JP2004136525A - Epoxy lining material composition - Google Patents

Epoxy lining material composition Download PDF

Info

Publication number
JP2004136525A
JP2004136525A JP2002302519A JP2002302519A JP2004136525A JP 2004136525 A JP2004136525 A JP 2004136525A JP 2002302519 A JP2002302519 A JP 2002302519A JP 2002302519 A JP2002302519 A JP 2002302519A JP 2004136525 A JP2004136525 A JP 2004136525A
Authority
JP
Japan
Prior art keywords
epoxy
epoxy resin
weight
primer
lining material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302519A
Other languages
Japanese (ja)
Inventor
Masao Kishi
岸  正夫
Tomio Tsuchida
土田 富雄
Akihiro Yamazaki
山崎 章弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002302519A priority Critical patent/JP2004136525A/en
Publication of JP2004136525A publication Critical patent/JP2004136525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base conditioning material, a primer material, and a coating material which are applied to protect a concrete structure such as a water treatment facility, an agricultural drainage facility, or a sewerage treatment facility and excellent in application properties and corrosion resistance of a corrosion-proof lining material needing acid resistance. <P>SOLUTION: The epoxy lining material is composed of the base conditioning material (A), the primer material (B), and the coating material (C). The base conditioning material (A) contains a reactive diluent having an epoxy group and a silane coupling agent. Aggregate uses the premix of cement, quartz sand, and a thickener. The primer material (B) contains a reactive diluent having an epoxy group, titanium dioxide, and barium sulfate. The epoxy resin of the coating material (C) uses a bisphenol A type epoxy resin and a bisphenol F type epoxy resin. An aromatic reactive diluent having an epoxy group, a non-reactive aromatic diluent, and a laminar thixotropic agent are incorporated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水処理施設、農業用集落排水施設、下水道処理施設等のコンクリート構造物の保護のために塗布する、耐酸性の要求される防食ライニング材組成物に関する。
【0002】
【従来の技術】
従来、防食ライニング材用樹脂としてはエポキシ樹脂、ビニルエステル樹脂、ノンスチレンビニルエステル樹脂、ウレタン樹脂、シリコン樹脂等が用いられてきた。これらは樹脂特有の使い勝手があり、中でもエポキシ樹脂が最も汎用樹脂として用いられてきた。コンクリート構造物は新設と言えどもコンクリート表面は粗面で、ましてや水処理施設、農業用集落排水施設、下水道処理施設等の改修においては、劣化したコンクリート表層をサンダー等で削り、新たに表面をモルタル仕上げし、粗面被覆もしくは不陸調整処理を行った後、表面仕上げの防食ライニング塗装をするのが一般的であった。このコンクリート構造物の防食ライニング材としては、特開昭63−25282号明細書記載のごとく、硬化、乾燥、緻密化する前のコンクリート表面に、エポキシ樹脂と変性脂肪族ポリアミン系硬化剤配合物を塗布し、コンクリート層に樹脂を浸透させ、コンクリート表層に樹脂モルタル層または樹脂コンクリート層と樹脂層とを形成させる下地処理の提案、特開平7−187860号明細書記載のごとく、乳化可能な2液反応型エポキシ樹脂、またはアルカリ水存在下で反応可能なエポキシ樹脂の中から選ばれた、常温硬化型エポキシ樹脂混合物、もしくはこれと細骨材、或いはセメント、細骨材、水との混合物を任意の厚みで塗布するコンクリート表面の強化方法する下地処理の提案、特開平7−171492号明細書記載のごとく、エポキシ樹脂と変性ポリアミドアミン系硬化剤からなる下地材を塗布する工程と、エポキシ樹脂とポリチオール変性脂肪族ポリアミン系硬化剤からなる上塗り材を塗布する工程により塗膜を形成する提案、特開平9−263467号明細書記載のごとく、液状エポキシ樹脂と、硬化剤、セラミックス粉、繊維状粘土鉱物並びに炭素短繊維から成る防食上塗り材の提案、特開2000−119592号明細書記載のごとく、水分散可能なエポキシ樹脂と水硬化性アルミナ及び水配合物を用いたセメント質構造物の防食被覆に用いる耐酸性塗料の提案、特開2001−2986号明細書記載のごとく、1分子中にエポキシ基を1個以上有するエポキシ樹脂、及びアミン硬化剤を樹脂成分として含有する有機溶剤型又は無溶剤型の塗料固形分100重量部当たり1〜30重量部の水分を含有する塗料組成物の提案等々がなされている。
【0003】
【特許文献1】
特開昭63−25282号公報
【特許文献2】
特開平7−187860号公報
【特許文献3】
特開平7−171492号公報
【特許文献4】
特開平9−263467号公報
【特許文献5】
特開2000−119592号公報
【特許文献6】
特開2001−002986号公報
【0004】
これらは何れも下地調整材、及び/又は上塗り材個々に関するものであり、例えば農業用集落排水設備のごとく防食被覆工法仕様は、先ずコンクリート下地の表面をサンディング等でレイタンス及び粗面の平滑処理を実施し、素地調整材(下地調整材)を塗布し平滑にし、プライマーを行った後、上塗り材(下塗り、中塗りを含む)で仕上げる、少なくとも組成の異なった3層構成であることが指針として掲げられている。
【0005】
下地調整材、上塗り材単独もしくは併用では指針を満たさない工法であり、塗膜仕上がり状態、接着力、防食性、即ち耐酸性も満足されず経済上の問題も発生していた。又、日本下水道事業団のコンクリート防食指針では、防食環境条件によりA種からD種の工法に分類されており、これら工法のおけるプライマーの必要性は、素地調整材が湿潤型硬化型、または素地調整材がレイタンスもなく充分に乾燥している場合はプライマーは不要としている。即ち、素地調整材と上塗り材の重ね塗りでも防食性が満足できればプライマーは不要としているが、指触もしくは目視でしか確認されていないのが現実であり、極めて危険である。
【0006】
該防食性は下水より発生する硫酸、亜硫酸による、硫黄のライニング材被覆膜への侵入深さを新たな指針に盛り込んでいる。例えば前記C種は、設計被覆膜厚に対する硫黄侵入深さを、EPMA(エレクトロプローブマイクロアナライザー)を用い測定し、被覆膜表面から200μ、且被覆膜厚の1/10以下、D種においては被覆膜表面から100μ、且被覆膜厚の5%以下としており、農業用集落排水の防食指針が、ライニング材被覆膜の耐酸性試験後の目視による、異常の有無確認に比し、上塗り材の防食性(耐酸性)基準が強化された指針となっている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、水処理施設、農業用集落排水施設、下水道処理施設等のコンクリート構造物の保護のために塗布する、耐酸性の要求される防食ライニング材の塗布作業性と防食性に優れた、素地調整材、プライマー材及び上塗り材を提供することである。
【0008】
【課題を解決するための手段】
このような状況下、本発明者等は農業用集落排水設備及び、日本下水道事業団のコンクリート防食指針を満足させるべく、プライマー剤も視野に入れ鋭意研究を重ねた結果、素地調整材は、エポキシ樹脂と自己乳化性を有するアミン系硬化剤、及び骨材を主成分とし、エポキシ樹脂に、1個のエポキシ基を有する反応性希釈剤とシランカップリング剤を配合することで、低粘度でコンクリート密着性に優れ、且防食性にも優れることを見出した。
【0009】
自己乳化性を有するアミン系硬化剤は、界面活性剤を配合することで水配合物の乳化性、貯蔵時の分離等の安定性が向上することを見出した。骨材は、セメントと硅砂の混合系に、ヒュームドシリカ及び繊維状増粘剤を配合したものが、プレミックスとしての長期保存安定性を始め、施工時に前記のごとく配合されたエポキシ樹脂とアミン系硬化剤配合物の粘度、遥変性、鏝伸び性が優れることを見出した。
【0010】
プライマー剤のエポキシ樹脂はビスフェノールA型エポキシ樹脂であり、エポキシ当量(g/eq(以下省略))170〜250の常温で液状エポキシ樹脂に、エポキシ当量600以上の常温で固形タイプを併用し、1個のエポキシ基を有する反応性希釈剤と、二酸化チタン及び硫酸バリウムを充填剤として配合することで、低粘度、且浸透性に優れ素地調整材層を強化し、且隠蔽性を有したプライマー層が得られことを見出した。又、アミン系硬化剤は素地調整材で用いたアミン系硬化剤乳化物を使用すれば、水配合物の乳化性、貯蔵時の分離等の安定性が確保されることを見出した。
【0011】
上塗り材のエポキシ樹脂は、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂を併用し、1個のグリシジル基を有する芳香族系反応性希釈剤に非反応性芳香族系希釈剤を併用し、更に有機溶剤で膨潤させた層状遥変剤を混練させることが、塗布作業性、垂れ防止に優れることを見出した。更に詳細には、前記のごとく配合されたエポキシ樹脂の粘度は500〜1,200mPa・s、遥変性(以下TI値と称す)5〜8が有効であることを見出した。これにアミン系硬化剤を組み合わせることで、接着力、防食性に優れた塗膜が得られることを見出した。これら素地調整材、プライマー剤、上塗り材を順次、塗膜が乾燥した時点で塗り重ねることで、コンクリ−トとの接着性に優れ、高い防食性を有したエポキシライニング材であることを見出し、本発明を完成させるに至った。
【0012】
即ち本発明は、以下の構成からなる。
