JP2019201110A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2019201110A
JP2019201110A JP2018094830A JP2018094830A JP2019201110A JP 2019201110 A JP2019201110 A JP 2019201110A JP 2018094830 A JP2018094830 A JP 2018094830A JP 2018094830 A JP2018094830 A JP 2018094830A JP 2019201110 A JP2019201110 A JP 2019201110A
Authority
JP
Japan
Prior art keywords
sealing body
tab terminal
electric double
electrode
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018094830A
Other languages
Japanese (ja)
Inventor
貴人 海老名
Takahito Ebina
貴人 海老名
小川原 鉄志
Tetsushi Ogawara
鉄志 小川原
健人 松澤
Taketo Matsuzawa
健人 松澤
隆 野澤
Takashi Nozawa
隆 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubycon Corp
Original Assignee
Rubycon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubycon Corp filed Critical Rubycon Corp
Priority to JP2018094830A priority Critical patent/JP2019201110A/en
Publication of JP2019201110A publication Critical patent/JP2019201110A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

To provide an electric double layer capacitor that prevents alkalinization of an electrolyte and does not increase contact resistance between a tab terminal and a current collector.SOLUTION: An electric double layer capacitor includes a capacitor element having a pair of electrode bodies 23, a bottomed cylindrical metal case that houses the capacitor element, a sealing body that seals the opening of the metal case, and a tab terminal 10 bonded to each of the pair of electrode bodies 23 and extending to the outside of the sealing body through a terminal lead-out hole of the sealing body. The tab terminal 10 includes a penetrating portion 12 penetrating the sealing body and a flat portion 13 having a joint portion 14 with the electrode body 23. An insulating layer 15 is formed on the surface of the penetrating portion 12 and on the surface of a flat portion 13 excluding the joint portion 14 with the electrode body 23, and therefore the alkalinization of the electrolyte near the negative electrode tab terminal is prevented, and the contact resistance between the tab terminal 10 and the electrode body 23 is reduced.SELECTED DRAWING: Figure 2

Description

本発明は、電気二重層キャパシタに関し、特にタブ端子と封口体の隙間から生じる液漏れを低減させる巻回型電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor, and more particularly, to a wound electric double layer capacitor that reduces liquid leakage caused by a gap between a tab terminal and a sealing body.

電気二重層キャパシタは、電解液と電極体との界面に生じる電気二重層に電気を蓄える原理のキャパシタである。   The electric double layer capacitor is a capacitor based on the principle of storing electricity in an electric double layer generated at the interface between the electrolyte and the electrode body.

電気二重層キャパシタは、一例として、キャパシタ素子と、キャパシタ素子に含浸された電解液と、キャパシタ素子を電解液とともに収容する有底筒状の金属ケースと、金属ケースの開口部を封止する弾性封口体とを備える。ここで、キャパシタ素子は、金属箔からなる集電体に炭素含有多孔質材料からなる分極性電極層が形成された一対の電極体の間にセパレータを介在させ巻回することにより構成されている。   As an example, an electric double layer capacitor includes a capacitor element, an electrolytic solution impregnated in the capacitor element, a bottomed cylindrical metal case that houses the capacitor element together with the electrolytic solution, and an elastic material that seals an opening of the metal case. And a sealing body. Here, the capacitor element is configured by winding a current collector made of metal foil with a separator interposed between a pair of electrode bodies in which a polarizable electrode layer made of a carbon-containing porous material is formed. .

各電極体には、平坦部、貫通部および引出し線を有するタブ端子が、平坦部の少なくとも1箇所の接合部位で接合されている。封口体には少なくとも2つの端子引出し孔が設けられており、各タブ端子の貫通部が封口体の端子引出し孔に挿通されて外部に導出されているとともに、各タブ端子の貫通部が封口体の端子引出し孔の内壁に密接した状態で密封性が保たれている。   A tab terminal having a flat portion, a penetrating portion, and a lead line is joined to each electrode body at at least one joining portion of the flat portion. The sealing body is provided with at least two terminal lead holes, and the through portions of the tab terminals are inserted into the terminal lead holes of the sealing body and led out to the outside, and the through portions of the tab terminals are sealed. The sealing performance is maintained in close contact with the inner wall of the terminal lead hole.

電気二重層キャパシタではアルミ電解コンデンサと比較して水分の影響が顕著である。すなわち、電気二重層キャパシタ中に水分が浸入することにより、寿命特性の劣化やガス発生によるケース膨れ等の問題が発生する。特に、水分の電気分解による負極側タブ端子近傍での電解液のアルカリ化に起因する液漏れの問題がある。   In the electric double layer capacitor, the influence of moisture is significant as compared with the aluminum electrolytic capacitor. That is, when moisture enters the electric double layer capacitor, problems such as deterioration of life characteristics and case expansion due to gas generation occur. In particular, there is a problem of liquid leakage due to alkalinization of the electrolyte near the negative electrode side tab terminal due to water electrolysis.

特許文献1には、第四級アンモニウム塩の一つであるジエチルジメチルアンモニウムテトラフルオロボレートをプロピレンカーボネートに溶解した電解液を用いて、高いエネルギー密度を有し内部抵抗の小さい電気二重層キャパシタを提供することが開示されている。   Patent Document 1 provides an electric double layer capacitor having a high energy density and a low internal resistance by using an electrolyte obtained by dissolving diethyldimethylammonium tetrafluoroborate, which is one of quaternary ammonium salts, in propylene carbonate. Is disclosed.

特許文献2には、第四級アンモニウム塩系電解液を用いた電気二重層キャパシタにおいて、タブ端子と封口体の端子引出し孔との間に電気絶縁性樹脂であるポリアミド化合物を設けて、アルカリ化した電解液が封口体の端子引出し孔に接触するのを防止することが提案されている。   In Patent Document 2, in an electric double layer capacitor using a quaternary ammonium salt electrolyte, a polyamide compound, which is an electrically insulating resin, is provided between a tab terminal and a terminal lead hole of a sealing body, and alkalized. It has been proposed to prevent the electrolyte solution from coming into contact with the terminal lead hole of the sealing body.

特開2004−193508号公報JP 2004-193508 A 特許第3405003号Japanese Patent No. 3405003

電気二重層キャパシタでは、高温環境下や高湿環境下で電圧を印加した場合、例えばもともと電気二重層キャパシタ内に存在している微量の水分や、外部から封口体に浸透して電気二重層キャパシタの内部に浸入する水分や、外部からタブ端子と封口体の間を通って浸入する可能性がある水分などの電気分解により、負極側タブ端子近傍の電解液がアルカリ化して、封口体を劣化させたりタブ端子を浸食したりすることに起因する電解液の液漏れが発生するという問題がある。   In an electric double layer capacitor, when a voltage is applied in a high-temperature environment or a high-humidity environment, for example, a small amount of moisture originally present in the electric double layer capacitor or the electric double layer capacitor penetrates into the sealing body from the outside. Electrolysis of moisture that enters the inside of the battery or moisture that may enter from between the tab terminal and the sealing body from the outside causes the electrolyte near the negative electrode side tab terminal to become alkaline and deteriorate the sealing body. There is a problem in that electrolyte leakage occurs due to erosion or erosion of the tab terminal.

特許文献2に記載されているように、封口体を貫通しているタブ端子の貫通部と、封口体の端子引き出し孔との間に電気絶縁性樹脂を形成することにより、液漏れを抑制することができる。しかし、電気二重層キャパシタの信頼性をさらに高めるために、封口体やタブ端子の劣化を防止する効果のさらなる向上が求められている。   As described in Patent Document 2, liquid leakage is suppressed by forming an electrically insulating resin between the penetrating portion of the tab terminal penetrating the sealing body and the terminal lead hole of the sealing body. be able to. However, in order to further improve the reliability of the electric double layer capacitor, further improvement in the effect of preventing the deterioration of the sealing body and the tab terminal is required.

一方、電気二重層キャパシタのタブ端子の平坦部の表面全体に電気絶縁性樹脂を形成した場合、タブ端子と電極体との接触抵抗が大きくなることにより電気二重層キャパシタの内部抵抗が大きくなってしまうという問題がある。   On the other hand, when an electrically insulating resin is formed on the entire surface of the flat portion of the tab terminal of the electric double layer capacitor, the internal resistance of the electric double layer capacitor is increased due to an increase in contact resistance between the tab terminal and the electrode body. There is a problem of end.

本発明は上記のような事情に鑑みてなされたもので、タブ端子と電解液との電気的な接触を最小限にすることにより、封口体の端子引出し孔やタブ端子の貫通部の近傍における、電解液のアルカリ化を防ぐとともに、タブ端子と電極体との接触抵抗を増加させない電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and by minimizing the electrical contact between the tab terminal and the electrolyte, in the vicinity of the terminal lead hole of the sealing body and the penetrating portion of the tab terminal. An object of the present invention is to provide an electric double layer capacitor that prevents alkalinization of the electrolyte and does not increase the contact resistance between the tab terminal and the electrode body.

