JP2019202045A - Radiographic apparatus, radiographic system, radiographic method and program - Google Patents

Radiographic apparatus, radiographic system, radiographic method and program Download PDF

Info

Publication number
JP2019202045A
JP2019202045A JP2018100537A JP2018100537A JP2019202045A JP 2019202045 A JP2019202045 A JP 2019202045A JP 2018100537 A JP2018100537 A JP 2018100537A JP 2018100537 A JP2018100537 A JP 2018100537A JP 2019202045 A JP2019202045 A JP 2019202045A
Authority
JP
Japan
Prior art keywords
light shielding
monitoring
pixel
radiation
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018100537A
Other languages
Japanese (ja)
Inventor
智史 亀井
Satoshi Kamei
智史 亀井
渡辺 実
Minoru Watanabe
実 渡辺
孝 ▲高▼▲崎▼
孝 ▲高▼▲崎▼
Takashi Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018100537A priority Critical patent/JP2019202045A/en
Priority to PCT/JP2019/019011 priority patent/WO2019225388A1/en
Publication of JP2019202045A publication Critical patent/JP2019202045A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment

Abstract

To allow a user to understand a state of a radiographic apparatus before imaging.SOLUTION: An information processing device 103 monitors a pixel value included in an output signal from an optical blocking (OB) pixel and displays information showing the result thereof.SELECTED DRAWING: Figure 1

Description

本発明は、放射線撮影装置、放射線撮影システム、放射線撮影方法、およびプログラムに関し、特に、放射線を用いて被写体の撮影を行うために用いて好適なものである。   The present invention relates to a radiation imaging apparatus, a radiation imaging system, a radiation imaging method, and a program, and is particularly suitable for imaging a subject using radiation.

X線等の放射線による医療画像診断や非破壊検査に用いる放射線撮影装置として、TFT(薄膜トランジスタ)等のスイッチと光電変換素子等の変換素子とを組み合わせた画素アレイを有するマトリクス基板を用いた放射線撮影装置が実用化されている。
光電変換素子を複数配した光電変換装置においては、光電変換装置が置かれた温度等の環境の違いによって、それぞれの画素毎に、放射線の照射を全く行わない(照射ゼロの)時の出力(即ちオフセット出力)の値に多少のばらつきが生じることがある。きれいな画質を得るために、このような画素の出力のばらつきを補正するオフセット補正を行うことが好ましい。
Radiography using a matrix substrate having a pixel array in which a switch such as a TFT (thin film transistor) and a conversion element such as a photoelectric conversion element are used as a radiographic apparatus used for medical image diagnosis or non-destructive inspection using radiation such as X-rays The device has been put into practical use.
In a photoelectric conversion device in which a plurality of photoelectric conversion elements are arranged, an output when no radiation irradiation is performed (zero irradiation) for each pixel due to a difference in environment such as temperature where the photoelectric conversion device is placed (zero irradiation) ( That is, there may be some variation in the value of the offset output. In order to obtain a clear image quality, it is preferable to perform offset correction for correcting such pixel output variations.

オフセット補正を行う第1の方法として、放射線を照射する本撮影と、放射線を照射しない撮影とを本撮影毎に行い、それらの撮影で得られた画像の相互に対応する画素の出力の差分を算出することでオフセット補正を行う方法がある。また、オフセット補正を行う第2の方法として、以下の方法がある。まず、予め本撮影前に放射線を照射しない画像を複数枚撮影し、それらの撮影で得られた画像の相互に対応する画素の出力の平均値をオフセット信号とする。このオフセット信号と本撮影で得られた画像との相互に対応する画素の出力の差分を算出することでオフセット補正を行う。動画像の撮影等の高速撮影においては、フレームレートを稼ぐため、オフセット補正を行うための画像を逐一撮影することが不要な第2の方法が望ましい。また、第1の方法に比べて第2の方法の方が、何枚もの画像でオフセット画像を作成するため、ノイズが減少する利点もある。   As a first method for performing the offset correction, a main photographing that irradiates radiation and a photographing that does not irradiate radiation are performed for each main photographing, and an output difference between pixels corresponding to each other in the images obtained by the photographing is calculated. There is a method of performing offset correction by calculating. As a second method for performing offset correction, there is the following method. First, a plurality of images not irradiated with radiation are captured in advance before actual imaging, and an average value of the outputs of pixels corresponding to each other of the images obtained by the imaging is used as an offset signal. Offset correction is performed by calculating the difference between the outputs of the pixels corresponding to the offset signal and the image obtained by the actual photographing. In high-speed shooting such as moving image shooting, the second method that does not need to take images for offset correction step by step is desirable in order to increase the frame rate. In addition, the second method has an advantage that noise is reduced because the offset image is created with a number of images as compared with the first method.

第2の方法のオフセット補正に関し、特許文献1に記載の技術がある。特許文献1には、放射線信号を取得するための光電変換素子以外に、有効画素領域にオフセット信号を取得するための遮光された光電変換素子を持つことが開示されている。特許文献1では、遮光された光電変換素子の出力をオフセット信号とし、放射線信号からオフセット信号を減算する。   Regarding the offset correction of the second method, there is a technique described in Patent Document 1. Patent Document 1 discloses that in addition to a photoelectric conversion element for acquiring a radiation signal, the effective pixel region has a light-shielded photoelectric conversion element for acquiring an offset signal. In Patent Document 1, an output of a light-shielded photoelectric conversion element is used as an offset signal, and the offset signal is subtracted from the radiation signal.

特開2007−19820号公報Japanese Patent Laid-Open No. 2007-19820

しかしながら、特許文献1では、例えば、有効画素領域に極端な温度分布等があるために、補正可能な限界を超えたアーチファクトが発生すると、オフセット補正を行っても、ユーザーが求める基準を超えるアーチファクトが放射線画像に発生する虞がある。例えば、診察者が放射線画像の被写体(人物)を誤診したり、放射線画像の違和感をユーザーに与えたりする虞がある。
本発明の目的は、撮影前にユーザーが放射線撮影装置の状態を把握することである。
However, in Patent Document 1, for example, if there is an extreme temperature distribution in the effective pixel region, and an artifact that exceeds the limit that can be corrected occurs, the artifact that exceeds the criteria required by the user will occur even if offset correction is performed. There is a possibility of occurring in a radiographic image. For example, the examiner may misdiagnose the subject (person) of the radiographic image, or may give the user a sense of discomfort in the radiographic image.
An object of the present invention is for the user to grasp the state of the radiation imaging apparatus before imaging.

本発明の放射線撮影装置は、放射線が遮蔽される複数の光遮蔽画素を有する撮影手段と、前記光遮蔽画素からの出力信号の値を監視する監視手段と、前記監視手段による監視の結果を示す情報を表示装置に表示させる表示制御手段とを有することを特徴とする。   The radiation imaging apparatus of the present invention shows an imaging unit having a plurality of light shielding pixels that shield radiation, a monitoring unit that monitors a value of an output signal from the light shielding pixel, and a result of monitoring by the monitoring unit. And display control means for displaying information on a display device.

本発明によれば、撮影前にユーザーが放射線撮影装置の状態を把握することが可能となる。   According to the present invention, the user can grasp the state of the radiation imaging apparatus before imaging.

放射線撮影システムの構成を示す図である。It is a figure which shows the structure of a radiography system. 有効画素領域を示す図である。It is a figure which shows an effective pixel area | region. 情報処理装置の構成を示す図である。It is a figure which shows the structure of information processing apparatus. 放射線撮影システムの処理の第1の例を示すフローチャートである。It is a flowchart which shows the 1st example of a process of a radiography system. 画素値の分布の一例を示す図である。It is a figure which shows an example of distribution of a pixel value. 画素値の分布の一例を示す図である。It is a figure which shows an example of distribution of a pixel value. 放射線撮影システムの処理の第2の例を示すフローチャートである。It is a flowchart which shows the 2nd example of a process of a radiography system.