[1] (A)素地調整材がエポキシ樹脂と自己乳化性を有するアミン系硬化剤及び骨材を含有し、(B)プライマー剤がエポキシ樹脂と自己乳化性を有するアミン系硬化剤及び充填剤を含有し、(C)上塗り材がエポキシ樹脂とアミン系硬化剤、充填剤、希釈剤、及び層状遥変剤を含有する低粘度、高遥変性を有する、これら三層からなるエポキシライニング材組成物。
[2] (A)素地調整材のエポキシ樹脂が、1個のエポキシ基を有する反応性希釈剤とシランカップリング剤を含有することを特徴とする[1]記載のエポキシライニング材組成物。
[3] (A)素地調整材の骨材が、セメント、硅砂、増粘剤のプレミックスであることを特徴とする[1]記載のエポキシライニング材組成物。
[4] (B)プライマー剤のエポキシ樹脂が、1個のエポキシ基を有する反応性希釈剤と充填剤を含有することを特徴とする[1]記載のエポキシライニング材組成物。
[5] (B)プライマー剤の充填剤は二酸化チタンと硫酸バリウムを含有することを特徴とする[1]記載のエポキシライニング材組成物。
[6] (C)上塗り材のエポキシ樹脂がビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物であることを特徴とする[1]記載のエポキシライニング材組成物。
[7] (C)上塗り材、さらに、1個のエポキシ基を有する芳香族系反応性希釈剤と非反応性芳香族系希釈剤を含有することを特徴とする[1]記載のエポキシライニング材組成物。
[8] (C)上塗り材が、さらに、1〜10重量%の層状遥変剤を含有することを特徴とする[1]記載のエポキシライニング材組成物。
[9] (C)上塗り材のエポキシ樹脂は、粘度5000〜12,000mPa・s、遥変性(TI値)5〜8であることを特徴とする[1]記載のエポキシライニング材組成物。
[10] (A)素地調整材、(B)のプライマー剤及び(C)の上塗り材は、塗布作業直前に、それぞれエポキシ樹脂と硬化剤を攪拌混合して用いることを特徴とする[1]記載のエポキシライニング材組成物。
[11] (A)素地調整材、(B)のプライマー剤及び(C)の上塗り材は、(A)、(B)、(C)の順で、乾燥塗布面に塗り重ねることを特徴とする[1]記載のエポキシライニング材組成物。
【0013】
【発明の実施の形態】
本発明の(A)素地調整材のエポキシ樹脂としては、1分子当たり平均1.5個以上のエポキシ基を有し、常温で液状のエポキシ樹脂であり、ビスフェノールA、ビスフェノールF等のビスフェノール化合物、レゾルシン、ハイドロキノン等の多価フェノール、フェノールノボラック、クレゾールノボラック等のポリフェノール化合物とエピクロルヒドリンとから誘導されるもの:ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール等の多価アルコールとエピクロルヒドリンとから誘導されるもの:3,4−エポキシシクロヘキシルメチル(3,4−エポキシシクロヘキサン)カルボキシレート、3,4−エポキシ−6−メチルシクロヘキシルメチル(3,4−エポキシ−6−メチルシクロヘキサン)カルボキシレート等の脂環式エポキシ化合物、フタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、トリメリット酸等の多価カルボン酸および、オキシ安息香酸、オキシナフトエ酸等のヒドロキシカルボン酸とエピクロルヒドリンとから誘導されるもの:アニリン、フェニレンジアミン、ジアミノジフェニルメタン等の多価アミン化合物および、アミノフェノール、アミノクレゾール等のヒドロキシアミノ化合物とエピクロルヒドリンとから誘導されるものを挙げられる。また、エポキシ樹脂はポリウレタン骨格、ポリブタジエン骨格を有し、分子の一部に複数のエポキシ基を結合させた化合物、或いは、ヒダントイン環を有するエポキシ化合物等が挙げられる。これらエポキシ樹脂は単独、または2種以上併用しても良い。これらの内好ましいエポキシ樹脂は、常温で液状のエポキシ当量170〜250のビスフェノールA型エポキシ樹脂が、粘度、経済性、防食性面より好ましい。
【0014】
エポキシ樹脂に配合する、1個のエポキシ基を有する反応性希釈剤としては、脂肪族及び芳香族タイプのエポキシ当量170〜250のものが挙げられる。エポキシ樹脂配合物の低粘度化、硬化速度制御より2種の併用が好ましい。本反応性希釈剤配合量は特には限定するものではないが、エポキシ樹脂100重量部に対して10〜40重量%程配合すると良い。又、脂肪族と芳香族タイプの配合比は、特には限定するものではないが、1:4〜1:1の範囲で芳香族タイプを多用すると良い。この場合、脂肪族タイプを多用すると粘度低下に効果があり、逆に芳香族タイプを多用すると高粘度化の方向にあり硬化速度は上がる。また、必要に応じ他の希釈剤を物性に影響を与えない範囲で用いても良い。
【0015】
シランカップリング剤としては官能基の種類により、アミノ系、ウレイド系、ビニル系、メタクリル系、エポキシ系、メルカプト系、イソシアネート系、ポリマー型、カチオニック系シランカップリング剤が挙げられる。中でもエポキシ樹脂に配合する関係上エポキシ系シランカップリング剤が貯蔵安定性面から好適であり、無機質との密着性向上に効果的である。特に限定するものではないが、エポキシ樹脂100重量部に対して、0.1〜2重量%程用いると良い。前記エポキシ樹脂に反応性希釈剤、シランカップリング剤、場合によっては他の希釈剤を順次攪拌混合して、本発明に用いるエポキシ樹脂配合物は得られる。
【0016】
自己乳化性を有するアミン系硬化剤としては、変性脂肪族ポリアミン系、変性脂環式ポリアミン系、変性ポリアミドアミン系、変性芳香族ポリアミン系、ケチミン系、ポリメルカプタン系、三級アミン系等が挙げられるが、中でも水配合時の乳化性、乳化物の分離安定性、エポキシ樹脂配合物に配合時の硬化速度、硬化塗膜の硬度、塗膜の曇り、防食性等から、アミン価150〜500の変性脂肪族ポリアミン系硬化剤が好適である。因みに、季節によりアミン価の異なるものを使い分けると良い。更に、水配合物の貯蔵時の分離等の安定性を更に高めるために、アニオン系もしくはノニオン系界面活性剤を単独若しくは併用し、アミン系硬化剤100重量部に対して有効成分として10〜30重量%配合すると良い。10重量%以下の場合乳化性が劣り、貯蔵安定性の低下につながる。30重量%以上の場合、塗膜の曇り現象及び耐強度低下の危険性を生ずる。又アミン系硬化剤は水で乳化して用いられ、アミン系硬化剤の乳化物濃度は20〜25重量%とすると良い。
【0017】
アミン系硬化剤に界面活性剤、水を順次攪拌混合することで、本発明に用いるアミン系硬化剤乳化物は得られる。
【0018】
骨材中のセメントは、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、白色セメント等の単味セメント、或いは高炉セメント、コロイドセメント、シリカセメント、フライアッシュセメント等の混合セメントを挙げることができ、これらは1種若しくは2種以上混合して用いても良い。特に限定するものではないが、中でも経済上の理由から普通ポルトランドセメントが好ましい。一般に普通ポルトランドセメントは炭酸カルシウムを多量に含有するため、耐酸性に難ありと言われているが、プライマー剤、上塗り材を重ね塗りする施工方法ゆえ、直接の影響は極めて僅少である。後述の珪砂100重量部に対するセメントの配合割合は20〜50重量%程度が好適である。
【0019】
珪砂は平均粒径100μm〜1380μm(8号珪砂〜3号珪砂)の細粒珪砂で良く、特に限定するものではないが、セメント、骨材及び分散剤とからなる、所謂粉体状のプレミックスの均一分散性、更にはエポキシ樹脂及びアミン系硬化剤との混合時の均一分散性面より、平均粒径100μm〜320μm(8号珪砂〜6号珪砂)が好ましい。
【0020】
増粘剤のヒュームドシリカ(シリカヒューム)は、各種シリカ合金製造の副産物で、シリカ(SiO)含有量が80〜95%、平均粒子径が0.1μ程度の超微粒子であり、増粘剤として用いることで、少量配合で高増粘性が付与されると同時に、素地調整剤の緻密性、高強度化、防食性が得られる。一方繊維状増粘剤は、繊維長5〜50μm、繊維径0.1〜0.5μの繊維状粘土鉱物、繊維1mm〜15mm、繊維径5〜20μmの炭素短繊維又はガラス繊維等が挙げられる。これらの中繊維状粘土鉱物が好適である。この繊維状増粘剤は遥変性付与に必須である。ヒュームドシリカと繊維状増粘剤配合量は特に限定するものではないが、珪砂100重量部に対して0.5〜5重量%程度が、エポキシ樹脂配合物及びアミン系硬化剤配合物の塗布作業時の粘度、TI値、鏝伸び性から好ましい。更にヒュームドシリカと繊維状増粘剤の配合割合は3:1〜1:3程度の範囲が前記のごとく好ましい。骨材にセメント、増粘剤を順次配合し、攪拌混合することで本発明の骨材は得られる。
【0021】
本素地調整剤は、前記の如く調整されたエポキシ樹脂配合物、アミン系硬化剤乳化物及び、骨材プレミックスを施工直前に攪拌混合して用いると良い。因みにこれら3種の配合割合は、特には限定するものではないが、骨材100重量部に対して、前記エポキシ樹脂配合物10重量%、アミン系硬化剤乳化物40重量%程度の割合である。
【0022】
プライマー剤はエポキシ樹脂と、1個のエポキシ基を有する反応性希釈剤と充填剤を含有する。エポキシ樹脂はビスフェノールA型エポキシ樹脂であり、更に詳しくは、エポキシ当量170〜250の常温で液状のエポキシ樹脂と、エポキシ当量600以上の常温で固形エポキシ樹脂の併用系である。液状エポキシ樹脂は素地調整材として用いたもので良く、常温で固形エポキシ樹脂としては、エポキシ当量600〜720の70〜75%固形分のキシレン溶液タイプが挙げられる。この液状エポキシ樹脂と固形エポキシ樹脂のキシレン溶液タイプの配合割合は特に限定するものではないが、例えば、液状エポキシ樹脂100重量部に対して、70%キシレン溶液タイプとして10〜30重量%程度である。10重量%より少ない場合防食性に欠け、30重量%より多い場合は高粘度化しプライマー材としての、素地調整材層への浸透性が低下し、充分な素地調整材の強化につながらない。
【0023】
1個のエポキシ基を有する反応性希釈剤としては、脂肪族及び芳香族タイプのエポキシ当量300〜320のものが挙げられる。中でも低刺激性、レベリング性から脂肪族系が好ましい。又、必要に応じ他の希釈剤を物性に影響を与えない範囲で用いても良い。
【0024】
充填剤は二酸化チタン及び硫酸バリウムよりなる。二酸化チタンは隠蔽性、プライマー塗布層のチョーキング防止面からルチル型が好ましい。硫酸バリウムは防食性付与に用いる沈降性硫酸バリウムが好ましい。両者の配合割合は時に限定するものではないが1:3〜3:1の範囲で用いると良い。又、エポキシ樹脂100重量部に対する両者配合物の配合割合は、限定するものではないが50〜100重量部程度である。
【0025】
本プライマー剤のエポキシ樹脂配合物は、前記のごとくエポキシ樹脂に、反応性希釈剤、充填剤を順次攪拌混合して得られる。又、必要に応じプライマー剤としての物性に影響を与えない範囲で、他の希釈剤、泡消剤、着色剤等を併用しても良い。
【0026】
一方アミン系硬化剤は素地調整材で用いた、アミン価150〜500の変性脂肪族ポリアミン系硬化剤が挙げられ、低粘度、且乳化性からアミン価は190が好適である。このアミン系硬化剤100重量部に、素地調整材同様の界面活性剤を2〜3重量%配合し、更に水を100重量%配合し、攪拌乳化することでプライマー用のアミン硬化剤が得られる。
【0027】
本プライマー剤は、施工直前にエポキシ樹脂配合物とアミン系硬化剤乳化物を攪拌混合して用いると良い。因みにこれら2種の配合割合は、特には限定するものではないが、エポキシ樹脂配合物とアミン系硬化剤乳化物の配合割合は1:1の割合である。
【0028】
