JP2019203301A - Painting floor structure for wireless power supply floor and construction method of the same - Google Patents

Painting floor structure for wireless power supply floor and construction method of the same Download PDF

Info

Publication number
JP2019203301A
JP2019203301A JP2018098537A JP2018098537A JP2019203301A JP 2019203301 A JP2019203301 A JP 2019203301A JP 2018098537 A JP2018098537 A JP 2018098537A JP 2018098537 A JP2018098537 A JP 2018098537A JP 2019203301 A JP2019203301 A JP 2019203301A
Authority
JP
Japan
Prior art keywords
floor
layer
epoxy resin
resin
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018098537A
Other languages
Japanese (ja)
Other versions
JP6837454B2 (en
Inventor
貴文 渡辺
Takafumi Watanabe
貴文 渡辺
鈴木 宏一
Koichi Suzuki
宏一 鈴木
遠藤 哲夫
Tetsuo Endo
哲夫 遠藤
孫周 崎原
Sonshu Sakihara
孫周 崎原
俊彦 鹿毛
Toshihiko Kage
俊彦 鹿毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Aica Kogyo Co Ltd
Original Assignee
Taisei Corp
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Aica Kogyo Co Ltd filed Critical Taisei Corp
Priority to JP2018098537A priority Critical patent/JP6837454B2/en
Publication of JP2019203301A publication Critical patent/JP2019203301A/en
Application granted granted Critical
Publication of JP6837454B2 publication Critical patent/JP6837454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a painting floor structure for wireless power supply floor which has durability for the travel of an automated guided vehicle (AGV), and which can keep propagation efficiency of power high even in the case of supplying power to the AGV from the floor wirelessly, and to provide the construction method of the same.SOLUTION: In a painting floor structure for wireless power supply, on a floor substrate concrete surface, a metal foil layer having the thickness of equal to or greater than 15 μm and equal to or less than 50 μm is provided. On the metal foil layer, a resin mortar layer comprising epoxy resin, epoxy resin hardener and an aggregate, and having the thickness of 3-7 mm is provided. On the resin mortar layer, a finish coating floor layer having a dielectric loss tangent of equal to or less than 0.05 is provided.SELECTED DRAWING: None

Description

本発明は、工場や倉庫等に設置される無人搬送車(以下AGVという)システムの無人搬送車に床から電力をワイヤレスで供給するのに適した塗り床構造及び該塗り床の施工方法に関する。   The present invention relates to a coated floor structure suitable for wirelessly supplying electric power from a floor to an automated guided vehicle (hereinafter referred to as AGV) system installed in a factory or a warehouse, and a method for constructing the coated floor.

従来、硬化収縮を大きく下げることなく塗膜の収縮による、そり、ひび割れを防止しつつ、耐熱性や物性を保持して塗布作業性や表面外観を損なうことなく、塗膜厚みが1〜4mmの薄膜層であっても、硬化収縮しても反り上がりや表層の亀裂を発生させない水系ウレタンモルタル組成物が、無人搬送車システムのAGVが走行する床に適した塗床材として多く使用され、該水系ウレタンモルタル組成物は、ポリエステルポリオール、イソシアネート及び水硬性モルタルを含む骨材を主成分とすることを特徴としている(特許文献1)。   Conventionally, while preventing warping and cracking due to the shrinkage of the coating film without greatly reducing the cure shrinkage, the coating film thickness is 1 to 4 mm while maintaining the heat resistance and physical properties without impairing the coating workability and the surface appearance. Water-based urethane mortar compositions that do not cause warping or cracking of the surface layer even when cured and contracted are often used as coating materials suitable for floors on which AGVs of automatic guided vehicle systems travel, The water-based urethane mortar composition is mainly characterized by an aggregate containing polyester polyol, isocyanate and hydraulic mortar (Patent Document 1).

特開2006−62950号公報JP 2006-62950 A

しかしながら、該水系ウレタンモルタル組成物が塗布された床は、組成物中に水によって硬化する水硬性モルタルを含み、硬化後の水系ウレタンモルタル組成物には水硬性モルタルの水和に消費されなかった水分や、水和後の結晶水が含まれるため、例えば該床上を走行するAGVに床よりワイヤレスで電力を供給する場合には、電力の伝播効率が低下するという課題がある。   However, the floor coated with the water-based urethane mortar composition includes a hydraulic mortar that is cured by water in the composition, and the water-based urethane mortar composition after curing is not consumed for hydration of the hydraulic mortar. Since moisture and water of crystallization after hydration are included, for example, when power is supplied wirelessly from the floor to the AGV running on the floor, there is a problem that the power propagation efficiency decreases.

本発明が解決しようとする課題は、AGVの走行に耐久性を有するとともに、床からワイヤレスでAGVに電力を供給する場合にも該電力の伝播効率を高く保持することが出来る、ワイヤレス給電床用塗り床構造及びこの施工方法を提供することにある。   The problem to be solved by the present invention is for a wireless power feeding floor that has durability in running of AGV and can maintain high power transmission efficiency even when power is supplied to AGV wirelessly from the floor. An object of the present invention is to provide a painted floor structure and a construction method thereof.

