JP2019199477A - Cancer treatment agent - Google Patents

Cancer treatment agent Download PDF

Info

Publication number
JP2019199477A
JP2019199477A JP2019135796A JP2019135796A JP2019199477A JP 2019199477 A JP2019199477 A JP 2019199477A JP 2019135796 A JP2019135796 A JP 2019135796A JP 2019135796 A JP2019135796 A JP 2019135796A JP 2019199477 A JP2019199477 A JP 2019199477A
Authority
JP
Japan
Prior art keywords
cddp
cancer
cells
cafca
cisplatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135796A
Other languages
Japanese (ja)
Other versions
JP6820567B2 (en
Inventor
弘行 土屋
Hiroyuki Tsuchiya
弘行 土屋
章彦 武内
Akihiko Takeuchi
章彦 武内
健作 阿部
Kensaku Abe
健作 阿部
憲男 山本
Norio Yamamoto
憲男 山本
克洋 林
Katsuhiro Hayashi
克洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Publication of JP2019199477A publication Critical patent/JP2019199477A/en
Application granted granted Critical
Publication of JP6820567B2 publication Critical patent/JP6820567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

To provide a cancer treatment agent and a cancer treatment method having stronger therapeutic effects on various types of cancer than those of conventional chemotherapy.SOLUTION: The present inventors have conducted intensive studies to search for an agent that can enhance therapeutic effects of an anticancer agent by combination with an anticancer agent and, as a result, find out that a combination of caffeine citrate and an anticancer agent synergistically improves therapeutic effects of the anticancer agent.SELECTED DRAWING: None

Description

本発明は、有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤と組み合わせたことを特徴とする癌治療剤及び癌治療方法に関する。
本出願は、参照によりここに援用されるところの日本特願2016-203793号及び日本特願2017-061056号の優先権を請求する。
The present invention relates to a cancer therapeutic agent and a cancer treatment method characterized by combining caffeine citrate as an active ingredient with an anticancer agent as an active ingredient.
This application claims the priority of Japanese Patent Application No. 2016-203793 and Japanese Patent Application No. 2017-061056, which are incorporated herein by reference.

(骨肉腫)
骨肉腫は、主に10歳代若年者に好発する原発生悪性骨腫瘍として最も頻度の高いものであるが、発生原因は不明である。日本における発生頻度は100万人に対して1人の発生率(1年間に130人から260人)といわれている。かつて切断術が唯一の治療選択肢であった時代、骨肉腫の2年生存率は15〜20%であり、非常に予後の悪い疾患であった。
しかし、化学療法の導入・進歩や画像診断及び手術療法の発達に伴い、現在では5年生存率が70%以上に向上している(非特許文献1)。本発明者らは、「カフェイン併用化学療法」を開示している。この療法により、初診時に転移のない治療完遂例では、5年生存率は89%と飛躍的に向上したが、依然として予後の改善が不十分であるため、更なる治療効果の向上が必要である(非特許文献2)。また、再発例や初診時より転移を認めている例では、5年生存率は10〜30%であり、これは過去40年間、顕著な改善はされておらず、この点においても更なる治療効果の向上が必要であると考える(非特許文献3)。
(Osteosarcoma)
Osteosarcoma is the most common primary malignant bone tumor that occurs mainly in young people in their 10s, but the cause is unknown. The incidence in Japan is said to be 1 per 1 million (130 to 260 per year). In the days when amputation was the only treatment option, osteosarcoma had a 2 year survival rate of 15-20%, a very poor prognosis.
However, with the introduction / advancement of chemotherapy and the development of diagnostic imaging and surgical therapy, the 5-year survival rate has improved to 70% or more (Non-patent Document 1). The inventors have disclosed “caffeine combination chemotherapy”. This therapy dramatically improved the 5-year survival rate of 89% in patients with no metastasis at the first visit, but the improvement in prognosis is still insufficient. (Non-patent document 2). In patients who have relapsed or metastasized since the first visit, the 5-year survival rate is 10-30%, which has not improved significantly over the past 40 years. I think that the improvement of an effect is required (nonpatent literature 3).

(軟部肉腫)
軟部肉腫は、平滑筋肉腫、線維肉腫、脂肪肉腫、横紋筋肉腫等の様々な分類がある。それぞれが違う性質を有しており、希少性は非常に高い。骨外性Ewing肉腫、横紋筋肉腫を除いた非小円形細胞肉腫において、四肢発生で病期IIIに限ると、手術単独での10年生存率が35%程度と報告されている(非特許文献4)。さらに、高悪性度軟部肉腫進行例に対する化学療法の効果に関しては、奏効率で30〜40%と報告されており、軟部肉腫は骨肉腫と比較して、さらに予後の改善に難渋する疾患である(非特許文献5〜7)。
軟部肉腫の現在の標準的治療方法は、悪性度、腫瘍の種類及び患者の状態にもよるが、術前化学療法と手術(広範切除術)と術後化学療法との組合せを基本とする。前記の化学療法とは、シスプラチン及びドキソルビシン等を使用した多剤併用化学療法である。
先に述べた通り、当該治療方法は、治療効果が十分なものとは言えないが、軟部肉腫の希少性の高さゆえ、新規薬剤の開発が進みにくいといった問題点がある。
(Soft tissue sarcoma)
Soft tissue sarcomas have various classifications such as leiomyosarcoma, fibrosarcoma, liposarcoma, rhabdomyosarcoma, and the like. Each has a different nature, and the rarity is very high. In non-small round cell sarcomas excluding extraosseous Ewing sarcoma and rhabdomyosarcoma, the 10-year survival rate of surgery alone has been reported to be around 35% when the extremity is limited to stage III. Reference 4). Furthermore, regarding the effect of chemotherapy for advanced malignant soft tissue sarcoma, the response rate has been reported to be 30-40%, and soft tissue sarcoma is a disease that is more difficult to improve the prognosis than osteosarcoma. (Non-patent documents 5 to 7).
Current standard treatments for soft tissue sarcoma are based on a combination of preoperative chemotherapy, surgery (broad resection), and postoperative chemotherapy, depending on the grade, type of tumor and patient condition. The above-mentioned chemotherapy is a multidrug combination chemotherapy using cisplatin, doxorubicin and the like.
As described above, this treatment method cannot be said to have a sufficient therapeutic effect, but has a problem that development of a new drug is difficult to proceed due to the high scarcity of soft tissue sarcoma.

以上の通り、様々な癌種に効果を発揮し、従来の化学療法よりも強力な治療効果を有する新たな治療剤が望まれていた。   As described above, a new therapeutic agent that exerts an effect on various cancer types and has a stronger therapeutic effect than conventional chemotherapy has been desired.

N Engl J Med 1986; 314: 1600-6.N Engl J Med 1986; 314: 1600-6. Anticancer Res 1999; 18(1B): 657-66.Anticancer Res 1999; 18 (1B): 657-66. Cancer Treat Rev 2014; 40: 523-32.Cancer Treat Rev 2014; 40: 523-32. Semin Radiat Oncol 1999; 9: 349-51.Semin Radiat Oncol 1999; 9: 349-51. Am J Clin Oncol 1988; 11: 39-45.Am J Clin Oncol 1988; 11: 39-45. Eur J Cancer Clin Oncol 1987; 23: 311-21.Eur J Cancer Clin Oncol 1987; 23: 311-21. Hematol Oncol Clin North Am 1995; 9: 765-85.Hematol Oncol Clin North Am 1995; 9: 765-85.

本発明は、様々な癌種において、従来の化学療法よりも強力な治療効果を有する癌治療剤及び癌治療方法を提供することを課題とする。   An object of the present invention is to provide a cancer therapeutic agent and a cancer treatment method having a stronger therapeutic effect than conventional chemotherapy in various cancer types.