以下、図面を参照しながら実施形態を詳細に説明する。尚、以下の各実施形態では、放射線撮影装置として、放射線の一種であるX線を用いて被写体のX線画像データの撮影を行うフラットパネルディスプレイ(フラットパネルディテクターとも称される)を使用したX線撮影装置を例に挙げて説明する。また、放射線撮影装置は、X線撮影装置に限らず、例えば、他の放射線(例えば、α線、β線、γ線等)を用いる放射線撮影装置も、以下の各実施形態に適用することが可能である。   Hereinafter, embodiments will be described in detail with reference to the drawings. In each of the following embodiments, as a radiation imaging apparatus, an X using a flat panel display (also referred to as a flat panel detector) that captures X-ray image data of a subject using an X-ray that is a kind of radiation. A line imaging apparatus will be described as an example. The radiographic apparatus is not limited to the X-ray apparatus, and for example, radiographic apparatuses using other radiation (for example, α rays, β rays, γ rays, etc.) can be applied to the following embodiments. Is possible.

(第1の実施形態)
先ず、第1の実施形態について説明する。
図1は、本実施形態に係わる放射線撮影システムの全体構成の一例を示す図である。本実施形態の放射線撮影装置は、例えば、人体撮影用として使用される。
(First embodiment)
First, the first embodiment will be described.
FIG. 1 is a diagram illustrating an example of the overall configuration of a radiation imaging system according to the present embodiment. The radiation imaging apparatus of this embodiment is used for human body imaging, for example.

図1において、X線照射部101は被写体PにX線を照射する。X線照射部101は、X線を発生するX線発生部(管球)と、X線発生部において発生したX線のビーム広がり角を規定するコリメータとを有する。放射線検出センサ102は、FPD(Flat Panel. Detector)である。放射線検出センサ102は、絶縁基板と、複数の光電変換素子とを有する。複数の光電変換素子はマトリックス状に絶縁基板上に配置される。   In FIG. 1, an X-ray irradiation unit 101 irradiates a subject P with X-rays. The X-ray irradiation unit 101 includes an X-ray generation unit (tube) that generates X-rays and a collimator that defines a beam divergence angle of the X-rays generated in the X-ray generation unit. The radiation detection sensor 102 is an FPD (Flat Panel. Detector). The radiation detection sensor 102 includes an insulating substrate and a plurality of photoelectric conversion elements. The plurality of photoelectric conversion elements are arranged in a matrix on the insulating substrate.

図2は、放射線検出センサ102における有効画素領域の一例を示す図である。図2を参照しながら、光遮蔽(OB(Optical Black))画素の配置およびオフセット出力の変化の説明を行う。
図2において、有効画素領域200内にマトリックス状に複数の光電変換素子が配置される。また、複数の光電変換素子の一部の光電変換素子に対して光を遮蔽する遮蔽部材が配置される。図2では、この遮蔽部材が配置された光電変換素子に対応する画素を光遮蔽(OB)画素201として示す。尚、表記の都合上、図2では、1つの光遮蔽(OB)画素に対して符号を付しているが、有効画素領域200内に点在している各点のそれぞれが光遮蔽(OB)画素である。また、図2において、光遮蔽(OB)画素以外の画素(遮蔽部材が配置されていない光電変換素子に対応する画素)は、グレーで示す領域202に配置されているものとする。本実施形態では、例えば、放射線検出センサ102を用いることにより、有効画素領域に配置される画素として光遮蔽画素を有する撮影手段の一例が実現される。また、本実施形態では、例えば、光遮蔽(OB)画素により、有効画素領域に照射される放射線が遮蔽される画素(光遮蔽画素)の一例が実現される。
FIG. 2 is a diagram illustrating an example of an effective pixel region in the radiation detection sensor 102. With reference to FIG. 2, the arrangement of light shielding (OB (Optical Black)) pixels and the change in offset output will be described.
In FIG. 2, a plurality of photoelectric conversion elements are arranged in a matrix in the effective pixel region 200. Moreover, the shielding member which shields light with respect to the one part photoelectric conversion element of several photoelectric conversion elements is arrange | positioned. In FIG. 2, a pixel corresponding to the photoelectric conversion element in which the shielding member is arranged is shown as an optical shielding (OB) pixel 201. Note that, for convenience of description, in FIG. 2, one light shielding (OB) pixel is denoted by a symbol, but each point scattered in the effective pixel region 200 is light shielding (OB). ) Pixel. In FIG. 2, pixels other than the light shielding (OB) pixels (pixels corresponding to photoelectric conversion elements in which no shielding member is disposed) are disposed in a region 202 indicated by gray. In the present embodiment, for example, by using the radiation detection sensor 102, an example of an imaging unit having a light shielding pixel as a pixel arranged in the effective pixel region is realized. In the present embodiment, for example, an example of a pixel (light shielding pixel) in which the radiation irradiated to the effective pixel region is shielded by the light shielding (OB) pixel.

図2では、有効画素領域200が図2の左図(白抜きの矢印線の基端側)の状態から右図(白抜きの矢印線の先端側)の状態に変化し、有効画素領域200内の領域203にオフセット出力の変化が生じた場合を例示する。光遮蔽(OB)画素201はX線による残像の影響を受けない。このことに着目し、本発明者らは、後述するようにして光遮蔽(OB)画素201から出力される信号を監視することを見出した。このようにすることにより、X線による残像の影響を受けないで、放射線検出センサ102の温度変化や撮影モードの変化によって発生するオフセット出力の変化を評価することが可能になる。   In FIG. 2, the effective pixel region 200 changes from the state in the left diagram of FIG. 2 (the base end side of the white arrow line) to the state in the right diagram (the tip side of the white arrow line). An example in which a change in offset output occurs in the inner region 203 is illustrated. The light shielding (OB) pixel 201 is not affected by an afterimage caused by X-rays. Focusing on this, the present inventors have found that the signal output from the light shielding (OB) pixel 201 is monitored as described later. By doing so, it is possible to evaluate a change in offset output caused by a change in temperature of the radiation detection sensor 102 or a change in imaging mode without being affected by an afterimage caused by X-rays.

尚、図2では、光遮蔽(OB)画素201が、有効画素領域200内に均一に配置される場合を例に挙げて示す。しかしながら、光遮蔽(OB)画素201の配置は、図2に示すものに限定されない。例えば、光遮蔽(OB)画素201は、直線状に配置されていてもよいし、オフセット出力の変化が見込まれる領域に集中して配置されていてもよい。光遮蔽(OB)画素201以外の画素の数は、光遮蔽(OB)画素201の数よりも多くするのが好ましい。   In FIG. 2, an example in which the light shielding (OB) pixels 201 are uniformly arranged in the effective pixel region 200 is shown. However, the arrangement of the light shielding (OB) pixels 201 is not limited to that shown in FIG. For example, the light shielding (OB) pixels 201 may be arranged in a straight line, or may be arranged in a concentrated manner in a region where a change in offset output is expected. The number of pixels other than the light shielding (OB) pixels 201 is preferably larger than the number of light shielding (OB) pixels 201.

図1の説明に戻り、放射線検出センサ102は、光電変換素子に到達したX線の二次元分布を検出し、X線画像データを生成する。放射線検出センサ102は、生成したX線画像データを情報処理装置103(演算部103c)に送信する。   Returning to the description of FIG. 1, the radiation detection sensor 102 detects a two-dimensional distribution of X-rays that have reached the photoelectric conversion element, and generates X-ray image data. The radiation detection sensor 102 transmits the generated X-ray image data to the information processing apparatus 103 (calculation unit 103c).