上記課題を解決するために、請求項1記載の発明は、床下地コンクリート表面に、厚み15μm以上50μm以下の金属箔層を備え、該金属箔層の上にエポキシ樹脂とエポキシ樹脂硬化剤と骨材とから成る厚さ3〜7mmの樹脂モルタル層を備え、該樹脂モルタル層の上に誘電正接が0.05以下の仕上げ塗り床層を備えることを特徴とするワイヤレス給電床用塗り床構造を提供する。   In order to solve the above-mentioned problem, the invention according to claim 1 is provided with a metal foil layer having a thickness of 15 μm or more and 50 μm or less on the floor foundation concrete surface, and an epoxy resin, an epoxy resin curing agent, and bone on the metal foil layer. A coated floor structure for a wireless power feeding floor, comprising a resin mortar layer having a thickness of 3 to 7 mm made of a material, and a finished coated floor layer having a dielectric loss tangent of 0.05 or less on the resin mortar layer. provide.

また、請求項2記載の発明は、前記仕上げ塗り床層は、エポキシ樹脂塗り床または硬質ウレタン樹脂塗り床から成ることを特徴とする請求項1記載のワイヤレス給電床用塗り床構造を提供する。   According to a second aspect of the present invention, there is provided the floor structure for a wireless power feeding floor according to the first aspect, wherein the finishing floor layer is an epoxy resin floor or a hard urethane resin floor.

また、請求項3記載の発明は、前記樹脂モルタル層の骨材は、硅砂又はセルベンから成ることを特徴とする請求項1又は請求項2に記載のワイヤレス給電床用塗り床構造を提供する。   According to a third aspect of the present invention, there is provided the coated floor structure for a wireless power feeding floor according to the first or second aspect, wherein the aggregate of the resin mortar layer is made of cinnabar or selben.

また、請求項4記載の発明は、床下地コンクリート表面に、厚み15μm以上50μm以下の金属箔を貼着して金属箔層を形成し、該金属箔層の上にエポキシ樹脂とエポキシ樹脂硬化剤と骨材とから成る樹脂モルタルを3〜7mmに塗布して樹脂モルタル層を形成し、該樹脂モルタル層の上に誘電正接が0.05以下の仕上げ塗床材を塗布して仕上げ塗り床層を形成することを特徴とするワイヤレス給電床用塗り床の施工方法を提供する。   In the invention according to claim 4, a metal foil layer having a thickness of 15 μm or more and 50 μm or less is adhered to the floor foundation concrete surface, and an epoxy resin and an epoxy resin curing agent are formed on the metal foil layer. A resin mortar made up of 3 and 7 mm is applied to form a resin mortar layer, and a finish flooring material having a dielectric loss tangent of 0.05 or less is applied on the resin mortar layer to obtain a final coated floor layer. A method for constructing a coating floor for a wireless power feeding floor is provided.

また、請求項5記載の発明は、前記仕上げ塗床材はエポキシ樹脂塗床材または硬質ウレタン樹脂塗床材から成ることを特徴とする請求項4記載のワイヤレス給電床用塗り床の施工方法を提供する。   According to a fifth aspect of the invention, there is provided the wireless power feeding floor coating method according to the fourth aspect, wherein the finish coating material is made of an epoxy resin coating material or a hard urethane resin coating material. provide.

また、請求項6記載の発明は、前記樹脂モルタルの骨材は、硅砂又はセルベンから成ることを特徴とする請求項4又は請求項5に記載のワイヤレス給電床用塗り床の施工方法を提供する。   According to a sixth aspect of the present invention, there is provided the method for constructing a coated floor for a wireless power feeding floor according to the fourth or fifth aspect, wherein the aggregate of the resin mortar is made of cinnabar or selben. .

本発明のワイヤレス給電床用塗り床構造は、AGVの走行に耐久性を有し、ワイヤレスで床よりAGVに電力を供給するに当たって、電力の伝播効率が高いという効果がある。   The painted floor structure for a wireless power feeding floor according to the present invention has an effect that the AGV has durability in traveling, and has a high power propagation efficiency when wirelessly supplying power from the floor to the AGV.

また本発明のワイヤレス給電床用塗り床の施工方法は、AGVの走行に耐久性を有し、ワイヤレスで床よりAGVに電力を供給するに当たって、電力の伝播効率が高い床構造を形成する効果がある。   In addition, the method for constructing a coated floor for a wireless power feeding floor according to the present invention has the effect of forming a floor structure that has durability in AGV traveling and has high power propagation efficiency when wirelessly supplying power to the AGV from the floor. is there.

以下本発明について詳細に説明する。   The present invention will be described in detail below.

本発明を構成する金属箔層に使用される金属箔は、銅箔、アルミ箔、ステンレス箔、鉄箔等を使用することができ、厚みは電力伝播効率を良好とするために15μm以上が好ましく、また下地コンクリートに貼着する際の施工性の観点から50μm以下が好ましい。金属箔層は、床からAGVにワイヤレスで電力を供給する際の、電力伝播効率を高く保持することを目的として使用され、厚みが15μm未満では、電力伝播効率が低下する場合があり、特に下地コンクリートの微小な凹凸により、金属箔を下地コンクリート表面に貼着する際等に、該金属箔に孔が空くことで欠損部が生じると、電力伝播効率は大きく低下する場合がある。厚みが50μm超では、該金属箔を下地コンクリート表面に貼着する際の施工作業性が不十分となる。   The metal foil used for the metal foil layer constituting the present invention can be a copper foil, an aluminum foil, a stainless steel foil, an iron foil, etc., and the thickness is preferably 15 μm or more in order to improve the power propagation efficiency. In addition, the thickness is preferably 50 μm or less from the viewpoint of workability when sticking to the foundation concrete. The metal foil layer is used for the purpose of maintaining high power propagation efficiency when power is supplied wirelessly from the floor to the AGV. If the thickness is less than 15 μm, the power propagation efficiency may be reduced. When the metal foil is stuck to the surface of the underlying concrete due to the minute unevenness of the concrete, the power propagation efficiency may be greatly reduced if a defect occurs due to a hole in the metal foil. When the thickness exceeds 50 μm, the workability when the metal foil is stuck to the surface of the underlying concrete becomes insufficient.