本発明者等は、上記課題を解決すべく、抗癌剤と組み合わせることで抗癌剤の治療効果を増強できる薬剤を鋭意検討した結果、「カフェインクエン酸塩と抗癌剤との組み合わせが、抗癌剤の治療効果を相乗的に高めること」を見出し、本発明を完成した。   In order to solve the above problems, the present inventors have intensively studied a drug that can enhance the therapeutic effect of an anticancer agent by combining it with an anticancer agent, and as a result, “the combination of caffeine citrate and an anticancer agent has a therapeutic effect of the anticancer agent. The present invention has been completed by finding “enhancing synergistically”.

すなわち、本発明は以下からなる。
1.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤と組み合わせたことを特徴とする癌治療剤。
2.前記癌は、原発生悪性骨腫瘍、軟部肉腫、肺癌、胃癌、乳癌、子宮癌、大腸癌、皮膚癌、卵巣癌、膵癌、胆管癌又は肝細胞癌である、前項1に記載の癌治療剤。
3.前記抗癌剤が、シスプラチン、ゲムシタビン又はアドリアマイシンである前項1又は前項2に記載の癌治療剤。
4.前記癌は、骨肉腫である、前項1〜3のいずれか1に記載の癌治療剤。
5.前記癌は、軟部肉腫である、前項1〜3のいずれか1に記載の癌治療剤。
6.前記癌は、肺癌である、前項1〜3のいずれか1に記載の癌治療剤。
7.前記癌は、膵癌である、前項1〜3のいずれか1に記載の癌治療剤。
8.前記癌は、胃癌である、前項1〜3のいずれか1に記載の癌治療剤。
9.前記癌は、肝細胞癌である、前項1〜3のいずれか1に記載の癌治療剤。
10.前記癌は、子宮癌である、前項1〜3のいずれか1に記載の癌治療剤。
11.前記癌は、乳癌である、前項1〜3のいずれか1に記載の癌治療剤。
12.前記癌は、卵巣癌である、前項1〜3のいずれか1に記載の癌治療剤。
13.前記癌は、皮膚癌である、前項1〜3のいずれか1に記載の癌治療剤。
14.前記癌は、胆管癌である、前項1〜3のいずれか1に記載の癌治療剤。
15.有効成分であるカフェインクエン酸塩と有効成分である抗癌剤を癌患者に投与することを特徴とする癌治療方法。
16.前記癌患者は、原発生悪性骨腫瘍、軟部肉腫、肺癌、胃癌、乳癌、子宮癌、大腸癌、皮膚癌、卵巣癌、膵癌、胆管癌又は肝細胞癌患者である、前項15に記載の癌治療方法。
17.前記抗癌剤が、シスプラチン、アドリアマイシン又はゲムシタビンである前項15又は前項16に記載の癌治療方法。
18.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする軟部肉腫治療剤。
19.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする胃癌治療剤。
20.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする皮膚癌治療剤。
21.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする膵癌治療剤。
22.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるアドリアマイシンと組み合わせたことを特徴とする胃癌治療剤。
23.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるアドリアマイシンと組み合わせたことを特徴とする子宮癌治療剤。
24.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする肺癌治療剤。
25.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする乳癌治療剤。
26.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする子宮癌治療剤。
27.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする皮膚癌治療剤。
28.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする卵巣癌治療剤。
29.有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする胆管癌治療剤。
That is, this invention consists of the following.
1. A cancer therapeutic agent comprising a combination of an active ingredient caffeine citrate and an anticancer agent as an active ingredient.
2. 2. The cancer therapeutic agent according to 1 above, wherein the cancer is primary malignant bone tumor, soft tissue sarcoma, lung cancer, stomach cancer, breast cancer, uterine cancer, colon cancer, skin cancer, ovarian cancer, pancreatic cancer, bile duct cancer or hepatocellular carcinoma. .
3. The cancer therapeutic agent according to 1 or 2 above, wherein the anticancer agent is cisplatin, gemcitabine or adriamycin.
4). 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is osteosarcoma.
5. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is soft tissue sarcoma.
6). 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is lung cancer.
7. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is pancreatic cancer.
8). 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is gastric cancer.
9. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is hepatocellular carcinoma.
10. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is uterine cancer.
11. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is breast cancer.
12 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is ovarian cancer.
13. 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is skin cancer.
14 4. The cancer therapeutic agent according to any one of items 1 to 3, wherein the cancer is cholangiocarcinoma.
15. A method for treating cancer, comprising administering a caffeine citrate as an active ingredient and an anticancer agent as an active ingredient to a cancer patient.
16. The cancer according to item 15 above, wherein the cancer patient is a primary malignant bone tumor, soft tissue sarcoma, lung cancer, stomach cancer, breast cancer, uterine cancer, colon cancer, skin cancer, ovarian cancer, pancreatic cancer, bile duct cancer or hepatocellular carcinoma patient. Method of treatment.
17. The cancer treatment method according to 15 or 16 above, wherein the anticancer agent is cisplatin, adriamycin, or gemcitabine.
18. A therapeutic agent for soft tissue sarcoma characterized by combining caffeine citrate, which is an active ingredient, with gemcitabine, which is an anticancer agent, which is an active ingredient.
19. A therapeutic agent for gastric cancer, wherein caffeine citrate as an active ingredient is combined with gemcitabine as an anticancer agent as an active ingredient.
20. A therapeutic agent for skin cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with gemcitabine, which is an anticancer agent, which is an active ingredient.
21. A therapeutic agent for pancreatic cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with gemcitabine, which is an anticancer agent, which is an active ingredient.
22. A therapeutic agent for gastric cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with adriamycin, which is an anticancer agent, which is an active ingredient.
23. A therapeutic agent for uterine cancer, comprising a combination of caffeine citrate, which is an active ingredient, with adriamycin, which is an anticancer agent, which is an active ingredient.
24. A lung cancer therapeutic agent characterized by combining caffeine citrate, which is an active ingredient, with cisplatin, which is an anticancer agent, which is an active ingredient.
25. A therapeutic agent for breast cancer, comprising a combination of caffeine citrate, which is an active ingredient, with cisplatin, which is an anticancer agent, which is an active ingredient.
26. A therapeutic agent for uterine cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with cisplatin, which is an anticancer agent, which is an active ingredient.
27. A skin cancer therapeutic agent characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.
28. A therapeutic agent for ovarian cancer characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.
29. A therapeutic agent for cholangiocarcinoma characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.

本発明の癌治療剤は、少なくとも、カフェインクエン酸塩を、抗癌剤と組み合わせることにより、抗癌剤の治療効果を相乗的に増強できる相乗効果を有する。   The cancer therapeutic agent of the present invention has a synergistic effect capable of synergistically enhancing the therapeutic effect of the anticancer agent by combining at least caffeine citrate with the anticancer agent.