請求項1に記載の発明では、各々が集電体と分極性電極層とからなる一対の電極体を、セパレータを介して巻回し、電解液を含浸させたキャパシタ素子と、前記キャパシタ素子を収納する有底筒状金属ケースと、前記金属ケースの開口部を封口する封口体と、前記一対の電極体のそれぞれと接合され、前記封口体の端子引出し孔を通って、封口体の外側に延伸するタブ端子と、を有する電気二重層キャパシタであって、前記タブ端子は、前記封口体を貫通する貫通部と、前記電極体との接合部を有する平坦部と、を備え、前記貫通部の表面、および前記電極体との接合部を除く前記平坦部の表面に、絶縁層が形成されている電気二重層キャパシタを提供する。   In the first aspect of the present invention, a capacitor element in which a pair of electrode bodies each composed of a current collector and a polarizable electrode layer are wound through a separator and impregnated with an electrolytic solution, and the capacitor element is accommodated A bottomed cylindrical metal case, a sealing body that seals the opening of the metal case, and each of the pair of electrode bodies, and is extended to the outside of the sealing body through a terminal lead hole of the sealing body An electric double layer capacitor having a tab terminal, wherein the tab terminal includes a penetrating portion that penetrates the sealing body, and a flat portion having a joint portion with the electrode body. Provided is an electric double layer capacitor in which an insulating layer is formed on a surface and a surface of the flat portion excluding a joint portion with the electrode body.

本発明によれば、電気二重層キャパシタに電圧を印加しても、タブ端子近傍の電解液のアルカリ化を防ぎ、電解液のアルカリ化に起因するタブ端子や封口体ゴムの劣化を防止し、信頼性の高い電気二重層キャパシタが提供される。   According to the present invention, even when a voltage is applied to the electric double layer capacitor, the alkaline solution of the electrolyte near the tab terminal is prevented, the deterioration of the tab terminal and the sealing body rubber due to the alkaline solution is prevented, A highly reliable electric double layer capacitor is provided.

第1の実施形態に係る電気二重層キャパシタの構成を示す断面図である。It is sectional drawing which shows the structure of the electrical double layer capacitor which concerns on 1st Embodiment. タブ端子および電極体を、タブ端子を接合している側から見た図(a)と、それとは反対側から見た図(b)を示す。The figure (a) which looked at the tab terminal and the electrode body from the side which joined the tab terminal, and the figure (b) seen from the opposite side are shown. タブ端子と電極体との接合部を示す断面図である。It is sectional drawing which shows the junction part of a tab terminal and an electrode body. タブ端子の表面で、絶縁層が形成されない除外部の例を示す図である。It is a figure which shows the example of the exclusion part by which the insulating layer is not formed in the surface of a tab terminal. 第2の実施形態に係る電気二重層キャパシタの構成を示す図である。It is a figure which shows the structure of the electrical double layer capacitor which concerns on 2nd Embodiment. 第2の実施形態の変形例の電気二重層キャパシタの構成を示す図である。It is a figure which shows the structure of the electric double layer capacitor of the modification of 2nd Embodiment. 液漏れ評価試験の結果を示すデータである。It is data which shows the result of a liquid leak evaluation test.

本発明に係る電気二重層キャパシタの好適な実施の形態について、図1から図7までの図を参照して説明する。
(1)実施形態の概要
A preferred embodiment of an electric double layer capacitor according to the present invention will be described with reference to FIGS. 1 to 7.
(1) Outline of the embodiment

電気二重層キャパシタは、一対の電極体23を有するキャパシタ素子と、前記キャパシタ素子を収納する有底筒状金属ケースと、前記金属ケースの開口部を封口する封口体と、前記一対の電極体23のそれぞれと接合され、前記封口体の端子引出し孔を通って、封口体の外側に延伸するタブ端子10と、を有し、前記タブ端子10は、前記封口体を貫通する貫通部12と、前記電極体23との接合部14を有する平坦部13と、を備え、前記貫通部12の表面、および前記電極体23との接合部14を除く前記平坦部13の表面に絶縁層15を形成することにより、負極タブ端子近傍の電解液のアルカリ化を防ぐとともに、タブ端子10と電極体23との接触抵抗を低減する。
(2)実施形態の詳細
(第1の実施形態)
The electric double layer capacitor includes a capacitor element having a pair of electrode bodies 23, a bottomed cylindrical metal case that houses the capacitor elements, a sealing body that seals an opening of the metal case, and the pair of electrode bodies 23. A tab terminal 10 that extends through the terminal lead hole of the sealing body and extends to the outside of the sealing body, and the tab terminal 10 has a through-hole 12 that penetrates the sealing body, A flat portion 13 having a joint portion 14 with the electrode body 23, and an insulating layer 15 is formed on the surface of the through portion 12 and on the surface of the flat portion 13 excluding the joint portion 14 with the electrode body 23. By doing so, the alkaline solution of the electrolyte solution in the vicinity of the negative electrode tab terminal is prevented, and the contact resistance between the tab terminal 10 and the electrode body 23 is reduced.
(2) Details of the embodiment (first embodiment)

図1は、第1の実施形態に係る電気二重層キャパシタ1の構成を示す断面図である。電気二重層キャパシタ1は、タブ端子10a、10b、キャパシタ素子20、封口体30、および金属ケース40などを備える。電解液を含浸されたキャパシタ素子20は、アルミニウムからなる有底円筒状の金属ケース40に収められている。金属ケース40の開口部は、弾性ゴムからなる封口体30を、横絞り部41および上絞り部42から押圧変形させることによって封止されている。   FIG. 1 is a cross-sectional view showing the configuration of the electric double layer capacitor 1 according to the first embodiment. The electric double layer capacitor 1 includes tab terminals 10a and 10b, a capacitor element 20, a sealing body 30, a metal case 40, and the like. The capacitor element 20 impregnated with the electrolytic solution is housed in a bottomed cylindrical metal case 40 made of aluminum. The opening part of the metal case 40 is sealed by pressing and deforming the sealing body 30 made of elastic rubber from the lateral diaphragm part 41 and the upper diaphragm part 42.

正極タブ端子10aおよび負極タブ端子10bはそれぞれ、その一端がキャパシタ素子20の正極および負極と接合している。端子引出し孔31は、封口体30に設けられた貫通孔である。タブ端子10a、10bは、端子引出し孔31を通って、その他端が電気二重層キャパシタ1の外部に延伸している。タブ端子10a、10bは、キャパシタ素子20の正極および負極を外部回路に接続する端子である。   One end of each of the positive electrode tab terminal 10 a and the negative electrode tab terminal 10 b is joined to the positive electrode and the negative electrode of the capacitor element 20. The terminal lead hole 31 is a through hole provided in the sealing body 30. The tab terminals 10 a and 10 b pass through the terminal lead hole 31, and the other end extends to the outside of the electric double layer capacitor 1. The tab terminals 10a and 10b are terminals that connect the positive electrode and the negative electrode of the capacitor element 20 to an external circuit.

絶縁層15は、タブ端子10a、10bの一部である貫通部12と端子引出し孔31の内側面との間、および、キャパシタ素子20と接合されたタブ端子10a、10bの表面、に形成された絶縁層15を示す。キャパシタ素子20と接合されたタブ端子10a、10bに形成される絶縁層15について、図2〜4を用いて後程詳しく説明する。   The insulating layer 15 is formed between the penetrating portion 12 which is a part of the tab terminals 10a and 10b and the inner surface of the terminal lead hole 31 and on the surface of the tab terminals 10a and 10b joined to the capacitor element 20. An insulating layer 15 is shown. The insulating layer 15 formed on the tab terminals 10a and 10b joined to the capacitor element 20 will be described in detail later with reference to FIGS.

これらの絶縁層15は、例えば以下の目的のために形成される。即ち、タブ端子10a、10bと端子引出し孔31との間の隙間を埋めて、タブ端子10a、10bと封口体30との間の密着性を高めること、キャパシタ素子20の製造過程において、キャパシタ素子20に電解液を含浸させても、タブ端子10a、10bに電解液を付着しにくくすること、外部からの水分がタブ端子10a、10bを伝わって浸入するのを防ぐこと、などの目的である。   These insulating layers 15 are formed for the following purposes, for example. That is, the gap between the tab terminals 10a, 10b and the terminal lead-out hole 31 is filled to improve the adhesion between the tab terminals 10a, 10b and the sealing body 30, and in the process of manufacturing the capacitor element 20, the capacitor element The purpose is to make it difficult for the electrolytic solution to adhere to the tab terminals 10a and 10b even when the electrolytic solution is impregnated into the tab 20, and to prevent moisture from the outside from entering the tab terminals 10a and 10b. .

絶縁層15は、電気二重層キャパシタ1に用いられる電解液に不溶であり、かつ、タブ端子10と電解液とを電気的に絶縁する層である。タブ端子10の表面を絶縁性樹脂で被覆して絶縁層15を形成する場合には、絶縁性樹脂15は、例えば、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂などを用いる。また、絶縁層15は、絶縁性樹脂以外に、電解液に不溶であり、かつ、電気絶縁性を有するセラミック薄膜、電気絶縁性を有する酸化膜などから形成されていてもよい。   The insulating layer 15 is a layer that is insoluble in the electrolytic solution used in the electric double layer capacitor 1 and electrically insulates the tab terminal 10 from the electrolytic solution. When the insulating layer 15 is formed by covering the surface of the tab terminal 10 with an insulating resin, the insulating resin 15 is made of, for example, an epoxy resin, a polyamide resin, a polyimide resin, a polyethylene resin, a polypropylene resin, or a fluorine resin. Use. In addition to the insulating resin, the insulating layer 15 may be formed of a ceramic thin film, an electrically insulating oxide film, or the like that is insoluble in the electrolytic solution and has an electrical insulating property.