本発明を構成する樹脂モルタル層の形成に使用される、エポキシ樹脂とエポキシ樹脂硬化剤と骨材とから成る樹脂モルタルにおけるエポキシ樹脂は、たとえばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、ジアリールスルホン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂およびそれらの変性物などを単独あるいは併せて用いることができる。   Examples of the epoxy resin in the resin mortar composed of an epoxy resin, an epoxy resin curing agent and an aggregate used for forming the resin mortar layer constituting the present invention include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and phenol novolac. Type epoxy resin, bisphenol AD type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, heterocyclic epoxy resin, diaryl sulfone type epoxy resin, Hydroquinone type epoxy resins and their modified products can be used alone or in combination.

これらのエポキシ樹脂のうち、粘度が低く取扱いが容易なビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が特に好ましい。樹脂モルタルとしての作業性を良好とするためには、エポキシ樹脂100重量部に対して15〜45重量部の希釈剤を配合する。希釈剤は反応性希釈剤又は非反応性希釈剤を使用することができ、併用することもできる。   Of these epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins that have low viscosity and are easy to handle are particularly preferred. In order to improve the workability as a resin mortar, 15 to 45 parts by weight of a diluent is added to 100 parts by weight of the epoxy resin. As the diluent, a reactive diluent or a non-reactive diluent can be used, and it can be used in combination.

また、高荷重のAGVの繰り返しの走行に対する耐久性を確保する観点から希釈剤は反応性希釈剤が好ましい。反応性希釈剤のうち1官能の希釈剤としては、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、o−クレジルグリシジルエーテル、t−ブチルフェニルグリシジルエーテル、sec−ブチルフェノールモノグリシジルエーテル、2官能としては、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、多官能としてはグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルなどを使用することができる。   Moreover, the reactive diluent is preferable as the diluent from the viewpoint of ensuring durability against repeated running of the high load AGV. Among reactive diluents, monofunctional diluents include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, o-cresyl glycidyl ether, t-butylphenyl glycidyl ether, sec-butylphenol monoglycidyl ether, 2 Functionality includes resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6 hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, hexahydrophthalic acid diglycidyl ester, and multifunctional glycerol Polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, di Lise roll polyglycidyl ether, and sorbitol polyglycidyl ether can be used.

非反応性希釈剤としては、ベンジルアルコール、ブチルジグリコール、パインオイル、キシレン樹脂、トルエン樹脂、ミネラルスピリット、灯油等を使用することができる。   As the non-reactive diluent, benzyl alcohol, butyl diglycol, pine oil, xylene resin, toluene resin, mineral spirit, kerosene and the like can be used.

本発明に使用されるエポキシ樹脂硬化剤としては、脂肪族ポリアミン、変性脂肪族ポリアミン、ポリアミドアミン、ポリアミド、脂環式ポリアミン、変性脂環式ポリアミン、変性芳香族ポリアミン、3級アミンなどのアミン化合物を使用することができ、例えばポリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、N−アミノエチルピペラジン、イソホロンジアミン、メタキシレンジアミン、2、4、6−トリスジメチルアミノメチルフェノール等を使用することができ、これらは単独又は併用して使用することができる。   Examples of the epoxy resin curing agent used in the present invention include aliphatic polyamines, modified aliphatic polyamines, polyamide amines, polyamides, alicyclic polyamines, modified alicyclic polyamines, modified aromatic polyamines, and amine compounds such as tertiary amines. For example, polyethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, N-aminoethylpiperazine, isophoronediamine, metaxylenediamine, 2,4,6-trisdimethylaminomethylphenol, etc. can be used. These can be used alone or in combination.

エポキシ樹脂、又はエポキシ樹脂と希釈剤との混合物に対するエポキシ樹脂硬化剤の配合量は、エポキシ基の数に対する活性水素基の数が、0.7〜1.3となることが好ましい。0.7未満では硬化物の強度が不十分となる場合があり、1.3超ではエポキシ樹脂硬化剤が過剰となって、樹脂モルタル層の上の仕上げ塗り床層と樹脂モルタル層との接着性が不十分となる場合がある。   As for the compounding quantity of the epoxy resin hardening | curing agent with respect to the mixture of an epoxy resin or an epoxy resin and a diluent, it is preferable that the number of active hydrogen groups with respect to the number of epoxy groups will be 0.7-1.3. If it is less than 0.7, the strength of the cured product may be insufficient, and if it exceeds 1.3, the epoxy resin curing agent becomes excessive, and adhesion between the finish coating layer on the resin mortar layer and the resin mortar layer May be insufficient.