撮影条件設定部103aは、撮影条件を示す撮影条件情報をユーザー(操作者)が入力するユーザインタフェースを有する。撮影条件情報には、例えば、被写体Pに照射されるX線の目標線量、管電圧、管電流、および放射線検出センサ102の撮影モード等のパラメータが含まれる。撮影条件設定部103aは、ユーザーが入力した撮影条件情報を制御部103bに送信する。制御部103bは、撮影条件設定部103aから送信された撮影条件情報を基に、X線照射部101および放射線検出センサ102を制御する。   The shooting condition setting unit 103a has a user interface through which a user (operator) inputs shooting condition information indicating shooting conditions. The imaging condition information includes, for example, parameters such as a target dose of X-rays irradiated to the subject P, a tube voltage, a tube current, and an imaging mode of the radiation detection sensor 102. The shooting condition setting unit 103a transmits shooting condition information input by the user to the control unit 103b. The control unit 103b controls the X-ray irradiation unit 101 and the radiation detection sensor 102 based on the imaging condition information transmitted from the imaging condition setting unit 103a.

演算部103cは、放射線検出センサ102から送信されたX線画像データを基に、オフセット補正等の補正処理を行うことにより、診断に適したX線画像データを生成する。演算部103cは、補正処理されたX線画像データを表示部103dに送信する。表示部103dは、演算部103cから受信したX線画像データに基づく表示用のX線画像データを、モニタ等に出力する。本実施形態では、例えば、X線照射部101、放射線検出センサ102、および情報処理装置103を用いて放射線撮影装置が構成される。また、例えば、X線照射部101、放射線検出センサ102、情報処理装置103、およびモニタを用いて放射線撮影システムが構成される。   The calculation unit 103c generates X-ray image data suitable for diagnosis by performing correction processing such as offset correction based on the X-ray image data transmitted from the radiation detection sensor 102. The calculation unit 103c transmits the corrected X-ray image data to the display unit 103d. The display unit 103d outputs X-ray image data for display based on the X-ray image data received from the calculation unit 103c to a monitor or the like. In the present embodiment, for example, a radiation imaging apparatus is configured using the X-ray irradiation unit 101, the radiation detection sensor 102, and the information processing apparatus 103. Further, for example, a radiation imaging system is configured using the X-ray irradiation unit 101, the radiation detection sensor 102, the information processing apparatus 103, and a monitor.

図3は、情報処理装置103のハードウェアの構成の一例を示す図である。情報処理装置103は、CPU301と、ROM302と、RAM303と、HDD304と、表示I/F部305と、入力I/F部306と、ネットワークI/F部307とを有する。
CPU301は、ROM302に記憶された制御プログラムを読み出して各種処理を実行する。RAM303は、CPU301の主メモリ、ワークエリア等の一時記憶領域として用いられる。HDD304は、各種データや各種プログラム等を記憶する。表示I/F部305は、各種情報の表示用のデータをモニタ等に出力する。入力I/F部306は、キーボードやマウスを有し、ユーザーによる各種操作を受け付ける。
ネットワークI/F部307は、ネットワークを介して、X線照射部101および放射線検出センサ102等の外部装置との通信処理を行う。また、ネットワークI/F部307は、無線により外部装置との通信を行ってもよい。
FIG. 3 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 103. The information processing apparatus 103 includes a CPU 301, a ROM 302, a RAM 303, an HDD 304, a display I / F unit 305, an input I / F unit 306, and a network I / F unit 307.
The CPU 301 reads a control program stored in the ROM 302 and executes various processes. A RAM 303 is used as a temporary storage area such as a main memory and work area of the CPU 301. The HDD 304 stores various data, various programs, and the like. The display I / F unit 305 outputs data for displaying various information to a monitor or the like. The input I / F unit 306 has a keyboard and a mouse and accepts various operations by the user.
The network I / F unit 307 performs communication processing with external devices such as the X-ray irradiation unit 101 and the radiation detection sensor 102 via the network. The network I / F unit 307 may communicate with an external device wirelessly.

尚、後述する情報処理装置103の機能や処理は、CPU301がROM302またはHDD304に格納されているプログラムを読み出し、このプログラムを実行することにより実現されるものである。また、他の例としては、CPU301は、ROM302等に替えて、SDカード等の記録媒体に格納されているプログラムを読み出してもよい。   Note that the functions and processing of the information processing apparatus 103 to be described later are realized by the CPU 301 reading a program stored in the ROM 302 or the HDD 304 and executing this program. As another example, the CPU 301 may read a program stored in a recording medium such as an SD card instead of the ROM 302 or the like.

また、本実施形態では、情報処理装置103は、1つのプロセッサ(CPU301)が1つのメモリ(ROM302)を用いて後述するフローチャートに示す各処理を実行するものとするが、他の様態であっても構わない。例えば複数のプロセッサーや複数のRAM、ROMおよびストレージを協働させて後述するフローチャートに示す各処理を実行することもできる。また、ハードウェア回路を用いて一部の処理を実行するようにしても良い。また、CPU以外のプロセッサーを用いて後述する情報処理装置103の機能や処理を実現することとしてもよい。例えば、CPUに替えてGPU(Graphics Processing Unit)を用いることとしてもよい。   In this embodiment, the information processing apparatus 103 is configured such that one processor (CPU 301) executes each process shown in a flowchart described later using one memory (ROM 302). It doesn't matter. For example, a plurality of processors, a plurality of RAMs, a ROM, and a storage can be cooperated to execute each process shown in a flowchart described later. Also, a part of processing may be executed using a hardware circuit. Moreover, it is good also as implement | achieving the function and process of the information processing apparatus 103 mentioned later using processors other than CPU. For example, a GPU (Graphics Processing Unit) may be used instead of the CPU.

以下、図4のフローチャートを参照しながら、被写体Pの撮影準備開始から撮影までの処理の一例を説明する。本実施形態では、ユーザーが誤診する虞や診断画像に対する違和感を覚える虞がある撮影がなされる状態を予め検知する方法の一例について説明する。
ステップS4100では、撮影条件設定部103aは、ユーザーによるユーザインタフェースに対する操作の内容に基づいて、撮影条件情報を入力する。撮影条件情報には、例えば、被写体Pに照射されるX線の目標線量、管電圧、管電流、および放射線検出センサ102の撮影モード等のパラメータが含まれる。撮影条件設定部103aは、撮影条件情報を制御部103bに送信する。このようにして撮影条件が設定される。
Hereinafter, an example of processing from the start of shooting preparation of the subject P to shooting will be described with reference to the flowchart of FIG. In the present embodiment, an example of a method for detecting in advance a state in which shooting is performed that may cause the user to misdiagnose or feel uncomfortable with the diagnostic image will be described.
In step S4100, the shooting condition setting unit 103a inputs shooting condition information based on the content of the user operation on the user interface. The imaging condition information includes, for example, parameters such as a target dose of X-rays irradiated to the subject P, a tube voltage, a tube current, and an imaging mode of the radiation detection sensor 102. The shooting condition setting unit 103a transmits shooting condition information to the control unit 103b. In this way, shooting conditions are set.

次に、ステップS4101では、放射線検出センサ102は、固定ダーク画像を取得する。固定ダーク画像は、ステップS4100で設定されたパラメータのうちX線の照射に関するパラメータを除くパラメータに基づいてX線を照射しない状態で放射線検出センサ102により撮影された画像である。ここでは、被写体Pが存在する状態であっても、被写体Pが存在しない状態であってもよい。固定ダーク画像は、固定ダーク用(オフセット補正)に用いられる画像である。放射線検出センサ102は、固定ダーク画像の画素からの出力信号のうち、光遮蔽(OB)画素からの出力信号を取得して演算部103cへ送信する。   Next, in step S4101, the radiation detection sensor 102 acquires a fixed dark image. The fixed dark image is an image taken by the radiation detection sensor 102 in a state where X-rays are not irradiated based on parameters other than the parameters related to X-ray irradiation among the parameters set in step S4100. Here, even if the subject P exists, the subject P may not exist. The fixed dark image is an image used for fixed dark (offset correction). The radiation detection sensor 102 acquires the output signal from the light shielding (OB) pixel among the output signals from the pixels of the fixed dark image, and transmits them to the calculation unit 103c.