実施例1における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はシスプラチン濃度(CDDP濃度)を示す。菱形(◆)はシスプラチン(CDDP)単独、黒の正方形(■)はシスプラチン+無水カフェイン(CDDP+caf)、灰色の正方形はシスプラチン+クエン酸(CDDP+CA)、丸はシスプラチン+カフェインクエン酸塩(CDDP+cafCA)を示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 1. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration (CDDP concentration). Diamond (♦) is cisplatin (CDDP) alone, black square (■) is cisplatin + anhydrous caffeine (CDDP + caf), gray square is cisplatin + citric acid (CDDP + CA), circle is cisplatin + caffeine citrate (CDDP + cafCA) ). The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例1における軟部肉腫細胞株(HT1080)を用いたWST−8アッセイの結果。縦軸は細胞生存率、横軸はシスプラチン濃度を示す。菱形(◆)はCDDP単独、黒の正方形(■)はCDDP+caf、灰色の正方形はCDDP+CA、丸はCDDP+cafCAを示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the soft tissue sarcoma cell line (HT1080) in Example 1. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration. A diamond (♦) indicates CDDP alone, a black square (■) indicates CDDP + caf, a gray square indicates CDDP + CA, and a circle indicates CDDP + cafCA. The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例1における肺癌細胞株(RERF−LC−AI)を用いたWST−8アッセイの結果。縦軸は細胞生存率、横軸はシスプラチン濃度を示す。菱形(◆)はCDDP単独、黒の正方形(■)はCDDP+caf、灰色の正方形はCDDP+CA、丸はCDDP+cafCAを示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the lung cancer cell line (RERF-LC-AI) in Example 1. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration. A diamond (♦) indicates CDDP alone, a black square (■) indicates CDDP + caf, a gray square indicates CDDP + CA, and a circle indicates CDDP + cafCA. The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例1における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果。縦軸は細胞生存率、横軸はシスプラチン濃度を示す。菱形(◆)はCDDP単独、黒の正方形(■)はCDDP+caf、灰色の正方形はCDDP+CA、丸はCDDP+cafCAを示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 1. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration. A diamond (♦) indicates CDDP alone, a black square (■) indicates CDDP + caf, a gray square indicates CDDP + CA, and a circle indicates CDDP + cafCA. The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例1における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はCDDP+cafのCDDP濃度(μM)を示し、横軸はCDDP+CAのCDDP濃度(μM)を示す。×は、Effective Dose50(ED50)を示し、+は、Effective Dose75(ED75)を示し、●は、Effective Dose90(ED90)を示す。縦軸上の×、+及び●は、CDDP+cafの各Effective Doseを、横軸上の×、+及び●は、CDDP+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、CDDP+cafCAの各Effective Doseを示す。当該円形の破線(CDDP+cafCAの各Effective Dose)が、CDDP+cafとCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、相乗効果の指標であるCI(Combination Index)は、前述のグラフに示されたCDDP+cafの各Effective Dose、CDDP+CAの各Effective Dose及びCDDP+cafCAの各Effective Doseを用いて、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 1 by the Isobologram method. In the graph in the figure, the vertical axis represents the CDDP concentration of CDDP + caf (μM), and the horizontal axis represents the CDDP concentration of CDDP + CA (μM). X represents Effective Dose 50 (ED50), + represents Effective Dose 75 (ED75), and ● represents Effective Dose 90 (ED90). X, +, and ● on the vertical axis represent each effective dose of CDDP + caf, and x, +, and ● on the horizontal axis represent each effective dose of CDDP + CA, and x, +, and ● surrounded by a circular broken line are Each effective dose of CDDP + cafCA is shown. A synergistic effect is observed when the circular broken line (Effective Dose of CDDP + cafCA) is located on the lower left side of the curve connecting CDDP + caf and Effective Dose of CDDP + CA. In the table in the figure, CI (Combination Index), which is an index of synergistic effect, is expressed using CDDP + caf Effective Dose, CDDP + CA Effective Dose and CDDP + caf Effective Dose shown in the above graph, and CDDP + caf Effective Dose fCDDP + a Was calculated as CDDP + cafCA. A synergistic effect is observed when CI <1.0. 実施例1における軟部肉腫細胞株(HT1080)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はCDDP+cafのCDDP濃度(μM)を示し、横軸はCDDP+CAのCDDP濃度(μM)を示す。×はED50を示し、+はED75を示し、●はED90を示す。縦軸上の×、+及び●は、CDDP+cafの各Effective Doseを、横軸上の×、+及び●は、CDDP+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、CDDP+cafCAの各Effective Doseを示す。当該円形の破線(CDDP+cafCAの各Effective Dose)が、各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、CIは、前述のグラフに示されたCDDP+cafの各Effective Dose、CDDP+CAの各Effective Dose及びCDDP+cafCAの各Effective Doseを用いて、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the soft tissue sarcoma cell line (HT1080) in Example 1 by the Isobologram method. In the graph in the figure, the vertical axis represents the CDDP concentration of CDDP + caf (μM), and the horizontal axis represents the CDDP concentration of CDDP + CA (μM). X represents ED50, + represents ED75, and ● represents ED90. X, +, and ● on the vertical axis represent each effective dose of CDDP + caf, and x, +, and ● on the horizontal axis represent each effective dose of CDDP + CA, and x, +, and ● surrounded by a circular broken line are Each effective dose of CDDP + cafCA is shown. A synergistic effect is observed when the circular broken line (Effective Dose of CDDP + cafCA) is located at the lower left of the curve connecting the Effective Dose. In the table in the figure, CI uses CDDP + ca and CDDP + CA as a combination of CDDP + caf and CDDP + CA by using each effective dose of CDDP + caf, each effective dose of CDDP + CA, and each effective dose of CDDP + cafCA shown in the above graph. A synergistic effect is observed when CI <1.0. 実施例1における肺癌細胞株(RERF−LC−AI)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はCDDP+cafのCDDP濃度(μM)を示し、横軸はCDDP+CAのCDDP濃度(μM)を示す。×はED50を示し、+はED75を示し、●はED90を示す。縦軸上の×、+及び●は、CDDP+cafの各Effective Doseを、横軸上の×、+及び●は、CDDP+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、CDDP+cafCAの各Effective Doseを示す。当該円形の破線(CDDP+cafCAの各Effective Dose)が、各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、CIは、前述のグラフに示されたCDDP+cafの各Effective Dose、CDDP+CAの各Effective Dose及びCDDP+cafCAの各Effective Doseを用いて、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the lung cancer cell line (RERF-LC-AI) in Example 1 by the Isobologram method. In the graph in the figure, the vertical axis represents the CDDP concentration of CDDP + caf (μM), and the horizontal axis represents the CDDP concentration of CDDP + CA (μM). X represents ED50, + represents ED75, and ● represents ED90. X, +, and ● on the vertical axis represent each effective dose of CDDP + caf, and x, +, and ● on the horizontal axis represent each effective dose of CDDP + CA, and x, +, and ● surrounded by a circular broken line are Each effective dose of CDDP + cafCA is shown. A synergistic effect is observed when the circular broken line (Effective Dose of CDDP + cafCA) is located at the lower left of the curve connecting the Effective Dose. In the table in the figure, CI uses CDDP + ca and CDDP + CA as a combination of CDDP + caf and CDDP + CA by using each effective dose of CDDP + caf, each effective dose of CDDP + CA, and each effective dose of CDDP + cafCA shown in the above graph. A synergistic effect is observed when CI <1.0. 実施例1における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はCDDP+cafのCDDP濃度(μM)を示し、横軸はCDDP+CAのCDDP濃度(μM)を示す。×はED50を示し、+はED75を示し、●はED90を示す。縦軸上の×、+及び●は、CDDP+cafの各Effective Doseを、横軸上の×、+及び●は、CDDP+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、CDDP+cafCAの各Effective Doseを示す。当該円形の破線(CDDP+cafCAの各Effective Dose)が、各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、CIは、前述のグラフに示されたCDDP+cafの各Effective Dose、CDDP+CAの各Effective Dose及びCDDP+cafCAの各Effective Doseを用いて、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 1 by the Isobologram method. In the graph in the figure, the vertical axis represents the CDDP concentration of CDDP + caf (μM), and the horizontal axis represents the CDDP concentration of CDDP + CA (μM). X represents ED50, + represents ED75, and ● represents ED90. X, +, and ● on the vertical axis represent each effective dose of CDDP + caf, and x, +, and ● on the horizontal axis represent each effective dose of CDDP + CA, and x, +, and ● surrounded by a circular broken line are Each effective dose of CDDP + cafCA is shown. A synergistic effect is observed when the circular broken line (Effective Dose of CDDP + cafCA) is located at the lower left of the curve connecting the Effective Dose. In the table in the figure, CI uses CDDP + ca and CDDP + CA as a combination of CDDP + caf and CDDP + CA by using each effective dose of CDDP + caf, each effective dose of CDDP + CA, and each effective dose of CDDP + cafCA shown in the above graph. A synergistic effect is observed when CI <1.0. 