例えば絶縁層15を絶縁性樹脂で形成した場合は、絶縁層15の厚さは次のとおりであることが好ましい。絶縁層15は、その厚さが薄いほど端子引出し孔31への挿通が容易となる。一方、その厚さが薄すぎると、本発明の十分な効果が得られなくなってしまう場合がある。そこで、例えば、絶縁層15の厚さを0.1μm以上にする。絶縁層15の厚さは、好ましくは1μm以上であり、より好ましくは3μm以上である。
さらに、絶縁層15は、その厚さが厚いほど強度が高くなる。一方、その厚さが厚すぎると、端子引出し孔31への挿通の容易性が低下してしまうことがある。そこで、例えば、絶縁層15の厚さを500μm以下にする。絶縁層15の厚さは、好ましくは100μm以下であり、より好ましくは50μm以下である。
For example, when the insulating layer 15 is formed of an insulating resin, the thickness of the insulating layer 15 is preferably as follows. The thinner the insulating layer 15 is, the easier the insertion into the terminal lead hole 31 becomes. On the other hand, if the thickness is too thin, sufficient effects of the present invention may not be obtained. Therefore, for example, the thickness of the insulating layer 15 is set to 0.1 μm or more. The thickness of the insulating layer 15 is preferably 1 μm or more, more preferably 3 μm or more.
Further, the strength of the insulating layer 15 increases as the thickness thereof increases. On the other hand, if the thickness is too thick, the ease of insertion into the terminal lead hole 31 may be reduced. Therefore, for example, the thickness of the insulating layer 15 is set to 500 μm or less. The thickness of the insulating layer 15 is preferably 100 μm or less, more preferably 50 μm or less.

封口体30は、電解液に対する耐薬品性および電気絶縁性を有するとともに、所定の可撓性を有する物質から構成される。封口体30は、例えば、ブチルゴム、エチレンプロピレンゴムなどを材料にして構成される。   The sealing body 30 is made of a substance having a predetermined flexibility as well as chemical resistance and electrical insulation with respect to the electrolytic solution. The sealing body 30 is made of, for example, butyl rubber, ethylene propylene rubber, or the like.

図2は、キャパシタ素子20の電極体23を、タブ端子10を接合している側から見た図(a)と、それとは反対側から見た図(b)を示す。電気二重層キャパシタ1におけるキャパシタ素子20の電極体23は、正極および負極の両方ともに、アルミニウム箔からなる集電体21と、集電体21のアルミニウム箔の表面に形成された炭素含有多孔質材料(活性炭材料)からなる分極性電極層22とから構成される。キャパシタ素子20は、正極側の分極性電極層22と負極側の分極性電極層22とをセパレータを介して対向させた状態で巻回したものに電解液を含浸させて形成する。   FIG. 2 shows a view (a) of the electrode body 23 of the capacitor element 20 as viewed from the side where the tab terminal 10 is joined, and a view (b) as viewed from the opposite side. The electrode body 23 of the capacitor element 20 in the electric double layer capacitor 1 includes a current collector 21 made of aluminum foil for both the positive electrode and the negative electrode, and a carbon-containing porous material formed on the surface of the aluminum foil of the current collector 21. It is comprised from the polarizable electrode layer 22 which consists of (activated carbon material). The capacitor element 20 is formed by impregnating an electrolytic solution in a state in which a polarizable electrode layer 22 on the positive electrode side and a polarizable electrode layer 22 on the negative electrode side are opposed to each other with a separator interposed therebetween.

電解液は、例えば、第四級アンモニウム塩、アミジン塩などからなる電解質を、所定の溶媒に溶解させた電解液を用いる。第四級アンモニウム塩のカチオンは、例えば、トリエチルメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、5−アゾニアスピロ[4.4]ノナンカチオンなどのうちのいずれか1つまたはこれら複数のカチオンの組み合わせを用いる。アミジン塩のカチオンは、例えば、1,2,3,4−テトラメチルイミダゾリニウムカチオン、1−エチル−2,3−ジメチルイミダゾリニウムカチオン、1−エチル−3−メチルイミダゾリウムカチオン、1−エチル−2,3−ジメチルイミダゾリウムカチオンなどのうちのいずれか1つまたはこれら複数のカチオンの組み合わせを用いる。   As the electrolytic solution, for example, an electrolytic solution in which an electrolyte composed of a quaternary ammonium salt, an amidine salt, or the like is dissolved in a predetermined solvent is used. The cation of the quaternary ammonium salt is, for example, any one of triethylmethylammonium cation, ethyltrimethylammonium cation, diethyldimethylammonium cation, tetraethylammonium cation, 5-azoniaspiro [4.4] nonane cation, or the like. A combination of multiple cations is used. Examples of the cation of the amidine salt include 1,2,3,4-tetramethylimidazolinium cation, 1-ethyl-2,3-dimethylimidazolinium cation, 1-ethyl-3-methylimidazolium cation, 1- Any one of ethyl-2,3-dimethylimidazolium cation or the like or a combination of a plurality of these cations is used.

電解質中のアニオンは、例えば、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオンなどのうちのいずれか1つまたはこれら複数のアニオンの組み合わせを用いる。電解質を溶解させる溶媒は、例えば、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、γ‐ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホランなどのうちのいずれか1つまたはこれらの組み合わせを用いる。   As the anion in the electrolyte, for example, any one of tetrafluoroborate anion, hexafluorophosphate anion, or a combination of these anions is used. As the solvent for dissolving the electrolyte, for example, any one of acetonitrile, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, or a combination thereof is used.

キャパシタ素子20の正極および負極は、ともに集電体21と分極性電極層22とから構成される電極体23を有し、それぞれ略同じ形状を有するタブ端子10a及び10bに接合されている。以下の明細書では、正極側電極体23と接合している正極タブ端子10aと、負極側電極体23と接合している負極タブ端子10bとを区別せずに、タブ端子10として説明する。   Both the positive electrode and the negative electrode of the capacitor element 20 have an electrode body 23 composed of a current collector 21 and a polarizable electrode layer 22, and are joined to tab terminals 10a and 10b having substantially the same shape. In the following description, the tab terminal 10 will be described without distinguishing between the positive electrode tab terminal 10 a bonded to the positive electrode body 23 and the negative electrode tab terminal 10 b bonded to the negative electrode body 23.

タブ端子10は、アルミニウムからなる貫通部12と、貫通部12に溶接された引出し線11と、貫通部12を扁平に加工した平坦部13とから構成される。平坦部13は、その一部がキャパシタ素子20の電極体23に接合される。貫通部12は、封口体30の端子引出し孔31を貫通する部分である。引出し線11は、例えば銅被覆鋼線のCP線からなる導線である。引出し線11の表面は、半田メッキや錫メッキが施されていても良い。   The tab terminal 10 includes a through portion 12 made of aluminum, a lead wire 11 welded to the through portion 12, and a flat portion 13 obtained by processing the through portion 12 into a flat shape. A part of the flat portion 13 is joined to the electrode body 23 of the capacitor element 20. The through portion 12 is a portion that penetrates the terminal lead hole 31 of the sealing body 30. The lead wire 11 is a conducting wire made of a CP-coated copper wire, for example. The surface of the lead wire 11 may be subjected to solder plating or tin plating.

尚、図2において、引出し線11と貫通部12が溶接されている形態としたが、これに限定されるものではない。例えば、引出し線11と貫通部12が圧着されていてもよく、一体物として鋳造されていてもよく、一つの金属体より切削加工されていてもよい。また、引出し線11は銅被覆鋼線のCP線等からなる導線に限定されるものではない。例えば、引出し線11がネジ端子形の金属端子であってもよい。また、図2において、平坦部13は貫通部12を扁平に加工した形態としたが、これに限定されるものではない。例えば、帯状の金属部材からなる平坦部13が貫通部12に溶接されていてもよい。   In FIG. 2, the lead wire 11 and the penetrating portion 12 are welded. However, the present invention is not limited to this. For example, the lead wire 11 and the penetration part 12 may be pressure-bonded, may be cast as an integral object, or may be cut from one metal body. Moreover, the lead wire 11 is not limited to the conducting wire which consists of CP wire etc. of a copper covering steel wire. For example, the lead wire 11 may be a screw terminal type metal terminal. In FIG. 2, the flat portion 13 has a shape in which the penetrating portion 12 is processed into a flat shape, but is not limited thereto. For example, the flat portion 13 made of a strip-shaped metal member may be welded to the through portion 12.

