鉛直方向下側に位置し、かつ副液室15が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室14に負圧が作用する吊り下げ式の防振装置にも適用可能である。   In the above embodiment, the compression type vibration isolators 1 and 2 in which a positive pressure is applied to the main liquid chamber 14 when a support load is applied have been described. However, the main liquid chamber 14 is positioned on the lower side in the vertical direction. In addition, the auxiliary liquid chamber 15 is attached so as to be positioned on the upper side in the vertical direction, and can be applied to a suspension type vibration isolator in which a negative pressure is applied to the main liquid chamber 14 when a support load is applied.

また前記実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて、弾性体13を軸方向に一対設けて、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、第1液室14および第2液室15に仕切り、第1液室14および第2液室15の両液室のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。   In the above embodiment, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 into the main liquid chamber 14 having the elastic body 13 as a part of the wall surface and the sub liquid chamber 15. It is not limited to this. For example, instead of providing the diaphragm 20, a pair of elastic bodies 13 may be provided in the axial direction, and instead of providing the auxiliary liquid chamber 15, a pressure receiving liquid chamber having the elastic body 13 at a part of the wall surface may be provided. Good. For example, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 in which the liquid L is sealed into the first liquid chamber 14 and the second liquid chamber 15, and the first liquid chamber 14 and the second liquid chamber 15. At least one of the two liquid chambers can be appropriately changed to another configuration having the elastic body 13 in a part of the wall surface.

また、本発明に係る防振装置1、2は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントに適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。   The vibration isolators 1 and 2 according to the present invention are not limited to an engine mount of a vehicle, and can be applied to other than the engine mount. For example, the present invention can be applied to a generator mount mounted on a construction machine, or can be applied to a machine mount installed in a factory or the like.

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した実施形態および変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described embodiments and modification examples may be appropriately combined.

1、2 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
25a 終端面(一端面)
26、126 第1連通部
26a、26b、126a、126b 細孔
27 第2連通部
38 第1障壁
41、141 変流突部
L 液体
O 中心軸線
1, 2 Vibration isolator 11 First mounting member 12 Second mounting member 13 Elastic body 14 Main liquid chamber (first liquid chamber)
15 Secondary liquid chamber (second liquid chamber)
16 Partition member 19 Liquid chamber 24 Restriction passage 25 Main body flow path 25a End surface (one end surface)
26, 126 1st communication part 26a, 26b, 126a, 126b Small hole 27 2nd communication part 38 1st barrier 41, 141 Current transformation protrusion L Liquid O Center axis

Claims (4)

振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する第1障壁を貫く複数の細孔を備え、
前記本体流路に、前記第1連通部および前記第2連通部のうちのいずれか他方側からの液体を衝突させてその流動方向を変化させる変流突部が配設され、
前記変流突部は、前記第1障壁に前記細孔の開口方向で対向していることを特徴とする防振装置。
A cylindrical first mounting member coupled to one of the vibration generating unit and the vibration receiving unit, and a second mounting member coupled to the other;
An elastic body that elastically connects both the mounting members;
A partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and
A liquid-sealed vibration isolator in which a restriction passage communicating the first liquid chamber and the second liquid chamber is formed in the partition member,
The restriction passage includes a first communication portion that opens to the first liquid chamber, a second communication portion that opens to the second liquid chamber, and a main body channel that communicates the first communication portion and the second communication portion. With
At least one of the first communication portion and the second communication portion includes a plurality of pores penetrating the first barrier facing the first liquid chamber or the second liquid chamber,
The main body flow path is provided with a current transformation protrusion that changes the flow direction by colliding liquid from either one of the first communication part and the second communication part,
The anti-vibration device according to claim 1, wherein the current transformation protrusion is opposed to the first barrier in the opening direction of the pore.
前記変流突部は、前記本体流路の内面において、前記第1連通部および前記第2連通部のうちのいずれか一方側の端部に位置して、他方側を向く一端面に配設されていることを特徴とする請求項1に記載の防振装置。   The current transformation protrusion is disposed on one end surface of the inner surface of the main body channel, which is located at one end of the first communication portion and the second communication portion and faces the other side. The anti-vibration device according to claim 1, wherein the anti-vibration device is provided. 複数の細孔のうち、前記変流突部と前記細孔の開口方向で対向する前記細孔の流通抵抗は、残りの前記細孔の流通抵抗より小さいことを特徴とする請求項1または2に記載の防振装置。   The flow resistance of the pore facing the current-transforming protrusion in the opening direction of the pore among the plurality of pores is smaller than the flow resistance of the remaining pores. The vibration isolator described in 1. 前記第1障壁の、前記本体流路側を向く内面において、前記変流突部と前記細孔の開口方向で対向する部分の平面積に占める前記細孔の開口面積の割合が、残りの部分の平面積に占める前記細孔の開口面積の割合より大きいことを特徴とする請求項1から3のいずれか1項に記載の防振装置。   On the inner surface of the first barrier facing the main body flow path, the ratio of the opening area of the pores to the flat area of the portion facing the current-transforming protrusion in the opening direction of the pores is the remaining portion. The vibration isolator according to any one of claims 1 to 3, wherein the vibration isolator is larger than a ratio of an opening area of the pores to a flat area.
JP2018098066A 2018-05-22 2018-05-22 Anti-vibration device Active JP6986490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098066A JP6986490B2 (en) 2018-05-22 2018-05-22 Anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098066A JP6986490B2 (en) 2018-05-22 2018-05-22 Anti-vibration device