実施例1における骨肉腫細胞株(HOS)、軟部肉腫細胞株(HT1080)、肺癌細胞株(RERF−LC−AI)及び胃癌細胞株(MKN45)のWST−8アッセイの結果をMedian effect法及びIsobologram法により解析した結果をまとめた図。図中に示した通り、CI(Combination Index)<1.0のとき相乗効果、CI=1.0のとき相加効果、CI>1.0のとき拮抗作用であることを示す。図中、各系列において、バーは、左からHOS、HT1080、RERF−LC−AI、MKN45の順で示している。The results of the WST-8 assay for the osteosarcoma cell line (HOS), soft tissue sarcoma cell line (HT1080), lung cancer cell line (RERF-LC-AI) and gastric cancer cell line (MKN45) in Example 1 were compared with the median effect method and Isobologram. The figure which summarized the result analyzed by the method. As shown in the figure, when CI (Combination Index) <1.0, it indicates a synergistic effect, when CI = 1.0, an additive effect, and when CI> 1.0, it indicates an antagonistic effect. In each figure, in each series, the bars are shown in order of HOS, HT1080, RERF-LC-AI, and MKN45 from the left. 実施例2における肝細胞癌細胞株(HepG2)を用いたWST−8アッセイの結果。グラフの見方は図1と同様である。The result of the WST-8 assay using the hepatocellular carcinoma cell line (HepG2) in Example 2. The way of viewing the graph is the same as in FIG. 実施例2におけるMedian Effect法による肝細胞癌細胞株(HepG2)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the hepatoma cell line (HepG2) by the Median Effect method in Example 2. FIG. 実施例2における肝細胞癌細胞株(HepG2)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図5と同様である。The result of having analyzed the result of the WST-8 assay using the hepatocellular carcinoma cell line (HepG2) in Example 2 by the Isobologram method. The way of viewing the graph and table is the same as in FIG. 実施例2における子宮癌細胞株(Hela)を用いたWST−8アッセイの結果。グラフの見方は図1と同様である。The result of the WST-8 assay using the uterine cancer cell line (Hela) in Example 2. The way of viewing the graph is the same as in FIG. 実施例2におけるMedian Effect法による子宮癌細胞株(HepG2)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the uterine cancer cell line (HepG2) by the Median Effect method in Example 2. FIG. 実施例2における子宮癌細胞株(HepG2)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図5と同様である。The result of having analyzed the result of the WST-8 assay using the uterine cancer cell line (HepG2) in Example 2 by the Isobologram method. The way of viewing the graph and table is the same as in FIG. 実施例2における乳癌細胞株(MCF7)を用いたWST−8アッセイの結果。グラフの見方は図1と同様である。The result of the WST-8 assay using the breast cancer cell line (MCF7) in Example 2. The way of viewing the graph is the same as in FIG. 実施例2におけるMedian Effect法による乳癌細胞株(HepG2)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the breast cancer cell line (HepG2) by the Median Effect method in Example 2. FIG. 実施例2における乳癌細胞株(MCF7)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図5と同様である。The result of having analyzed the result of the WST-8 assay using the breast cancer cell line (MCF7) in Example 2 by the Isobologram method. The way of viewing the graph and table is the same as in FIG. 実施例2における卵巣癌細胞株(OVCAR−3)を用いたWST−8アッセイの結果。グラフの見方は図1と同様である。The result of the WST-8 assay using the ovarian cancer cell line (OVCAR-3) in Example 2. The way of viewing the graph is the same as in FIG. 実施例2におけるMedian Effect法による卵巣癌細胞株(HepG2)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the ovarian cancer cell line (HepG2) by the Median Effect method in Example 2. FIG. 実施例2における卵巣癌細胞株(OVCAR−3)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図5と同様である。The result of having analyzed the result of the WST-8 assay using the ovarian cancer cell line (OVCAR-3) in Example 2 by the Isobologram method. The way of viewing the graph and table is the same as in FIG. 実施例3における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はアドリアマイシン濃度(ADM濃度)を示す。菱形(◆)はアドリアマイシン(ADM)単独、黒の正方形(■)はアドリアマイシン+無水カフェイン(ADM+caf)、灰色の正方形はアドリアマイシン+クエン酸(ADM+CA)、丸はアドリアマイシン+カフェインクエン酸塩(ADM+cafCA)を示す。ADM+cafCA群は、各アドリアマイシン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 3. The vertical axis represents cell viability, and the horizontal axis represents adriamycin concentration (ADM concentration). Diamonds (♦) are adriamycin (ADM) alone, black squares (■) are adriamycin + anhydrous caffeine (ADM + caf), gray squares are adriamycin + citric acid (ADM + CA), circles are adriamycin + caffeine citrate (ADM + cafCA) ). The ADM + cafCA group was significantly different from all other groups at each adriamycin concentration (p <0.01). 実施例3におけるMedian Effect法による骨肉腫細胞株(HOS)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the osteosarcoma cell line (HOS) by the Median Effect method in Example 3. FIG. 実施例3における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はADM+cafのADM濃度(nM)を示し、横軸はADM+CAのADM濃度(nM)を示す。×は、Effective Dose50(ED50)を示し、+は、Effective Dose75(ED75)を示し、●は、Effective Dose90(ED90)を示す。縦軸上の×、+及び●は、ADM+cafの各Effective Doseを、横軸上の×、+及び●は、ADM+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、ADM+cafCAの各Effective Doseを示す。当該円形の破線(ADM+cafCAの各Effective Dose)が、ADM+cafとADM+CAの各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、相乗効果の指標であるCI(Combination Index)は、前述のグラフに示されたADM+cafの各Effective Dose、ADM+CAの各Effective Dose及びADM+cafCAの各Effective Doseを用いて、ADM+cafとADM+CAのコンビネーションをADM+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 3 by the Isobologram method. In the graph in the figure, the vertical axis represents the ADM + caf ADM concentration (nM), and the horizontal axis represents the ADM + CA ADM concentration (nM). X represents Effective Dose 50 (ED50), + represents Effective Dose 75 (ED75), and ● represents Effective Dose 90 (ED90). X, +, and ● on the vertical axis indicate each effective dose of ADM + caf, and x, +, and ● on the horizontal axis indicate each effective dose of ADM + CA, and X, +, and ● surrounded by a circular broken line are Each effective dose of ADM + cafCA is shown. A synergistic effect is observed when the circular broken line (Effective Dose of ADM + cafCA) is located on the lower left side of the curve connecting ADM + caf and Effective Dose of ADM + CA. In the table in the figure, CI (Combination Index), which is an index of synergistic effect, is expressed by using ADM + cf Effective Dose, ADM + CA Effective Dose, and ADM + caf Effective Dose shown in the above graph, ADM + c + Was calculated as ADM + cafCA. A synergistic effect is observed when CI <1.0. 実施例3における軟部肉腫細胞株(HT1080)を用いたWST−8アッセイの結果。グラフの見方は図22と同様である。The result of the WST-8 assay using the soft tissue sarcoma cell line (HT1080) in Example 3. The way of viewing the graph is the same as in FIG. 実施例3におけるMedian Effect法による軟部肉腫細胞株(HT1080)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the soft tissue sarcoma cell line (HT1080) by the Median Effect method in Example 3. FIG. 実施例3における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図24と同様である。The result of having analyzed the result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 3 by the Isobologram method. The way of viewing the graph and the table is the same as in FIG. 実施例3における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果。グラフの見方は図22と同様である。The result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 3. The way of viewing the graph is the same as in FIG. 実施例3におけるMedian Effect法による胃癌細胞株(MKN45)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the gastric cancer cell line (MKN45) by the Median Effect method in Example 3. 実施例3における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図24と同様である。