絶縁層15は、タブ端子10の貫通部12だけでなく、平坦部13の表面を覆うように形成される。但し、後に示すように、タブ端子10と電極体23との間の接触抵抗を下げて、両者の間に良好な導電性を得るために、平坦部13の表面の一部には、絶縁層15を形成しない。即ち、平坦部13の表面であって、平坦部13と電極体23との接合部14、または接合部14を含む所定の範囲には、絶縁層15を形成しない。図2の例は、平坦部13において、貫通部12に近い、図の上部側の、平坦部13の長さの3分の1から2分の1までの部分には絶縁層15を形成しているが、貫通部12から遠い、図の下部側の、平坦部13の長さの3分の2から2分の1までの部分には、絶縁層15を形成しない例を示している。   The insulating layer 15 is formed so as to cover not only the through portion 12 of the tab terminal 10 but also the surface of the flat portion 13. However, as will be shown later, in order to reduce the contact resistance between the tab terminal 10 and the electrode body 23 and to obtain good conductivity therebetween, an insulating layer is formed on a part of the surface of the flat portion 13. 15 is not formed. That is, the insulating layer 15 is not formed on the surface of the flat portion 13 and in a predetermined range including the bonding portion 14 between the flat portion 13 and the electrode body 23 or the bonding portion 14. In the example of FIG. 2, the insulating layer 15 is formed on the flat portion 13 in the portion from one third to one half of the length of the flat portion 13 on the upper side of the drawing near the penetrating portion 12. However, an example is shown in which the insulating layer 15 is not formed in a portion from the two-thirds to one-half of the length of the flat portion 13 on the lower side of the drawing, which is far from the penetration portion 12.

平坦部13の絶縁層15を形成する範囲は、平坦部13の表面を電解液に接触させないという目的のためには、平坦部13の表面全体に絶縁層15を形成することが最良であるが、平坦部13と電極体23との導電性を維持しながら絶縁層15を形成する工程を効率化するために、ある程度の範囲で絶縁層15の形成範囲を選択することが可能である。その場合、例えば、電極体23との接合部14だけを除いた平坦部13の表面に絶縁層15を形成する加工方法や、巻回されたキャパシタ素子20の電極体23から、平坦部13が封口体30方向に突き出ている範囲(即ち、図2(a)において、集電体21の上辺212より貫通部12側に平坦部13が突き出ている範囲)の平坦部13の表面に絶縁層15を形成する加工方法でもよい。   For the purpose of preventing the surface of the flat portion 13 from contacting the electrolytic solution, it is best to form the insulating layer 15 on the entire surface of the flat portion 13 in order to form the insulating layer 15 of the flat portion 13. In order to improve the efficiency of the process of forming the insulating layer 15 while maintaining the conductivity between the flat portion 13 and the electrode body 23, the formation range of the insulating layer 15 can be selected within a certain range. In that case, for example, the flat portion 13 is formed from the processing method of forming the insulating layer 15 on the surface of the flat portion 13 except for the joint portion 14 with the electrode body 23 or the electrode body 23 of the wound capacitor element 20. An insulating layer is formed on the surface of the flat portion 13 in the range protruding in the direction of the sealing body 30 (that is, the range in which the flat portion 13 protrudes from the upper side 212 of the current collector 21 toward the penetrating portion 12 in FIG. 2A). 15 may be used.

タブ端子10の平坦部13とキャパシタ素子20の電極体23との接合部14は、カシメやコールドウェルド法、超音波法などによって形成される。例えば、カシメの場合、接合部14は、電極体23を構成する集電体21のアルミニウム箔に平坦部13を重ねたあと、平坦部13の表面側から(図2(a)の紙面表側から)針を突き刺して、平坦部13と電極体23のアルミニウム箔とを一緒に分極性電極層22側(図2(b)の紙面表側)に突き出して形成される。接合部14は、分極性電極層22側に突き出された先端部分を押し広げながら、平坦部13および電極体23のアルミニウム箔とともに、図2の紙面に垂直な方向から、挟んで押しつぶすように力を加えて接合される。図2は、3カ所に針孔が残るカシメによって接合されている例を示す。接合部14は、平坦部13と電極体23とが固着され、両者の間の接触抵抗が十分に小さくなるように形成される。   The joint 14 between the flat portion 13 of the tab terminal 10 and the electrode body 23 of the capacitor element 20 is formed by caulking, a cold weld method, an ultrasonic method, or the like. For example, in the case of caulking, the joining portion 14 is formed by superposing the flat portion 13 on the aluminum foil of the current collector 21 constituting the electrode body 23, and then from the surface side of the flat portion 13 (from the front side of the paper surface of FIG. 2A). ) A needle is pierced, and the flat portion 13 and the aluminum foil of the electrode body 23 are protruded together to the polarizable electrode layer 22 side (the front side of the drawing in FIG. 2B). The joining portion 14 has a force so as to sandwich and crush it together with the aluminum foil of the flat portion 13 and the electrode body 23 from the direction perpendicular to the paper surface of FIG. 2 while expanding the tip portion projected to the polarizable electrode layer 22 side. To be joined. FIG. 2 shows an example in which the needle holes are joined by caulking in which needle holes remain in three places. The joint portion 14 is formed such that the flat portion 13 and the electrode body 23 are fixed to each other, and the contact resistance therebetween is sufficiently reduced.

以上のような構成を有する電気二重層キャパシタ1に電荷を蓄積するときには、正極側タブ端子10aと負極側タブ端子10bとの間に、例えば略2.5Vの充電電圧を印加する。タブ端子10に接続されたキャパシタ素子20の正極側および負極側の電極体23はそれぞれ、溶媒に溶解された電解質のアニオンおよびカチオンを引き寄せる。引き寄せられたこれら電解質イオンは、正極側および負極側ともに、多孔質の分極性電極層22の表面のごく近傍に、分極向きを略一致させて集まる。分極性電極層22と電解質イオンとの距離が近いこと、および、活性化炭素からなる分極性電極層22の表面面積が大きいことなどによって、電気二重層キャパシタ1は、大きな静電容量を有するキャパシタとなる。   When electric charge is accumulated in the electric double layer capacitor 1 having the above configuration, a charging voltage of, for example, approximately 2.5 V is applied between the positive side tab terminal 10a and the negative side tab terminal 10b. The electrode bodies 23 on the positive electrode side and the negative electrode side of the capacitor element 20 connected to the tab terminal 10 attract the anions and cations of the electrolyte dissolved in the solvent, respectively. These attracted electrolyte ions gather on the positive electrode side and the negative electrode side in the very vicinity of the surface of the porous polarizable electrode layer 22 with their polarization directions substantially matched. The electric double layer capacitor 1 is a capacitor having a large capacitance due to the short distance between the polarizable electrode layer 22 and the electrolyte ions and the large surface area of the polarizable electrode layer 22 made of activated carbon. It becomes.

従来の電気二重層キャパシタは、電解液中の水分に係る以下の課題を有する。従来の電気二重層キャパシタに電圧が印加されて、タブ端子10や電極体23の電圧が水の電気分解電圧以上になると、電解液に含まれる水分が電気分解されて、水酸化物イオンOHが発生する。発生した水酸化物イオンOHは、負極側タブ端子10の近傍の電解液をアルカリ化する。この電解液はタブ端子10を構成するアルミニウムを浸食したり、封口体30のゴムを劣化させたりする可能性があり、液漏れの原因となる。 The conventional electric double layer capacitor has the following problems related to moisture in the electrolyte. When a voltage is applied to the conventional electric double layer capacitor and the voltage of the tab terminal 10 or the electrode body 23 becomes equal to or higher than the water electrolysis voltage, the water contained in the electrolytic solution is electrolyzed, and hydroxide ions OH Will occur. The generated hydroxide ion OH alkalizes the electrolyte near the negative electrode side tab terminal 10. This electrolytic solution may corrode aluminum constituting the tab terminal 10 or deteriorate the rubber of the sealing body 30, which causes liquid leakage.

一方、本実施形態の電気二重層キャパシタ1の場合、タブ端子10は、貫通部12だけでなく、貫通部12に近い平坦部13の範囲が、絶縁層15で覆われている。表面が絶縁層15で覆われているため、電気二重層キャパシタ1に電圧が印加されて、タブ端子10の電圧が水の電気分解電圧以上になったとしても、貫通部12および、貫通部12に近い平坦部13の近傍において水酸化物イオンOHの発生が抑制される。即ち、本実施形態は、電解液の漏出原因の一つである電解液のアルカリ化を防ぐことができる。 On the other hand, in the case of the electric double layer capacitor 1 of the present embodiment, the tab terminal 10 is covered with the insulating layer 15 in the range of the flat portion 13 close to the through portion 12 as well as the through portion 12. Since the surface is covered with the insulating layer 15, even if a voltage is applied to the electric double layer capacitor 1 and the voltage of the tab terminal 10 becomes equal to or higher than the electrolysis voltage of water, the through portion 12 and the through portion 12 The generation of hydroxide ions OH is suppressed in the vicinity of the flat portion 13 close to. That is, this embodiment can prevent the alkalinization of the electrolytic solution, which is one of the causes of leakage of the electrolytic solution.