上塗り材のエポキシ樹脂は、素地調整材で挙げた常温で液状のビスフェノールA型エポキシ樹脂と、ビスフェノールF型エポキシ樹脂の併用である。ビスフェノールA型エポキシ樹脂としてはエポキシ当量170〜250のものが挙げられ、ビスフェノールF型エポキシ樹脂としては、エポキシ当量160〜190のが挙げられる。防食性に関してはビスフェノールA型エポキシ樹脂が優れるものの、低粘度化にはビスフェノールF型エポキシ樹脂の配合が必須である。両者の配合割合は特には限定するものではないが、1:3〜3:1配合、好ましくは1;1配合である。
【0029】
上塗り材のエポキシ樹脂は、1個のエポキシ基を有する反応性希釈剤と、非反応性芳香族系希釈剤を配合する。前者は素地調整材で用いた炭素数が10〜13個の芳香族タイプのエポキシ当量170〜250のものが挙げられる。中でも炭素数が10個のエポキシ当量180のものが、低粘度化面で好適である。後者は分子中に水酸基を持つ非反応性芳香族系希釈剤である。水酸基を有することで硬化速度を高めるのに好適である。両者の配合割合は特に限定するものではないが、好ましくは反応性希釈剤100重量部に対し、非反応性希釈剤10〜30重量部である。この希釈剤の配合割合は、2種配合のエポキシ樹脂100重量部に対し、前記配合希釈剤として20〜50重量部である。上塗り材のエポキシ樹脂は充填剤を配合する。本充填剤はプライマー剤に用いたと同様酸化チタンと硫酸バリウムの併用である。両者の配合割合は時に限定するものではないが1:3〜3:1の範囲で用いると良い。又、エポキシ樹脂100重量部に対する両者配合物の配合割合は、限定するものではないが130〜170重量部程度である。
【0030】
上塗り材は、さらに層状遥変剤を含有する。層状遥変剤としては有機ベントナイト、クレー、マイカ粉等の薄片状結晶盤が積層された形状のものが挙げられる。中でも有機ベントナイトは小量配合で高い遥変効果が得られ好適である。本層状遥変剤はプロピレンカーボネート、トルエン等の有機溶剤で膨潤状態として用いると良く、2種配合のエポキシ樹脂100重量部に対し、固形分として1〜10重量%配合することで高TI値のものが得られる。
【0031】
前記のごとく調整されたエポキシ樹脂配合物は、粘度500〜1,200mPa・s、TI値5〜8の範囲である。中でも低粘度、高遥変性を有することが、塗布作業性、垂れ問題より好ましい。粘度500mPa・s、TI値5以下の場合、アミン系硬化剤の配合で更に低下するため、天井又は垂直面に塗布する際垂れを生ずる。逆に粘度1,200mPa・s、TI値8以上の場合、アミン系硬化剤を配合しても塗布し難い。上塗り材のアミン系硬化剤は、素地調整材で挙げた各種アミン系硬化剤中、エポキシ樹脂に配合時の硬化速度、硬化塗膜の硬度、塗膜の曇り、防食性等から、アミン価300〜380の変性脂環式ポリアミン系硬化剤が好適である。因みに、季節によりアミン価の異なるものを使い分け、更に粘度調整のためベンジルアルコールのごとく希釈剤を用いても良い。
【0032】
本上塗り材は、施工直前に前記のごとく調整されたエポキシ樹脂配合物とアミン系硬化剤を攪拌混合して用いると良い。因みにこれら2種の配合割合は4:1の割合が好適である。
【0033】
かくして得られた素地調整材、プライマー剤及び上塗り材は、それぞれ各塗布作業直前に、エポキシ樹脂配合物とアミン系硬化剤を所定量秤量し攪拌混合して用いる。各層の塗布方法は、先ず、鏝を用い素地調整材を塗布し、1夜放置し指触で塗膜の硬化状態を確認後、フェルトロールでプライマーを塗布する。前記同様硬化状態を確認後、フェルトロールを用い上塗り材を塗布する。上塗り材は防食環境条件の種別に合わせ、前記同様の方法で重ね塗りすると良い。
【0034】
以上のごとく、素地調整材、プライマー剤及び上塗り材からなるエポキシライニング材は農業用集落排水設備の防食被覆工法、日本下水道事業団のコンクリート防食指針による、エポキシ樹脂被覆工法による防食環境条件の、何れの工法にも適合した接着力、防食性を有したエポキシライニング材である。
【0035】
【実施例】
以下に、製造例及び実施例を示して、本発明を更に詳細に説明するが、本発明はこれらによって限定されるものではない。
[製造例]
[製造例1−1]
素地調整材:エポキシ樹脂として、エポミックR−140C(三井化学(株)製、ビスフェノール型、エポキシ当量195〜215、全塩素含有量1.0〜2.0%、粘度15,000〜25,000mPa・s)100重量部に、アデカグリシロールED−518(旭電化工業(株)製、脂肪族エポキシ系反応性希釈剤、エポキシ当量220、粘度5mPa・s)を7重量部、アデカグリシロールED−509(旭電化工業(株)製、芳香族族エポキシ系反応性希釈剤、エポキシ当量210、粘度20mPa・s)を20重量部、(信越シリコ−ンKBM403、信越化学工業(株)製、エポキシ系シランカップリング剤)を0.5重量部、グリコソルブDM(三井化学(株)製、メチルカルビトール)5重量部を攪拌混合して、素地調整材エポキシ樹脂配合物を得た。
アミン系硬化剤としてアデカハードナーEH−4227(旭電化工業(株)製、変性脂肪族ポリアミン系、アミン価190、粘度5,000mPa・s、固形分70%)100重量部に、ニューコール714(日本乳化剤(株)製、ポリオキシエチレン多環フェニルエーテル系ノニオン界面活性剤)を18重量部、水380重量部を攪拌乳化してアミン系硬化剤乳化物を得た。
骨材として、6号硅砂100重量部に対し、ポルトランドセメント30重量部、ヒュームドシリカを1.5重量部、繊維状粘土鉱物としてセピオライトを1.5重量部を均一攪拌し骨材プレミックスを得た。
本骨材プレミックス100重量部に対し、エポキシ樹脂配合物10重量部、アミン系硬化剤乳化物40重量部を攪拌混合して素地調整材とした。
【0036】
[製造例1−2]
素地調整材:製造例1−1中、アデカグリシロールED−518を20重量部、アデカグリシロールED−509を7重量部に変えた以外は、製造例1−1と同様に調整した。
【0037】
[製造例1−3]
素地調整材:製造例1−1中、骨材のヒユームドシリカを3重量部、セピオライト1重量部とした以外は、製造例1−1と同様に調整した。
【0038】
[製造例1−4]
素地調整材:製造例1−1中、アデカグリシロールED−518を27重量部とし、アデカグリシロールED−509を除いた以外は、製造例1−1と同様に調整した。
【0039】
[製造例1−5]
素地調整材:製造例1−1中、アデカグリシロールED−518を除き、アデカグリシロールED−509を27重量部とし以外は、製造例1−1と同様に調整した。
【0040】
[製造例2−1]
プライマー剤:エポキシ樹脂として、素地調整材に用いたエポミックR−140C、100重量部、エポミックR−301X70(三井化学(株)製、ビスフェノール型、エポキシ当量640〜720、70%キシレン溶液、粘度(ガードナー)X〜Z)15重量部に、アデカグリシロールED−502(旭電化工業(株)製、脂肪族エポキシ系反応性希釈剤、エポキシ当量320、粘度10mPa・s)を10重量部、TRC−10(堺化学(株)製、二酸化チタン)40重量部、沈降性硫酸バリウム#100(堺化学(株)製、硫酸バリウム)30重量部、ET8N109(大日精華(株)製、カーボンブラックエポキシ樹脂ペースト)1.0重量部、BYK−057(ビックケミージャパン(株)製、ブタジエン共重合物のソルベントナフサ、プロピレングリコールモノメチルエーテルアセテート溶液)5重量部、キシレン1重量部を配合し、ディスパーで充分攪拌混合後、3本で混練しプライマー用エポキシ樹脂配合物を得た。
アミン系硬化剤としてアデカハードナーEH−4227、100重量部に、ニューコール714.2重量部、水100重量部、BYK−020(ビックケミージャパン(株)製、有機変性ポリシロキサンのエチレングリコールモノブチルエーテル、2−エチルヘキサノール、ミネラルスピリッツ溶液)2重量部を攪拌乳化してアミン系硬化剤乳化物を得た。
本エポキシ樹脂配合物100重量部にアミン系硬化剤乳化物100重量部を配合しプライマー剤とした。
【0041】
[製造例2−2]
プライマー剤:製造例2−1中、エポキシ樹脂配合物の沈降性硫酸バリウム#100を除き、その分TRC−10を70重量部とした以外は、製造例2−1と同様に調整した。
【0042】
[製造例3−1]
上塗り材:エポキシ樹脂として、素地調整剤材に用いたエポミックR−140C、100重量部、エポミックR−110(三井化学(株)製、ビスフェノールF型エポキシ樹脂、エポキシ当量165〜180、全塩素含有0.13%、粘度3,000〜4,500mPa・s)105重量部に、アデカグリシロールED−529(旭電化工業(株)製、芳香族エポキシ系反応性希釈剤、エポキシ当量180、粘度20mPa・s)を50重量部、アデカグリシロールED−512(旭電化工業(株)製、芳香族系非反応性希釈剤、粘度330mPa・s)を10重量部、TRC−10、90重量部、沈降性硫酸バリウム#100、70重量部、ET8N109、ペースト)2.0重量部、BYK−057、2.5重量部に、別途ベントン#27(エレメンティスジャパン(株)製、有機ベントナイト、平均粒度10μ以下、密度1.8g/cm)10重量部にキシレン40重量部、プロピレンカーボネート10重量部を配合し、充分に攪拌混合させておいた遥変剤スラリ−を加えディスパーで充分攪拌混合後、3本で混練し上塗り材用エポキシ樹脂配合物を得た。この粘度は10,000mPa・s、TI値は6であった。
アミン系硬化剤として、アデカハードナーEH−406A(旭電化工業(株)製、変性脂環式ポリアミン系、アミン価350、粘度580mPa・s)100重量部に、ベンジルアルコール10重量部を攪拌混合してアミン系硬化剤を得た。
これを、前記エポキシ樹脂配合物100重量部に対し25重量部配合して上塗り材とした。因みに粘度(BH型回転粘度計、No4ローター×2rpm)5,000mPa・s、TI値(BH型回転粘度計、No7ローター×2rpm/20rpm粘度比)2.7であった。
【0043】
[比較製造例3−2]
上塗り材:製造例3−1中、ベントン#27を0.5重量部とした以外は製造例3−1と同様に調整した。
【0044】
[実施例]
[実施例1〜4及び比較例1〜5]
製造例で得た、素地調整材、プライマー剤、上塗り材それぞれの配合物の塗布作業性(粘度、貯蔵安定性、鏝伸び性、ロール塗布性、垂れ、硬化性)を確認し、結果を下記のごとく表示し、表1[表1]に示した。
【0045】

Figure 2004136525
【0046】
【表1】
Figure 2004136525
【0047】
[実施例5〜10及び比較例6〜14]
【表2】
Figure 2004136525
JIS K5410に規定するセメントモルタル板の鋭角な角をサンダーで落とした後、表面、裏面及び両サイドを、サンドペパー#150でサンディング処理し、製造例で得た素地調整材、プライマー剤、上塗り材を、各々12時間乾燥の時間を取った後順次塗布し、セメントモルタル板を完全被覆した接着力及び、防食性試験用の試験体とした。
【0048】
詳しくは、素地調整材は左官鏝を用い1.2kg/mを均一塗布し12時間乾燥させ、指触で充分乾燥(硬化)していることを確認した。次いでフェルトロールでプライマー材を0.15kg/m塗布し、12時間乾燥させ乾燥状態を確認し、上塗り材を、プライマー同様の刷毛を用い0.24kg(145μ厚)/1回塗りで、乾燥を確認し3回塗布し、430μ被覆膜厚仕上げし7日間室温養生し、ライニング仕上げし物性測定用の試験体を得た。
本試験体を下記試験し供し、結果を表3[表3]に示した。
▲1▼接着力試験
建研式引張り試験機(オックスジャッキ(株)製)を用い、平面引張り強度を測定を行い N/mmで表示した。
▲2▼防食性
▲2▼―▲1▼室温で、10%硫酸溶液に30日間浸漬し、被覆膜の膨れ、皺、軟化、溶出、白化等の観察を行ない下記のごとく表示した。