Publications (2)

Publication Number Publication Date
JP2019203543A true JP2019203543A (en) 2019-11-28
JP6986490B2 JP6986490B2 (en) 2021-12-22

Family

ID=68726502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098066A Active JP6986490B2 (en) 2018-05-22 2018-05-22 Anti-vibration device

Country Status (1)

Country Link
JP (1) JP6986490B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788869B2 (en) * 1987-05-12 1995-09-27 本田技研工業株式会社 Fluid filled vibration isolation device
US20040089989A1 (en) * 2002-11-07 2004-05-13 Delphi Technologies Inc. Hydraulic mount with reciprocating secondary orifice track-mass
WO2008156169A1 (en) * 2007-06-21 2008-12-24 Bridgestone Corporation Vibration damping device
WO2015068804A1 (en) * 2013-11-11 2015-05-14 株式会社ブリヂストン Vibration damping device
WO2015163027A1 (en) * 2014-04-24 2015-10-29 株式会社ブリヂストン Vibration isolation device
JP2015209966A (en) * 2014-04-30 2015-11-24 株式会社ブリヂストン Vibration isolation device
WO2016027606A1 (en) * 2014-08-20 2016-02-25 株式会社ブリヂストン Vibration-damping device
JP2016176509A (en) * 2015-03-19 2016-10-06 株式会社ブリヂストン Vibration prevention device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788869B2 (en) * 1987-05-12 1995-09-27 本田技研工業株式会社 Fluid filled vibration isolation device
US20040089989A1 (en) * 2002-11-07 2004-05-13 Delphi Technologies Inc. Hydraulic mount with reciprocating secondary orifice track-mass
WO2008156169A1 (en) * 2007-06-21 2008-12-24 Bridgestone Corporation Vibration damping device
WO2015068804A1 (en) * 2013-11-11 2015-05-14 株式会社ブリヂストン Vibration damping device
WO2015163027A1 (en) * 2014-04-24 2015-10-29 株式会社ブリヂストン Vibration isolation device
JP2015209966A (en) * 2014-04-30 2015-11-24 株式会社ブリヂストン Vibration isolation device
WO2016027606A1 (en) * 2014-08-20 2016-02-25 株式会社ブリヂストン Vibration-damping device
JP2016176509A (en) * 2015-03-19 2016-10-06 株式会社ブリヂストン Vibration prevention device

Also Published As

Publication number Publication date
JP6986490B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
WO2018198444A1 (en) Vibration damping device
CN109312811B (en) Vibration-proof device
US11448286B2 (en) Vibration-damping device
JP7145165B2 (en) Anti-vibration device
WO2018211754A1 (en) Vibration damping device
JP2019203543A (en) Vibration isolation device
JP7350628B2 (en) Vibration isolator
JP7350627B2 (en) Vibration isolator
JP7349325B2 (en) Vibration isolator
JP2019203541A (en) Vibration isolation device
WO2018193895A1 (en) Vibration dampening device
JP2019098953A (en) Vibration isolating device
JP2019203542A (en) Vibration isolation device
JP6853674B2 (en) Anti-vibration device
US11619279B2 (en) Vibration-damping device
US20200232534A1 (en) Vibration-damping device
JP2018194101A (en) Vibration isolation device
JP7161842B2 (en) Anti-vibration device
JP2018119621A (en) Vibration absorption device
JP2020118252A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6986490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350