The result of having analyzed the result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 3 by Isobologram method. The way of viewing the graph and the table is the same as in FIG. 実施例3における子宮癌細胞株(Hela)を用いたWST−8アッセイの結果。グラフの見方は図22と同様である。The result of the WST-8 assay using the uterine cancer cell line (Hela) in Example 3. The way of viewing the graph is the same as in FIG. 実施例3におけるMedian Effect法による子宮癌細胞株(Hela)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the uterine cancer cell line (Hela) by the Median Effect method in Example 3. FIG. 実施例3における子宮癌細胞株(Hela)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図24と同様である。The result of having analyzed the result of the WST-8 assay using the uterine cancer cell line (Hela) in Example 3 by the Isobologram method. The way of viewing the graph and the table is the same as in FIG. 実施例4における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はゲムシタビン濃度(GEM濃度)を示す。菱形(◆)はゲムシタビン(GEM)単独、黒の正方形(■)はゲムシタビン+無水カフェイン(GEM+caf)、灰色の正方形はゲムシタビン+クエン酸(GEM+CA)、丸はゲムシタビン+カフェインクエン酸塩(GEM+cafCA)を示す。GEM+cafCA群は、各ゲムシタビン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 4. The vertical axis represents cell viability, and the horizontal axis represents gemcitabine concentration (GEM concentration). Diamond (♦) is gemcitabine (GEM) alone, black square (■) is gemcitabine + anhydrous caffeine (GEM + caf), gray square is gemcitabine + citric acid (GEM + CA), circle is gemcitabine + caffeine citrate (GEM + cafCA) ). The GEM + cafCA group was significantly different from all other groups at each gemcitabine concentration (p <0.01). 実施例4におけるMedian Effect法による骨肉腫細胞株(HOS)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the osteosarcoma cell line (HOS) by the Median Effect method in Example 4. 実施例4における骨肉腫細胞株(HOS)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。図中のグラフにおいて、縦軸はGEM+cafのGEM濃度(nM)を示し、横軸はGEM+CAのGEM濃度(nM)を示す。×は、Effective Dose50(ED50)を示し、+は、Effective Dose75(ED75)を示し、●は、Effective Dose90(ED90)を示す。縦軸上の×、+及び●は、GEM+cafの各Effective Doseを、横軸上の×、+及び●は、GEM+CAの各Effective Doseを示し、円形の破線に囲まれた×、+及び●は、GEM+cafCAの各Effective Doseを示す。当該円形の破線(GEM+cafCAの各Effective Dose)が、GEM+cafとGEM+CAの各Effective Doseを結んだ曲線よりも左下に位置する場合は、相乗効果が認められる。図中の表において、相乗効果の指標であるCI(Combination Index)は、前述のグラフに示されたGEM+cafの各Effective Dose、GEM+CAの各Effective Dose及びGEM+cafCAの各Effective Doseを用いて、GEM+cafとGEM+CAのコンビネーションをGEM+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。The result of having analyzed the result of the WST-8 assay using the osteosarcoma cell line (HOS) in Example 4 by the Isobologram method. In the graph in the figure, the vertical axis indicates the GEM + caf GEM concentration (nM), and the horizontal axis indicates the GEM + CA GEM concentration (nM). X represents Effective Dose 50 (ED50), + represents Effective Dose 75 (ED75), and ● represents Effective Dose 90 (ED90). X, +, and ● on the vertical axis indicate GEM + caf Effective Dose, and x, +, and ● on the horizontal axis indicate GEM + CA Effective Dose, and X, +, and ● surrounded by a circular broken line are Each effective dose of GEM + cafCA is shown. A synergistic effect is recognized when the circular broken line (Effective Dose of GEM + cafCA) is located on the lower left side of the curve connecting GEM + caf and Effective Dose of GEM + CA. In the table in the figure, CI (Combination Index), which is an index of synergistic effect, uses GEM + caf Effective Dose, GEM + CA Effective Dose and GEM + caf Effective Dose shown in the graph above, GEM + cf, GEM + c + GEM + cf Was calculated as GEM + cafCA. A synergistic effect is observed when CI <1.0. 実施例4における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果。グラフの見方は図34と同様である。The result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 4. The way of viewing the graph is the same as in FIG. 実施例4におけるMedian Effect法による胃癌細胞株(MKN45)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the gastric cancer cell line (MKN45) by the Median Effect method in Example 4. 実施例4における胃癌細胞株(MKN45)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。グラフ及び表の見方は図36と同様である。The result of having analyzed the result of the WST-8 assay using the gastric cancer cell line (MKN45) in Example 4 by the Isobologram method. The way of viewing the graph and table is the same as in FIG. 実施例4における卵巣癌細胞株(OVCAR−3)を用いたWST−8アッセイの結果。グラフの見方は図34と同様である。The result of the WST-8 assay using the ovarian cancer cell line (OVCAR-3) in Example 4. The way of viewing the graph is the same as in FIG. 実施例4におけるMedian Effect法による卵巣癌細胞株(OVCAR−3)を用いた相乗効果の解析結果。The analysis result of the synergistic effect using the ovarian cancer cell line (OVCAR-3) by the Median Effect method in Example 4. 実施例4における卵巣癌細胞株(OVCAR−3)を用いたWST−8アッセイの結果をIsobologram法により解析した結果。表の見方は図36と同様である。The result of having analyzed the result of the WST-8 assay using the ovarian cancer cell line (OVCAR-3) in Example 4 by the Isobologram method. The way of reading the table is the same as in FIG. 実施例5における骨肉腫細胞株(HOS)を用いた細胞増殖(EdU)アッセイの結果。各群の代表的な定点1視野について、写真撮影した結果を示す。HoechstはHoechst検出の写真撮影結果、Hoechst+EdUはHoechst検出及びEdU検出の写真撮影結果を合わせた画像、EdUはEdU検出の写真撮影結果を示す。Results of cell proliferation (EdU) assay using osteosarcoma cell line (HOS) in Example 5. The result of taking a photograph for a representative fixed point visual field of each group is shown. Hoechst is a photographed result of Hoechst detection, Hoechst + EdU is an image obtained by combining the photographed results of Hoechst detection and EdU detection, and EdU is a photographed result of EdU detection. 実施例5における軟部肉腫細胞株(HT1080)を用いた細胞増殖(EdU)アッセイの結果。各群の代表的な定点1視野について、写真撮影した結果を示す。HoechstはHoechst検出の写真撮影結果、Hoechst+EdUはHoechst検出及びEdU検出の写真撮影結果を合わせた画像、EdUはEdU検出の写真撮影結果を示す。Results of cell proliferation (EdU) assay using the soft tissue sarcoma cell line (HT1080) in Example 5. The result of taking a photograph for a representative fixed point visual field of each group is shown. Hoechst is a photographed result of Hoechst detection, Hoechst + EdU is an image obtained by combining the photographed results of Hoechst detection and EdU detection, and EdU is a photographed result of EdU detection. 実施例5における骨肉腫細胞株(HOS)及び軟部肉腫細胞株(HT1080)を用いた細胞増殖(EdU)アッセイでのEdU発色率の有意差の解析結果。*はp<0.05、**はp<0.01を示す。The analysis result of the significant difference of the EdU coloring rate in the cell proliferation (EdU) assay using the osteosarcoma cell line (HOS) in Example 5, and a soft tissue sarcoma cell line (HT1080). * Indicates p <0.05, and ** indicates p <0.01. 実施例6における骨肉腫細胞株(HOS)を用いたミトコンドリア膜電位変化(TMRE)アッセイの結果。各群の代表的な定点1視野について、写真撮影した結果を示す。HoechstはHoechst検出の写真撮影結果、Hoechst+TMREはHoechst検出及びTMRE検出の写真撮影結果を合わせた画像、TMREはTMRE検出の写真撮影結果を示す。The result of the mitochondrial membrane potential change (TMRE) assay using the osteosarcoma cell line (HOS) in Example 6. The result of taking a photograph for a representative fixed point visual field of each group is shown. Hoechst is a photographed result of Hoechst detection, Hoechst + TMRE is an image obtained by combining the photographed results of Hoechst detection and TMRE detection, and TMRE is a photographed result of TMRE detection. 実施例6における軟部肉腫細胞株(HT1080)を用いたミトコンドリア膜電位変化(TMRE)アッセイの結果。各群の代表的な定点1視野について、写真撮影した結果を示す。HoechstはHoechst検出の写真撮影結果、Hoechst+TMREはHoechst検出及びTMRE検出の写真撮影結果を合わせた画像、TMREはTMRE検出の写真撮影結果を示す。The result of a mitochondrial membrane potential change (TMRE) assay using the soft tissue sarcoma cell line (HT1080) in Example 6. The result of taking a photograph for a representative fixed point visual field of each group is shown. Hoechst is a photographed result of Hoechst detection, Hoechst + TMRE is an image obtained by combining the photographed results of Hoechst detection and TMRE detection, and TMRE is a photographed result of TMRE detection. 実施例6における骨肉腫細胞株(HOS)及び軟部肉腫細胞株(HT1080)を用いたミトコンドリア膜電位変化(TMRE)アッセイでの1細胞あたりのTMRE輝度の有意差の解析結果。縦軸は1細胞あたりのTMRE輝度の比率を示す。*はp<0.05、**はp<0.01を示す。The analysis result of the significant difference of the TMRE brightness | luminance per cell in the mitochondrial membrane potential change (TMRE) assay using the osteosarcoma cell line (HOS) in Example 6, and a soft tissue sarcoma cell line (HT1080). The vertical axis shows the ratio of TMRE luminance per cell. * Indicates p <0.05, and ** indicates p <0.01. 