JP2018194101A - Vibration isolation device - Google Patents

Vibration isolation device Download PDF

Info

Publication number
JP2018194101A
JP2018194101A JP2017098941A JP2017098941A JP2018194101A JP 2018194101 A JP2018194101 A JP 2018194101A JP 2017098941 A JP2017098941 A JP 2017098941A JP 2017098941 A JP2017098941 A JP 2017098941A JP 2018194101 A JP2018194101 A JP 2018194101A
Authority
JP
Japan
Prior art keywords
liquid chamber
main body
liquid
communication portion
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098941A
Other languages
Japanese (ja)
Other versions
JP6836458B2 (en
Inventor
植木 哲
Satoru Ueki
哲 植木
康寿之 長島
Yasuyuki Nagashima
康寿之 長島
勇樹 佐竹
Yuki Satake
勇樹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2017098941A priority Critical patent/JP6836458B2/en
Publication of JP2018194101A publication Critical patent/JP2018194101A/en
Application granted granted Critical
Publication of JP6836458B2 publication Critical patent/JP6836458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To suppress generation of noise caused by cavitation breakdown without degrading vibration control characteristic with a simple structure.SOLUTION: A limiting passage 24 includes a first communication portion 26 opened to a main liquid chamber 14, a second communication portion 27 opened to an auxiliary liquid chamber 15, and a main body flow channel 25 for communicating the first communication portion 26 and the second communication portion 27. At least one of the first communication portion 26 and the second communication portion 27 includes a plurality of pores 31 penetrating through a first barrier 28 facing the main liquid chamber 14. Positions of both end opening portions of the pore 31 are different from each other in a plane view of the first barrier 28, and at least in two of the plurality of pores 31, extending directions from a main body flow channel 25 side toward a main liquid chamber 14 side at an end portion of the main liquid chamber 14 side are different from each other.SELECTED DRAWING: Figure 1

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。   The present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.

この種の防振装置として、従来から、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、仕切部材に、第1液室と第2液室とを連通する制限通路が形成された液体封入型の防振装置が知られている。
この防振装置では、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位し、第1液室および第2液室のうちの少なくとも一方の液圧を変動させて制限通路に液体を流通させることで、振動を吸収および減衰している。
Conventionally, as this type of vibration isolator, a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both An elastic body that elastically connects the mounting member, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and the partition member There is known a liquid-filled vibration isolator in which a restriction passage that connects the first liquid chamber and the second liquid chamber is formed.
In this vibration isolator, at the time of vibration input, both attachment members are relatively displaced while elastically deforming the elastic body, and the restriction pressure passage is changed by changing the hydraulic pressure of at least one of the first liquid chamber and the second liquid chamber. Vibration is absorbed and damped by circulating the liquid in the tank.

ところで、この防振装置では、例えば路面の凹凸等から大きな荷重(振動)が入力され、例えば第1液室の液圧が急激に上昇した後、弾性体のリバウンド等によって逆方向に荷重が入力されたときに、第1液室が急激に負圧化されることがある。すると、この急激な負圧化により液中に多数の気泡が生成されるキャビテーションが発生し、さらに生成した気泡が崩壊するキャビテーション崩壊に起因して、異音が生じることがある。
そこで、例えば下記特許文献1に示される防振装置のように、制限通路内に弁体を設けることで、大きな振幅の振動が入力されたときであっても、第1液室の負圧化を抑制する構成が知られている。
By the way, in this vibration isolator, a large load (vibration) is input from, for example, road surface unevenness, and the load is input in the opposite direction due to, for example, the rebound of the elastic body after the fluid pressure in the first liquid chamber has rapidly increased. When this is done, the first liquid chamber may suddenly become negative pressure. Then, cavitation in which a large number of bubbles are generated in the liquid due to this sudden negative pressure is generated, and abnormal noise may be generated due to cavitation collapse in which the generated bubbles collapse.
Therefore, for example, as in the vibration isolator shown in Patent Document 1 below, by providing a valve body in the restriction passage, the negative pressure in the first liquid chamber can be reduced even when large amplitude vibration is input. The structure which suppresses is known.

特開2012−172832号公報JP2012-172832A

しかしながら、前記従来の防振装置では、弁体が設けられることで構造が複雑になり、弁体のチューニングも必要となるため、製造コストが増加するといった課題がある。また、弁体を設けることで設計自由度が低下し、結果として防振特性が低下するおそれがあった。   However, in the conventional vibration isolator, since the structure is complicated by providing the valve body, and tuning of the valve body is necessary, there is a problem that the manufacturing cost increases. In addition, the provision of the valve body has reduced the degree of freedom in design, and as a result, the vibration isolation characteristics may be reduced.

本発明は前記事情に鑑みてなされたもので、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる防振装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a vibration isolator capable of suppressing the occurrence of abnormal noise due to cavitation collapse without reducing the vibration isolation characteristics with a simple structure. To do.

前記課題を解決するために、本発明の防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、前記障壁の平面視で、前記細孔における両端開口部の位置は互いに異なっており、複数の前記細孔のうちの少なくとも2つにおいて、前記第1液室側または前記第2液室側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは互いに異なっていることを特徴とする。   In order to solve the above-described problem, the vibration isolator of the present invention includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, and a second mounting connected to the other. A member, an elastic body that elastically connects both the mounting members, and a partition member that divides a liquid chamber in the first mounting member in which a liquid is sealed into a first liquid chamber and a second liquid chamber. And a liquid-filled vibration isolator in which a restriction passage communicating the first liquid chamber and the second liquid chamber is formed in the partition member, wherein the restriction passage includes the first liquid chamber A first communication part that opens to the second liquid chamber, a second communication part that opens to the second liquid chamber, and a main body channel that communicates the first communication part and the second communication part, the first communication part and the At least one of the second communication portions penetrates the barrier facing the first liquid chamber or the second liquid chamber. A plurality of pores, and the positions of both end openings in the pores are different from each other in plan view of the barrier, and in at least two of the plurality of pores, the first liquid chamber side or In the end portion on the second liquid chamber side, directions extending from the main body channel side toward the first liquid chamber side or the second liquid chamber side are different from each other.