本発明に使用される樹脂モルタルに用いられる骨材としては、AGVにワイヤレスで電力を供給する際に電力伝播効率が低下しない絶縁性が高いものが好ましく、特には硅砂や、陶磁器や碍子などのセラミックスを粉砕したセルベンが好ましい。骨材の粒径は、硅砂では0.075〜0.43mmが好ましく、セルベンでは0.05〜1.5mmが好ましい。硅砂の粒径が0.075mm未満では樹脂モルタルを塗布する際の作業性が低下し、0.45mm超では樹脂モルタル層の強度が不十分となる場合がある。セルベンの粒径が0.05mm未満では樹脂モルタルを塗布する際の作業性が低下し、1.5mm超では樹脂モルタル層の強度が不十分となる。   As the aggregate used for the resin mortar used in the present invention, it is preferable to have a high insulating property that does not decrease the power propagation efficiency when supplying power to the AGV wirelessly, and in particular, sand, ceramics, insulators, etc. Serbene obtained by pulverizing ceramics is preferred. The particle size of the aggregate is preferably 0.075 to 0.43 mm for cinnabar, and 0.05 to 1.5 mm for selben. When the particle size of the cinnabar is less than 0.075 mm, the workability when applying the resin mortar is lowered, and when it exceeds 0.45 mm, the strength of the resin mortar layer may be insufficient. When the particle diameter of selben is less than 0.05 mm, workability when applying the resin mortar is lowered, and when it exceeds 1.5 mm, the strength of the resin mortar layer becomes insufficient.

骨材の樹脂モルタル中の配合量は、エポキシ樹脂、またはエポキシ樹脂と希釈剤との混合物と、エポキシ樹脂硬化剤を混合したもの100重量部に対して、40〜80重量部が好ましく、40重量部未満、80重量部超では樹脂モルタルを塗布する際の作業性が低下する。   The amount of the aggregate in the resin mortar is preferably 40 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin or a mixture of an epoxy resin and a diluent and an epoxy resin curing agent. If it is less than 80 parts by weight and more than 80 parts by weight, workability when applying the resin mortar is lowered.

樹脂モルタル層は厚さ3〜7mmが好ましく、3mm未満ではAGVの繰り返し走行等によって割れや剥離が生じる場合があり、7mm超では、樹脂モルタルを施工する際の平滑性が不十分となる場合がある。   The resin mortar layer preferably has a thickness of 3 to 7 mm. If it is less than 3 mm, cracking or peeling may occur due to repeated running of AGV, etc., and if it exceeds 7 mm, the smoothness when applying the resin mortar may be insufficient. is there.

本発明を構成する仕上げ塗り床層は、その電気エネルギー損失の度合いを示す誘電正接が0.05以下であると共に、AGVの繰り返し走行に対して耐久性を有することが好ましく、特に誘電正接が0.05超となると、床からAGVにワイヤレスで電力を供給する際の電力伝播効率が不十分となる。また、仕上げ塗り床層の厚みは、0.5〜2mmが好ましく、0.5mm未満ではAGVの走行に対する耐久性が不十分となり、2mm超では、電力伝播効率が不十分となる場合がある。   The finished coated floor layer constituting the present invention preferably has a dielectric loss tangent indicating the degree of electric energy loss of 0.05 or less and has durability against repeated AGV running, and particularly has a dielectric loss tangent of 0. If it exceeds .05, the power propagation efficiency when supplying power from the floor to the AGV wirelessly becomes insufficient. Further, the thickness of the finished coated floor layer is preferably 0.5 to 2 mm, and if it is less than 0.5 mm, the durability against running of AGV is insufficient, and if it exceeds 2 mm, the power propagation efficiency may be insufficient.

誘電正接が0.05以下であって、且つAGVの繰り返し走行に対する耐久性を有する仕上げ塗り床材としては、具体的には本願で示される塗膜のJIS K 7215のタイプDデュロメータ硬さが70以上のエポキシ樹脂塗り床材や硬質ウレタン樹脂塗り床材を使用することができる。エポキシ樹脂塗り床材は上記、エポキシ樹脂とエポキシ樹脂硬化剤に炭酸カルシウム等の充填フィラーを配合した、原則として溶剤を含まない塗り床材が好ましく、通常、エポキシ樹脂塗り床材は床下地コンクリート上に厚さ0.8〜1.5mm程度に金鏝等により塗布されて硬化しエポキシ樹脂塗り床となる。   As the finish coating floor material having a dielectric loss tangent of 0.05 or less and durability against repeated running of AGV, specifically, JIS K 7215 type D durometer hardness of the coating film shown in this application is 70. The above-mentioned epoxy resin-coated flooring or hard urethane resin-coated flooring can be used. As a general rule, the epoxy resin-coated flooring material is preferably a non-solvent-containing flooring material in which a filler such as calcium carbonate is blended with the epoxy resin and the epoxy resin curing agent. It is applied to a thickness of about 0.8 to 1.5 mm with a hammer or the like and cured to form an epoxy resin coated floor.

硬質ウレタン樹脂塗り床材は、組成としてひまし油ポリオールやひまし油変性ポリオールとメタフェニレンジイソシアネートと水酸化アルミニウム等の充填フィラーを含む、原則として溶剤を含まない塗り床材であり、通常は床下地コンクリート上に厚さ1〜1.5mm程度に金鏝等により塗布され硬化し硬質ウレタン樹脂塗り床となる。   Rigid urethane resin-coated flooring is a flooring that does not contain solvent as a rule and contains fillers such as castor oil polyol, castor oil-modified polyol, metaphenylene diisocyanate, and aluminum hydroxide. It is applied to a thickness of about 1 to 1.5 mm with a hammer or the like and cured to form a hard urethane resin coated floor.

以下,実施例及び比較例にて具体的に説明する。   Hereinafter, it demonstrates concretely in an Example and a comparative example.