実施例7における皮膚癌細胞株(A375)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はシスプラチン濃度(CDDP濃度)を示す。菱形(◆)はシスプラチン(CDDP)単独、三角形(▲)はシスプラチン+無水カフェイン(CDDP+caf)、正方形はシスプラチン+クエン酸(CDDP+CA)、丸はシスプラチン+カフェインクエン酸塩(CDDP+cafCA)を示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the skin cancer cell line (A375) in Example 7. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration (CDDP concentration). Diamonds (♦) indicate cisplatin (CDDP) alone, triangles (▲) indicate cisplatin + anhydrous caffeine (CDDP + caf), squares indicate cisplatin + citric acid (CDDP + CA), and circles indicate cisplatin + caffeine citrate (CDDP + cafCA). The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例7における膵癌細胞株(PANC−1)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はシスプラチン濃度(CDDP濃度)を示す。菱形(◆)はシスプラチン(CDDP)単独、三角形(▲)はシスプラチン+無水カフェイン(CDDP+caf)、正方形はシスプラチン+クエン酸(CDDP+CA)、丸はシスプラチン+カフェインクエン酸塩(CDDP+cafCA)を示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the pancreatic cancer cell line (PANC-1) in Example 7. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration (CDDP concentration). Diamonds (♦) indicate cisplatin (CDDP) alone, triangles (▲) indicate cisplatin + anhydrous caffeine (CDDP + caf), squares indicate cisplatin + citric acid (CDDP + CA), and circles indicate cisplatin + caffeine citrate (CDDP + cafCA). The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例7における担癌細胞株(TFK−1)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はシスプラチン濃度(CDDP濃度)を示す。菱形(◆)はシスプラチン(CDDP)単独、三角形(▲)はシスプラチン+無水カフェイン(CDDP+caf)、正方形はシスプラチン+クエン酸(CDDP+CA)、丸はシスプラチン+カフェインクエン酸塩(CDDP+cafCA)を示す。CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the cancer-bearing cell line (TFK-1) in Example 7. The vertical axis represents cell viability, and the horizontal axis represents cisplatin concentration (CDDP concentration). Diamonds (♦) indicate cisplatin (CDDP) alone, triangles (▲) indicate cisplatin + anhydrous caffeine (CDDP + caf), squares indicate cisplatin + citric acid (CDDP + CA), and circles indicate cisplatin + caffeine citrate (CDDP + cafCA). The CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01). 実施例8における線維肉腫細胞株(HT1080)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はゲムシタビン濃度(GEM濃度)を示す。菱形(◆)はゲムシタビン(GEM)単独、三角形(▲)はゲムシタビン+無水カフェイン(GEM+caf)、正方形はゲムシタビン+クエン酸(GEM+CA)、丸はゲムシタビン+カフェインクエン酸塩(GEM+cafCA)を示す。GEM+cafCA群は、各ゲムシタビン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the fibrosarcoma cell line (HT1080) in Example 8. The vertical axis represents cell viability, and the horizontal axis represents gemcitabine concentration (GEM concentration). Diamonds (♦) indicate gemcitabine (GEM) alone, triangles (▲) indicate gemcitabine + anhydrous caffeine (GEM + caf), squares indicate gemcitabine + citric acid (GEM + CA), and circles indicate gemcitabine + caffeine citrate (GEM + cafCA). The GEM + cafCA group was significantly different from all other groups at each gemcitabine concentration (p <0.01). 実施例8における皮膚癌細胞株(A375)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はゲムシタビン濃度(GEM濃度)を示す。菱形(◆)はゲムシタビン(GEM)単独、三角形(▲)はゲムシタビン+無水カフェイン(GEM+caf)、正方形はゲムシタビン+クエン酸(GEM+CA)、丸はゲムシタビン+カフェインクエン酸塩(GEM+cafCA)を示す。The result of the WST-8 assay using the skin cancer cell line (A375) in Example 8. The vertical axis represents cell viability, and the horizontal axis represents gemcitabine concentration (GEM concentration). Diamonds (♦) indicate gemcitabine (GEM) alone, triangles (▲) indicate gemcitabine + anhydrous caffeine (GEM + caf), squares indicate gemcitabine + citric acid (GEM + CA), and circles indicate gemcitabine + caffeine citrate (GEM + cafCA). 実施例8における膵癌細胞株(PANC−1)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はゲムシタビン濃度(GEM濃度)を示す。菱形(◆)はゲムシタビン(GEM)単独、三角形(▲)はゲムシタビン+無水カフェイン(GEM+caf)、正方形はゲムシタビン+クエン酸(GEM+CA)、丸はゲムシタビン+カフェインクエン酸塩(GEM+cafCA)を示す。GEM+cafCA群は、各ゲムシタビン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the pancreatic cancer cell line (PANC-1) in Example 8. The vertical axis represents cell viability, and the horizontal axis represents gemcitabine concentration (GEM concentration). Diamonds (♦) indicate gemcitabine (GEM) alone, triangles (▲) indicate gemcitabine + anhydrous caffeine (GEM + caf), squares indicate gemcitabine + citric acid (GEM + CA), and circles indicate gemcitabine + caffeine citrate (GEM + cafCA). The GEM + cafCA group was significantly different from all other groups at each gemcitabine concentration (p <0.01). 実施例8における担癌細胞株(TFK−1)を用いたWST−8アッセイの結果。縦軸は細胞生存率(cell viability)、横軸はゲムシタビン濃度(GEM濃度)を示す。菱形(◆)はゲムシタビン(GEM)単独、三角形(▲)はゲムシタビン+無水カフェイン(GEM+caf)、正方形はゲムシタビン+クエン酸(GEM+CA)、丸はゲムシタビン+カフェインクエン酸塩(GEM+cafCA)を示す。GEM+cafCA群は、各ゲムシタビン濃度において、他の全ての群との間で有意差があった(p<0.01)。The result of the WST-8 assay using the cancer-bearing cell line (TFK-1) in Example 8. The vertical axis represents cell viability, and the horizontal axis represents gemcitabine concentration (GEM concentration). Diamonds (♦) indicate gemcitabine (GEM) alone, triangles (▲) indicate gemcitabine + anhydrous caffeine (GEM + caf), squares indicate gemcitabine + citric acid (GEM + CA), and circles indicate gemcitabine + caffeine citrate (GEM + cafCA). The GEM + cafCA group was significantly different from all other groups at each gemcitabine concentration (p <0.01). 実施例9における投与スケジュール。Administration schedule in Example 9. 実施例9におけるマウス骨肉腫細胞株であるLM8細胞を背部皮下に移植したヌードマウスの腫瘍体積の推移。The change of the tumor volume of the nude mouse which transplanted LM8 cell which is a mouse | mouth osteosarcoma cell line in Example 9 subcutaneously on the back. 実施例9におけるマウス由来のLM8細胞を背部皮下に移植したヌードマウスの15日目の腫瘍の重さ。The tumor weight of the 15th day of the nude mouse which transplanted LM8 cell derived from the mouse | mouth in Example 9 subcutaneously in the back part. 実施例9におけるヒト由来のHT1080細胞を背部皮下に移植したヌードマウスの腫瘍体積の推移。Transition of tumor volume of nude mice transplanted with human-derived HT1080 cells subcutaneously in the back in Example 9. 実施例9におけるヒト由来のHT1080細胞を背部皮下に移植したヌードマウスの15日目の腫瘍の重さ。The tumor weight of the 15th day of the nude mouse which transplanted the human-derived HT1080 cell in Example 9 to the back subcutaneously. 実施例9におけるカフェインクエン酸塩低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスの腫瘍体積の推移。The transition of the tumor volume of the nude mouse which transplanted the LM8 cell derived from the mouse | mouth characterized by the low dose of caffeine citrate in Example 9 to the back subcutaneously. 実施例9におけるカフェインクエン酸塩低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスの15日目の腫瘍の重さ。The tumor weight of the 15th day of the nude mouse | mouth which transplanted the LM8 cell derived from the mouse | mouth characterized by the low dose of caffeine citrate in Example 9 to the back subcutaneously. 実施例9における抗癌剤低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスの腫瘍体積の推移。The change of the tumor volume of the nude mouse which transplanted the LM8 cell derived from the mouse | mouth characterized by the low dosage of the anticancer agent in Example 9 to the back subcutaneously. 実施例9における抗癌剤低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスの15日目の腫瘍の重さ。The tumor weight of the 15th day of the nude mouse which transplanted the LM8 cell derived from the mouse | mouth characterized by the low dosage of the anticancer agent in Example 9 to the back subcutaneously. 実施例10におけるヌードマウス(担癌マウスではない)の体重推移。左上下のグラフの測定日は、1日目(薬剤投与前)であり、右上下のグラフの測定日は、22日目(3コース終了後)である。上段は抗癌剤としてCDDPを用いた結果であり、下段は抗癌剤としてADMを用いた結果である。Change in body weight of nude mice (not cancer-bearing mice) in Example 10. The measurement date of the upper left graph is the first day (before drug administration), and the measurement date of the upper right graph is the 22nd day (after the end of the third course). The upper row shows the results of using CDDP as an anticancer agent, and the lower row shows the results of using ADM as an anticancer agent.