ここでは、光遮蔽(OB)画素からの出力信号を、固定ダーク画像より取得する場合を例に挙げて説明した。しかし、光遮蔽(OB)画素からの出力信号は、X線を照射しない状態で放射線検出センサ102により撮影された画像から取得していれば必ずしもこのようにして取得する必要はない。例えば、放射線検出センサ102は、固定ダーク画像と時間的に前後した近傍のタイミングで撮影されたダーク画像より、光遮蔽(OB)画素からの出力信号を取得してもよい。   Here, the case where the output signal from the light shielding (OB) pixel is acquired from the fixed dark image has been described as an example. However, it is not always necessary to acquire the output signal from the light shielding (OB) pixel in this way as long as it is acquired from an image captured by the radiation detection sensor 102 in a state where X-rays are not irradiated. For example, the radiation detection sensor 102 may acquire an output signal from the light shielding (OB) pixel from a dark image captured at a timing close to the fixed dark image in time.

次に、ステップS4102では、演算部103cは、光遮蔽(OB)画素からの出力信号を受信すると、当該光遮蔽(OB)画素からの出力信号の情報を記録する。
次に、ステップS4103では、放射線検出センサ102は、ダーク画像を取得し、ダーク画像の画素からの出力信号のうち、光遮蔽(OB)画素からの出力信号を取得して演算部103cへ送信する。ここでも、ステップS4101と同様に、被写体Pが存在する状態であっても、被写体Pが存在しない状態であってもよい。ステップS4103の処理は、ステップS4101と同様の処理を行うことにより実現される。即ち、放射線検出センサ102は、ステップS4101とステップS4103のそれぞれにおいて(相互に異なるタイミングにおいて)、光遮蔽(OB)画素からの出力信号を取得する。
Next, in step S4102, upon receiving an output signal from the light shielding (OB) pixel, the calculation unit 103c records information on the output signal from the light shielding (OB) pixel.
Next, in step S4103, the radiation detection sensor 102 acquires a dark image, acquires an output signal from a light shielding (OB) pixel among output signals from the pixel of the dark image, and transmits the output signal to the calculation unit 103c. . Here, as in step S4101, the subject P may be present or the subject P may not be present. The process of step S4103 is realized by performing the same process as step S4101. That is, the radiation detection sensor 102 acquires an output signal from the light shielding (OB) pixel in each of step S4101 and step S4103 (at different timings).

次に、ステップS4104では、演算部103cは、ステップS4102で記録した光遮蔽(OB)画素からの出力信号の情報と、ステップS4103で取得した光遮蔽(OB)画素からの出力信号の情報とを比較する。演算部103cは、当該比較の結果に基づいて、診断の妨げや違和感に繋がるシェーディング(濃度のムラ)等が発生しているか否かを判定する。そして、演算部103cは、当該判定の結果を示す情報を、表示部103dへ送信する。表示部103dは、当該判定の結果を示す情報をモニタ等に表示させる。ユーザーは、この情報を見ることにより、X線撮影を行うかどうかを判断する。   Next, in step S4104, the calculation unit 103c uses the output signal information from the light shielding (OB) pixel recorded in step S4102 and the output signal information from the light shielding (OB) pixel acquired in step S4103. Compare. Based on the result of the comparison, the calculation unit 103c determines whether shading (density unevenness) or the like that leads to an impediment to diagnosis or a sense of discomfort has occurred. Then, the calculation unit 103c transmits information indicating the result of the determination to the display unit 103d. The display unit 103d displays information indicating the determination result on a monitor or the like. The user determines whether to perform X-ray imaging by viewing this information.

本実施形態では、例えば、演算部103cを用いることにより、前記光遮蔽画素からの出力信号の値を監視する監視手段の一例が実現される。また、本実施形態では、例えば、演算部103cがステップS4104における比較を行うことにより、相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値を監視することの一例が実現される。また、ステップS4101、S4103で取得した光遮蔽(OB)画素からの出力信号により、前記相互に異なる複数のタイミングのそれぞれにおいて、前記有効画素領域に放射線が照射されない状態で得られた前記光遮蔽画素からの出力信号の一例が実現される。また、本実施形態では、例えば、演算部103cを用いることにより、前記監視手段による監視の結果を示す情報を表示装置に表示させる表示制御手段の一例が実現される。   In the present embodiment, for example, an example of a monitoring unit that monitors the value of the output signal from the light shielding pixel is realized by using the arithmetic unit 103c. In the present embodiment, for example, an example is realized in which the calculation unit 103c performs comparison in step S4104 to monitor the value of the output signal from the light shielding pixel obtained at a plurality of different timings. Is done. Further, the light shielding pixel obtained in a state where the effective pixel region is not irradiated with radiation at each of the plurality of different timings based on the output signal from the light shielding (OB) pixel acquired in steps S4101 and S4103. An example of an output signal from is realized. Moreover, in this embodiment, an example of the display control means which displays the information which shows the monitoring result by the said monitoring means on a display apparatus by using the calculating part 103c, for example is implement | achieved.

次に、ステップS4105では、撮影条件設定部103aは、ユーザーによるユーザインタフェースに対する操作の内容に基づいて、X線撮影の指示の有無があったかどうかを示す操作情報を制御部103bに送信する。制御部103bは、当該操作情報に基づいて、被写体PのX線撮影を行うか否かを判定する。この判定の結果、X線撮影を行わない場合、処理は、ステップS4103に移行する。一方、X線撮影を行う場合、制御部103bは、X線照射部101に対して、ステップS4100で設定された撮影条件に基づいて被写体PのX線撮影を行うことを指示する。これにより、放射線検出センサ102により被写体PのX線画像が撮影される。本実施形態では、例えば、制御部103bを用いることにより、前記表示制御手段により、前記監視手段による監視の結果を示す情報が表示装置に表示された後に、被写体の放射線画像の撮影を指示する撮影制御手段の一例が実現される。   Next, in step S4105, the imaging condition setting unit 103a transmits operation information indicating whether or not there is an X-ray imaging instruction based on the content of the operation on the user interface by the user to the control unit 103b. The controller 103b determines whether or not to perform X-ray imaging of the subject P based on the operation information. As a result of this determination, when X-ray imaging is not performed, the process proceeds to step S4103. On the other hand, when performing X-ray imaging, the control unit 103b instructs the X-ray irradiation unit 101 to perform X-ray imaging of the subject P based on the imaging conditions set in step S4100. Thereby, the X-ray image of the subject P is taken by the radiation detection sensor 102. In the present embodiment, for example, by using the control unit 103b, after the information indicating the result of monitoring by the monitoring unit is displayed on the display device by the display control unit, imaging for instructing to capture a radiographic image of the subject An example of the control means is realized.

以下に、図5および図6を参照しながら、ステップS4104における判定方法の一例を説明する。
前述したように演算部103cは、ステップS4102で記録された固定ダーク画像の取得時に同時に取得された光遮蔽(OB)画素からの出力信号と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号を比較する。時間経過や撮影モードの変化等があるため、放射線検出センサ102内の発熱部材により放射線検出センサ102の温度が変化すると、オフセット出力が変化してシェーディングが発生する。演算部103cは、このシェーディングの発生の有無を把握するために、光遮蔽(OB)画素からの出力信号を比較する。
Hereinafter, an example of the determination method in step S4104 will be described with reference to FIGS. 5 and 6.
As described above, the calculation unit 103c uses the output signal from the light shielding (OB) pixel acquired simultaneously with the acquisition of the fixed dark image recorded in step S4102, and the light shielding (OB) pixel acquired in step S4103. Compare the output signals of. Due to the passage of time, changes in imaging mode, and the like, when the temperature of the radiation detection sensor 102 changes due to the heat generating member in the radiation detection sensor 102, the offset output changes and shading occurs. The calculation unit 103c compares output signals from the light shielding (OB) pixels in order to determine whether or not this shading has occurred.