[実施例及び比較例]
床下地コンクリート表面に貼着する金属箔として厚さ35μmの銅箔(三井金属社製)を、またこれと比較するためSUS304製平織りメッシュ(線径0.06mm、150Mesh、日本メッシュ工業社製)を使用した。銅箔の床下地コンクリートへの貼着に当たってはエポキシ樹脂接着剤アイカアイボン E5050(商品名、主剤:硬化剤=1:1(重量比)、アイカ工業社製)を使用し、SUS304製平織りメッシュの床下地コンクリート表面への貼着に当たっては、下記ジョリエースJE55H A と 同 Bを100:40で混合したものを使用した。
[Examples and Comparative Examples]
Copper foil (made by Mitsui Kinzoku Co., Ltd.) with a thickness of 35 μm as a metal foil to be stuck to the floor foundation concrete surface, and SUS304 plain weave mesh (wire diameter 0.06 mm, 150 Mesh, made by Nippon Mesh Industrial Co., Ltd.) for comparison with this. It was used. When sticking copper foil to floor foundation concrete, epoxy resin adhesive Aika Avon E5050 (trade name, main agent: curing agent = 1: 1 (weight ratio), manufactured by Aika Industry Co., Ltd.) is used, and a plain weave mesh made of SUS304 is used. In adhering to the floor foundation concrete surface, the following Joliase JE55HA and B mixed at 100: 40 were used.

樹脂モルタルに用いるエポキシ樹脂とエポキシ樹脂硬化剤としては、ジョリエースJE55H A(商品名、ビスフェノールA型液状エポキシ樹脂及びC10級アルキルモノグリシジルエーテル含有、エポキシ当量:280、粘度0.5Pa・s/23℃、アイカ工業社製)及びジョリエースJE55H B(商品名、変成脂環式ポリアミン及び変成脂肪族ポリアミン含有、活性水素当量:112、粘度0.1Pa・s/23℃、アイカ工業社製)を使用し、ジョリエースJE55H Aと同Bの混合比は重量で100:40にて使用した。樹脂モルタルの骨材として、東北硅砂5号(商品名、粒子径0.106mm〜0.60mm)、東北硅砂6号(商品名、粒子径0.075mm〜0.425mm)、セルベンB(粒子径0.5〜1.5mm)及びセルベンC(粒子径0.05〜0.5mm)を使用し、骨材は東北硅砂5号と東北硅砂6号を重量比で2:1で混合したものを骨材Aとし、セルベンBとセルベンCを2:1で混合したものを骨材Bとした。エポキシ樹脂とエポキシ樹脂硬化剤と骨材の配合比は、上記ジョリエースJE55H Aと同Bを混合したもの100重量部に対して骨材600重量部を混合して使用した。 As an epoxy resin and an epoxy resin curing agent used for the resin mortar, JOLIES JE55HA (trade name, containing bisphenol A type liquid epoxy resin and C 10 grade alkyl monoglycidyl ether, epoxy equivalent: 280, viscosity 0.5 Pa · s / 23 ° C., manufactured by Aika Kogyo Co., Ltd.) and Joliace JE55H B (trade name, containing modified alicyclic polyamine and modified aliphatic polyamine, active hydrogen equivalent: 112, viscosity 0.1 Pa · s / 23 ° C., manufactured by Aika Industry Co., Ltd.) And the mixing ratio of Jolieth JE55H A and B was 100: 40 by weight. As aggregates of resin mortar, Tohoku cinnabar No. 5 (trade name, particle diameter of 0.106 mm to 0.60 mm), Tohoku cinnabar No. 6 (trade name, particle diameter of 0.075 mm to 0.425 mm), Selben B (particle diameter) 0.5 to 1.5 mm) and Serbene C (particle size 0.05 to 0.5 mm), and the aggregate is a mixture of Tohoku cinnabar No. 5 and Tohoku cinnabar 6 in a weight ratio of 2: 1. Aggregate A was obtained by mixing Selben B and Selben C at a ratio of 2: 1. The blending ratio of the epoxy resin, the epoxy resin curing agent and the aggregate was used by mixing 600 parts by weight of the aggregate with 100 parts by weight of the above-mentioned mixture of Jolieth JE55HA and B.

また、仕上げ塗り床材として、無溶剤のエポキシ樹脂塗り床材 ジョリエースJE−20G(塗膜厚み1.0mm、商品名、アイカ工業社製)及び、硬質ウレタン樹脂塗り床材 アイカピュールJJ−103(塗膜厚み1.2mm、商品名、アイカ工業社製)を使用し、またこれと比較するため水系ウレタンモルタル組成物から成る水硬性ウレタン樹脂塗り床材 アイカピュールハードJJ−560(塗膜厚み3.0mm、商品名、アイカ工業社製)を使用した。無溶剤のエポキシ樹脂塗り床材及び硬質ウレタン樹脂塗り床材は上記樹脂モルタル層の上に塗布して仕上げ塗り床層とした。水硬性ウレタン樹脂塗り床材を仕上げ塗り床材として使用する場合は、上記樹脂モルタルを塗布することなく、銅箔上に直接塗布した。   Moreover, as a finish coating floor material, a solvent-free epoxy resin coating floor material JOLIETHS JE-20G (coating thickness 1.0mm, a brand name, Aika Kogyo Co., Ltd.) and a hard urethane resin coating floor material Aikapur JJ-103 (Coating thickness 1.2 mm, trade name, manufactured by Aika Kogyo Co., Ltd.) and for comparison with this, a hydraulic urethane resin coated flooring made of a water-based urethane mortar composition, Aikapur Hard JJ-560 (coating thickness) 3.0 mm, trade name, manufactured by Aika Kogyo Co., Ltd.). Solvent-free epoxy resin-coated flooring materials and hard urethane resin-coated flooring materials were applied onto the resin mortar layer to form a finished coating floor layer. When using a hydraulic urethane resin-coated flooring as a finish-coated flooring, it was applied directly on the copper foil without applying the resin mortar.