○ …各項目とも異常なし
△ …項目により異常あり
× …全項目とも異常確認
▲2▼―▲2▼室温で、10%硫酸溶液に120日間浸漬し、EPMA(島津製作所(株)製、EPMA1610、電子線マイクロアナライザー)を用い、硫黄の被覆膜への浸透深さを測定し、硫黄浸透深さ(μ)で表示した。(数値小は防食性良好を示す)
【0049】
【表3】
Figure 2004136525
【0050】
【発明の効果】
本発明のエポキシライニング材は、素地調整材、プライマー剤及び上塗り材共塗布作業性に優れ、且防食性に優れることから、水処理施設、農業用集落排水施設、下水道処理施設等のコンクリート構造物の保護のために塗布する、耐酸性の要求される防食ライニング施工分野において利用価値は極めて高い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anticorrosion lining material composition required for acid resistance, which is applied for protecting concrete structures such as water treatment facilities, agricultural settlement drainage facilities, and sewerage treatment facilities.
[0002]
[Prior art]
Conventionally, epoxy resins, vinyl ester resins, non-styrene vinyl ester resins, urethane resins, silicone resins, and the like have been used as resins for anticorrosion lining materials. These resins have a special usability, and among them, epoxy resins have been most commonly used as general-purpose resins. Although the concrete structure is new, the concrete surface is rough, and in the rehabilitation of water treatment facilities, agricultural settlement drainage facilities, sewage treatment facilities, etc., the deteriorated concrete surface layer is shaved with sanders and the surface is newly mortared. After finishing and performing rough surface coating or uneven surface adjustment treatment, it was common to apply a corrosion-resistant lining coating for surface finishing. As the anticorrosion lining material for this concrete structure, as described in JP-A-63-25282, an epoxy resin and a modified aliphatic polyamine-based curing agent compound are applied to the concrete surface before hardening, drying and densification. Proposal of a base treatment for applying and infiltrating a resin into a concrete layer to form a resin mortar layer or a resin concrete layer and a resin layer on a concrete surface layer, as described in JP-A-7-187860, two emulsifiable liquids A cold-curable epoxy resin mixture selected from reactive epoxy resins or epoxy resins that can react in the presence of alkaline water, or a fine aggregate thereof, or a mixture of cement, fine aggregate, and water. Proposal of a ground treatment for strengthening a concrete surface to be applied with a thickness of, as described in JP-A-7-171492, Proposal of forming a coating film by a step of applying a base material composed of a epoxy resin and a modified polyamidoamine-based curing agent, and a step of applying an overcoating material composed of an epoxy resin and a polythiol-modified aliphatic polyamine-based curing agent; As described in JP-A-263467, a proposal of an anticorrosive coating material comprising a liquid epoxy resin, a curing agent, ceramic powder, a fibrous clay mineral and short carbon fibers, water-dispersible as described in JP-A-2000-119592 Of acid-resistant paint for use in anticorrosion coating of cementitious structures using a novel epoxy resin, a water-curable alumina and a water blend, as described in JP-A-2001-2986, one epoxy group per molecule. Organic solvent-based or solvent-free paint containing 100 or more epoxy resins, and an amine curing agent as a resin component. Proposal etc. of the coating composition have been made containing water 30 parts by weight per volume unit.
[0003]
[Patent Document 1]
JP-A-63-25282
[Patent Document 2]
JP-A-7-187860
[Patent Document 3]
JP-A-7-171492
[Patent Document 4]
JP-A-9-263467
[Patent Document 5]
JP 2000-119592 A
[Patent Document 6]
JP 2001-002986 A
[0004]
All of these are related to the base adjustment material and / or the topcoat material. For example, in the case of the anticorrosion coating method as in the case of agricultural settlement drainage equipment, first, the surface of the concrete base is sanded or the like to smooth the latencies and the rough surface. As a guideline, it is a three-layer structure with at least different compositions, which is implemented, coated with a base adjustment material (base adjustment material), smoothed, primed, and finished with an overcoating material (including undercoating and intermediate coating). Has been raised.
[0005]
This method does not satisfy the guidelines with the use of the base adjustment material and the overcoating material alone or in combination, and the finished state of the coating film, the adhesive strength, the anticorrosion property, that is, the acid resistance is not satisfied, and an economic problem has occurred. In addition, according to the guidelines for concrete anticorrosion of the Japan Sewerage Corporation, the methods are classified into Type A to Type D according to the anticorrosion environmental conditions. The necessity of the primer in these methods is based on the fact that the base adjustment material is wet-curing type or base type. When the conditioning material is sufficiently dry without latency, no primer is required. That is, if the anticorrosion property can be satisfied even in the overcoating of the base material and the topcoat material, the primer is not required, but it is actually dangerous only by finger touch or visual confirmation, which is extremely dangerous.