本発明によれば、振動入力時に、両取付部材が、弾性体を弾性変形させながら相対的に変位して、第1液室および第2液室のうちの少なくとも一方の液圧が変動することで、液体が制限通路を通って第1液室と第2液室との間を流通しようとする。このとき液体は、第1連通部および第2連通部のうちの一方を通して制限通路に流入し、本体流路内を通過した後、第1連通部および第2連通部のうちの他方を通して制限通路から流出する。
ここで、液体は、複数の細孔を通して本体流路から第1液室または第2液室に流入する際に、これらの細孔が形成された障壁により圧力損失させられながら各細孔を流通するため、第1液室または第2液室に流入する液体の流速を抑えることができる。
According to the present invention, at the time of vibration input, both mounting members are relatively displaced while elastically deforming the elastic body, and the hydraulic pressure of at least one of the first liquid chamber and the second liquid chamber varies. Then, the liquid tries to flow between the first liquid chamber and the second liquid chamber through the restriction passage. At this time, the liquid flows into the restriction passage through one of the first communication portion and the second communication portion, passes through the main body flow path, and then passes through the other of the first communication portion and the second communication portion. Spill from.
Here, when the liquid flows into the first liquid chamber or the second liquid chamber from the main body flow path through the plurality of pores, the liquid flows through each pore while being pressure-lossed by the barrier in which these pores are formed. Therefore, the flow rate of the liquid flowing into the first liquid chamber or the second liquid chamber can be suppressed.

しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。これにより、仮に防振装置に大きな荷重(振動)が入力されたとしても、細孔を通過して第1液室または第2液室に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
また、仮に気泡が第1液室や第2液室ではなく本体流路で発生しても、液体を、複数の細孔を通過させることで、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
In addition, since the liquid flows through a plurality of pores instead of a single pore, it is possible to divide the liquid into a plurality of channels and reduce the flow rate of the liquid that has passed through the individual pores. Can do. Accordingly, even if a large load (vibration) is input to the vibration isolator, the liquid that has passed through the pores and has flowed into the first liquid chamber or the second liquid chamber, and the first liquid chamber or the second liquid chamber It is possible to suppress the difference in flow velocity generated between the liquid and the liquid and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices.
Further, even if bubbles are generated in the main body flow path instead of the first liquid chamber or the second liquid chamber, the generated bubbles are allowed to pass between the first liquid chamber or the first liquid chamber by passing the liquid through the plurality of pores. The two liquid chambers can be separated from each other, and the bubbles can be prevented from joining and growing to easily maintain the bubbles in a finely dispersed state.

また、障壁の平面視で、細孔における両端開口部の位置が互いに異なっているので、両端開口部の位置が互いに同一であるような構成と比較して、例えば細孔の長さを大きく確保すること等が可能になり、この細孔内を液体が流通する際に、圧力損失を生じさせることができる。
また、複数の細孔のうちの少なくとも2つにおいて、第1液室側または第2液室側の端部における本体流路側から第1液室側または第2液室側に向けて延びる向きが互いに異なっているので、各細孔から第1液室または第2液室に液体が流入する際に、或いは、本体流路を液体が流通する際に、仮に気泡が発生したとしても、発生した気泡それぞれが第1液室内または第2液室内で流れる方向を、互いに異ならせることが可能となり、気泡が第1液室内または第2液室内で合流して成長するのを抑えて気泡を細かく分散させた状態に維持し易くすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
Also, since the positions of the openings at both ends of the pores are different from each other in the plan view of the barrier, for example, the length of the pores is ensured to be large compared to a configuration in which the positions of the openings at both ends are the same. When the liquid flows through the pores, a pressure loss can be generated.
Further, in at least two of the plurality of pores, the direction extending from the main body flow channel side to the first liquid chamber side or the second liquid chamber side at the end portion on the first liquid chamber side or the second liquid chamber side is extended. Since they are different from each other, even if bubbles are generated when the liquid flows into the first liquid chamber or the second liquid chamber from each pore, or when the liquid flows through the main body flow path, they are generated. The direction in which each bubble flows in the first liquid chamber or the second liquid chamber can be made different from each other, and the bubbles are finely dispersed by suppressing the bubbles from joining and growing in the first liquid chamber or the second liquid chamber. It can be made easy to maintain in the made state.
As described above, the generation of bubbles itself can be suppressed, and even if bubbles are generated, the bubbles can be easily maintained in a finely dispersed state. However, it is possible to suppress the generated abnormal noise.

また、前記細孔の中心軸線に沿う縦断面視において、前記細孔の前記本体流路側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは、前記本体流路の流路方向のうち、前記第1連通部および前記第2連通部のうちのいずれか他方側から一方側に向かう向きと鋭角をなしてもよい。
この場合には、液体が本体流路から細孔に流入する際に、液体の流れの向きを大きく変化させることが可能になり、大きな圧力損失を生じさせることができる。これにより、第1液室または第2液室に流入する液体の流速を、効果的に抑えることができる。
Further, in a longitudinal sectional view along the central axis of the pore, the end of the pore on the main body channel side extends from the main body channel side toward the first liquid chamber side or the second liquid chamber side. The direction may form an acute angle with the direction from one of the first communication portion and the second communication portion toward the one side in the flow direction of the main body flow channel.
In this case, when the liquid flows into the pores from the main body flow path, the direction of the liquid flow can be greatly changed, and a large pressure loss can be generated. Thereby, the flow velocity of the liquid flowing into the first liquid chamber or the second liquid chamber can be effectively suppressed.

また、前記細孔の中心軸線に沿う縦断面視において、前記細孔の前記本体流路側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは、前記細孔の前記第1液室側または前記第2液室側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きと異なってもよい。
この場合には、液体が本体流路から細孔に流入する向きと、細孔から第1液室または第2液室に流入する向きと、が互いに異なっているので、細孔内を液体が流通する際に、圧力損失を生じさせることが可能になり、細孔から第1液室または第2液室に流入する液体の流速を、より一層効果的に抑えることができる。
Further, in a longitudinal sectional view along the central axis of the pore, the end of the pore on the main body channel side extends from the main body channel side toward the first liquid chamber side or the second liquid chamber side. The direction is different from the direction extending from the main body channel side toward the first liquid chamber side or the second liquid chamber side at the end of the pore on the first liquid chamber side or the second liquid chamber side. May be.
In this case, since the direction in which the liquid flows into the pores from the main body flow path and the direction in which the liquid flows into the first liquid chamber or the second liquid chamber from each other are different from each other, When flowing, it becomes possible to cause a pressure loss, and the flow rate of the liquid flowing from the pores into the first liquid chamber or the second liquid chamber can be more effectively suppressed.

本発明によれば、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる。   According to the present invention, it is possible to suppress the generation of abnormal noise caused by cavitation collapse without reducing the vibration isolation characteristics with a simple structure.

本発明の第1実施形態に係る防振装置の縦断面図である。It is a longitudinal cross-sectional view of the vibration isolator which concerns on 1st Embodiment of this invention. 図1に示す防振装置の仕切部材の平面図である。It is a top view of the partition member of the vibration isolator shown in FIG. 図2に示す仕切部材の一部拡大図である。FIG. 3 is a partially enlarged view of the partition member shown in FIG. 2. 図1に示す細孔の径方向の外側から見た縦断面図である。It is the longitudinal cross-sectional view seen from the radial direction outer side of the pore shown in FIG. 本発明の第2実施形態に係る細孔における径方向の外側から見た縦断面図である。It is the longitudinal cross-sectional view seen from the radial direction outer side in the pore which concerns on 2nd Embodiment of this invention.