尚、電解液のアルカリ化に起因する端子引出し孔31まわりのゴムの劣化やタブ端子10への浸食を防ぐには、少なくとも、負極側タブ端子10の貫通部12および貫通部12に近い平坦部13の表面に絶縁層15を形成すればよい。図2の場合、貫通部12から離れた、例えば平坦部13の下部3分の2程度の範囲の平坦部13は、絶縁層15で覆われていないため、この範囲の平坦部13の近傍では電解液のアルカリ化は起こり得る。しかし、貫通部12から離れた平坦部13の近傍で電解液がアルカリ化しても、水酸化物イオンOHは、貫通部12や封口体30の端子引出し孔31に達するまでには電解液中で拡散して、水酸化物イオンOHの濃度が低下する。そのため、貫通部12から離れた平坦部13の近傍で電解液のアルカリ化が起こっても、封口体30の端子引出し孔31まわりにおけるゴムの劣化や、タブ端子10の貫通部12に対する浸食は、ほとんど発生しない。 In order to prevent the deterioration of the rubber around the terminal lead hole 31 and the erosion to the tab terminal 10 due to the alkalinization of the electrolytic solution, at least the through part 12 of the negative electrode side tab terminal 10 and the flat part close to the through part 12 The insulating layer 15 may be formed on the surface 13. In the case of FIG. 2, the flat part 13 in the range of, for example, about two-thirds of the lower part of the flat part 13 away from the penetrating part 12 is not covered with the insulating layer 15, so in the vicinity of the flat part 13 in this range. Alkalineization of the electrolyte can occur. However, even if the electrolytic solution is alkalized in the vicinity of the flat portion 13 away from the penetration portion 12, the hydroxide ions OH are present in the electrolytic solution before reaching the penetration portion 12 or the terminal extraction hole 31 of the sealing body 30. And the concentration of hydroxide ions OH decreases. Therefore, even if the alkalinization of the electrolyte occurs in the vicinity of the flat part 13 away from the penetration part 12, the deterioration of the rubber around the terminal lead hole 31 of the sealing body 30 and the erosion of the tab terminal 10 on the penetration part 12 are caused by It hardly occurs.

更に、従来から、封口体30の端子引出し孔31とタブ端子10の貫通部12との隙間に絶縁層15を形成する技術が存在する。この従来技術は、電解液のアルカリ化そのものを防ぐのではなく、端子引出し孔31の隙間に形成した絶縁層15によって、アルカリ化した電解液が端子引出し孔31や貫通部12などに接触するのを抑制しようとするものである。これに対して本実施形態は、貫通部12の表面だけでなく、平坦部13の表面にも絶縁層15を形成することにより、貫通部12や端子引出し孔31の近傍における電解液のアルカリ化そのものを抑制して、封口体30の劣化や貫通部12の腐食を防ぐものであり、電解液の漏出原因に対して、より根本的に対処するものである。   Further, conventionally, there is a technique for forming the insulating layer 15 in the gap between the terminal lead hole 31 of the sealing body 30 and the through portion 12 of the tab terminal 10. In this prior art, the alkalinization of the electrolytic solution itself is not prevented, but the alkaline electrolyte is brought into contact with the terminal lead hole 31 and the through-hole 12 by the insulating layer 15 formed in the gap between the terminal lead holes 31. It is intended to suppress. In contrast, in the present embodiment, the insulating layer 15 is formed not only on the surface of the penetrating part 12 but also on the surface of the flat part 13, thereby alkalizing the electrolyte near the penetrating part 12 and the terminal lead hole 31. This suppresses the deterioration of the sealing body 30 and the corrosion of the penetrating portion 12, and more fundamentally copes with the cause of leakage of the electrolyte.

図3は、図2のAA´断面を示し、タブ端子10の平坦部13とキャパシタ素子20の電極体23との接合部14を示す断面図である。図2の構成要素と同じ部分には、同一の符号を付して、重複した説明を省略する。図3の接合部14は、平坦部13と、集電体21および分極性電極層22からなる電極体23と、をカシメで接合している例を示す。   FIG. 3 is a cross-sectional view showing the AA ′ cross section of FIG. 2 and showing the joint portion 14 between the flat portion 13 of the tab terminal 10 and the electrode body 23 of the capacitor element 20. The same parts as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted. The joining part 14 of FIG. 3 shows an example in which the flat part 13 and the electrode body 23 including the current collector 21 and the polarizable electrode layer 22 are joined by caulking.

カシメは、例えば以下の方法で、平坦部13と電極体23とを接合する。電極体23を構成する集電体21のアルミニウム箔に平坦部13を重ねたあと、平坦部13の表面側から(図3の左側から)針を突き刺して、平坦部13と電極体23のアルミニウム箔とを一緒に、分極性電極層22側(図3の右側)に突き出す。分極性電極層22側に突き出された先端部分を押し広げながら、平坦部13および電極体23のアルミニウム箔に、図3の左右方向から押しつぶすような圧力を加えて、平坦部13と電極体23とを接合させる。   Caulking joins the flat part 13 and the electrode body 23 by the following method, for example. After the flat portion 13 is overlaid on the aluminum foil of the current collector 21 constituting the electrode body 23, a needle is inserted from the surface side of the flat portion 13 (from the left side in FIG. 3), and the aluminum of the flat portion 13 and the electrode body 23. Together with the foil, it protrudes to the polarizable electrode layer 22 side (right side in FIG. 3). While spreading the tip portion protruding toward the polarizable electrode layer 22 side, pressure is applied to the aluminum foil of the flat portion 13 and the electrode body 23 such that the flat portion 13 and the electrode body 23 are crushed from the left and right directions in FIG. And join.

電極体23を構成する集電体21と対向する平坦部13の表面で、接合部14を含む所定の範囲には、絶縁層15をあらかじめ形成しないようにする。図3の除外部16は、絶縁層15を形成していない部分を示している。絶縁層15が付いていないため、接合したとき、平坦部13の表面は、集電体21のアルミニウム箔と直接接触する。接合部14は、平坦部13と電極体23とを力学的に接合するだけでなく、平坦部13と電極体23との間で、低い接触抵抗と十分に高い導電性を有する接合を実現する。   The insulating layer 15 is not formed in advance in a predetermined range including the bonding portion 14 on the surface of the flat portion 13 facing the current collector 21 constituting the electrode body 23. The exclusion portion 16 in FIG. 3 shows a portion where the insulating layer 15 is not formed. Since the insulating layer 15 is not attached, the surface of the flat portion 13 is in direct contact with the aluminum foil of the current collector 21 when bonded. The joint portion 14 not only mechanically joins the flat portion 13 and the electrode body 23 but also realizes a joint having low contact resistance and sufficiently high conductivity between the flat portion 13 and the electrode body 23. .

図4は、図2と同じ接合部14の配置に対して、集電体21と対向するタブ端子10の表面における、絶縁層15を形成しない除外部16の例を示す。図4(a)は、図2と同様な範囲に除外部16が設けられている例を示す。図4(b)は、接合部14を含み、接合部14全体を取り囲むように除外部16が設けられている例を示す。図4(c)は、3か所の針孔位置のそれぞれに対して、例えば縦横の幅が1.5mm程度の除外部16が設けられている例を示す。除外部16の形成方法は、例えば、絶縁層15を樹脂の塗布によって形成する場合、平坦部13の一部である除外部16をあらかじめマスキングして樹脂を塗布し、その後マスキングを外すことによって、除外部16を形成する。   FIG. 4 shows an example of the exclusion portion 16 where the insulating layer 15 is not formed on the surface of the tab terminal 10 facing the current collector 21 with respect to the same arrangement of the joint portion 14 as in FIG. FIG. 4A shows an example in which the exclusion unit 16 is provided in the same range as in FIG. FIG. 4B shows an example in which an exclusion portion 16 is provided so as to include the joint portion 14 and surround the entire joint portion 14. FIG. 4C shows an example in which an exclusion portion 16 having a width of about 1.5 mm is provided for each of the three needle hole positions. For example, when the insulating layer 15 is formed by applying a resin, the exclusion portion 16 is formed by masking the exclusion portion 16 that is a part of the flat portion 13 in advance and applying a resin, and then removing the masking. The exclusion part 16 is formed.

図4(a)、図4(b)および図4(c)はともに、平坦部13と電極体23とを接合した後には、タブ端子10と電極体23との間で、低い接触抵抗と十分に高い導電性を得ることが可能であった。また、除外部16は絶縁層15で覆われていないため、この部分の近傍では電解液のアルカリ化は起こり得る。しかし、除外部16の近傍で生成された水酸化物イオンOHは、貫通部12や封口体30の端子引出し孔31に達するまでには拡散して濃度が下がるため、除外部16の近傍の電解液のアルカリ化は、貫通部12の浸食や端子引出し孔31まわりのゴムの劣化をほとんど引き起こさない。 4 (a), 4 (b) and 4 (c) all show a low contact resistance between the tab terminal 10 and the electrode body 23 after the flat portion 13 and the electrode body 23 are joined. It was possible to obtain sufficiently high conductivity. Moreover, since the exclusion part 16 is not covered with the insulating layer 15, the alkalinization of electrolyte solution can occur in the vicinity of this part. However, the hydroxide ions OH generated in the vicinity of the exclusion portion 16 diffuse and decrease in concentration before reaching the penetration portion 12 or the terminal lead hole 31 of the sealing body 30. The alkalinization of the electrolyte hardly causes erosion of the through portion 12 and deterioration of the rubber around the terminal lead hole 31.