[0006]
The anticorrosion property incorporates in a new guideline the depth of penetration of sulfur into the lining material coating film by sulfuric acid and sulfurous acid generated from sewage. For example, for the type C, the sulfur penetration depth with respect to the designed coating film thickness was measured using an EPMA (electroprobe microanalyzer). In this case, the coating film thickness was set to 100 μm from the coating film surface and 5% or less of the coating film thickness, and the guidelines for anticorrosion of agricultural settlement drainage were compared to the visual inspection after the acid resistance test of the lining material coating film. However, it has become a guideline for strengthening the corrosion protection (acid resistance) standards of topcoat materials.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an anticorrosive lining material which is required to have acid resistance, which is applied for protection of concrete structures such as water treatment facilities, agricultural settlement drainage facilities, sewage treatment facilities, etc. Another object of the present invention is to provide a base material, a primer material and a topcoat material.
[0008]
[Means for Solving the Problems]
Under these circumstances, the present inventors have conducted intensive studies with a view to primer agents in order to satisfy the agricultural settlement drainage equipment and the concrete corrosion protection guidelines of the Japan Sewerage Corporation, and as a result, Low-viscosity concrete by blending a reactive diluent with one epoxy group and a silane coupling agent with an epoxy resin as the main component, with an amine-based hardener having resin and self-emulsifying properties, and aggregate. It has been found that the adhesiveness is excellent and the anticorrosion is also excellent.
[0009]
The amine-based curing agent having self-emulsifiability has been found to improve the emulsifiability of the water formulation and the stability such as separation during storage by adding a surfactant. Aggregate is a mixture of cement and silica sand mixed with fumed silica and fibrous thickener, which has long-term storage stability as a premix, epoxy resin and amine compounded as described above during construction. It has been found that the viscosity, the far modification and the iron elongation of the system hardener composition are excellent.
[0010]
The epoxy resin of the primer agent is a bisphenol A type epoxy resin, and a solid type is used in combination with a liquid epoxy resin at an epoxy equivalent (g / eq (hereinafter abbreviated)) at an ordinary temperature of 170 to 250 and a solid type at an ordinary temperature of an epoxy equivalent of 600 or more. By mixing a reactive diluent having two epoxy groups with titanium dioxide and barium sulfate as fillers, a primer layer having low viscosity, excellent permeability and strengthening the base material adjusting layer, and having concealing properties Was obtained. It has also been found that the use of the amine-based curing agent emulsion used in the base conditioner as the amine-based curing agent ensures the emulsifiability of the water formulation and the stability such as separation during storage.
[0011]
The epoxy resin of the overcoat material is a combination of a bisphenol A type epoxy resin and a bisphenol F type epoxy resin, and a non-reactive aromatic diluent is used in combination with an aromatic reactive diluent having one glycidyl group. It has been found that kneading a lamellar change agent swollen with an organic solvent is excellent in coating workability and prevention of dripping. More specifically, it has been found that the viscosity of the epoxy resin compounded as described above is effective in the range of 500 to 1,200 mPa · s, and in the range of 5 to 8 (hereinafter, referred to as TI value). By combining this with an amine-based curing agent, it has been found that a coating film having excellent adhesion and corrosion resistance can be obtained. By coating these base material, primer agent, and topcoat material successively when the coating film is dried, it is found that the epoxylining material has excellent adhesion to concrete and high anticorrosion properties, The present invention has been completed.
[0012]
That is, the present invention has the following configurations.
[1] (A) The base conditioner contains an amine-based curing agent and an aggregate having self-emulsifying properties with an epoxy resin, and (B) the primer agent has an amine-based curing agent and a self-emulsifying property with an epoxy resin. And (C) an epoxy lining material composition comprising these three layers, wherein the overcoating material has a low viscosity and a high degree of modification including an epoxy resin and an amine-based curing agent, a filler, a diluent, and a layer-forming modifier. object.
[2] (A) The epoxy lining material composition according to [1], wherein the epoxy resin of the base conditioner contains a reactive diluent having one epoxy group and a silane coupling agent.
[3] The epoxy lining material composition according to [1], wherein the aggregate of the base material (A) is a premix of cement, silica sand, and a thickener.
[4] The epoxy lining material composition according to [1], wherein the epoxy resin (B) contains a reactive diluent having one epoxy group and a filler.
[5] The epoxy lining material composition according to [1], wherein the filler of the primer agent contains titanium dioxide and barium sulfate.
[6] The epoxy lining material composition according to [1], wherein the epoxy resin of the overcoat material is a mixture of a bisphenol A epoxy resin and a bisphenol F epoxy resin.
[7] The epoxy lining material according to [1], which further comprises (C) a topcoat material, and further contains an aromatic reactive diluent having one epoxy group and a non-reactive aromatic diluent. Composition.
[8] The epoxy lining material composition according to [1], wherein the (C) overcoating material further contains 1 to 10% by weight of a lamellar change agent.
[9] The epoxy lining material composition according to [1], wherein the epoxy resin (C) has a viscosity of 5,000 to 12,000 mPa · s and a much modified property (TI value) of 5 to 8.
[10] (1) The base adjustment material, the primer agent (B), and the topcoat material (C) are each used by stirring and mixing an epoxy resin and a curing agent immediately before the coating operation. The epoxy lining material composition as described in the above.
[11] (A) The base adjustment material, the primer agent of (B) and the top coat material of (C) are characterized by being applied over the dry application surface in the order of (A), (B) and (C). The epoxy lining material composition according to [1].
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
As the epoxy resin (A) of the base conditioning material of the present invention, an epoxy resin having an average of 1.5 or more epoxy groups per molecule and being a liquid at room temperature, a bisphenol compound such as bisphenol A or bisphenol F; Those derived from polyphenol compounds such as resorcinol and hydroquinone, polyphenol compounds such as phenol novolak and cresol novolac, and epichlorohydrin: butanediol, hexanediol, neopentyl glycol, trimethylolpropane, glycerin, pentaerythritol, diethylene glycol, polyethylene glycol Derived from polyhydric alcohols such as propylene glycol, dipropylene glycol and polypropylene glycol and epichlorohydrin: 3,4-epoxycyclohexylmethyl (3,4-epoxy) Cyclohexane) carboxylate, alicyclic epoxy compounds such as 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy-6-methylcyclohexane) carboxylate, phthalic acid, terephthalic acid, tetrahydrophthalic acid, hexa Polycarboxylic acids such as hydrophthalic acid and trimellitic acid and those derived from hydroxycarboxylic acids such as oxybenzoic acid and oxynaphthoic acid and epichlorohydrin: polyamine compounds such as aniline, phenylenediamine, diaminodiphenylmethane and the like; And those derived from hydroxyamino compounds such as aminophenol, aminocresol and epichlorohydrin. Examples of the epoxy resin include a compound having a polyurethane skeleton and a polybutadiene skeleton and a plurality of epoxy groups bonded to a part of a molecule, or an epoxy compound having a hydantoin ring. These epoxy resins may be used alone or in combination of two or more. Among these, preferred epoxy resins are bisphenol A type epoxy resins having an epoxy equivalent of 170 to 250 which are liquid at normal temperature, from the viewpoint of viscosity, economy and corrosion resistance.
[0014]
Examples of the reactive diluent having one epoxy group to be mixed with the epoxy resin include aliphatic and aromatic types having an epoxy equivalent of 170 to 250. Two types are preferably used in combination from the viewpoint of lowering the viscosity of the epoxy resin composition and controlling the curing speed. The amount of the reactive diluent is not particularly limited, but is preferably about 10 to 40% by weight based on 100 parts by weight of the epoxy resin. The mixing ratio of the aliphatic type and the aromatic type is not particularly limited, but the aromatic type is preferably used in a range of 1: 4 to 1: 1. In this case, when the aliphatic type is frequently used, the viscosity is effectively reduced. On the contrary, when the aromatic type is frequently used, the viscosity is increased and the curing speed is increased. If necessary, another diluent may be used in a range that does not affect the physical properties.
[0015]
Examples of the silane coupling agent include amino, ureide, vinyl, methacryl, epoxy, mercapto, isocyanate, polymer, and cationic silane coupling agents depending on the type of the functional group. Above all, epoxy-based silane coupling agents are preferred from the viewpoint of storage stability in view of being blended with the epoxy resin, and are effective in improving adhesion to inorganic substances. Although not particularly limited, it is preferable to use about 0.1 to 2% by weight based on 100 parts by weight of the epoxy resin. A reactive diluent, a silane coupling agent, and optionally other diluents are sequentially mixed with the epoxy resin by stirring to obtain an epoxy resin compound used in the present invention.
[0016]
Examples of amine-based curing agents having self-emulsifying properties include modified aliphatic polyamines, modified alicyclic polyamines, modified polyamidoamines, modified aromatic polyamines, ketimines, polymercaptans, and tertiary amines. Among them, from among emulsifiability when blended with water, separation stability of the emulsified product, curing speed when blended with the epoxy resin formulation, hardness of the cured coating film, cloudiness of the coating film, anticorrosion property, etc., amine value is 150 to 500. The modified aliphatic polyamine-based curing agent is preferred. Incidentally, it is better to use different amine values depending on the season. Further, in order to further enhance the stability of the water composition during storage and the like, anionic or nonionic surfactants are used alone or in combination, and 10 to 30 parts by weight as an active ingredient with respect to 100 parts by weight of the amine curing agent. It is good to mix it by weight%. If the content is less than 10% by weight, the emulsifiability is inferior, leading to a decrease in storage stability. When the content is 30% by weight or more, there is a danger of a fogging phenomenon and a decrease in strength of the coating film. The amine-based curing agent is used after emulsification with water, and the concentration of the emulsion of the amine-based curing agent is preferably 20 to 25% by weight.
[0017]
By sequentially stirring and mixing a surfactant and water with an amine-based curing agent, an amine-based curing agent emulsion used in the present invention can be obtained.