上記材料を使用し、表1に示す組み合わせにて床下地コンクリート表面に銅箔又はSUS304製平織りメッシュを貼着し、次に樹脂モルタルを塗布して樹脂モルタル層を設け(比較例3については無し)、次に仕上げ塗り床材を塗布して仕上げ塗り床層を設けることにより、実施例1乃至実施例4、比較例1乃至比較例3のワイヤレス給電床用塗り床構造とした。   Using the above materials, copper foil or SUS304 plain weave mesh was applied to the floor foundation concrete surface in the combinations shown in Table 1, and then a resin mortar was applied to provide a resin mortar layer (None for Comparative Example 3) ), And then, by applying the finish coating floor material and providing the finish coating floor layer, the coating floor structure for the wireless power feeding floor of Examples 1 to 4 and Comparative Examples 1 to 3 was obtained.

[評価項目及び評価方法] [Evaluation items and methods]

[電力伝播効率]
縦150mm×横1800mm×厚さ35μmの送電電極(銅箔製)を、上記表1の実施例1乃至実施例4及び比較例1乃至比較例3の仕上げ塗り床層の上に敷設し、送電電極の端部をベクトルネットワークアナライザ MS46122A(Anritsu社製)のポート1に、他端をポート2に接続する。銅箔又はSUS304性平織りメッシュを上記ベクトルネットワークアナライザのグランドと共通化し、ベクトルネットワークアナライザにより測定した2ポートSパラメータから電力伝播効率ηmaxを以下の式により算出した。
ηmax=(|S21|/|S12|)(K−(K−1)1/2
(Kは以下により算出した。K=(1-|S11-|S22+|S11×S22−S12×S21)/(2×|S12×S21|)、
11:ポート1から入力した信号の強さと、該信号がポート1へ反射して戻ってきた際の該信号の強さの比
12:ポート2から入力した信号の強さと、該信号がポート1へ伝達した際の該信号の強さの比
21:ポート1から入力した信号の強さと、該信号がポート2へ伝達した際の該信号の強さの比
22:ポート2から入力した信号の強さと、該信号がポート2へ反射して戻ってきた際の該信号の強さの比
なおηmaxは2ポート回路網の両ポートに無損失かつ最適な整合回路を接続できたときにポート1からポート2へ伝達する電力伝播効率を表わしている。
[Power transmission efficiency]
A power transmission electrode (made of copper foil) having a length of 150 mm × width of 1800 mm × thickness of 35 μm was laid on the finished coated floor layers of Examples 1 to 4 and Comparative Examples 1 to 3 in Table 1 above to transmit power. The end of the electrode is connected to port 1 of the vector network analyzer MS46122A (manufactured by Anritsu), and the other end is connected to port 2. The copper foil or SUS304 plain weave mesh was shared with the ground of the vector network analyzer, and the power propagation efficiency η max was calculated from the 2-port S parameter measured by the vector network analyzer by the following formula.
η max = (| S 21 | / | S 12 |) (K− (K 2 −1) 1/2 )
(K was calculated as follows: K = (1− | S 11 | 2 − | S 22 | 2 + | S 11 × S 22 −S 12 × S 21 | 2 ) / (2 × | S 12 × S 21 |),
S 11 : Ratio of the strength of the signal input from the port 1 and the strength of the signal when the signal is reflected back to the port 1 S 12 : The strength of the signal input from the port 2 and the signal Ratio of signal strength S 21 when transmitted to port 1: Ratio of signal strength input from port 1 and ratio of signal strength when signal transmitted to port 2 S 22 : From port 2 The ratio of the strength of the input signal to the strength of the signal when the signal is reflected back to port 2 η max is a lossless and optimal matching circuit connected to both ports of the 2-port network. Represents the power transmission efficiency transmitted from port 1 to port 2 at the time.

[誘電正接]
上記材料を用いて樹脂モルタル層については厚さ5mm×10cm×10cmの板状の試験体を作製し、仕上げ塗り床層は実施例1乃至実施例4及び比較例1及び比較例2については厚さ1mm×10cm×10cmの試験体を作製し、比較例3については厚さ3mm×10cm×10cmの試験体を作製した。システムについては、実施例1乃至実施例4及び比較例1及び比較例2については樹脂モルタル層を厚さ5mmとし、この上に仕上げ塗り床層を厚さ1mmで塗布して全体として厚さ6mm×10cm×10cmの試験体を作製した。各試験体は23℃にて作成し、23℃7日間養生した。試験体の表面及び底面にアルミ製のテープを接着し、ベクトルネットワークアナライザ MS46122A(Anritsu社製)により直列インピーダンスZを測定し、誘電正接tanδを以下の式で算出した。
tanδ=|Re{Z}/Im{Z}|
Re{Z}はZの実部を、Im{Z}はZの虚部を表わす。
測定に当たっては、測定周波数1.56MHz〜51.56MHzの範囲を0.05MHz刻みで測定し、13.56MHz時のtanδを、ここでいう誘電正接とした。なお比較例3についてのシステムは仕上げ塗り床層の誘電正接値をそのまま表2に記載した。
[Dielectric loss tangent]
A plate-like test body having a thickness of 5 mm × 10 cm × 10 cm was prepared for the resin mortar layer using the above materials, and the finished coated floor layers were thick for Examples 1 to 4 and Comparative Examples 1 and 2. A specimen having a thickness of 1 mm × 10 cm × 10 cm was prepared, and for Comparative Example 3, a specimen having a thickness of 3 mm × 10 cm × 10 cm was prepared. As for the system, for Examples 1 to 4 and Comparative Examples 1 and 2, the resin mortar layer was 5 mm thick, and the final coated floor layer was applied 1 mm thick thereon to give a total thickness of 6 mm. A test body of × 10 cm × 10 cm was produced. Each specimen was prepared at 23 ° C. and cured for 7 days at 23 ° C. Aluminum tape was bonded to the surface and bottom of the test specimen, the series impedance Z was measured with a vector network analyzer MS46122A (manufactured by Anritsu), and the dielectric loss tangent tan δ was calculated by the following equation.
tan δ = | Re {Z} / Im {Z} |
Re {Z} represents the real part of Z, and Im {Z} represents the imaginary part of Z.
In the measurement, the measurement frequency range of 1.56 MHz to 51.56 MHz was measured in increments of 0.05 MHz, and tan δ at 13.56 MHz was defined as the dielectric loss tangent here. In the system of Comparative Example 3, the dielectric loss tangent value of the finish coated floor layer is described in Table 2 as it is.