以上によって、本実施形態に係る電気二重層キャパシタ1は、タブ端子10を構成する貫通部12および平坦部13の表面の所定範囲に絶縁層15を形成することによって、電解液のアルカリ化を防ぎ、アルカリ化に起因する端子引出し孔31まわりのゴムの劣化や、貫通部12および平坦部13の浸食を防ぐことができる。さらに、封口体30に近い側の、例えば、平坦部13の長さの3分の1程度の範囲に絶縁層15を形成し、 その他の平坦部13には絶縁層15を形成しない除外部16を設けることによって、平坦部13と電極体23との接触抵抗を十分に低い値に設定することができる。
(第2の実施形態)
As described above, the electric double layer capacitor 1 according to the present embodiment prevents the alkalinization of the electrolytic solution by forming the insulating layer 15 in a predetermined range of the surface of the through portion 12 and the flat portion 13 constituting the tab terminal 10. Further, it is possible to prevent the deterioration of rubber around the terminal lead hole 31 and the erosion of the through portion 12 and the flat portion 13 due to alkalinization. Further, the insulating layer 15 is formed on the side close to the sealing body 30, for example, in the range of about one third of the length of the flat portion 13, and the exclusion portion 16 in which the insulating layer 15 is not formed on the other flat portions 13. By providing this, the contact resistance between the flat portion 13 and the electrode body 23 can be set to a sufficiently low value.
(Second Embodiment)

図5は、第2の実施形態に係る電気二重層キャパシタの構成を示す。また、図6は、第2の実施形態の変形例の電気二重層キャパシタの構成を示す。図5および図6に示す電気二重層キャパシタのタブ端子10は、第1の実施形態と同様に、貫通部12だけではなく、平坦部13の表面も絶縁層15に覆われており、貫通部12の浸食や封口体30の劣化を引き起こす電解液のアルカリ化を防いでいる。   FIG. 5 shows a configuration of the electric double layer capacitor according to the second embodiment. FIG. 6 shows a configuration of an electric double layer capacitor according to a modification of the second embodiment. As in the first embodiment, the tab terminal 10 of the electric double layer capacitor shown in FIGS. 5 and 6 has not only the penetration part 12 but also the surface of the flat part 13 covered with the insulating layer 15. 12 is prevented from being alkalized, which causes erosion of 12 and deterioration of the sealing body 30.

図5および図6に示す電気二重層キャパシタは、封口体30の形状が第1の実施形態に係る電気二重層キャパシタ1とは異なっている。図5(a)は、第2の実施形態に係る電気二重層キャパシタの封口体30を、金属ケース40におさめられているキャパシタ素子20側から見た図である(図1も参照)。封口体30には、封口体30の端子引出し孔31の貫通方向と同じ方向であって、キャパシタ素子20側に突き出た突出部32が付加されている。図5(b)は、突出部32を含む、AA´断面を示す。図5(c)は、突出部32を含む、BB´断面を示す。突出部32の高さ(端子引出し孔31の貫通方向の突出部32の長さ)は例えば0.2mm以上1.5mm以下が望ましい。   The electric double layer capacitor shown in FIGS. 5 and 6 is different from the electric double layer capacitor 1 according to the first embodiment in the shape of the sealing body 30. FIG. 5A is a view of the sealing body 30 of the electric double layer capacitor according to the second embodiment as viewed from the capacitor element 20 side accommodated in the metal case 40 (see also FIG. 1). The sealing body 30 is provided with a protruding portion 32 that protrudes toward the capacitor element 20 in the same direction as the penetration direction of the terminal lead hole 31 of the sealing body 30. FIG. 5B shows an AA ′ cross section including the protrusion 32. FIG. 5C shows a BB ′ cross section including the protrusion 32. The height of the protrusion 32 (the length of the protrusion 32 in the penetrating direction of the terminal lead hole 31) is preferably 0.2 mm or more and 1.5 mm or less, for example.

突出部32は、タブ端子10の貫通部12を挿通する、例えば、丸穴に重ねて、丸穴の直径方向に長手方向を有する細長矩形状の開口部33を備えている(図5(a)参照)。図5(a)の面内方向の矩形開口部33の長さと幅は、タブ端子10の平坦部13の横幅および厚さに対応している。これにより図5(b)及び(c)の断面図と、図5(a)の平面図とから分かるように、タブ端子10を封口体30に挿通すると、矩形開口部33は、タブ端子10の平坦部13を平坦部の厚さ方向から挟み込むように固定する。   The protrusion 32 includes an elongated rectangular opening 33 that passes through the penetrating portion 12 of the tab terminal 10 and has a longitudinal direction in the diameter direction of the round hole, for example (see FIG. 5A )reference). The length and width of the rectangular opening 33 in the in-plane direction of FIG. 5A correspond to the lateral width and thickness of the flat portion 13 of the tab terminal 10. Accordingly, as can be seen from the cross-sectional views of FIGS. 5B and 5C and the plan view of FIG. 5A, when the tab terminal 10 is inserted into the sealing body 30, the rectangular opening 33 is formed into the tab terminal 10. The flat portion 13 is fixed so as to be sandwiched from the thickness direction of the flat portion.

封口体30の突出部32が、このような開口部33を有することによって、少なくとも以下の効果が期待できる。一つの効果は、タブ端子10の平坦部13が開口部33で固定されることによって、貫通部12が、端子引出し孔31の中で中心軸まわりに回転したり、貫通方向に動いたりすることを防ぐ効果である。貫通部12が端子引出し孔31の中で動いてしまう場合、貫通部12の表面に形成された絶縁層15と端子引き出し孔31との間に隙間が発生し、そこから電解液が漏出することがあり得る。貫通部12が封口体30に固定されれば、上記の要因による電解液の漏出を防止できる。   Since the protrusion 32 of the sealing body 30 has such an opening 33, at least the following effects can be expected. One effect is that when the flat portion 13 of the tab terminal 10 is fixed by the opening 33, the through portion 12 rotates around the central axis in the terminal lead hole 31 or moves in the through direction. It is an effect to prevent. When the penetrating part 12 moves in the terminal lead hole 31, a gap is generated between the insulating layer 15 formed on the surface of the penetrating part 12 and the terminal lead hole 31, and the electrolyte leaks from there. There can be. If the penetration part 12 is fixed to the sealing body 30, the leakage of the electrolyte solution due to the above factors can be prevented.

別な効果は、突出部32が、キャパシタ素子20と封口体30との間に存在するため、電解液が含浸されたキャパシタ素子20と封口体30との間の間隔が拡大することによる効果である。この間隔が広がることによって、電解液のせり上がりによる電解液の漏出が発生しにくくなり、また電解液の漏出が発生するまでの時間を延伸させる効果がある。この効果をより確実に得るためには、端子引出し孔31の貫通方向と同じ方向の突出部32の高さは、0.2mm以上が好ましく、0.5mm以上とすることがより好ましい。但し、電気二重層キャパシタの製品サイズ(高さ)が大きくなり商品価値が損なわれることもあるので、突出部32の高さは、1.5mm以下に抑えることが望ましく、1mm以下がより好ましい。   Another effect is that the protrusion 32 is present between the capacitor element 20 and the sealing body 30, so that the distance between the capacitor element 20 impregnated with the electrolyte and the sealing body 30 is increased. is there. By widening this interval, it is difficult for leakage of the electrolyte due to the electrolyte to rise, and there is an effect of extending the time until the leakage of the electrolyte occurs. In order to obtain this effect more reliably, the height of the protruding portion 32 in the same direction as the penetrating direction of the terminal lead hole 31 is preferably 0.2 mm or more, and more preferably 0.5 mm or more. However, since the product size (height) of the electric double layer capacitor is increased and the commercial value may be impaired, the height of the protrusion 32 is preferably 1.5 mm or less, and more preferably 1 mm or less.

図6は、図5に示す第2の実施形態に係る電気二重層キャパシタの変形例を示す。図6(a)は、変形例の封口体30を、キャパシタ素子20側から見た図であり、図6(b)は、突出部32を含む、AA´断面を示し、図6(c)はBB´断面を示す。図6の突出部32は開口部33として、細長矩形状開口33を備えている。矩形開口の長さと幅は、タブ端子10の平坦部13の幅および厚さと略同一である。   FIG. 6 shows a modification of the electric double layer capacitor according to the second embodiment shown in FIG. FIG. 6A is a view of the sealing member 30 of the modification as viewed from the capacitor element 20 side, and FIG. 6B shows a cross-section AA ′ including the protruding portion 32, and FIG. Shows a BB 'cross section. 6 includes an elongated rectangular opening 33 as the opening 33. The length and width of the rectangular opening are substantially the same as the width and thickness of the flat portion 13 of the tab terminal 10.

図6の場合、開口部33は、タブ端子10が貫通部12から平坦部13に移行する部分の外形に合わせて、貫通部12および平坦部13を挟み込む形状を有している。貫通部12を有するタブ端子10を突出部32の開口部33に挿通するには、突出部32が可撓性の素材からできていることを利用して、開口部33を押し広げて、例えば丸棒状の貫通部12を通すことになる。   In the case of FIG. 6, the opening 33 has a shape that sandwiches the through portion 12 and the flat portion 13 in accordance with the outer shape of the portion where the tab terminal 10 transitions from the through portion 12 to the flat portion 13. In order to insert the tab terminal 10 having the penetrating portion 12 into the opening 33 of the protruding portion 32, the opening 33 is expanded by using the fact that the protruding portion 32 is made of a flexible material, for example, The penetrating part 12 having a round bar shape is passed.