(第1実施形態)
以下、本発明に係る防振装置の実施の形態について、図面に基づいて説明する。
図1に示すように、防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、第1取付部材11内を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
(First embodiment)
Embodiments of a vibration isolator according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the vibration isolator 10 includes a cylindrical first attachment member 11 connected to one of the vibration generating unit and the vibration receiving unit, and one of the vibration generating unit and the vibration receiving unit. The second mounting member 12 to be connected, the elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12 to each other, and the main liquid chamber (first liquid chamber) to be described later in the first mounting member 11 ) 14 and a partition member 16 that divides into a secondary liquid chamber (second liquid chamber) 15.

以下、第1取付部材11の中心軸線O1に沿う方向を軸方向という。また、軸方向に沿う第2取付部材12側を上側、仕切部材16側を下側という。また、防振装置10を軸方向から見た平面視において、中心軸線O1に直交する方向を径方向といい、中心軸線O1周りに周回する方向を周方向という。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線O1と同軸に配置されている。
Hereinafter, the direction along the central axis O1 of the first mounting member 11 is referred to as the axial direction. Further, the second mounting member 12 side along the axial direction is referred to as an upper side, and the partition member 16 side is referred to as a lower side. Further, in a plan view of the vibration isolator 10 viewed from the axial direction, a direction orthogonal to the central axis O1 is referred to as a radial direction, and a direction around the central axis O1 is referred to as a circumferential direction.
The first mounting member 11, the second mounting member 12, and the elastic body 13 are each formed in a circular shape or an annular shape in a plan view, and are arranged coaxially with the central axis O1.

この防振装置10が例えば自動車に装着される場合、第2取付部材12が振動発生部としてのエンジンに連結され、第1取付部材11が振動受部としての車体に連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。   When the vibration isolator 10 is mounted on, for example, an automobile, the second mounting member 12 is connected to an engine as a vibration generating unit, and the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. This suppresses transmission of engine vibration to the vehicle body.

第2取付部材12は、軸方向に延在する柱状部材であり、下端部が下方に向けて膨出する半球面状に形成されるとともに、この半球面状の下端部より上方に鍔部12aを有している。第2取付部材12には、その上端面から下方に向かって延びるねじ孔12bが穿設され、このねじ孔12bにエンジン側の取付け具となるボルト(図示せず)が螺合される。第2取付部材12は、弾性体13を介して、第1取付部材11の上端開口部に配置されている。   The second mounting member 12 is a columnar member extending in the axial direction, and is formed in a hemispherical shape whose lower end bulges downward, and a flange 12a above the lower end of the hemispherical shape. have. A screw hole 12b extending downward from the upper end surface of the second mounting member 12 is formed, and a bolt (not shown) serving as an engine-side mounting tool is screwed into the screw hole 12b. The second mounting member 12 is disposed in the upper end opening of the first mounting member 11 via the elastic body 13.

弾性体13は、第1取付部材11の上端開口部と第2取付部材12の下部の外周面とにそれぞれ加硫接着されて、これらの間に介在させられたゴム体であって、第1取付部材11の上端開口部を上側から閉塞している。弾性体13は、その上端部が第2取付部材12の鍔部12aに当接することで、第2取付部材12に充分に密着し、第2取付部材12の変位により良好に追従するようになっている。弾性体13の下端部には、第1取付部材11における内周面と下端開口縁の内周部とを液密に被覆するゴム膜17が一体に形成されている。なお、弾性体13としては、ゴム以外にも合成樹脂等からなる弾性体を用いることも可能である。   The elastic body 13 is a rubber body that is vulcanized and bonded to the upper end opening of the first mounting member 11 and the outer peripheral surface of the lower portion of the second mounting member 12, respectively, and interposed between them. The upper end opening of the mounting member 11 is closed from above. The elastic body 13 is sufficiently in close contact with the second mounting member 12 by the upper end of the elastic body 13 coming into contact with the flange portion 12a of the second mounting member 12, and follows better due to the displacement of the second mounting member 12. ing. A rubber film 17 is integrally formed on the lower end portion of the elastic body 13 to liquid-tightly cover the inner peripheral surface of the first mounting member 11 and the inner peripheral portion of the lower end opening edge. As the elastic body 13, an elastic body made of synthetic resin or the like can be used in addition to rubber.

第1取付部材11は、下端部にフランジ18を有する円筒状に形成され、フランジ18を介して振動受部としての車体等に連結される。第1取付部材11の内部のうち、弾性体13より下方に位置する部分が、液室19となっている。本実施形態では、第1取付部材11の下端部に仕切部材16が設けられ、さらにこの仕切部材16の下方にダイヤフラム20が設けられている。仕切部材16の外周部22の上面は、第1取付部材11の下端開口縁に当接している。   The first attachment member 11 is formed in a cylindrical shape having a flange 18 at a lower end portion, and is connected to a vehicle body or the like as a vibration receiving portion via the flange 18. A portion of the inside of the first attachment member 11 located below the elastic body 13 is a liquid chamber 19. In the present embodiment, a partition member 16 is provided at the lower end portion of the first attachment member 11, and a diaphragm 20 is further provided below the partition member 16. The upper surface of the outer peripheral portion 22 of the partition member 16 is in contact with the lower end opening edge of the first mounting member 11.

ダイヤフラム20は、ゴムや軟質樹脂等の弾性材料からなり、有底円筒状に形成されている。ダイヤフラム20の上端部は、仕切部材16の外周部22の下面と、仕切部材16より下方に位置するリング状の保持具21と、によって軸方向に挟まれている。仕切部材16の外周部22の上面に、ゴム膜17の下端部が液密に当接している。   The diaphragm 20 is made of an elastic material such as rubber or soft resin, and has a bottomed cylindrical shape. The upper end portion of the diaphragm 20 is sandwiched between the lower surface of the outer peripheral portion 22 of the partition member 16 and the ring-shaped holder 21 positioned below the partition member 16 in the axial direction. The lower end portion of the rubber film 17 is in liquid-tight contact with the upper surface of the outer peripheral portion 22 of the partition member 16.

このような構成のもとに、第1取付部材11の下端開口縁に、仕切部材16の外周部22、および保持具21が下方に向けてこの順に配置されるとともに、ねじ23によって一体に固定されることにより、ダイヤフラム20は、仕切部材16を介して第1取付部材11の下端開口部に取り付けられている。なお図示の例では、ダイヤフラム20の底部が、外周側で深く中央部で浅い形状になっている。ただし、ダイヤフラム20の形状としては、このような形状以外にも、従来公知の種々の形状を採用することができる。   Under such a configuration, the outer peripheral portion 22 of the partition member 16 and the holder 21 are arranged in this order on the lower end opening edge of the first mounting member 11 in this order downward, and are fixed integrally with the screw 23. Thus, the diaphragm 20 is attached to the lower end opening of the first attachment member 11 via the partition member 16. In the illustrated example, the bottom portion of the diaphragm 20 has a shape that is deep on the outer peripheral side and shallow at the center. However, as the shape of the diaphragm 20, various conventionally known shapes can be adopted in addition to such a shape.