図5は、ステップS4102で記録された光遮蔽(OB)画素からの出力信号による画素値の分布と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号による画素値の分布の一例を示す図である。図5では、ステップS4102、S4103のタイミングの間で、放射線検出センサ102の温度変化によりオフセット出力の変化が発生した場合の画素値の分布を示す。   FIG. 5 shows an example of the distribution of pixel values based on the output signal from the light shielding (OB) pixel recorded in step S4102, and the distribution of pixel values based on the output signal from the light shielding (OB) pixel acquired in step S4103. FIG. FIG. 5 shows a distribution of pixel values when a change in offset output occurs due to a temperature change of the radiation detection sensor 102 between the timings of steps S4102 and S4103.

図5において、画素値分布501は、ステップS4102で記録された光遮蔽(OB)画素からの出力信号に含まれる画素値の分布を示す。画素値分布502は、ステップS4103で取得された光遮蔽(OB)画素からの出力信号に含まれる画素値の分布を示す。ステップS4104において、演算部103cは、画素値分布501、502の最頻値の差の絶対値が閾値を超えるか否かを判定してもよい。また、演算部103cは、画素値分布501、502の標準偏差の差の絶対値が閾値を超えるか否かを判定してもよい。演算部103cは、例えば、画素値分布501、502の最頻値・標準偏差の差の絶対値が閾値を超える場合、シェーディングが発生すると判定し、そうでない場合、シェーディングが発生しないと判定する。そして、演算部103cは、当該判定の結果を示す情報を、表示部103dへ送信する。本実施形態では、例えば、画素値分布501、502の最頻値の差の絶対値が閾値を超えるか否かを判定することにより、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値の分布を比較することの一例が実現される。   In FIG. 5, a pixel value distribution 501 indicates a distribution of pixel values included in an output signal from the light shielding (OB) pixel recorded in step S4102. A pixel value distribution 502 indicates a distribution of pixel values included in the output signal from the light shielding (OB) pixel acquired in step S4103. In step S4104, the calculation unit 103c may determine whether or not the absolute value of the difference between the mode values of the pixel value distributions 501 and 502 exceeds a threshold value. Further, the calculation unit 103c may determine whether or not the absolute value of the difference between the standard deviations of the pixel value distributions 501 and 502 exceeds a threshold value. For example, when the absolute value of the difference between the mode value and the standard deviation of the pixel value distributions 501 and 502 exceeds the threshold value, the calculation unit 103c determines that shading occurs, and otherwise determines that no shading occurs. Then, the calculation unit 103c transmits information indicating the result of the determination to the display unit 103d. In the present embodiment, for example, the light shielding pixel obtained at a plurality of different timings by determining whether or not the absolute value of the difference between the mode values of the pixel value distributions 501 and 502 exceeds a threshold value. An example of comparing the distribution of the value of the output signal from is realized.

図6は、ステップS4102で記録された光遮蔽(OB)画素からの出力信号に含まれる画素値と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号に含まれる画素値との、同一座標(画素)毎の差分の分布の一例を示す図である。図6でも、図5と同様に、ステップS4102、S4103のタイミングの間で、放射線検出センサ102の温度変化によりオフセット出力の変化が発生した場合の画素値の分布を示す。   FIG. 6 shows the pixel value included in the output signal from the light shielding (OB) pixel recorded in step S4102, and the pixel value included in the output signal from the light shielding (OB) pixel acquired in step S4103. It is a figure which shows an example of the distribution of the difference for every same coordinate (pixel). 6 also shows the distribution of pixel values when a change in offset output occurs due to a temperature change in the radiation detection sensor 102 between the timings of steps S4102 and S4103, as in FIG.

図6で示す通り、演算部103cは、1つ以上の同一座標ごとの画素値の差分の絶対値が閾値を超えるか否かを判定してもよい(図6の破線で示す円を参照)。演算部103cは、例えば、1つ以上の同一座標ごとの画素値の差分の絶対値が閾値を超える場合、シェーディングが発生すると判定し、そうでない場合、シェーディングが発生しないと判定し、当該判定の結果を示す情報を、表示部103dへ送信する。本実施形態では、例えば、このような判定により、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値の差と閾値とを比較することの一例が実現される。   As illustrated in FIG. 6, the calculation unit 103 c may determine whether or not the absolute value of the difference between pixel values for one or more identical coordinates exceeds a threshold value (see a circle indicated by a broken line in FIG. 6). . For example, when the absolute value of the difference between the pixel values of one or more identical coordinates exceeds the threshold, the calculation unit 103c determines that shading occurs, otherwise determines that no shading occurs, and Information indicating the result is transmitted to the display unit 103d. In the present embodiment, for example, such a determination realizes an example of comparing a threshold value with a difference between values of output signals from the light shielding pixels obtained at a plurality of different timings.

また、ステップS4102で記録された光遮蔽(OB)画素からの出力信号に含まれる画素値の代表値と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号に含まれる画素値の代表値との差の絶対値が閾値を超えるか否かを判定してもよい。代表値としては、例えば、平均値、中央値、または最頻値を採用することができる。本実施形態では、例えば、このような判定により、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の代表値の差と閾値とを比較することの一例が実現される。   Also, the representative value of the pixel value included in the output signal from the light shielding (OB) pixel recorded in step S4102, and the pixel value included in the output signal from the light shielding (OB) pixel acquired in step S4103. It may be determined whether the absolute value of the difference from the representative value exceeds a threshold value. As the representative value, for example, an average value, a median value, or a mode value can be adopted. In the present embodiment, for example, such a determination realizes an example of comparing a threshold value with a difference between representative values of output signals from the light shielding pixels obtained at a plurality of different timings. .

また、図5、図6では、ステップS4102で記録された光遮蔽(OB)画素からの出力信号に含まれる画素値と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号に含まれる画素値とを比較する場合を例に挙げて説明した。しかしながら、必ずしも異なる複数のタイミングで得られた光遮蔽(OB)画素からの出力信号に含まれる画素値の比較を行う必要はない。同じタイミングで得られた光遮蔽(OB)画素からの出力信号の値を監視することもできる。例えば、演算部103cは、画素値分布501、502の少なくとも何れか一方の標準偏差が閾値を超えているか否かを判定してもよい。本実施形態では、例えば、このような判定により、同じタイミングで得られた複数の前記光遮蔽画素からの出力信号の値の代表値と基準値とを比較することの一例が実現される。また、ステップS4102で記録された光遮蔽(OB)画素からの出力信号に含まれる画素値と、ステップS4103で取得された光遮蔽(OB)画素からの出力信号に含まれる画素値との少なくとも1つが閾値を超えるか否かを判定してもよい。本実施形態では、例えば、このような判定により、複数の前記光遮蔽画素のうちの少なくとも1つの光遮蔽画素からの出力信号の値と閾値とを比較することの一例が実現される。また、前述した複数の判定方法を組み合わせて、シェーディングの発生の有無を判定してもよい。   5 and 6, the pixel value included in the output signal from the light shielding (OB) pixel recorded in step S4102, and the output signal from the light shielding (OB) pixel acquired in step S4103. The case where the pixel value is compared is described as an example. However, it is not always necessary to compare pixel values included in output signals from light-shielded (OB) pixels obtained at different timings. It is also possible to monitor the value of the output signal from the light shielding (OB) pixel obtained at the same timing. For example, the computing unit 103c may determine whether or not the standard deviation of at least one of the pixel value distributions 501 and 502 exceeds a threshold value. In the present embodiment, for example, such a determination realizes an example of comparing a representative value of a value of an output signal from the plurality of light shielding pixels obtained at the same timing with a reference value. Further, at least one of the pixel value included in the output signal from the light shielding (OB) pixel recorded in step S4102 and the pixel value included in the output signal from the light shielding (OB) pixel acquired in step S4103. It may be determined whether one exceeds a threshold value. In the present embodiment, for example, such a determination realizes an example of comparing a value of an output signal from at least one light shielding pixel among the plurality of light shielding pixels with a threshold value. Further, the presence / absence of shading may be determined by combining the plurality of determination methods described above.