尚、図6の例では、図6(a)の面内方向における、開口部33の開口長さおよび開口幅はそれぞれ、タブ端子10の平坦部13の横幅および厚さと略同一であるとしている。これに対して、タブ端子10の貫通部12を開口部33に挿通しやすくするために、開口部33の開口幅は、図6の例より少し大きくしてもよい。開口部33の開口幅は、タブ端子10の貫通部12を挿通させるときに、貫通部12が開口部33を押し広げながら、容易に挿通できる程度の幅に設定してよい。また、開口部33は、貫通部12の挿通向きにテーパー加工を施したり、開口部を細長矩形以外の形状としたりすることによって、貫通部12を通しやすくしてもよい。   In the example of FIG. 6, the opening length and the opening width of the opening 33 in the in-plane direction of FIG. 6A are substantially the same as the lateral width and thickness of the flat portion 13 of the tab terminal 10, respectively. . On the other hand, the opening width of the opening 33 may be made slightly larger than the example of FIG. 6 in order to facilitate the insertion of the penetrating portion 12 of the tab terminal 10 into the opening 33. The opening width of the opening 33 may be set to such a width that the penetration part 12 can be easily inserted while the opening part 33 is expanded when the penetration part 12 of the tab terminal 10 is inserted. In addition, the opening 33 may be easily passed through the through-hole 12 by performing a taper process in the insertion direction of the through-hole 12 or by forming the opening into a shape other than the elongated rectangle.

タブ端子10が封口体30に挿通されると、図6の突出部32は、タブ端子10の貫通部12から平坦部13へ移行している部分の外形全体を挟みこむ状態になり、タブ端子10は、封口体30に強く固定されることになる。また、突出部32は、電解液が含浸されたキャパシタ素子20と封口体30との間の間隔を広げるとともに、タブ端子10の貫通部12から平坦部13への移行部分と突出部32の開口部33との間に絶縁層15を有している(図6(b)、(c)参照)。これらにより、図6に示す変形例は、図5に関連して説明した、封口体30に突出部32を付加することによる効果を、より効果的に実現する。   When the tab terminal 10 is inserted through the sealing body 30, the protruding portion 32 of FIG. 6 is in a state of sandwiching the entire outer shape of the portion of the tab terminal 10 that has transitioned from the through portion 12 to the flat portion 13. 10 is strongly fixed to the sealing body 30. Further, the protrusion 32 widens the gap between the capacitor element 20 impregnated with the electrolyte and the sealing body 30, and the transition portion from the penetrating portion 12 of the tab terminal 10 to the flat portion 13 and the opening of the protrusion 32. The insulating layer 15 is provided between the portion 33 (see FIGS. 6B and 6C). Accordingly, the modification shown in FIG. 6 more effectively realizes the effect obtained by adding the protruding portion 32 to the sealing body 30 described with reference to FIG.

以上によって、図5および図6に示す電気二重層キャパシタは、タブ端子10の表面に絶縁層15を形成することによって電解液のアルカリ化を防止することに加えて、タブ端子10と封口体30とを固定し、封口体30とキャパシタ素子20との間の間隔を拡大して、液漏れをより確実に低減させる電気二重層キャパシタを提供する。
(液漏れ評価試験)
・評価試験の概要
As described above, in the electric double layer capacitor shown in FIGS. 5 and 6, the tab terminal 10 and the sealing body 30 are formed in addition to preventing the alkalinization of the electrolyte by forming the insulating layer 15 on the surface of the tab terminal 10. And an interval between the sealing body 30 and the capacitor element 20 is expanded to provide an electric double layer capacitor that more reliably reduces liquid leakage.
(Leakage evaluation test)
・ Summary of evaluation test

後述の個別仕様に準じて絶縁層が形成されたタブ端子をそれぞれ接合した一対の電極体を、セパレータを介して巻回し、後述の共通仕様に記載の電解液を含浸させたキャパシタ素子を用意する。電解液が含浸されたこのキャパシタ素子を、有底筒状のアルミニウムケースに収納するとともに、アルミニウムケースの開口部を後述の個別仕様に記載の封口体を用いて封止加工する。ここで、タブ端子は、それぞれ封口体の端子引出し孔を通って外側に延伸している。このようにして以下の4種類の電気二重層キャパシタの試料を実際に作製し、高温・高湿条件で使用した時の液漏れ数を評価する。
・試料の共通仕様
A pair of electrode bodies each joined with a tab terminal on which an insulating layer is formed in accordance with individual specifications described later are wound through a separator to prepare a capacitor element impregnated with an electrolytic solution described in the common specifications described later. . The capacitor element impregnated with the electrolytic solution is housed in a bottomed cylindrical aluminum case, and the opening of the aluminum case is sealed using a sealing body described in the individual specification described later. Here, each tab terminal extends outward through the terminal lead hole of the sealing body. In this way, samples of the following four types of electric double layer capacitors are actually produced, and the number of liquid leaks when used under high temperature and high humidity conditions is evaluated.
・ Common sample specifications

定格電圧2.5V、静電容量1Fの電気二重層キャパシタ
電解液;プロピレンカーボネート・・・・・・・・・・・・・・・・ 75質量パーセント
トリエチルメチルアンモニウムテトラフルオロボレート・・ 25質量パーセント
封口体材質;ブチルゴム
絶縁層15を形成する樹脂材料;ポリプロピレン
絶縁層15を形成する樹脂厚さ;10ミクロン
・試料の個別仕様
Electric double layer capacitor with rated voltage 2.5V and capacitance 1F Electrolyte; propylene carbonate 75 mass percent
Triethylmethylammonium tetrafluoroborate 25 mass percent Sealant material; Butyl rubber Resin material that forms insulating layer 15; Polypropylene Thickness that forms insulating layer 15; 10 microns

試料1;タブ端子への樹脂塗布;タブ端子10に、第1の実施形態(図2、3参照)に示す絶縁層15を形成する。具体的には、カシメによる接合部14を覆うように平坦部13(両面)をマスキングした状態で、樹脂材料が分散された溶剤液に、平坦部13側から貫通部12までタブ端子10を浸漬し引き上げる。引き上げた後マスキングを外す。その後熱処理により絶縁層15を形成する。
封口体;突出部32を有しない形状であり、封口体30のタブ端子10貫通方向の厚さは2.6mmである。
試料2;タブ端子への樹脂塗布;試料1と同様に絶縁層15を形成する。
封口体;図5に示す形状であり、高さ0.5mmの突出部32を設ける。突出部32以外の封口体30の厚さは2.6mmである。
試料3;タブ端子への樹脂塗布;試料1と同様に絶縁層15を形成する。
封口体;図6に示す形状であり、高さ0.5mmの突出部32を設ける。突出部32以外の封口体30の厚さは2.6mmである。
試料4;タブ端子への樹脂塗布;タブ端子10の貫通部12のみに絶縁層15を形成する。樹脂材料が分散された溶剤液を貫通部12に塗布し、熱処理して絶縁層15を形成する。
封口体;試料1と同様に突出部32を有しない形状であり、封口体30の厚さは2.6mmである。
・評価試験の条件
Sample 1; Resin application to the tab terminal; On the tab terminal 10, the insulating layer 15 shown in the first embodiment (see FIGS. 2 and 3) is formed. Specifically, the tab terminal 10 is immersed from the flat portion 13 side to the through portion 12 in a solvent solution in which the resin material is dispersed in a state where the flat portion 13 (both sides) is masked so as to cover the joint portion 14 by caulking. Then pull up. Remove the mask after lifting. Thereafter, the insulating layer 15 is formed by heat treatment.
Sealing body; it has a shape having no protrusion 32, and the thickness of the sealing body 30 in the tab terminal 10 penetrating direction is 2.6 mm.
Sample 2; resin application to tab terminal; insulating layer 15 is formed in the same manner as sample 1.
Sealing body: the shape shown in FIG. The thickness of the sealing body 30 other than the protruding portion 32 is 2.6 mm.
Sample 3; resin application to tab terminal; insulating layer 15 is formed in the same manner as sample 1.
Sealing body: It has the shape shown in FIG. The thickness of the sealing body 30 other than the protruding portion 32 is 2.6 mm.
Sample 4; Resin application to tab terminal; Insulating layer 15 is formed only on penetrating portion 12 of tab terminal 10; The solvent liquid in which the resin material is dispersed is applied to the penetrating portion 12 and heat-treated to form the insulating layer 15.
Sealing body: It is a shape which does not have the protrusion part 32 similarly to the sample 1, and the thickness of the sealing body 30 is 2.6 mm.
・ Evaluation test conditions

試料1、試料2、試料3、および試料4のそれぞれ各20個について、温度摂氏60度、湿度95パーセントの条件下で定格電圧2.5Vを印加し、3000時間後の液漏れ発生数を確認する。
・評価試験の結果
For each of Sample 1, Sample 2, Sample 3, and Sample 4, a rated voltage of 2.5 V was applied under conditions of a temperature of 60 degrees Celsius and a humidity of 95 percent, and the number of occurrences of liquid leakage after 3000 hours was confirmed. To do.
・ Result of evaluation test

図7は、評価試験の結果を示す。試料1、試料2、および試料3は、それぞれ20個の試料中に、液漏れを発生したものはなかった。一方、比較例として評価した、貫通部12のみ絶縁層15を形成した試料4は、20個中6個で液漏れを発生した。従って、貫通部12だけでなく、平坦部13にまで絶縁層15を形成している試料1、試料2、および試料3の樹脂塗布(図2、図3に示す絶縁層15の形成)は、電解液の漏出を抑える効果があることが分かった。   FIG. 7 shows the results of the evaluation test. In Sample 1, Sample 2, and Sample 3, none of the 20 samples caused liquid leakage. On the other hand, in Sample 4 in which the insulating layer 15 was formed only in the through portion 12 evaluated as a comparative example, liquid leakage occurred in 6 out of 20 samples. Therefore, the resin application (formation of the insulating layer 15 shown in FIGS. 2 and 3) of the sample 1, the sample 2, and the sample 3 in which the insulating layer 15 is formed not only in the through portion 12 but also on the flat portion 13 is as follows. It was found that there was an effect of suppressing leakage of the electrolyte.