そして、このように第1取付部材11に仕切部材16を介してダイヤフラム20が取り付けられたことにより、前記したように第1取付部材11内に液室19が形成されている。液室19は、第1取付部材11内、すなわち平面視して第1取付部材11の内側に配設され、弾性体13とダイヤフラム20とにより液密に封止された密閉空間となっている。そして、この液室19に液体Lが封入(充填)されている。   As described above, the liquid chamber 19 is formed in the first mounting member 11 by attaching the diaphragm 20 to the first mounting member 11 via the partition member 16 in this manner. The liquid chamber 19 is disposed in the first mounting member 11, that is, inside the first mounting member 11 in plan view, and is a sealed space that is liquid-tightly sealed by the elastic body 13 and the diaphragm 20. . The liquid chamber 19 is filled (filled) with the liquid L.

液室19は、仕切部材16によって主液室14と副液室15とに区画されている。主液室14は、弾性体13の下面13aを壁面の一部として形成されたもので、この弾性体13と第1取付部材11の内周面を液密に覆うゴム膜17と仕切部材16とによって囲まれた空間であり、弾性体13の変形によって内容積が変化する。副液室15は、ダイヤフラム20と仕切部材16とによって囲まれた空間であり、ダイヤフラム20の変形によって内容積が変化する。このような構成からなる防振装置10は、主液室14が鉛直方向上側に位置し、副液室15が鉛直方向下側に位置するように取り付けられて用いられる、圧縮式の装置である。   The liquid chamber 19 is divided into a main liquid chamber 14 and a sub liquid chamber 15 by a partition member 16. The main liquid chamber 14 is formed by using the lower surface 13a of the elastic body 13 as a part of the wall surface. The rubber film 17 and the partition member 16 that cover the elastic body 13 and the inner peripheral surface of the first mounting member 11 in a liquid-tight manner. And the inner volume changes due to the deformation of the elastic body 13. The auxiliary liquid chamber 15 is a space surrounded by the diaphragm 20 and the partition member 16, and the internal volume changes due to the deformation of the diaphragm 20. The vibration isolator 10 having such a configuration is a compression-type device that is mounted and used so that the main liquid chamber 14 is positioned on the upper side in the vertical direction and the auxiliary liquid chamber 15 is positioned on the lower side in the vertical direction. .

仕切部材16における副液室15側を向く下面のうち、外周部22と径方向の内側に隣り合う部分には、上方に向けて窪む第1保持溝16aが形成されている。第1保持溝16a内にダイヤフラム20の上端部が密に当接することで、ダイヤフラム20と仕切部材16との間が閉塞されている。
また、仕切部材16における主液室14側を向く上面のうち、外周部22と径方向の内側に隣り合う部分には、下方に向けて窪む第2保持溝16bが形成されている。第2保持溝16b内にゴム膜17の下端部が密に当接することで、ゴム膜17と仕切部材16との間が閉塞されている。
Of the lower surface of the partition member 16 facing the sub liquid chamber 15 side, a first holding groove 16a that is recessed upward is formed in a portion adjacent to the outer peripheral portion 22 and the inside in the radial direction. The upper end portion of the diaphragm 20 is in close contact with the first holding groove 16a, so that the diaphragm 20 and the partition member 16 are closed.
Further, a second holding groove 16b that is recessed downward is formed in a portion of the upper surface of the partition member 16 that faces the main liquid chamber 14 side that is adjacent to the outer peripheral portion 22 in the radial direction. Since the lower end portion of the rubber film 17 is in close contact with the second holding groove 16b, the space between the rubber film 17 and the partition member 16 is closed.

仕切部材16には、主液室14と副液室15とを連通する制限通路24が形成されている。図1および図2に示すように、制限通路24は、主液室14に開口する第1連通部26、副液室15に開口する第2連通部27、および第1連通部26と第2連通部27とを連通する本体流路25を備えている。   The partition member 16 is formed with a restriction passage 24 that allows the main liquid chamber 14 and the sub liquid chamber 15 to communicate with each other. As shown in FIGS. 1 and 2, the restriction passage 24 includes a first communication portion 26 that opens to the main liquid chamber 14, a second communication portion 27 that opens to the auxiliary liquid chamber 15, and the first communication portion 26 and the second communication passage 26. A main body flow path 25 communicating with the communication portion 27 is provided.

本体流路25は、仕切部材16内で周方向に沿って延びていて、本体流路25の流路方向と周方向とは同等の方向になっている。本体流路25は、中心軸線O1と同軸に配置された円弧状に形成され、周方向に沿って中心軸線O1を中心とする中心角が180°を超える範囲にわたって延びている。本体流路25は、仕切部材16のうち、主液室14に面する第1障壁28、および副液室15に面する第2障壁29により画成されている。   The main body flow path 25 extends along the circumferential direction in the partition member 16, and the flow path direction and the circumferential direction of the main body flow path 25 are in the same direction. The main body flow path 25 is formed in an arc shape arranged coaxially with the central axis O1 and extends over a range in which the central angle around the central axis O1 exceeds 180 ° along the circumferential direction. The main body flow path 25 is defined by a first barrier 28 facing the main liquid chamber 14 and a second barrier 29 facing the sub liquid chamber 15 in the partition member 16.

第1障壁28および第2障壁29はいずれも、表裏面が軸方向を向く板状に形成されている。第1障壁28は、本体流路25と主液室14とにより軸方向に挟まれ、本体流路25と主液室14との間に位置している。第2障壁29は、本体流路25と副液室15とにより軸方向に挟まれ、本体流路25と副液室15との間に位置している。
第2連通部27は、第2障壁29を軸方向に貫通する1つの開口部32を備えている。開口部32は、第2障壁29のうち、本体流路25の周方向に沿う一方の端部を形成する部分に配置されている。
Both the first barrier 28 and the second barrier 29 are formed in a plate shape whose front and back surfaces face the axial direction. The first barrier 28 is sandwiched between the main body flow path 25 and the main liquid chamber 14 in the axial direction, and is positioned between the main body flow path 25 and the main liquid chamber 14. The second barrier 29 is sandwiched between the main body flow path 25 and the auxiliary liquid chamber 15 in the axial direction, and is positioned between the main body flow path 25 and the auxiliary liquid chamber 15.
The second communication portion 27 includes one opening 32 that penetrates the second barrier 29 in the axial direction. The opening 32 is disposed in a portion of the second barrier 29 that forms one end along the circumferential direction of the main body flow path 25.