[圧縮強度]
JIS K 6911 5.19 圧縮強さに準拠し、樹脂モルタルまたは水硬性ウレタン樹脂塗り床材を縦12.7mm×横12.7mm×高さ25.4mmの形状にて硬化させて23℃7日間養生する。その後に23℃にてインストロン万能材料試験機(インストロン社製)を用いて載荷速度1mm/分で圧縮し、圧縮強さ(N/mm)を測定した。
[Compressive strength]
In accordance with JIS K 6911 5.19 compressive strength, resin mortar or hydraulic urethane resin coated flooring material is cured in a shape of 12.7mm in length × 12.7mm in width × 25.4mm in height and 23 ° C for 7 days Take care. Thereafter, the resultant was compressed at 23 ° C. using an Instron universal material testing machine (Instron) at a loading speed of 1 mm / min, and the compression strength (N / mm 2 ) was measured.

[デュロメータ硬さ]
エポキシ樹脂塗り床材、硬質ウレタン塗り床材、及び水硬性ウレタン樹脂塗り床材のそれぞれについて40mm×60mm×4mm(厚み)の金型に流し込んで硬化させる。23℃7日間養生後に、JIS K 7215(プラスチックのデュロメータ硬さ)に準拠し、タイプDデュロメータを用いて23℃において測定した。
[Durometer hardness]
Each of the epoxy resin-coated flooring material, the hard urethane-coated flooring material, and the hydraulic urethane resin-coated flooring material is poured into a 40 mm × 60 mm × 4 mm (thickness) mold and cured. After curing at 23 ° C. for 7 days, the measurement was performed at 23 ° C. using a type D durometer according to JIS K 7215 (plastic durometer hardness).

[評価結果]
評価結果を表2に示す。
[Evaluation results]
The evaluation results are shown in Table 2.

[まとめ]
実施例1乃至実施例4は、電力伝播効率が高く、各層の誘電正接も0.05以下であるため、AGVに床よりワイヤレスで電力を供給する際に電力の伝播効率が高いと判断され、また樹脂モルタル層の圧縮強度は30N/mm以上あり、仕上げ塗り床層としてデュロメータ硬さ(タイプD)が70以上であることよりAGVの走行に耐久性を有すると判断された。
[Summary]
In Examples 1 to 4, since the power propagation efficiency is high and the dielectric loss tangent of each layer is 0.05 or less, it is determined that the power propagation efficiency is high when supplying power to the AGV wirelessly from the floor, Further, the compressive strength of the resin mortar layer was 30 N / mm 2 or more, and the durometer hardness (type D) as the finished coated floor layer was 70 or more.

Claims (6)

床下地コンクリート表面に、厚み15μm以上50μm以下の金属箔層を備え、該金属箔層の上にエポキシ樹脂とエポキシ樹脂硬化剤と骨材とから成る厚さ3〜7mmの樹脂モルタル層を備え、該樹脂モルタル層の上に誘電正接が0.05以下の仕上げ塗り床層を備えることを特徴とするワイヤレス給電床用塗り床構造。   Provided with a metal foil layer having a thickness of 15 μm or more and 50 μm or less on the floor base concrete surface, and provided with a resin mortar layer having a thickness of 3 to 7 mm composed of an epoxy resin, an epoxy resin curing agent, and an aggregate on the metal foil layer, A coated floor structure for a wireless power feeding floor, comprising a finished coated floor layer having a dielectric loss tangent of 0.05 or less on the resin mortar layer. 前記仕上げ塗り床層は、エポキシ樹脂塗り床または硬質ウレタン樹脂塗り床から成ることを特徴とする請求項1記載のワイヤレス給電床用塗り床構造。   2. The floor structure for a wireless power feeding floor according to claim 1, wherein the finishing floor layer is an epoxy resin floor or a hard urethane resin floor. 前記樹脂モルタル層の骨材は、硅砂又はセルベンから成ることを特徴とする請求項1又は請求項2に記載のワイヤレス給電床用塗り床構造。   The coated floor structure for a wireless power feeding floor according to claim 1 or 2, wherein the aggregate of the resin mortar layer is made of cinnabar sand or selben. 床下地コンクリート表面に、厚み15μm以上50μm以下の金属箔を貼着して金属箔層を形成し、該金属箔層の上にエポキシ樹脂とエポキシ樹脂硬化剤と骨材とから成る樹脂モルタルを3〜7mmに塗布して樹脂モルタル層を形成し、該樹脂モルタル層の上に誘電正接が0.05以下の仕上げ塗床材を塗布して仕上げ塗り床層を形成することを特徴とするワイヤレス給電床用塗り床の施工方法。   A metal foil layer having a thickness of 15 μm or more and 50 μm or less is adhered to the floor base concrete surface to form a metal foil layer, and a resin mortar composed of an epoxy resin, an epoxy resin curing agent, and an aggregate is placed on the metal foil layer. Wireless power feeding characterized by forming a resin mortar layer by coating to ˜7 mm, and applying a finish coating material having a dielectric loss tangent of 0.05 or less on the resin mortar layer to form a finished coating floor layer Construction method for floor coating. 前記仕上げ塗床材はエポキシ樹脂塗床材または硬質ウレタン樹脂塗床材から成ることを特徴とする請求項4記載のワイヤレス給電床用塗り床の施工方法。   5. The method for constructing a floor for a wireless power feeding floor according to claim 4, wherein the finish coating material comprises an epoxy resin coating material or a hard urethane resin coating material. 前記樹脂モルタルの骨材は、硅砂又はセルベンから成ることを特徴とする請求項4又は請求項5に記載のワイヤレス給電床用塗り床の施工方法。