本発明は、「有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤と組み合わせたことを特徴とする癌治療剤」並びに「有効成分であるカフェインクエン酸塩と有効成分である抗癌剤を癌患者に投与することを特徴とする癌治療方法」である。   The present invention relates to "a cancer therapeutic agent characterized by combining caffeine citrate as an active ingredient with an anticancer agent as an active ingredient" and "an anticancer agent as an active ingredient and caffeine citrate as an active ingredient" Is a method for treating cancer, comprising administering to a cancer patient.

(カフェインクエン酸塩)
本発明において、カフェインクエン酸塩(クエン酸カフェイン)は、以下の式(1)で表される無水カフェイン並びに式(2)及び/又は式(2')で表されるクエン酸(クエン酸水和物を含む)を含有する薬剤である。ここで、式(2)及び式(2')で表されるクエン酸とは、式(2)で表されるクエン酸と式(2')で表されるクエン酸との混合物を意味する。
カフェインクエン酸塩中の無水カフェイン及びクエン酸の比率はモル比で、無水カフェイン:クエン酸=0.1:9.9〜9.9:0.1、好ましくは1:9〜9:1、より好ましくは1:1である。
カフェインクエン酸塩としては、市販のカフェインクエン酸塩を使用してもよい。例えば、ノーベルファーマ株式会社により商品名「レスピア(登録商標)」が市販されている。
また、無水カフェインに類似する化合物(無水カフェイン類似化合物)として、カフェイン水和物、安息香酸ナトリウムカフェイン(いわゆるアンナカ)等も使用できるほか、カフェインはキサンチン誘導体であるから、キサンチン類であるキサンチン系神経中枢刺激薬(フェネチリン、プロベントフェリン)、キサンチン系血管拡張薬(ペントキシフェリン、ナキシフェリン、ニコチン酸キサンチノール、ペンチフィリン、ロロフィリン、トナポフェリン)、キサンチン系利尿薬(テオブロミン、パマプロム)等も使用できる。
クエン酸に類似する化合物(クエン酸類似化合物)として、クエン酸カリウム、クエン酸リチウム、クエン酸銅、クエン酸鉄アンモニウム、及びそれらの水和物等も使用できる。
したがって、カフェインクエン酸塩に類似する薬剤として、上記の無水カフェインに類似する化合物及びクエン酸に類似する化合物の組合せも使用できる。
(Caffeine citrate)
In the present invention, caffeine citrate (caffeine citrate) is an anhydrous caffeine represented by the following formula (1) and citric acid (2) and / or citric acid (2 ′). Containing citric acid hydrate). Here, citric acid represented by formula (2) and formula (2 ′) means a mixture of citric acid represented by formula (2) and citric acid represented by formula (2 ′). .
The ratio of anhydrous caffeine and citric acid in caffeine citrate is a molar ratio: anhydrous caffeine: citric acid = 0.1: 9.9 to 9.9: 0.1, preferably 1: 9 to 9 : 1, more preferably 1: 1.
As the caffeine citrate, a commercially available caffeine citrate may be used. For example, the trade name “Respia (registered trademark)” is marketed by Nobel Pharma Co., Ltd.
In addition, as a compound similar to anhydrous caffeine (anhydrous caffeine analog), caffeine hydrate, sodium benzoate caffeine (so-called Annaka) and the like can be used, and since caffeine is a xanthine derivative, xanthines Xanthine-based nerve center stimulants (phenethylin, proventferrin), xanthine-based vasodilators (pentoxyferrin, naxiferin, xanthinol nicotinate, pentifylline, lorophilin, tonapoferrin), xanthine diuretics (theobromine, pamaprom), etc. Can also be used.
As a compound similar to citric acid (citric acid analog), potassium citrate, lithium citrate, copper citrate, ammonium iron citrate, and hydrates thereof can also be used.
Therefore, a combination of a compound similar to anhydrous caffeine and a compound similar to citric acid can be used as a drug similar to caffeine citrate.