また、ノイズ成分が影響して、光遮蔽(OB)画素から所望の出力信号が取得できないことが想定される。そこで、ノイズ成分影響を除外するために、演算部103cは、以下のようにしてもよい。まず、演算部103cは、対象の光遮蔽(OB)画素からの出力信号と、当該対象光遮蔽(OB)画素に隣接する1つ以上の光遮蔽(OB)画素からの出力信号とを比較する。そして、演算部103cは、両者の出力信号に含まれる画素値の差の絶対値が閾値を超える場合、当該対象の光遮蔽(OB)画素を、前述した判定に使用する光遮蔽(OB)画素から除外する。   Further, it is assumed that a desired output signal cannot be acquired from the light shielding (OB) pixel due to the influence of noise components. Therefore, in order to exclude the influence of noise components, the calculation unit 103c may be configured as follows. First, the calculation unit 103c compares the output signal from the target light shielding (OB) pixel with the output signal from one or more light shielding (OB) pixels adjacent to the target light shielding (OB) pixel. . Then, when the absolute value of the difference between the pixel values included in the output signals of both exceeds the threshold value, the calculation unit 103c uses the target light shielding (OB) pixel as the light shielding (OB) pixel used for the above-described determination. Exclude from

次に、ステップS4104における判定結果の表示の一例に関して説明する。
表示部103dは、放射線検出センサ102がX線撮影に適さない状態になっているか否かを示す情報を、モニタ等に表示させる。この表示に基づいてユーザーは、X線撮影を行うか否かを判断する。また、放射線検出センサ102がX線撮影に適さない状態になっていることを演算部103cから受信した制御部103bがX線撮影をすることができないように制限をかけてもよい。このとき、X線撮影に適さない状態であることを表示部103dにより表示させてもよいが表示させなくてもよい。例えば、ユーザーは、X線撮影の指示を行ってもX線撮影が実行されないことにより、X線撮影に適さない状態であることを表示しなくても、放射線検出センサ102がX線撮影に適さない状態になっていることを把握することができる。また、制御部103bは、前述した判定の結果に基づいて、放射線検出センサ102がX線撮影に適さない状態から復帰するのを待ち、制限を解除してもよい。また、X線撮影に適さない状態でない場合は、X線撮影に適さない状態でないことを表示部103dにより表示させなくてもよい。
Next, an example of the determination result display in step S4104 will be described.
The display unit 103d displays information indicating whether the radiation detection sensor 102 is not suitable for X-ray imaging on a monitor or the like. Based on this display, the user determines whether or not to perform X-ray imaging. Further, it may be limited so that the control unit 103b that has received from the calculation unit 103c that the radiation detection sensor 102 is not suitable for X-ray imaging cannot perform X-ray imaging. At this time, information indicating that the state is not suitable for X-ray imaging may be displayed by the display unit 103d, but may not be displayed. For example, the radiation detection sensor 102 is suitable for X-ray imaging even if the user does not indicate that the X-ray imaging is not performed even if an instruction for X-ray imaging is performed, and thus does not indicate that the state is not suitable for X-ray imaging. It is possible to grasp that there is no state. The control unit 103b may release the restriction after waiting for the radiation detection sensor 102 to return from a state unsuitable for X-ray imaging based on the result of the determination described above. If the state is not suitable for X-ray imaging, the display unit 103d may not display that the state is not suitable for X-ray imaging.

以上のように本実施形態では、情報処理装置103は、光遮蔽(OB)画素からの出力信号に含まれる画素値を監視し、その結果を示す情報を表示する。従って、撮影前に放射線撮影装置の状態をユーザーに把握させることが可能となる。また、X線画像の被写体(人物)の誤診に繋がるようなX線画像が撮影されたり、違和感のあるX線画像が撮影されたりすることを、X線画像の撮影の前に予めユーザーに把握させることが可能となる。   As described above, in the present embodiment, the information processing apparatus 103 monitors the pixel value included in the output signal from the light shielding (OB) pixel and displays information indicating the result. Therefore, it becomes possible for the user to grasp the state of the radiation imaging apparatus before imaging. In addition, the user knows in advance that an X-ray image that may cause a misdiagnosis of the subject (person) of the X-ray image or an uncomfortable X-ray image is taken. It becomes possible to make it.

(第2の実施形態)
次に、第2の実施形態を説明する。第1の実施形態では、X線撮影を行わない状態で、放射線検出センサ102がX線撮影に適する状態であるか否かを判定する場合を例に挙げて説明した。これに対し、本実施形態では、X線撮影を行った上で、放射線検出センサ102がX線撮影に適する状態であるか否かを判定する場合について説明する。このように本実施形態は、第1の実施形態に対し、X線撮影に適する状態であるか否かの判定に際してX線撮影を行うための処理が追加されたものとなる。従って、本実施形態の説明において、第1の実施形態と同一の部分については、図1〜図6に付した符号と同一の符号を付す等して詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment will be described. In the first embodiment, the case where it is determined whether or not the radiation detection sensor 102 is in a state suitable for X-ray imaging without performing X-ray imaging has been described as an example. In contrast, in the present embodiment, a case will be described in which it is determined whether or not the radiation detection sensor 102 is in a state suitable for X-ray imaging after performing X-ray imaging. As described above, the present embodiment is obtained by adding processing for performing X-ray imaging when determining whether or not the state is suitable for X-ray imaging to the first embodiment. Therefore, in the description of the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals as those in FIGS.

本実施形態の放射線撮影システムの構成は、図1および図3に示したものと同じもので実現することができる。放射線撮影システムにおける処理(図4のフローチャート)の一部が第1の実施形態と異なる。以下、図7のフローチャートを参照しながら、被写体Pの撮影準備開始から撮影までの処理の一例を説明する。
ステップS7100からステップS7102までの処理は、第1の実施形態で説明したステップS4100からステップS4102までの処理と同じである。ステップS7103の前に、第1の実施形態で説明したステップS4103からステップS4105の処理を行ってもよい。
The configuration of the radiation imaging system of the present embodiment can be realized with the same configuration as that shown in FIGS. A part of the processing (flowchart in FIG. 4) in the radiation imaging system is different from that in the first embodiment. Hereinafter, an example of processing from the start of shooting preparation of the subject P to shooting will be described with reference to the flowchart of FIG.
The processing from step S7100 to step S7102 is the same as the processing from step S4100 to step S4102 described in the first embodiment. Prior to step S7103, the processing from step S4103 to step S4105 described in the first embodiment may be performed.