6. The method for constructing a coated floor for a wireless power feeding floor according to claim 4, wherein the aggregate of the resin mortar is made of cinnabar or selben.


JP2018098537A 2018-05-23 2018-05-23 Painted floor structure for wireless power supply floor and this construction method Active JP6837454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098537A JP6837454B2 (en) 2018-05-23 2018-05-23 Painted floor structure for wireless power supply floor and this construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098537A JP6837454B2 (en) 2018-05-23 2018-05-23 Painted floor structure for wireless power supply floor and this construction method

Publications (2)

Publication Number Publication Date
JP2019203301A true JP2019203301A (en) 2019-11-28
JP6837454B2 JP6837454B2 (en) 2021-03-03

Family

ID=68726364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098537A Active JP6837454B2 (en) 2018-05-23 2018-05-23 Painted floor structure for wireless power supply floor and this construction method

Country Status (1)

Country Link
JP (1) JP6837454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111877690A (en) * 2020-07-17 2020-11-03 石家庄超硕地坪工程有限公司 Graphene anti-static terrace process
JP2022053519A (en) * 2020-09-24 2022-04-05 アイカ工業株式会社 Conductive floor coating material composition, construction method thereof, and conductive coated floor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273147A (en) * 2004-03-23 2005-10-06 Aica Kogyo Co Ltd Floor and its construction method
JP2013217033A (en) * 2012-04-05 2013-10-24 Aica Kogyo Co Ltd Substrate concrete surface high-pressure adjustment method, and substrate concrete floor construction method applying the same
JP2014181137A (en) * 2013-03-18 2014-09-29 Aica Kogyo Co Ltd Coating material composition, floor construction method using the same and floor structure formed by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273147A (en) * 2004-03-23 2005-10-06 Aica Kogyo Co Ltd Floor and its construction method
JP2013217033A (en) * 2012-04-05 2013-10-24 Aica Kogyo Co Ltd Substrate concrete surface high-pressure adjustment method, and substrate concrete floor construction method applying the same
JP2014181137A (en) * 2013-03-18 2014-09-29 Aica Kogyo Co Ltd Coating material composition, floor construction method using the same and floor structure formed by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111877690A (en) * 2020-07-17 2020-11-03 石家庄超硕地坪工程有限公司 Graphene anti-static terrace process
JP2022053519A (en) * 2020-09-24 2022-04-05 アイカ工業株式会社 Conductive floor coating material composition, construction method thereof, and conductive coated floor

Also Published As

Publication number Publication date
JP6837454B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP4693440B2 (en) Epoxy resin primer composition for road pavement and road pavement method using the same
KR100989942B1 (en) Eco-friendly aqueous epoxy resin composition and its uses
KR101691698B1 (en) Epoxy resin composition
EP0660861B1 (en) Aqueous voc-free epoxy primer compositions
KR100932222B1 (en) Eco-friendly aqueous epoxy resin mortar composition and concrete surface construction method using the same
EP1988130A2 (en) Two-part waterborne epoxy coating composition and method
CN102627753A (en) Epoxy resins comprising a cycloalphatic diamine curing agent
JP2019203301A (en) Painting floor structure for wireless power supply floor and construction method of the same
US20040156997A1 (en) Electrically conductive floor coating, process for producing the floor coating, coating formulation, and method for protecting structures using the floor coating
KR102484942B1 (en) Method and material for repairing concrete cracks
JP4776323B2 (en) Emulsifier composition
CN105778704A (en) Flexible impasto solvent-free epoxy coal tar pitch paint and manufacture method thereof
JPS6314009B2 (en)
CN105722928B (en) Curable polyurethane coating composition and preparation method thereof
JPH0811791B2 (en) Coating material for prestressed concrete tendons
KR101738485B1 (en) Epoxy resin-based gel coat for surface finishing of components made of fibre-reinforced plastics
KR101263382B1 (en) Method of forming a coating layer using water-soluble epoxy resin mortar eco-friendly
JP2004136525A (en) Epoxy lining material composition
CN105492487B (en) Coating composition
KR102282056B1 (en) Wet tolerant high functional ceramic composite coating material
WO2017181323A1 (en) Epoxy modified cement composition
EP3131979B1 (en) Water-based epoxy formulations for applied fireproofing
KR101316649B1 (en) Nanosized ceramic coating steel
KR102392986B1 (en) Corrugated steel pipe coating layer repair material and corrugated steel pipe repaired using the same
JP6496646B2 (en) Tunnel lining concrete stripping prevention structure and this stripping prevention construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201104

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150