[0018]
The cement in the aggregate may be plain Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, moderately heated Portland cement, plain cement such as white cement, or blast furnace cement, colloid cement, silica cement, fly ash cement, etc. Mixed cements can be mentioned, and these may be used alone or in combination of two or more. Although not particularly limited, ordinary Portland cement is particularly preferred for economic reasons. Generally, it is said that ordinary Portland cement contains a large amount of calcium carbonate and thus has poor acid resistance. However, the direct effect is extremely small because of a construction method in which a primer agent and an overcoat material are applied repeatedly. The mixing ratio of cement to 100 parts by weight of silica sand described below is preferably about 20 to 50% by weight.
[0019]
The silica sand may be fine silica sand having an average particle diameter of 100 μm to 1380 μm (No. 8 to No. 3 silica sand), and is not particularly limited, but is a so-called powdery premix comprising cement, aggregate and a dispersant. The average particle size is preferably 100 μm to 320 μm (No. 8 silica sand to No. 6 silica sand) from the viewpoint of uniform dispersibility of the epoxy resin and the uniform dispersibility when mixed with the epoxy resin and the amine-based curing agent.
[0020]
Fumed silica (silica fume), a thickener, is a by-product of the production of various silica alloys, 2 ) Ultra-fine particles having a content of 80 to 95% and an average particle diameter of about 0.1 μm. When used as a thickener, high viscosity can be imparted with a small amount of compounding, and at the same time, the density of the base conditioner is increased. , High strength and anticorrosion properties are obtained. On the other hand, the fibrous thickener includes fibrous clay minerals having a fiber length of 5 to 50 μm and a fiber diameter of 0.1 to 0.5 μ, short carbon fibers or glass fibers having a fiber diameter of 1 to 15 mm and a fiber diameter of 5 to 20 μm. . These medium fibrous clay minerals are preferred. This fibrous thickener is indispensable for imparting much modification. The amounts of the fumed silica and the fibrous thickener are not particularly limited, but about 0.5 to 5% by weight based on 100 parts by weight of the silica sand is applied by the coating of the epoxy resin composition and the amine-based curing agent composition. It is preferable from the viewpoint of viscosity at work, TI value, and iron elongation. Further, the mixing ratio of the fumed silica and the fibrous thickener is preferably in the range of about 3: 1 to 1: 3 as described above. The aggregate of the present invention can be obtained by sequentially mixing the cement and the thickener with the aggregate and stirring and mixing.
[0021]
The base adjuster may be used by stirring and mixing the epoxy resin composition, the amine-based curing agent emulsion, and the aggregate premix prepared as described above immediately before construction. Incidentally, the mixing ratio of these three types is not particularly limited, but is a ratio of about 10% by weight of the epoxy resin compound and about 40% by weight of the amine-based curing agent emulsion based on 100 parts by weight of the aggregate. .
[0022]
The primer contains an epoxy resin, a reactive diluent having one epoxy group, and a filler. The epoxy resin is a bisphenol A type epoxy resin, and more specifically, a combination of a liquid epoxy resin having an epoxy equivalent of 170 to 250 at room temperature and a solid epoxy resin having an epoxy equivalent of 600 or more at room temperature. The liquid epoxy resin may be one used as a base conditioner, and as the solid epoxy resin at room temperature, a xylene solution type having an epoxy equivalent of 600 to 720 and a solid content of 70 to 75% is exemplified. The mixing ratio of the liquid epoxy resin and the solid epoxy resin in the xylene solution type is not particularly limited, but is, for example, about 10 to 30% by weight as a 70% xylene solution type with respect to 100 parts by weight of the liquid epoxy resin. . When the amount is less than 10% by weight, the anticorrosion property is lacking, and when the amount is more than 30% by weight, the viscosity is increased and the permeability of the primer material as a primer material into the substrate adjustment material layer is reduced, and the base material is not sufficiently strengthened.
[0023]
Reactive diluents having one epoxy group include aliphatic and aromatic types of epoxy equivalents of 300-320. Of these, aliphatic ones are preferred from the viewpoint of low irritation and leveling properties. If necessary, another diluent may be used in a range that does not affect the physical properties.
[0024]
The filler consists of titanium dioxide and barium sulfate. Titanium dioxide is preferably a rutile type from the viewpoint of concealing properties and anti-chalking of the primer coating layer. Preferably, barium sulfate is precipitated barium sulfate used for imparting corrosion protection. The mixing ratio of the two is not particularly limited, but is preferably used in the range of 1: 3 to 3: 1. The mixing ratio of the two compounds to 100 parts by weight of the epoxy resin is not limited, but is about 50 to 100 parts by weight.
[0025]
The epoxy resin composition of the present primer is obtained by sequentially stirring and mixing a reactive diluent and a filler with the epoxy resin as described above. If necessary, other diluents, defoamers, coloring agents, and the like may be used together as long as the physical properties of the primer are not affected.
[0026]
On the other hand, examples of the amine-based curing agent include a modified aliphatic polyamine-based curing agent having an amine value of 150 to 500, which is used as a base material adjusting agent. To 100 parts by weight of this amine-based curing agent, 2 to 3% by weight of the same surfactant as the base adjustment material is added, and 100% by weight of water is further added, followed by stirring and emulsification to obtain an amine curing agent for a primer. .
[0027]
This primer is preferably used by stirring and mixing the epoxy resin compound and the amine-based curing agent emulsion immediately before application. Incidentally, the mixing ratio of these two types is not particularly limited, but the mixing ratio of the epoxy resin compound and the amine-based curing agent emulsion is 1: 1.
[0028]
The epoxy resin of the overcoating material is a combination of a bisphenol A type epoxy resin which is liquid at room temperature and a bisphenol F type epoxy resin, which are mentioned at the base adjustment material. Examples of the bisphenol A type epoxy resin include those having an epoxy equivalent of 170 to 250, and examples of the bisphenol F type epoxy resin include an epoxy equivalent of 160 to 190. Although bisphenol A type epoxy resin is excellent in terms of anticorrosion, it is essential to mix bisphenol F type epoxy resin to lower the viscosity. The mixing ratio of the two is not particularly limited, but is 1: 3 to 3: 1, preferably 1: 1.
[0029]
The epoxy resin of the overcoat material contains a reactive diluent having one epoxy group and a non-reactive aromatic diluent. The former includes an aromatic type epoxy having an equivalent weight of 170 to 250 having 10 to 13 carbon atoms, which is used in the base material adjusting material. Among them, epoxy resins having 10 carbon atoms and an epoxy equivalent of 180 are preferable in terms of reducing the viscosity. The latter is a non-reactive aromatic diluent having a hydroxyl group in the molecule. Having a hydroxyl group is suitable for increasing the curing speed. The mixing ratio of the two is not particularly limited, but is preferably 10 to 30 parts by weight of the non-reactive diluent with respect to 100 parts by weight of the reactive diluent. The compounding ratio of this diluent is 20 to 50 parts by weight as the compounding diluent with respect to 100 parts by weight of the two types of epoxy resin. The epoxy resin of the overcoating material contains a filler. This filler is a combination of titanium oxide and barium sulfate as used for the primer. The mixing ratio of the two is not particularly limited, but is preferably used in the range of 1: 3 to 3: 1. The mixing ratio of the two compounds to 100 parts by weight of the epoxy resin is not limited, but is about 130 to 170 parts by weight.
[0030]
The overcoating material further contains a layer change agent. Examples of the layer change agent include those in which flaky crystal disks such as organic bentonite, clay, and mica powder are laminated. Among them, organic bentonite is preferable because a large amount of the effect can be obtained in a small amount. This layered harsh modifier is preferably used in a swollen state with an organic solvent such as propylene carbonate or toluene. By mixing 1 to 10% by weight as a solid content with respect to 100 parts by weight of the two kinds of epoxy resins, a high TI value can be obtained. Things are obtained.
[0031]
The epoxy resin composition adjusted as described above has a viscosity of 500 to 1,200 mPa · s and a TI value of 5 to 8. Above all, it is preferable to have a low viscosity and a high degree of modification from the viewpoint of workability in application and sagging. When the viscosity is 500 mPa · s and the TI value is 5 or less, the compound is further reduced by the addition of the amine-based curing agent. Conversely, when the viscosity is 1,200 mPa · s and the TI value is 8 or more, it is difficult to apply even if an amine-based curing agent is blended. The amine-based curing agent for the top coating material is selected from the various amine-based curing agents listed in the base adjustment material, and has an amine value of 300 from the curing speed when compounded with the epoxy resin, the hardness of the cured coating film, the haze of the coating film, and the anticorrosion property. ~ 380 modified alicyclic polyamine-based curing agents are preferred. Incidentally, different amine values may be used depending on the season, and a diluent such as benzyl alcohol may be used for adjusting the viscosity.
[0032]
This overcoating material is preferably used by stirring and mixing the epoxy resin composition and the amine-based curing agent adjusted as described above immediately before application. Incidentally, the mixing ratio of these two types is preferably 4: 1.
[0033]
The base material, primer agent and overcoating material thus obtained are used by weighing a predetermined amount of an epoxy resin compound and an amine-based curing agent and mixing with stirring immediately before each coating operation. The coating method of each layer is as follows. First, a base material is applied using a trowel, left overnight, and the cured state of the coating film is checked by touch, and then a primer is applied using a felt roll. After confirming the cured state in the same manner as described above, an overcoat material is applied using a felt roll. The overcoating material is preferably applied in a manner similar to that described above in accordance with the type of the anticorrosion environmental condition.
[0034]
As described above, the epoxy lining material composed of the base material, primer, and topcoat material is used for any of the anticorrosion coating method of the agricultural settlement drainage equipment, the anticorrosion environmental condition by the epoxy resin coating method according to the concrete anticorrosion guidelines of the Japan Sewerage Corporation. This epoxy lining material has adhesive strength and anticorrosion properties that are also compatible with the construction method.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Production Examples and Examples, but the present invention is not limited thereto.