そして、本実施形態では、第1連通部26は、第1障壁28を軸方向に貫通し、周方向に沿って配置された複数の細孔31を備えている。複数の細孔31は、第1障壁28のうち、本体流路25の周方向に沿う他方の端部を形成する部分に配置されている。複数の細孔31の少なくとも一部は、中心軸線O1を中心とする同心円上に、周方向に間隔をあけて配置された孔列をなしている。
以下では、周方向に沿って、本体流路25の前記一方の端部側を一方側といい、前記他方の端部側を他方側という。また、細孔31の中心軸線O2(図4参照)に沿う方向を孔軸方向といい、前記平面視において、中心軸線O2に直交する方向を孔径方向、中心軸線O2回りに周回する方向を孔周方向という。
In the present embodiment, the first communication portion 26 includes a plurality of pores 31 that penetrate the first barrier 28 in the axial direction and are arranged along the circumferential direction. The plurality of pores 31 are disposed in a portion of the first barrier 28 that forms the other end along the circumferential direction of the main body flow path 25. At least some of the plurality of pores 31 form a row of holes arranged at intervals in the circumferential direction on concentric circles centered on the central axis O1.
In the following, along the circumferential direction, the one end side of the main body channel 25 is referred to as one side, and the other end side is referred to as the other side. A direction along the center axis O2 (see FIG. 4) of the pore 31 is referred to as a hole axis direction. In the plan view, a direction orthogonal to the center axis O2 is a hole diameter direction, and a direction around the center axis O2 is a hole. It is called the circumferential direction.

複数の細孔31はいずれも、本体流路25の流路断面積より小さく、平面視において第1障壁28および本体流路25の各内側に配置されている。図示の例では、複数の細孔31の長さは、互いに同等になっている。複数の細孔31の内径は、互いに同等になっている。なお、複数の細孔31の長さおよび内径をそれぞれ互いに異ならせてもよい。
細孔31は、第1障壁28に径方向に間隔をあけて複数形成されている。すなわち、前記孔列が、第1障壁28に径方向に間隔をあけて複数配置されている。図示の例では、細孔31は、第1障壁28に径方向に間隔をあけて2つ形成されている。径方向で互いに隣り合う細孔31は、周方向の位置が互いにずらされて配置されている。なお、複数の細孔31は、第1障壁28に、周方向に沿う同等の位置に径方向に間隔をあけて配置してもよい。
Each of the plurality of pores 31 is smaller than the channel cross-sectional area of the main body channel 25 and is disposed inside each of the first barrier 28 and the main body channel 25 in plan view. In the illustrated example, the lengths of the plurality of pores 31 are equal to each other. The inner diameters of the plurality of pores 31 are equal to each other. The lengths and the inner diameters of the plurality of pores 31 may be different from each other.
A plurality of the pores 31 are formed in the first barrier 28 at intervals in the radial direction. That is, a plurality of the hole arrays are arranged in the first barrier 28 with a space in the radial direction. In the example shown in the figure, two pores 31 are formed in the first barrier 28 with a gap in the radial direction. The pores 31 adjacent to each other in the radial direction are arranged with their circumferential positions shifted from each other. Note that the plurality of pores 31 may be disposed in the first barrier 28 at radial positions at equal positions along the circumferential direction.

細孔31の横断面積は、例えば25mm以下、好ましくは2mm以上8mm以下としてもよい。
なお、複数の細孔31それぞれの横断面積を複数の細孔31全てについて合計した、第1連通部26全体の流路断面積は、本体流路25における流路断面積の最小値の例えば1.8倍以上4.0倍以下としてもよい。
The cross-sectional area of the pore 31 may be, for example, 25 mm 2 or less, preferably 2 mm 2 or more and 8 mm 2 or less.
In addition, the total cross-sectional area of each of the plurality of fine pores 31 for all the plurality of fine pores 31 is the flow passage cross-sectional area of the entire first communication portion 26, for example, 1 which is the minimum value of the flow passage cross-sectional area in the main body flow passage 25. It is good also as 8 times or more and 4.0 times or less.

また本実施形態では、図3および図4に示すように、細孔31は、前記平面視で、両端開口部の位置が互いに異なっている。細孔31のうち、主液室14側の第1開口部31Aは、本体流路25側の第2開口部31Bよりも周方向の一方側に位置している。図示の例では、中心軸線O2は、本体流路25側から主液室14側に向かうに従い漸次、周方向の一方側に向けて真直ぐ延びている。中心軸線O2の軸方向に対する傾斜角および傾斜の向きは、全ての細孔31において同等となっている。細孔31の内径は、孔軸方向の全域にわたって同等となっている。   Moreover, in this embodiment, as shown in FIG. 3 and FIG. Of the pores 31, the first opening 31A on the main liquid chamber 14 side is located on one side in the circumferential direction with respect to the second opening 31B on the main body flow path 25 side. In the illustrated example, the center axis O2 gradually extends straight toward one side in the circumferential direction from the main body flow path 25 side toward the main liquid chamber 14 side. The inclination angle and the inclination direction with respect to the axial direction of the central axis O2 are the same in all the pores 31. The inner diameter of the pore 31 is the same over the entire region in the hole axis direction.

また本実施形態では、複数の細孔31のうちの少なくとも2つにおいて、主液室14側の端部33Aにおける本体流路25側から主液室14側に向けて延びる向きが互いに異なっている。図示の例では、全ての細孔31における主液室14側の端部33Aにおける本体流路25側から主液室14側に向けて延びる向きが互いに異なっている。全ての細孔31において、主液室14側の端部33Aにおける本体流路25側から主液室14側に向けて延びる向きは、前記平面視で周方向と一致している。なお、このような態様に限られず、複数の細孔31のうちの一部において、主液室14側の端部33Aにおける本体流路25側から主液室14側に向けて延びる向きが互いに同一であってもよいし、副液室15側の端部33Bにおける本体流路25側から副液室15側に向けて延びる向きが互いに異なってもよい。   In the present embodiment, in at least two of the plurality of pores 31, the directions extending from the main body flow channel 25 side toward the main liquid chamber 14 side in the end portion 33A on the main liquid chamber 14 side are different from each other. . In the illustrated example, the directions extending from the main body flow path 25 side toward the main liquid chamber 14 side in the end portions 33A on the main liquid chamber 14 side in all the pores 31 are different from each other. In all the pores 31, the direction extending from the main body flow path 25 side toward the main liquid chamber 14 side in the end portion 33A on the main liquid chamber 14 side coincides with the circumferential direction in the plan view. It should be noted that the present invention is not limited to such an embodiment, and in some of the plurality of pores 31, the directions extending from the main body flow channel 25 side to the main liquid chamber 14 side in the end portion 33A on the main liquid chamber 14 side are mutually The directions may extend from the main body flow path 25 side toward the sub liquid chamber 15 side at the end portion 33B on the sub liquid chamber 15 side.