ステップS7103では、制御部103bは、X線照射部101に対して、ステップS7100で設定された撮影条件に基づいてX線撮影を行うことを指示する。これにより、放射線撮影装置102によりX線画像が撮影される。
次に、ステップS7104では、放射線検出センサ102は、X線画像の各画素からの出力信号を取得して演算部103cへ送信する。また、放射線検出センサ102は、X線画像の画素からの出力信号のうち、光遮蔽(OB)画素からの出力信号を取得して演算部103cへ送信する。本実施形態では、例えば、ステップS7104で取得される光遮蔽(OB)画素からの出力信号により、前記有効画素領域に放射線が照射された状態で得られた前記光遮蔽画素からの出力信号の一例が実現される。
In step S7103, the control unit 103b instructs the X-ray irradiation unit 101 to perform X-ray imaging based on the imaging conditions set in step S7100. As a result, an X-ray image is taken by the radiation imaging apparatus 102.
Next, in step S7104, the radiation detection sensor 102 acquires an output signal from each pixel of the X-ray image and transmits the output signal to the calculation unit 103c. Further, the radiation detection sensor 102 acquires an output signal from the light shielding (OB) pixel among the output signals from the pixel of the X-ray image, and transmits the output signal to the calculation unit 103c. In the present embodiment, for example, an example of an output signal from the light shielding pixel obtained in a state where the effective pixel region is irradiated with radiation based on an output signal from the light shielding (OB) pixel acquired in step S7104. Is realized.

次に、ステップS7105では、演算部103cは、X線画像データに対し、補正処理を行い、補正処理を行ったX線画像データを表示部103dへ送信する。表示部103dは、演算部103cから送信されたX線画像のデータに基づいて、X線画像を表示する。
次に、ステップS7106では、演算部103cは、ステップS7102で記録した光遮蔽(OB)画素からの出力信号の情報と、ステップS7104で取得した光遮蔽(OB)画素からの出力信号の情報とを比較する。演算部103cは、当該比較の結果に基づいて、診断の妨げや違和感に繋がるシェーディング等が発生しているか否かを判定する。演算部103cは、当該判定の結果を示す情報を、表示部103dへ送信する。表示部103dは、当該判定の結果を示す情報をモニタ等に表示させる。
In step S7105, the calculation unit 103c performs correction processing on the X-ray image data, and transmits the X-ray image data subjected to the correction processing to the display unit 103d. The display unit 103d displays an X-ray image based on the X-ray image data transmitted from the calculation unit 103c.
Next, in step S7106, the calculation unit 103c uses the output signal information from the light shielding (OB) pixel recorded in step S7102 and the output signal information from the light shielding (OB) pixel acquired in step S7104. Compare. Based on the result of the comparison, the calculation unit 103c determines whether or not shading or the like that hinders diagnosis or causes discomfort occurs. The calculation unit 103c transmits information indicating the result of the determination to the display unit 103d. The display unit 103d displays information indicating the determination result on a monitor or the like.

本実施形態では、例えば、演算部103cを用いることにより、前記光遮蔽画素からの出力信号の値を監視する監視手段の一例が実現される。また、本実施形態では、例えば、演算部103cがステップS7106における比較を行うことにより、相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値を監視することの一例が実現される。また、本実施形態では、例えば、演算部103cを用いることにより、前記監視手段による監視の結果を示す情報を表示装置に表示させる表示制御手段の一例が実現される。   In the present embodiment, for example, an example of a monitoring unit that monitors the value of the output signal from the light shielding pixel is realized by using the arithmetic unit 103c. In the present embodiment, for example, an example is realized in which the calculation unit 103c performs comparison in step S7106 to monitor the value of the output signal from the light shielding pixel obtained at a plurality of different timings. Is done. Moreover, in this embodiment, an example of the display control means which displays the information which shows the monitoring result by the said monitoring means on a display apparatus by using the calculating part 103c, for example is implement | achieved.

次に、ステップS7107では、撮影条件設定部103aは、ユーザーによるユーザインタフェースに対する操作の内容に基づいて、X線撮影の指示の有無があったかどうかを示す操作情報を制御部103bに送信する。制御部103bは、当該操作情報に基づいて、被写体PのX線撮影を行うか否かを判定する。この判定の結果、X線撮影を行わない場合、撮影を終了する。一方、X線撮影を行う場合、処理は、前述したステップS7103に戻る。ステップS7107において、X線撮影を行わないと判定された場合に、図4のステップS4101〜S4105の処理を行ってもよい。本実施形態では、例えば、制御部103bを用いることにより、前記表示制御手段により、前記監視手段による監視の結果を示す情報が表示装置に表示された後に、被写体の放射線画像の撮影を指示する撮影制御手段の一例が実現される。   In step S7107, the imaging condition setting unit 103a transmits, to the control unit 103b, operation information indicating whether or not there is an X-ray imaging instruction based on the content of the user operation on the user interface. The controller 103b determines whether or not to perform X-ray imaging of the subject P based on the operation information. If the result of this determination is that X-ray imaging is not performed, imaging is terminated. On the other hand, when performing X-ray imaging, the process returns to step S7103 described above. If it is determined in step S7107 that X-ray imaging is not performed, the processing in steps S4101 to S4105 in FIG. 4 may be performed. In the present embodiment, for example, by using the control unit 103b, after the information indicating the result of monitoring by the monitoring unit is displayed on the display device by the display control unit, imaging for instructing to capture a radiographic image of the subject An example of the control means is realized.

ステップS7106における判定の方法および判定の結果の表示の内容は、第1の実施形態で説明したステップS4104におけるものと同じである。本実施形態においても、第1の実施形態で説明した種々の判定の方法および表示の方法を採用することができる。
以上のようにしても第1の実施形態と同一の効果が得られる。尚、第1の実施形態および第2の実施形態では、有効画素領域内の光遮蔽(OB)画素からの出力信号に含まれる画素値を監視し、その結果を示す情報を表示する場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。即ち、有効画素領域外の光遮蔽(OB)画素からの出力信号に含まれる画素値を監視し、その結果を示す情報を表示してもよい。
The determination method in step S7106 and the display result of the determination result are the same as those in step S4104 described in the first embodiment. Also in this embodiment, various determination methods and display methods described in the first embodiment can be employed.
Even if it does as mentioned above, the same effect as a 1st embodiment is acquired. In the first embodiment and the second embodiment, the pixel value included in the output signal from the light shielding (OB) pixel in the effective pixel region is monitored, and information indicating the result is displayed as an example. And explained. However, this is not always necessary. That is, the pixel value included in the output signal from the light shielding (OB) pixel outside the effective pixel region may be monitored, and information indicating the result may be displayed.

尚、前述した各実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   It should be noted that each of the above-described embodiments is merely a specific example for carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. . That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

(その他の実施形態)
本発明は、前述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other embodiments)
The present invention supplies a program that realizes one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program This process can be realized. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

101:X線照射部、102:放射線検出センサ、103:情報処理装置   101: X-ray irradiation unit, 102: Radiation detection sensor, 103: Information processing device

Claims (15)