[Production example]
[Production Example 1-1]
Base adjustment material: Epoxy R-140C (manufactured by Mitsui Chemicals, Inc., bisphenol type, epoxy equivalent 195 to 215, total chlorine content 1.0 to 2.0%, viscosity 15,000 to 25,000 mPa) as an epoxy resin S) To 100 parts by weight, 7 parts by weight of adecaglycirol ED-518 (manufactured by Asahi Denka Kogyo KK, aliphatic epoxy-based reactive diluent, epoxy equivalent 220, viscosity 5 mPa · s), 20 parts by weight of -509 (Asahi Denka Kogyo Co., Ltd., aromatic epoxy-based reactive diluent, epoxy equivalent 210, viscosity 20 mPa · s) (Shin-Etsu Silicone KBM403, Shin-Etsu Chemical Co., Ltd.) 0.5 parts by weight of an epoxy-based silane coupling agent) and 5 parts by weight of Glycosorb DM (manufactured by Mitsui Chemicals, Inc., methyl carbitol) are stirred and mixed to prepare a base. To obtain an epoxy resin formulation.
Adeka Hardener EH-4227 (Asahi Denka Kogyo Co., Ltd., modified aliphatic polyamine type, amine value 190, viscosity 5,000 mPa · s, solid content 70%) as an amine-based curing agent 100 parts by weight, Newcol 714 ( 18 parts by weight of polyoxyethylene polycyclic phenyl ether nonionic surfactant (manufactured by Nippon Emulsifier Co., Ltd.) and 380 parts by weight of water were stirred and emulsified to obtain an amine-based curing agent emulsion.
As an aggregate, 100 parts by weight of No. 6 silica sand, 30 parts by weight of Portland cement, 1.5 parts by weight of fumed silica, and 1.5 parts by weight of sepiolite as a fibrous clay mineral were uniformly stirred to prepare an aggregate premix. Obtained.
10 parts by weight of an epoxy resin compound and 40 parts by weight of an amine-based curing agent emulsion were stirred and mixed with 100 parts by weight of the present aggregate premix to obtain a base conditioner.
[0036]
[Production Example 1-2]
Substrate adjusting material: Adjusted in the same manner as in Production Example 1-1, except that in Production Example 1-1, adecaglycylol ED-518 was changed to 20 parts by weight, and adecaglycylol ED-509 was changed to 7 parts by weight.
[0037]
[Production Example 1-3]
Substrate adjusting material: Adjusted in the same manner as in Production Example 1-1, except that in Example 1-1, 3 parts by weight of fumed silica as an aggregate and 1 part by weight of sepiolite were used.
[0038]
[Production Example 1-4]
Substrate adjusting material: Adjusted in the same manner as in Production Example 1-1, except that Adekaglycylol ED-518 was used in 27 parts by weight in Production Example 1-1 and Adecaglycillol ED-509 was omitted.
[0039]
[Production Example 1-5]
Substrate adjusting material: Adjusted in the same manner as in Production Example 1-1, except that Adekaglycylol ED-509 was used in 27 parts by weight except for Adekaglycillol ED-518 in Production Example 1-1.
[0040]
[Production Example 2-1]
Primer: Epoxy R-140C, 100 parts by weight, Epoxy R-301X70 (manufactured by Mitsui Chemicals, Inc., bisphenol type, epoxy equivalent: 640-720, 70% xylene solution, viscosity: Gardner) X to Z) 10 parts by weight of Adekaglycylol ED-502 (manufactured by Asahi Denka Kogyo KK, aliphatic epoxy-based reactive diluent, epoxy equivalent 320, viscosity 10 mPa · s) to 15 parts by weight, TRC -10 (made by Sakai Chemical Co., Ltd., titanium dioxide), 40 parts by weight, sedimentable barium sulfate # 100 (made by Sakai Chemical Co., Ltd., barium sulfate), 30 parts by weight, ET8N109 (made by Dainichi Seika Co., Ltd.), carbon black 1.0 part by weight of epoxy resin paste, BYK-057 (manufactured by BYK Japan KK, solvent of butadiene copolymer) Fusa, propylene glycol monomethyl ether acetate solution) 5 parts by weight, blended with xylene 1 part by weight, after thoroughly stirring and mixing with a disper to obtain a kneaded primer for epoxy resin mixture in three.
Adeka Hardener EH-4227 as an amine-based curing agent, 1004.2 parts by weight, 714.2 parts by weight of Newcol, 100 parts by weight of water, BYK-020 (manufactured by BYK Japan KK, ethylene glycol monobutyl ether of organically modified polysiloxane) , 2-ethylhexanol, and mineral spirits solution) were stirred and emulsified to obtain an amine-based curing agent emulsion.
A primer was prepared by blending 100 parts by weight of the amine-based curing agent emulsion with 100 parts by weight of the epoxy resin composition.
[0041]
[Production Example 2-2]
Primer: The preparation was carried out in the same manner as in Production Example 2-1 except that the amount of precipitated barium sulfate # 100 in the epoxy resin formulation was changed and the amount of TRC-10 was changed to 70 parts by weight.
[0042]
[Production Example 3-1]
Top coat material: Epoxy R-140C, 100 parts by weight, Epoxy R-110 (manufactured by Mitsui Chemicals, Inc., bisphenol F type epoxy resin, epoxy equivalent: 165 to 180, total chlorine-containing) used as a base adjuster material as an epoxy resin 0.13%, viscosity 3,000 to 4,500 mPa · s) 105 parts by weight of ADEKA glycyrrole ED-529 (manufactured by Asahi Denka Kogyo KK, aromatic epoxy-based reactive diluent, epoxy equivalent 180, viscosity 20 mPa · s), 50 parts by weight, Adekaglycirol ED-512 (manufactured by Asahi Denka Kogyo Co., Ltd., aromatic non-reactive diluent, viscosity 330 mPa · s), 10 parts by weight, TRC-10, 90 parts by weight , Sedimentable barium sulfate # 100, 70 parts by weight, ET8N109, paste) 2.0 parts by weight, BYK-057, 2.5 parts by weight, separately Benton # 2 (Elementary infantis Japan Ltd., organic bentonite, average particle size 10μ or less, density of 1.8 g / cm 3 ) 40 parts by weight of xylene and 10 parts by weight of propylene carbonate were mixed with 10 parts by weight, and a slurry of well-stabilizing agent, which had been sufficiently stirred and mixed, was sufficiently mixed by stirring with a disper. A resin formulation was obtained. The viscosity was 10,000 mPa · s, and the TI value was 6.
As an amine-based curing agent, 100 parts by weight of Adeka Hardener EH-406A (manufactured by Asahi Denka Kogyo Co., Ltd., modified alicyclic polyamine type, amine value 350, viscosity 580 mPa · s) is mixed with 10 parts by weight of benzyl alcohol by stirring. Thus, an amine-based curing agent was obtained.
This was blended in an amount of 25 parts by weight with respect to 100 parts by weight of the epoxy resin composition to obtain an overcoat material. Incidentally, the viscosity (BH type rotational viscometer, No. 4 rotor × 2 rpm) was 5,000 mPa · s, and the TI value (BH type rotational viscometer, No. 7 rotor × 2 rpm / 20 rpm viscosity ratio) was 2.7.
[0043]
[Comparative Production Example 3-2]
Overcoat material: Adjusted in the same manner as in Production Example 3-1 except that Benton # 27 was changed to 0.5 part by weight in Production Example 3-1.
[0044]
[Example]
[Examples 1 to 4 and Comparative Examples 1 to 5]
The coating workability (viscosity, storage stability, iron elongation, roll coating, dripping, curability) of each of the base material, primer, and top coating material obtained in the production examples was confirmed, and the results are shown below. And are shown in Table 1 [Table 1].
[0045]
Figure 2004136525
[0046]
[Table 1]
Figure 2004136525
[0047]
[Examples 5 to 10 and Comparative Examples 6 to 14]
[Table 2]
Figure 2004136525
After sharpening a sharp corner of a cement mortar board specified by JIS K5410 with a sander, the front surface, the back surface and both sides are sanded with a sand pepper # 150 to obtain a base preparation material, a primer agent, and a top coating material obtained in a production example. Was applied sequentially after a drying time of 12 hours, to obtain a test specimen for an adhesive strength test and an anticorrosion test which completely covered a cement mortar plate.
[0048]
Specifically, the base material is 1.2 kg / m using a plaster iron. 2 Was uniformly applied and dried for 12 hours, and it was confirmed that it was sufficiently dried (cured) by touch with a finger. Next, the primer material is applied with a felt roll at 0.15 kg / m. 2 Apply, dry for 12 hours to confirm the dry state, apply the top coat material with 0.24 kg (145 μ thickness) / one coat using a brush similar to the primer, confirm drying, apply 3 times, and apply 430 μ coat thickness Finishing, curing at room temperature for 7 days, lining finishing, and a specimen for measuring physical properties were obtained.
The test specimen was subjected to the following test, and the results are shown in Table 3 [Table 3].
(1) Adhesion test
Using a Kenken-type tensile tester (manufactured by OxJack Co., Ltd.), the plane tensile strength was measured, and N / mm 2 Displayed with.
(2) Corrosion protection
(2)-(1) The coating film was immersed in a 10% sulfuric acid solution at room temperature for 30 days, and swelling, wrinkling, softening, elution, whitening, etc. of the coating film were observed and indicated as follows.