また本実施形態では、前記孔軸方向に沿う縦断面視において、細孔31の本体流路25側の端部33Bにおける、本体流路25側から主液室14側に向けて延びる向きが、流路方向のうち、第2連通部27から第1連通部26に向かう向きと鋭角をなしている。図示の例では、細孔31の本体流路25側の端部33Bにおける、本体流路25側から主液室14側に向けて延びる向きは、前記平面視で、流路方向のうち、第2連通部27から第1連通部26に向かう向きの反対を向いている。なお、このような態様に限られず、細孔31の本体流路25側の端部33Bにおける、本体流路25側から主液室14側に向けて延びる向きが、前記平面視で、流路方向のうち、第2連通部27から第1連通部26に向かう向きに対して傾斜してもよいし、直交してもよい。   Further, in the present embodiment, in the longitudinal cross-sectional view along the hole axis direction, the direction extending from the main body flow channel 25 side toward the main liquid chamber 14 side in the end portion 33B on the main body flow channel 25 side of the pore 31 is In the flow path direction, an acute angle is formed with the direction from the second communication portion 27 toward the first communication portion 26. In the illustrated example, the direction extending from the main body flow path 25 side toward the main liquid chamber 14 side at the end 33B of the pore 31 on the main body flow path 25 side is the first of the flow path directions in the plan view. It faces the opposite direction from the second communication portion 27 toward the first communication portion 26. In addition, the direction extending from the main body flow channel 25 side toward the main liquid chamber 14 side in the end portion 33B on the main body flow channel 25 side of the pore 31 is not limited to such an aspect, but in the plan view, Of the directions, the direction may be inclined with respect to the direction from the second communication portion 27 toward the first communication portion 26 or may be orthogonal.

このような構成からなる防振装置10では、振動入力時に、両取付部材11、12が弾性体13を弾性変形させながら相対的に変位する。すると、主液室14の液圧が変動し、主液室14内の液体Lが制限通路24を通って副液室15に流入し、また、副液室15内の液体Lが制限通路24を通って主液室14に流入する。   In the vibration isolator 10 having such a configuration, both attachment members 11 and 12 are relatively displaced while elastically deforming the elastic body 13 at the time of vibration input. Then, the liquid pressure in the main liquid chamber 14 fluctuates, the liquid L in the main liquid chamber 14 flows into the sub liquid chamber 15 through the restriction passage 24, and the liquid L in the sub liquid chamber 15 flows into the restriction passage 24. Through the main liquid chamber 14.

そして本実施形態に係る防振装置10によれば、液体Lが、複数の細孔31を通して本体流路25から主液室14に流入する際に、これらの細孔31が形成された第1障壁28により圧力損失させられながら各細孔31を流通するため、主液室14に流入する液体Lの流速を抑えることができる。   And according to the vibration isolator 10 which concerns on this embodiment, when the liquid L flows in into the main liquid chamber 14 from the main body flow path 25 through the some pore 31, the 1st in which these pores 31 were formed. Since each pore 31 is circulated while being subjected to pressure loss by the barrier 28, the flow velocity of the liquid L flowing into the main liquid chamber 14 can be suppressed.

しかも、液体Lが、単一の細孔31ではなく複数の細孔31を流通するので、液体Lを複数に分岐させて流通させることが可能になり、個々の細孔31を通過した液体Lの流速を低減させることができる。これにより、仮に防振装置10に大きな荷重(振動)が入力されたとしても、細孔31を通過して主液室14に流入した液体Lと、主液室14内の液体Lと、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
また、仮に気泡が主液室14ではなく本体流路25で発生しても、液体Lを、複数の細孔31を通過させることで、発生した気泡同士を、主液室14内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
In addition, since the liquid L circulates through the plurality of pores 31 instead of the single pore 31, the liquid L can be branched and circulated, and the liquid L that has passed through the individual pores 31 can be circulated. The flow rate of can be reduced. Thereby, even if a large load (vibration) is input to the vibration isolator 10, the liquid L that has flowed into the main liquid chamber 14 through the pores 31 and the liquid L in the main liquid chamber 14 It is possible to suppress the flow velocity difference generated between them, and to suppress the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices.
Even if bubbles are generated in the main body flow path 25 instead of the main liquid chamber 14, the generated bubbles are separated from each other in the main liquid chamber 14 by passing the liquid L through the plurality of pores 31. It is possible to prevent the bubbles from joining and growing, and to easily maintain the bubbles in a finely dispersed state.

また、第1障壁28の平面視で、細孔31における両端開口部31A、31Bの位置が互いに異なっているので、両端開口部31A、31Bの位置が互いに同一であるような構成と比較して、例えば細孔31の長さを大きく確保すること等が可能になり、この細孔31内を液体が流通する際に、圧力損失を生じさせることができる。また、複数の細孔31のうちの少なくとも2つにおいて、主液室14側の端部33Aにおける本体流路25側から主液室14側に向けて延びる向きが互いに異なっているので、各細孔31から主液室14に液体Lが流入する際に、或いは、本体流路25を液体が流通する際に、仮に気泡が発生したとしても、発生した気泡それぞれが主液室14内または副液室15内で流れる方向を、互いに異ならせることが可能となり、気泡が主液室14内または副液室15内で合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
Further, since the positions of both end openings 31A and 31B in the pore 31 are different from each other in a plan view of the first barrier 28, compared with a configuration in which the positions of both end openings 31A and 31B are the same. For example, it is possible to ensure a large length of the pores 31 and the like, and when the liquid flows through the pores 31, pressure loss can be caused. In addition, in at least two of the plurality of pores 31, the directions extending from the main body flow channel 25 side toward the main liquid chamber 14 side in the end portion 33A on the main liquid chamber 14 side are different from each other. Even if bubbles are generated when the liquid L flows into the main liquid chamber 14 from the holes 31 or when the liquid flows through the main body flow path 25, each of the generated bubbles is generated in the main liquid chamber 14 or the sub liquid chamber 14. The flow directions in the liquid chamber 15 can be made different from each other, and the bubbles are prevented from joining and growing in the main liquid chamber 14 or the sub liquid chamber 15 to maintain the bubbles in a finely dispersed state. It can be made easier.
As described above, the generation of bubbles itself can be suppressed, and even if bubbles are generated, the bubbles can be easily maintained in a finely dispersed state. However, it is possible to suppress the generated abnormal noise.

また、前記縦断面視において、細孔31の本体流路25側の端部33Bにおける、本体流路25側から主液室14側に向けて延びる向きが、流路方向のうち、第2連通部27から第1連通部26に向かう向きと鋭角をなしているので、液体Lが本体流路25から細孔31に流入する際に、液体Lの流れの向きを大きく変化させることが可能になり、大きな圧力損失を生じさせることができる。これにより、主液室14に流入する液体の流速を、効果的に抑えることができる。   Further, in the longitudinal sectional view, the direction extending from the main body flow path 25 side toward the main liquid chamber 14 side at the end 33B of the pore 31 on the main body flow path 25 side is the second communication direction in the flow path direction. Since the direction from the portion 27 toward the first communication portion 26 is an acute angle, the flow direction of the liquid L can be greatly changed when the liquid L flows into the pores 31 from the main body flow path 25. Thus, a large pressure loss can be generated. Thereby, the flow velocity of the liquid flowing into the main liquid chamber 14 can be effectively suppressed.