一方、試料2または試料3と、試料1との差は、この評価試験の結果からは検出されなかった。封口体30に突出部32を設けることは、原理的には、貫通部12を封口体30に強く固定し、電解液が含浸されたキャパシタ素子20からの電解液のせり上がりを防止する効果があると考えられる。しかし、この効果に起因する差異は、今回の評価試験では検出されなかった。   On the other hand, the difference between sample 2 or sample 3 and sample 1 was not detected from the result of this evaluation test. Providing the projecting portion 32 on the sealing body 30 has the effect in principle that the penetrating portion 12 is strongly fixed to the sealing body 30 and prevents the electrolyte from rising from the capacitor element 20 impregnated with the electrolyte. It is believed that there is. However, no difference due to this effect was detected in this evaluation test.

1…電気二重層キャパシタ、10…タブ端子、10a…正極タブ端子、10b…負極タブ端子、11…引出し線、12…貫通部、13…平坦部、14…接合部、15…絶縁層、16…除外部、20…キャパシタ素子、21…集電体、22…分極性電極層、23…電極体、30…封口体、31…端子引出し孔、32…突出部、33…開口部、40…金属ケース、41…横絞り部、42…上絞り部   DESCRIPTION OF SYMBOLS 1 ... Electric double layer capacitor, 10 ... Tab terminal, 10a ... Positive electrode tab terminal, 10b ... Negative electrode tab terminal, 11 ... Lead wire, 12 ... Through part, 13 ... Flat part, 14 ... Junction part, 15 ... Insulating layer, 16 DESCRIPTION OF SYMBOLS ... Exclusion part, 20 ... Capacitor element, 21 ... Current collector, 22 ... Polarizable electrode layer, 23 ... Electrode body, 30 ... Sealing body, 31 ... Terminal extraction hole, 32 ... Projection part, 33 ... Opening part, 40 ... Metal case, 41 ... Horizontal aperture, 42 ... Upper aperture

Claims (5)

各々が集電体と分極性電極層とからなる一対の電極体を、セパレータを介して巻回し、電解液を含浸させたキャパシタ素子と、前記キャパシタ素子を収納する有底筒状金属ケースと、前記金属ケースの開口部を封口する封口体と、前記一対の電極体のそれぞれと接合され、前記封口体の端子引出し孔を通って、封口体の外側に延伸するタブ端子と、を有する電気二重層キャパシタであって、前記タブ端子は、前記封口体を貫通する貫通部と、前記電極体との接合部を有する平坦部と、を備え、前記貫通部の表面、および前記電極体との接合部を除く前記平坦部の表面に、絶縁層が形成されている電気二重層キャパシタ。   A capacitor element in which a pair of electrode bodies each consisting of a current collector and a polarizable electrode layer are wound through a separator and impregnated with an electrolyte, a bottomed cylindrical metal case that houses the capacitor element, An electrical two comprising: a sealing body that seals the opening of the metal case; and a tab terminal that is joined to each of the pair of electrode bodies and extends to the outside of the sealing body through a terminal lead-out hole of the sealing body. It is a multilayer capacitor, Comprising: The said tab terminal is equipped with the penetration part which penetrates the said sealing body, and the flat part which has a junction part with the said electrode body, The surface of the said penetration part, and junction with the said electrode body An electric double layer capacitor in which an insulating layer is formed on the surface of the flat portion excluding the portion. 前記タブ端子は、前記封口体を貫通する前記貫通部の表面、および、少なくとも、巻回された前記キャパシタ素子の電極体から封口体方向に突き出ている範囲の前記平坦部の表面に、前記絶縁層が形成されている請求項1に記載の電気二重層キャパシタ。   The tab terminal is formed on the surface of the penetrating portion that penetrates the sealing body, and at least the surface of the flat portion in a range protruding from the wound electrode body of the capacitor element toward the sealing body. The electric double layer capacitor according to claim 1, wherein a layer is formed. 前記封口体は、前記端子引出し孔の貫通方向と同じ方向であって、キャパシタ素子側に突き出た突出部をさらに有し、前記突出部は、前記タブ端子の平坦部を、平坦部の厚さ方向から挟み込む開口部を備える請求項1または請求項2に記載の電気二重層キャパシタ。   The sealing body further includes a protruding portion that protrudes toward the capacitor element in the same direction as the penetrating direction of the terminal lead hole, and the protruding portion includes a flat portion of the tab terminal and a thickness of the flat portion. The electric double layer capacitor according to claim 1, further comprising an opening sandwiched from the direction. 前記封口体の突出部は、前記タブ端子が貫通部から平坦部に移行する部分の外形に合わせて、前記タブ端子の貫通部および平坦部を挟み込む形状の開口部を有する請求項3に記載の電気二重層キャパシタ。   The protrusion part of the said sealing body has an opening part of the shape which pinches | interposes the penetration part and flat part of the said tab terminal according to the external shape of the part which the said tab terminal transfers to a flat part from a penetration part. Electric double layer capacitor. 前記絶縁層は、負極側の前記タブ端子の貫通部および平坦部に形成されていることを特徴とする請求項1から請求項4までのいずれか1項に記載の電気二重層キャパシタ。   The electric double layer capacitor according to any one of claims 1 to 4, wherein the insulating layer is formed in a penetrating portion and a flat portion of the tab terminal on the negative electrode side.
JP2018094830A 2018-05-16 2018-05-16 Electric double layer capacitor Pending JP2019201110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018094830A JP2019201110A (en) 2018-05-16 2018-05-16 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018094830A JP2019201110A (en) 2018-05-16 2018-05-16 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2019201110A true JP2019201110A (en) 2019-11-21

Family

ID=68613249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018094830A Pending JP2019201110A (en) 2018-05-16 2018-05-16 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2019201110A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786101A (en) * 1993-06-30 1995-03-31 Nichicon Corp Electrolytic capacitor
JP2001210551A (en) * 2000-01-27 2001-08-03 Aputodeito:Kk Tab terminal for electrolytic capacitor
JP2002093660A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Capacitor and its manufacturing method
JP2008198837A (en) * 2007-02-14 2008-08-28 Hitachi Aic Inc Aluminum electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786101A (en) * 1993-06-30 1995-03-31 Nichicon Corp Electrolytic capacitor
JP2001210551A (en) * 2000-01-27 2001-08-03 Aputodeito:Kk Tab terminal for electrolytic capacitor
JP2002093660A (en) * 2000-09-19 2002-03-29 Matsushita Electric Ind Co Ltd Capacitor and its manufacturing method
JP2008198837A (en) * 2007-02-14 2008-08-28 Hitachi Aic Inc Aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4699208B2 (en) Capacitor and its connection method
KR100967504B1 (en) Wound electric double-layer capacitor
JP5525904B2 (en) Secondary battery
US9287059B2 (en) Electric storage device and method of manufacture thereof
WO2001024206A1 (en) Capacitor element
US8488301B2 (en) Ultracapacitor package design having slideably engagable bent tabs
JP6529806B2 (en) Secondary battery and assembled battery
US11283140B2 (en) Secondary battery including terminal having first region formed of material with different ionization tendency than material of second region of terminal
US9472798B2 (en) Energy storage device
JPWO2012023434A1 (en) Storage element manufacturing method and storage element
US9263198B2 (en) Electrical storage device
JP7089895B2 (en) Power storage element
JP2019201110A (en) Electric double layer capacitor
JP7098901B2 (en) Secondary battery and its manufacturing method
JPH11243035A (en) Electric double layer capacitor
JP2007335714A (en) Capacitor
JP2011176141A (en) Electrochemical device
KR101310441B1 (en) Electrochemical capacitor
CN104900415B (en) A kind of battery capacitor
JP7214964B2 (en) Capacitor manufacturing method
JP2014082070A (en) Electricity storage device
JP2012059863A (en) Power storage element
JP2008071943A (en) Electric double layer capacitor
WO2020100716A1 (en) Power storage device and power storage pack
JP2020030945A (en) Power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220808