○… No abnormality in each item
△: Abnormal depending on the item
×: Abnormal confirmation for all items
(2)-(2) Immerse in a 10% sulfuric acid solution for 120 days at room temperature, and use EPMA (EPMA1610, manufactured by Shimadzu Corporation, electron beam microanalyzer) to determine the penetration depth of sulfur into the coating film. Measured and expressed as sulfur penetration depth (μ). (Small numerical values indicate good anticorrosion properties)
[0049]
[Table 3]
Figure 2004136525
[0050]
【The invention's effect】
The epoxy lining material of the present invention has excellent workability for co-application of a base material, a primer agent and a topcoat material, and is also excellent in anticorrosion properties. Therefore, concrete structures such as water treatment facilities, agricultural settlement drainage facilities, sewage treatment facilities, etc. The utility value is extremely high in the field of anticorrosion lining, which is required for acid resistance, which is applied for protection of steel.

Claims (11)

(A)素地調整材がエポキシ樹脂と自己乳化性を有するアミン系硬化剤及び骨材を含有し、(B)プライマー剤がエポキシ樹脂と自己乳化性を有するアミン系硬化剤及び充填剤を含有し、(C)上塗り材がエポキシ樹脂とアミン系硬化剤、充填剤、希釈剤、及び層状遥変剤を含有する、これら三層からなるエポキシライニング材組成物。(A) The base adjustment material contains an epoxy resin and an amine-based curing agent having self-emulsifying properties and an aggregate, and (B) the primer agent contains an epoxy resin and an amine-based curing agent having self-emulsifying properties and a filler. And (C) an epoxy lining material composition comprising these three layers, wherein the overcoat material contains an epoxy resin and an amine-based curing agent, a filler, a diluent, and a layer-forming agent. (A)素地調整材が、さらに、1個のエポキシ基を有する反応性希釈剤とシランカップリング剤を含有することを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein (A) the base conditioner further comprises a reactive diluent having one epoxy group and a silane coupling agent. (A)素地調整材の骨材が、セメント、硅砂、増粘剤のプレミックスであることを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein the aggregate of the base material (A) is a premix of cement, silica sand, and a thickener. (B)プライマー剤が、さらに、1個のエポキシ基を有する反応性希釈剤と充填剤を含有することを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein (B) the primer further comprises a reactive diluent having one epoxy group and a filler. (B)プライマー剤の充填剤が二酸化チタンと硫酸バリウムを含有することを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein the filler of the primer (B) contains titanium dioxide and barium sulfate. (C)上塗り材のエポキシ樹脂がビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物であることを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein the epoxy resin (C) is a mixture of a bisphenol A epoxy resin and a bisphenol F epoxy resin. (C)上塗り材が、さらに、1個のエポキシ基を有する芳香族系反応性希釈剤と非反応性芳香族系希釈剤を含有することを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein (C) the topcoat material further comprises an aromatic reactive diluent having one epoxy group and a non-reactive aromatic diluent. . (C)上塗り材が、さらに、1〜10重量%の層状遥変剤を含有することを特徴とする請求項1記載のエポキシライニング材組成物。2. The epoxy lining material composition according to claim 1, wherein (C) the topcoat material further contains 1 to 10% by weight of a layer-shaping modifier. (C)上塗り材のエポキシ樹脂が、粘度5000〜12,000mPa・s、遥変性(TI値)5〜8であることを特徴とする請求項1記載のエポキシライニング材組成物。The epoxy lining material composition according to claim 1, wherein the epoxy resin (C) has a viscosity of 5,000 to 12,000 mPa · s and a much modified property (TI value) of 5 to 8. (A)の素地調整材、(B)のプライマー剤及び(C)の上塗り材は、塗布作業直前に、それぞれエポキシ樹脂と硬化剤を攪拌混合して用いることを特徴とする請求項1記載のエポキシライニング材組成物。The base material of (A), the primer material of (B), and the overcoat material of (C) are each used by stirring and mixing an epoxy resin and a curing agent immediately before the coating operation. Epoxy lining material composition. (A)の素地調整材、(B)のプライマー剤及び(C)の上塗り材は、(A)、(B)、(C)の順で、乾燥塗布面に塗り重ねることを特徴とする請求項1記載のエポキシライニング材組成物。The base adjustment material of (A), the primer agent of (B), and the overcoat material of (C) are applied over the dry application surface in the order of (A), (B), and (C). Item 4. The epoxy lining material composition according to Item 1.
JP2002302519A 2002-10-17 2002-10-17 Epoxy lining material composition Pending JP2004136525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302519A JP2004136525A (en) 2002-10-17 2002-10-17 Epoxy lining material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302519A JP2004136525A (en) 2002-10-17 2002-10-17 Epoxy lining material composition

Publications (1)

Publication Number Publication Date
JP2004136525A true JP2004136525A (en) 2004-05-13

Family

ID=32450563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302519A Pending JP2004136525A (en) 2002-10-17 2002-10-17 Epoxy lining material composition

Country Status (1)

Country Link
JP (1) JP2004136525A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169332A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Colored topcoat coating composition and colored topcoat coating film
JP2007125480A (en) * 2005-11-02 2007-05-24 Kurimoto Ltd Method for lining inside surface of pipe
KR101146905B1 (en) * 2010-02-01 2012-05-22 장금연 Construction method of the epoxide coating material which reinforces the water soluble epoxide coating material
JP2013198852A (en) * 2012-03-23 2013-10-03 Ohbayashi Corp Coating method of cement composition base
CN103980793A (en) * 2013-02-07 2014-08-13 李清 New solventless epoxy coating
KR101478946B1 (en) 2014-03-28 2015-01-05 (주)동서에코라인 The waterproof construction method for concrete structure using the membrane agent
JP2016041639A (en) * 2014-08-19 2016-03-31 日米レジン株式会社 Resin mortar
JP2016055214A (en) * 2014-09-05 2016-04-21 株式会社大林組 Coating method
JP2020180193A (en) * 2019-04-24 2020-11-05 中国塗料株式会社 Putty composition
JPWO2021095839A1 (en) * 2019-11-15 2021-05-20
WO2022190563A1 (en) * 2021-03-11 2022-09-15 関西ペイント株式会社 Coating material composition, and method for forming multilayer coating film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169332A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Colored topcoat coating composition and colored topcoat coating film
JP2007125480A (en) * 2005-11-02 2007-05-24 Kurimoto Ltd Method for lining inside surface of pipe
KR101146905B1 (en) * 2010-02-01 2012-05-22 장금연 Construction method of the epoxide coating material which reinforces the water soluble epoxide coating material
JP2013198852A (en) * 2012-03-23 2013-10-03 Ohbayashi Corp Coating method of cement composition base
CN103980793A (en) * 2013-02-07 2014-08-13 李清 New solventless epoxy coating
KR101478946B1 (en) 2014-03-28 2015-01-05 (주)동서에코라인 The waterproof construction method for concrete structure using the membrane agent
JP2016041639A (en) * 2014-08-19 2016-03-31 日米レジン株式会社 Resin mortar
JP2016055214A (en) * 2014-09-05 2016-04-21 株式会社大林組 Coating method
JP2020180193A (en) * 2019-04-24 2020-11-05 中国塗料株式会社 Putty composition
JP7382732B2 (en) 2019-04-24 2023-11-17 中国塗料株式会社 putty composition
JPWO2021095839A1 (en) * 2019-11-15 2021-05-20
WO2021095839A1 (en) * 2019-11-15 2021-05-20 三井化学株式会社 Laminate body, production method for laminate body, composition for forming antifogging film, antifogging film, and composition set for forming antifogging film
CN114667219A (en) * 2019-11-15 2022-06-24 三井化学株式会社 Laminate, method for producing laminate, composition for forming antifogging film, and composition kit for forming antifogging film
JP7315695B2 (en) 2019-11-15 2023-07-26 三井化学株式会社 LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, COMPOSITION FOR FORMING ANTI-FOGING FILM, ANTI-FOGING FILM AND COMPOSITION SET FOR FORMING ANTI-FOGING FILM
CN114667219B (en) * 2019-11-15 2024-03-15 三井化学株式会社 Laminate, method for producing laminate, composition for forming antifogging film, and composition kit for forming antifogging film
WO2022190563A1 (en) * 2021-03-11 2022-09-15 関西ペイント株式会社 Coating material composition, and method for forming multilayer coating film

Similar Documents

Publication Publication Date Title
KR100989942B1 (en) Eco-friendly aqueous epoxy resin composition and its uses
JP6153132B2 (en) Epoxy resin composition
US20070224362A1 (en) Two-part waterborne epoxy coating composition and method
US20080311305A1 (en) Waterborne epoxy coating composition and method
US20090007822A1 (en) Electrostatically-Applicable, Heat-Fusable Powder Coatings and Additives
JP6691799B2 (en) Polyurethane cement composition and its concrete floor construction method
JP2004136525A (en) Epoxy lining material composition
US7491426B1 (en) Waterproofing membrane
KR100848812B1 (en) Embossing paint composition of epoxy type without solvent and the constructing method thereof
JP2008247958A (en) Aqueous epoxy resin composition
JP4695568B2 (en) Polymer cement mortar with excellent paint workability and adhesion
JP2016186021A (en) Aqueous epoxy resin coating composition, coated body and method for producing coated body
JP7128142B2 (en) water-based coating
JP2019116585A (en) Epoxy resin composition for reinforcement and cured product of the same
WO2017181323A1 (en) Epoxy modified cement composition
JP2005187683A (en) Primer for resin coating film
JP4540154B2 (en) Composition for preparing base material for concrete structure and method for producing the same
JPH0867542A (en) Mortar composition
JP2009073879A (en) Water-based epoxy resin composition and coated floor
KR102282056B1 (en) Wet tolerant high functional ceramic composite coating material
JP2005307076A (en) Over coating composition for epoxy lining
JP2007182508A (en) Base conditioner and coating film structure
JP5210494B2 (en) Construction method
JP2014114554A (en) Epoxy resin floor coating material and coating floor
JPH08301975A (en) Epoxy resin composition