(第2実施形態)
次に、本発明の第2実施形態に係る防振装置について説明する。なお、第1実施形態と同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。また、同様の作用についてもその説明を省略する。
(Second Embodiment)
Next, the vibration isolator according to the second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the structure similar to 1st Embodiment, the description is abbreviate | omitted, and only a different point is demonstrated. The description of the same operation is also omitted.

図5に示すように、本実施形態に係る防振装置では、前記縦断面視において、細孔35の本体流路25側の端部33Bにおける、本体流路25側から主液室14に向けて延びる向きは、細孔35の主液室14側の端部33Aにおける、本体流路25側から主液室14側に向けて延びる向きと異なっている。図示の例では、細孔35のうち、本体流路25側に位置する部分は軸方向に対して傾斜して延び、主液室14側に位置する部分は軸方向に沿って真直ぐ延びている。なお、このような態様に限られず、例えば、本体流路25側に位置する部分が軸方向に沿って真直ぐ延び、主液室14側に位置する部分が軸方向に対して傾斜して延びていてもよい。
本実施形態に係る防振装置では、液体が本体流路25から細孔35に流入する向きと、細孔35から主液室14に流入する向きと、が互いに異なっているので、細孔35内を液体Lが流通する際に、圧力損失を生じさせることが可能になり、細孔35から主液室14に流入する液体Lの流速を、より一層効果的に抑えることができる。
As shown in FIG. 5, in the vibration isolator according to the present embodiment, in the longitudinal sectional view, at the end 33 </ b> B of the pore 35 on the main body flow path 25 side, from the main body flow path 25 side toward the main liquid chamber 14. The direction extending in a direction different from the direction extending from the main body flow path 25 side toward the main liquid chamber 14 side at the end portion 33A of the pore 35 on the main liquid chamber 14 side is different. In the example shown in the drawing, the portion located on the main body flow path 25 side of the pore 35 extends while being inclined with respect to the axial direction, and the portion located on the main liquid chamber 14 side extends straight along the axial direction. . Note that the present invention is not limited to such a mode. For example, a portion located on the main body flow path 25 side extends straight along the axial direction, and a portion located on the main liquid chamber 14 side extends inclined with respect to the axial direction. May be.
In the vibration isolator according to the present embodiment, the direction in which the liquid flows into the pores 35 from the main body flow path 25 is different from the direction in which the liquid flows into the main liquid chamber 14 from the pores 35. When the liquid L flows through the inside, a pressure loss can be generated, and the flow rate of the liquid L flowing into the main liquid chamber 14 from the pores 35 can be more effectively suppressed.

なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記第1実施形態においては、全ての細孔31が、本体流路25から主液室14に向けて前記平面視で周方向に延びている構成を示したが、このような態様に限られない。全ての細孔31における本体流路25から主液室14に向けて延びる向きが互いに不規則に異なっていてもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the first embodiment, the configuration in which all the pores 31 extend in the circumferential direction in the plan view from the main body flow path 25 toward the main liquid chamber 14 is shown. Not limited. The directions extending from the main body flow path 25 toward the main liquid chamber 14 in all the pores 31 may be irregularly different from each other.

また、上記第1実施形態では、細孔31を、第1障壁28に形成したが、第2障壁29に形成してもよいし、第1障壁28および第2障壁29の双方に形成してもよい。
また、前記実施形態では細孔31を、円柱状(真っ直ぐな円孔形状)に形成したが、漸次縮径する円錐台状に形成してもよい。
In the first embodiment, the pores 31 are formed in the first barrier 28. However, the pores 31 may be formed in the second barrier 29, or may be formed in both the first barrier 28 and the second barrier 29. Also good.
In the above embodiment, the pores 31 are formed in a cylindrical shape (straight circular hole shape), but may be formed in a truncated cone shape that gradually decreases in diameter.

また、上記第1実施形態では、複数の細孔31を、横断面視円形状に形成したが、本発明はこれに限られない。例えば、複数の細孔31を、横断面視角形状に形成する等適宜変更してもよい。
また、上記第1実施形態では、第1連通部26が複数の細孔31を備えているが、例えば細孔31より大径の開口、および細孔31の双方を有する構成等を採用してもよい。また、第2連通部27が、周方向(本体流路25の流路方向)に沿って配置された複数の開口部32を備えていてもよい。
Moreover, in the said 1st Embodiment, although the several pore 31 was formed in the cross-sectional view circular shape, this invention is not limited to this. For example, the plurality of pores 31 may be appropriately changed, for example, formed in a cross-sectional viewing angle shape.
In the first embodiment, the first communication portion 26 includes the plurality of pores 31. For example, a configuration having both an opening having a larger diameter than the pore 31 and the pore 31 is employed. Also good. Moreover, the 2nd communication part 27 may be provided with the some opening part 32 arrange | positioned along the circumferential direction (flow path direction of the main body flow path 25).

また、上記第1実施形態では、仕切部材16を第1取付部材11の下端部に配置し、仕切部材16の外周部22を第1取付部材11の下端開口縁に当接させているが、例えば仕切部材16を第1取付部材11の下端開口縁より充分上方に配置し、この仕切部材16の下側、すなわち第1取付部材11の下端部にダイヤフラム20を配設することで、第1取付部材11の下端部からダイヤフラム20の底面にかけて副液室15を形成するようにしてもよい。   Moreover, in the said 1st Embodiment, although the partition member 16 is arrange | positioned in the lower end part of the 1st attachment member 11, and the outer peripheral part 22 of the partition member 16 is made to contact | abut to the lower end opening edge of the 1st attachment member 11, For example, the partition member 16 is arranged sufficiently above the lower end opening edge of the first mounting member 11, and the diaphragm 20 is disposed on the lower side of the partition member 16, that is, the lower end portion of the first mounting member 11. The auxiliary liquid chamber 15 may be formed from the lower end portion of the attachment member 11 to the bottom surface of the diaphragm 20.