放射線が遮蔽される複数の光遮蔽画素を有する撮影手段と、
前記複数の光遮蔽画素からの出力信号の値を監視する監視手段と、
前記監視手段による監視の結果を示す情報を表示装置に表示させる表示制御手段とを有することを特徴とする放射線撮影装置。
An imaging means having a plurality of light shielding pixels for shielding radiation;
Monitoring means for monitoring values of output signals from the plurality of light shielding pixels;
A radiation imaging apparatus comprising: display control means for displaying information indicating a result of monitoring by the monitoring means on a display device.
前記光遮蔽画素は、有効画素領域に照射される放射線が遮蔽される画素であることを特徴とする請求項1に記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the light shielding pixel is a pixel that shields radiation applied to an effective pixel region. 前記表示制御手段により、前記監視手段による監視の結果を示す情報が表示装置に表示された後に、被写体の放射線画像の撮影を指示する撮影制御手段を更に有することを特徴とする請求項1または2に記載の放射線撮影装置。   The imaging control means for instructing imaging of a radiographic image of a subject after the information indicating the result of monitoring by the monitoring means is displayed on the display device by the display control means. The radiation imaging apparatus described in 1. 前記監視手段は、相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値を監視することを特徴とする請求項1〜3の何れか1項に記載の放射線撮影装置。   The radiographic apparatus according to claim 1, wherein the monitoring unit monitors values of output signals from the light shielding pixels obtained at a plurality of different timings. 前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号は、前記相互に異なる複数のタイミングのそれぞれにおいて、前記放射線が照射されない状態で得られた前記光遮蔽画素からの出力信号を含むことを特徴とする請求項4に記載の放射線撮影装置。   The output signals from the light shielding pixels obtained at a plurality of different timings are the output signals from the light shielding pixels obtained without being irradiated with the radiation at each of the plurality of different timings. The radiation imaging apparatus according to claim 4, comprising: 前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号は、前記放射線が照射された状態で得られた前記光遮蔽画素からの出力信号を含むことを特徴とする請求項4または5に記載の放射線撮影装置。   The output signal from the light shielding pixel obtained at a plurality of timings different from each other includes an output signal from the light shielding pixel obtained in a state where the radiation is irradiated. Or the radiography apparatus of 5. 前記監視手段は、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値の差、または、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の代表値の差と閾値とを比較することを特徴とする請求項4〜6の何れか1項に記載の放射線撮影装置。   The monitoring means includes a difference in output signal values from the light shielding pixels obtained at a plurality of different timings, or an output signal from the light shielding pixels obtained at a plurality of different timings. The radiation imaging apparatus according to any one of claims 4 to 6, wherein a difference between the representative values is compared with a threshold value. 前記監視手段は、前記相互に異なる複数のタイミングで得られた前記光遮蔽画素からの出力信号の値の分布を比較することを特徴とする請求項4〜6の何れか1項に記載の放射線撮影装置。   The radiation according to any one of claims 4 to 6, wherein the monitoring unit compares distributions of values of output signals from the light shielding pixels obtained at a plurality of timings different from each other. Shooting device. 前記監視手段は、同じタイミングで得られた複数の前記光遮蔽画素からの出力信号の値を監視することを特徴とする請求項1〜3の何れか1項に記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the monitoring unit monitors values of output signals from the plurality of light shielding pixels obtained at the same timing. 前記監視手段は、同じタイミングで得られた複数の前記光遮蔽画素からの出力信号の値の代表値と基準値とを比較することを特徴とする請求項9に記載の放射線撮影装置。   The radiographic apparatus according to claim 9, wherein the monitoring unit compares a representative value of a value of an output signal from the plurality of light shielding pixels obtained at the same timing with a reference value. 前記監視手段は、複数の前記光遮蔽画素のうちの少なくとも1つの光遮蔽画素からの出力信号の値と閾値とを比較することを特徴とする請求項1〜3の何れか1項に記載の放射線撮影装置。   The said monitoring means compares the value of the output signal from at least 1 light shielding pixel of the said several light shielding pixels, and a threshold value, The any one of Claims 1-3 characterized by the above-mentioned. Radiography equipment. 前記監視手段は、有効画素領域にシェーディングが発生しているか否かを監視することを特徴とする請求項1〜11の何れか1項に記載の放射線撮影装置。   The radiation imaging apparatus according to claim 1, wherein the monitoring unit monitors whether or not shading has occurred in an effective pixel region. 放射線が遮蔽される複数の光遮蔽画素を有する撮影手段と、
前記複数の光遮蔽画素からの出力信号の値を監視する監視手段と、
前記監視手段による監視の結果を示す情報を表示する表示手段と、を有することを特徴とする放射線撮影システム。
An imaging means having a plurality of light shielding pixels for shielding radiation;
Monitoring means for monitoring values of output signals from the plurality of light shielding pixels;
A radiation imaging system comprising: display means for displaying information indicating a result of monitoring by the monitoring means.
放射線が遮蔽される複数の光遮蔽画素を有する撮影手段を用いて行う放射線撮影方法であって、
前記光遮蔽画素からの出力信号の値を監視する監視工程と、
前記監視工程による監視の結果を示す情報を表示装置に表示させる表示制御工程と、を有することを特徴とする放射線撮影方法。
A radiographic method performed using an imaging means having a plurality of light shielding pixels that shield radiation,
A monitoring step of monitoring a value of an output signal from the light shielding pixel;
A radiographic imaging method comprising: a display control step of displaying information indicating a result of monitoring by the monitoring step on a display device.
請求項1〜12の何れか1項に記載の放射線撮影装置の各手段としてコンピュータを機能させることを特徴とするプログラム。   A program that causes a computer to function as each unit of the radiation imaging apparatus according to any one of claims 1 to 12.
JP2018100537A 2018-05-25 2018-05-25 Radiographic apparatus, radiographic system, radiographic method and program Pending JP2019202045A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018100537A JP2019202045A (en) 2018-05-25 2018-05-25 Radiographic apparatus, radiographic system, radiographic method and program
PCT/JP2019/019011 WO2019225388A1 (en) 2018-05-25 2019-05-14 Radiography device, radiography system, radiography method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100537A JP2019202045A (en) 2018-05-25 2018-05-25 Radiographic apparatus, radiographic system, radiographic method and program

Publications (1)

Publication Number Publication Date
JP2019202045A true JP2019202045A (en) 2019-11-28

Family

ID=68615869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100537A Pending JP2019202045A (en) 2018-05-25 2018-05-25 Radiographic apparatus, radiographic system, radiographic method and program

Country Status (2)

Country Link
JP (1) JP2019202045A (en)
WO (1) WO2019225388A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034173B2 (en) * 2005-05-02 2012-09-26 株式会社島津製作所 Inspection method of radiation detector
JP2007028338A (en) * 2005-07-19 2007-02-01 Canon Inc Imaging apparatus and control method thereof, program, and storage medium
JP5538684B2 (en) * 2008-03-13 2014-07-02 キヤノン株式会社 Image processing apparatus, image processing method, program, and storage medium
JP2017220616A (en) * 2016-06-09 2017-12-14 キヤノン株式会社 Imaging apparatus and radiation imaging system

Also Published As

Publication number Publication date
WO2019225388A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US20120020541A1 (en) Radiographic apparatus and control method for the same
US9949707B2 (en) Radiographic imaging system, control method, and storage medium
US10321887B2 (en) Image analysis device, image analysis method, and program
US7460643B2 (en) Radiographic apparatus and radiation detection signal processing method
JP6491545B2 (en) Image processing apparatus, radiation imaging apparatus, image processing method, program, and storage medium
US7760856B2 (en) Radiographic apparatus and radiation detection signal processing method
US20160349195A1 (en) Image processing devices, image processing system, image processing method, and non-transitory recording medium
CN113397577B (en) Dynamic quality management device and method, computer readable recording medium
JP2009201552A (en) Radiographic apparatus
WO2019225388A1 (en) Radiography device, radiography system, radiography method, and program
JP5224688B2 (en) X-ray equipment
JP2017077405A (en) Radiographic system, image processing device, and image processing method
JP2020149237A (en) Image processing apparatus, radiographic apparatus and image processing method
JP2009201587A (en) Radiographic apparatus
JP5306062B2 (en) Radiographic apparatus, radiographic method and program
JP6632230B2 (en) Image processing apparatus, image processing method, and image processing program
US11406341B2 (en) Radiography control apparatus, radiographic imaging apparatus, and radiographic imaging system
CN110678124B (en) Tomographic image generation method and radiographic apparatus
US10159457B2 (en) X-ray diagnostic apparatus
JP7115584B2 (en) Dynamic quality control device, dynamic quality control program and dynamic quality control method
US20240078723A1 (en) Medical image processing apparatus and medical image processing method
US20210133967A1 (en) Storage medium, dynamic analysis apparatus, and dynamic analysis system
JP7392481B2 (en) Imaging support equipment, radiography systems and programs
US20230145523A1 (en) Medical image processing apparatus, x-ray ct apparatus, medical image processing method and non-volatile storage medium storing program
US20200151920A1 (en) Image reconstruction apparatus and image reconstruction method