また、上記第1実施形態では、支持荷重が作用することで主液室14に正圧が作用する圧縮式の防振装置10について説明したが、主液室14が鉛直方向下側に位置し、かつ副液室15が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室14に負圧が作用する吊り下げ式の防振装置にも適用可能である。
また、上記第1実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて弾性体13を設け、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、主液室14および副液室15に仕切り、主液室14および副液室15のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。
また、本発明に係る防振装置10は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。
Moreover, although the said 1st Embodiment demonstrated the compression type vibration isolator 10 in which a positive pressure acts on the main liquid chamber 14 when a support load acts, the main liquid chamber 14 is located in the vertical direction lower side. In addition, the auxiliary liquid chamber 15 is attached so as to be positioned on the upper side in the vertical direction, and can be applied to a suspension type vibration isolator in which a negative pressure is applied to the main liquid chamber 14 when a support load is applied.
In the first embodiment, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 into the main liquid chamber 14 and the sub liquid chamber 15 having the elastic body 13 as part of the wall surface. However, it is not limited to this. For example, instead of providing the diaphragm 20, the elastic body 13 may be provided, and instead of providing the secondary liquid chamber 15, a pressure receiving liquid chamber having the elastic body 13 at a part of the wall surface may be provided. For example, the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 in which the liquid L is enclosed into the main liquid chamber 14 and the sub liquid chamber 15, and at least one of the main liquid chamber 14 and the sub liquid chamber 15. One can be appropriately changed to another configuration having the elastic body 13 in a part of the wall surface.
The vibration isolator 10 according to the present invention is not limited to an engine mount of a vehicle, and can be applied to other than the engine mount. For example, the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。   In addition, the constituent elements in the above-described embodiment can be appropriately replaced with known constituent elements without departing from the gist of the present invention, and the above-described embodiments and modifications may be appropriately combined.

10 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
26 第1連通部
27 第2連通部
28 第1障壁
29 第2障壁
31、35 細孔
31A 第1開口部
31B 第2開口部
33A、33B 端部

DESCRIPTION OF SYMBOLS 10 Vibration isolator 11 1st attachment member 12 2nd attachment member 13 Elastic body 14 Main liquid chamber (1st liquid chamber)
15 Secondary liquid chamber (second liquid chamber)
16 Partition member 19 Liquid chamber 24 Restriction passage 25 Main body flow path 26 First communication portion 27 Second communication portion 28 First barrier 29 Second barrier 31, 35 Fine pore 31A First opening portion 31B Second opening portion 33A, 33B End Part

Claims (3)

振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記第1連通部および前記第2連通部のうちの少なくとも一方は、前記第1液室または前記第2液室に面する障壁を貫通する複数の細孔を備え、
前記障壁の平面視で、前記細孔における両端開口部の位置は互いに異なっており、
複数の前記細孔のうちの少なくとも2つにおいて、前記第1液室側または前記第2液室側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは互いに異なっていることを特徴とする防振装置。
A cylindrical first mounting member coupled to one of the vibration generating unit and the vibration receiving unit, and a second mounting member coupled to the other;
An elastic body that elastically connects both the mounting members;
A partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and
A liquid-sealed vibration isolator in which a restriction passage communicating the first liquid chamber and the second liquid chamber is formed in the partition member,
The restriction passage includes a first communication portion that opens to the first liquid chamber, a second communication portion that opens to the second liquid chamber, and a main body channel that communicates the first communication portion and the second communication portion. With
At least one of the first communication part and the second communication part includes a plurality of pores penetrating the barrier facing the first liquid chamber or the second liquid chamber,
In the plan view of the barrier, the positions of the openings at both ends of the pore are different from each other,
In at least two of the plurality of pores, from the main body channel side to the first liquid chamber side or the second liquid chamber side at the end of the first liquid chamber side or the second liquid chamber side. An anti-vibration device having different directions extending toward each other.
前記細孔の中心軸線に沿う縦断面視において、前記細孔の前記本体流路側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは、前記本体流路の流路方向のうち、前記第1連通部および前記第2連通部のうちのいずれか他方側から一方側に向かう向きと鋭角をなしていることを特徴とする請求項1に記載の防振装置。   In a longitudinal sectional view along the central axis of the pore, the direction extending from the main body flow channel side toward the first liquid chamber side or the second liquid chamber side at the end of the fine pore on the main body flow channel side is 2. An acute angle is formed with a direction from one of the first communication portion and the second communication portion toward one side of the flow direction of the main body flow passage. The vibration isolator described in 1. 前記細孔の中心軸線に沿う縦断面視において、前記細孔の前記本体流路側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きは、前記細孔の前記第1液室側または前記第2液室側の端部における、前記本体流路側から前記第1液室側または前記第2液室側に向けて延びる向きと異なっていることを特徴とする請求項1又は2に記載の防振装置。   In a longitudinal sectional view along the central axis of the pore, the direction extending from the main body flow channel side toward the first liquid chamber side or the second liquid chamber side at the end of the fine pore on the main body flow channel side is The direction of the end of the pore on the first liquid chamber side or the second liquid chamber side is different from the direction extending from the main body channel side toward the first liquid chamber side or the second liquid chamber side. The vibration isolator according to claim 1 or 2.
JP2017098941A 2017-05-18 2017-05-18 Anti-vibration device Active JP6836458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017098941A JP6836458B2 (en) 2017-05-18 2017-05-18 Anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098941A JP6836458B2 (en) 2017-05-18 2017-05-18 Anti-vibration device

Publications (2)

Publication Number Publication Date
JP2018194101A true JP2018194101A (en) 2018-12-06
JP6836458B2 JP6836458B2 (en) 2021-03-03

Family

ID=64570061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098941A Active JP6836458B2 (en) 2017-05-18 2017-05-18 Anti-vibration device

Country Status (1)

Country Link
JP (1) JP6836458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428290B2 (en) 2017-12-26 2022-08-30 Prospira Corporation Vibration isolating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428290B2 (en) 2017-12-26 2022-08-30 Prospira Corporation Vibration isolating device

Also Published As

Publication number Publication date
JP6836458B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6391186B2 (en) Vibration isolator and method for suppressing generation of abnormal noise caused by cavitation collapse
WO2016147698A1 (en) Vibration-damping device
WO2019216403A1 (en) Vibration damping device
WO2018198444A1 (en) Vibration damping device
JP6995113B2 (en) Anti-vibration device
JP6674334B2 (en) Anti-vibration device
WO2017221818A1 (en) Vibration damping device
JP7145165B2 (en) Anti-vibration device
WO2018211754A1 (en) Vibration damping device
JP2018194101A (en) Vibration isolation device
WO2018193895A1 (en) Vibration dampening device
JP6822860B2 (en) Anti-vibration device
JP6577911B2 (en) Vibration isolator
JP6853674B2 (en) Anti-vibration device
WO2019117062A1 (en) Vibration-damping device
JP2021076166A (en) Antivibration device
JP7161842B2 (en) Anti-vibration device
JP2019098953A (en) Vibration isolating device
JP2018204774A (en) Vibration controller
JP6871050B2 (en) Anti-vibration device
JP2019203542A (en) Vibration isolation device
JP2019203541A (en) Vibration isolation device
JP2020118252A (en) Vibration control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R150 Certificate of patent or registration of utility model

Ref document number: 6836458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250