カフェインクエン酸塩は、癌種に対する効果や抗癌剤との併用に関する報告はないが、未熟児無呼吸発作治療剤等として利用されている。すなわち、カフェインクエン酸塩は、他の疾患で既に使用され、その安全性が十分に確立されている治療薬である。
このように、カフェインクエン酸塩は、すでに保険診療で処方されている薬剤であるため、早期臨床応用において、新規薬剤と比較すると有利である。
Although caffeine citrate has not been reported on effects on cancer types and combined use with anticancer agents, it is used as a therapeutic agent for premature infant apnea attacks. That is, caffeine citrate is a therapeutic agent that is already used in other diseases and its safety is well established.
Thus, caffeine citrate is an agent that has already been prescribed in insurance practice, and is therefore advantageous in early clinical applications compared to new agents.

(抗癌剤)
本発明の癌治療剤の有効成分としての抗癌剤は、シスプラチン、アドリアマイシン(ドキソルビシン)、イホスファミド又はゲムシタビンが好ましい。
(Anticancer agent)
The anticancer agent as an active ingredient of the cancer therapeutic agent of the present invention is preferably cisplatin, adriamycin (doxorubicin), ifosfamide or gemcitabine.

(シスプラチン)
シスプラチンは、DNA中のグアニン、アデニンのN−7位に結合し、DNA鎖内に架橋を形成することにより、DNAの複製を阻害する抗癌剤である。
シスプラチンは、市販されているものを使用できる。例えば、日本化薬株式会社より商品名「アイエーコール」として市販されている。
(アドリアマイシン)
アドリアマイシンは、腫瘍細胞のDNAの塩基対間に挿入し、DNA合成酵素及びRNA合成酵素を阻害することにより、DNA、RNA双方の生合成を抑制する抗癌剤である。
アドリアマイシンは、市販されているものを使用できる。例えば、協和発酵キリン株式会社より商品名「アドリアシン」として市販されている。
(イホスファミド)
イホスファミドは、DNA中のグアニンをアルキル化し、DNA二本鎖間に架橋を形成することにより、DNAの複製を阻害する抗癌剤である。
イホスファミドは、市販されているものを使用できる。例えば、塩野義製薬株式会社より商品名「イホマイド」として市販されている。
(ゲムシタビン)
ゲムシタビンは、腫瘍細胞のDNA合成において、構造の類似するシチジンと同様にDNA鎖に取り込まれ、DNA鎖伸長を停止させることにより、アポトーシスを誘導する抗癌剤である。
ゲムシタビンは、市販されているものを使用できる。例えば、日本イーライリリー株式会社より商品名「ジェムザール」として市販されている。
(Cisplatin)
Cisplatin is an anticancer agent that inhibits DNA replication by binding to the N-7 position of guanine and adenine in DNA and forming a bridge in the DNA strand.
As cisplatin, a commercially available product can be used. For example, it is marketed by Nippon Kayaku Co., Ltd. under the trade name “IA Coal”.
(Adriamycin)
Adriamycin is an anticancer agent that suppresses both DNA and RNA biosynthesis by intercalating between DNA base pairs of tumor cells and inhibiting DNA synthase and RNA synthase.
Commercially available adriamycin can be used. For example, it is commercially available from Kyowa Hakko Kirin Co., Ltd. under the trade name “Adriacin”.
(Ifosfamide)
Ifosfamide is an anticancer agent that inhibits DNA replication by alkylating guanine in DNA and forming a bridge between DNA double strands.
A commercially available product can be used as ifosfamide. For example, it is marketed by Shionogi Pharmaceutical Co., Ltd. under the trade name “Ihomide”.
(Gemcitabine)
Gemcitabine is an anticancer agent that induces apoptosis in DNA synthesis of tumor cells by incorporating it into the DNA strand in the same manner as cytidine having a similar structure and stopping DNA strand elongation.
A commercially available gemcitabine can be used. For example, it is marketed by Eli Lilly Japan Co., Ltd. under the trade name “Gemzar”.

シスプラチンは、プラチナ製剤であり、同じプラチナ製剤、例えば、カルボプラチン、オキサリプラチン、ネダプラチン等も同様の効果が期待される。
ドキソルビシンは、抗癌抗生物質であり、同じ抗癌抗生物質、例えば、アクチノマイシンD、ピラルビシン、ダウノルビシン等も同様の効果が期待される。
イホスファミドは、アルキル化薬であり、同じアルキル化薬、例えば、シクロホスファミド、ブスルファン、ダカルバジン等も同様の効果が期待される。
ゲムシタビンは、代謝拮抗薬であり、同じ代謝拮抗薬も同様の効果が期待される。
上記以外にも、ビンクリスチンやエトポシドのような植物アルカロイド等を含めたDNAの合成を阻害するタイプの薬剤全てにおいて、同様の効果が期待される。
Cisplatin is a platinum preparation, and the same platinum preparation such as carboplatin, oxaliplatin, nedaplatin and the like is expected to have the same effect.
Doxorubicin is an anticancer antibiotic, and the same anticancer antibiotics such as actinomycin D, pirarubicin, daunorubicin and the like are expected to have the same effect.
Ifosfamide is an alkylating agent, and the same alkylating agent such as cyclophosphamide, busulfan, dacarbazine and the like is expected to have the same effect.
Gemcitabine is an antimetabolite and the same antimetabolite is expected to have the same effect.
In addition to the above, similar effects are expected in all types of drugs that inhibit DNA synthesis including plant alkaloids such as vincristine and etoposide.

(癌種)
本発明の癌治療剤及び癌治療方法の対象の癌種は、原発生悪性骨腫瘍、軟部肉腫、肺癌、胃癌、乳癌、子宮癌、大腸癌、皮膚癌、卵巣癌、膵癌、胆管癌又は肝細胞癌等が挙げられる。
原発生悪性骨腫瘍としては、特に限定されないが、例えば、骨肉腫、軟骨肉腫、ユーイング(Ewing)肉腫、骨未分化多形肉腫等が挙げられる。
軟部肉腫としては、特に限定されないが、例えば、線維肉腫、滑膜肉腫、平滑筋肉腫、脂肪肉腫、横紋筋肉腫、未分化多形肉腫、骨外性骨肉腫、骨外性Ewing肉腫等が挙げられる。
肺癌としては、特に限定されないが、例えば、腺癌、扁平上皮癌、大細胞癌等の非小細胞肺癌、小細胞肺癌等が挙げられる。
子宮癌としては、特に限定されないが、例えば、子宮頸癌、子宮体癌等が挙げられる。
皮膚癌としては、特に限定されないが、例えば、悪性黒色腫、基底細胞癌、有棘細胞癌等が挙げられる。
なお、本明細書において挙げた癌種は、それらの癌が生じる臓器、器官における全ての扁平上皮癌も対象となる。例えば、胃癌には、胃における扁平上皮癌が含まれる。
(Cancer type)
The target cancer types of the cancer therapeutic agent and cancer treatment method of the present invention are primary malignant bone tumor, soft tissue sarcoma, lung cancer, stomach cancer, breast cancer, uterine cancer, colon cancer, skin cancer, ovarian cancer, pancreatic cancer, bile duct cancer or liver Examples include cell cancer.
The primary malignant bone tumor is not particularly limited, and examples thereof include osteosarcoma, chondrosarcoma, Ewing sarcoma, and bone undifferentiated pleomorphic sarcoma.
The soft tissue sarcoma is not particularly limited, and examples thereof include fibrosarcoma, synovial sarcoma, leiomyosarcoma, liposarcoma, rhabdomyosarcoma, undifferentiated pleomorphic sarcoma, extraosseous osteosarcoma, extraosseous Ewing sarcoma, and the like. Can be mentioned.
Although it does not specifically limit as lung cancer, For example, non-small cell lung cancer, such as adenocarcinoma, squamous cell carcinoma, and large cell cancer, small cell lung cancer, etc. are mentioned.
Uterine cancer is not particularly limited, and examples thereof include cervical cancer and endometrial cancer.
Although it does not specifically limit as skin cancer, For example, malignant melanoma, basal cell carcinoma, squamous cell carcinoma etc. are mentioned.
In addition, the cancer types mentioned in this specification also include all squamous cell carcinomas in organs and organs in which those cancers occur. For example, gastric cancer includes squamous cell carcinoma in the stomach.

(本発明の癌治療剤の投与方法又は癌治療方法)
本発明の癌治療剤の投与方法又は癌治療方法における投与量および投与計画は、個々の治療対象毎の所要量、治療方法、疾病または必要性の程度などに依存して調整できる。投与量は、具体的には年齢、体重、一般的健康状態、性別、食事、投与時間、投与方法、排泄速度、薬物の組合せ、および患者の病状などに応じて決めることができ、さらに、その他の要因を考慮して決定してもよい。
以下を例示することができるが特に限定されない。
(1)1回の投与量
カフェインクエン酸塩(3日間投与の合計):0.1〜10000 mg/m体表面積、好ましくは1〜10000 mg/m体表面積、より好ましくは50〜9000 mg/m体表面積
抗癌剤:シスプラチン(1日間投与)は、0.1〜150 mg/m体表面積、好ましくは10〜150 mg/m体表面積、より好ましくは60〜120 mg/m体表面積。ドキソルビシン(2日間投与の合計)は、0.1〜120 mg/m体表面積、好ましくは10〜90 mg/m体表面積、より好ましくは30〜60 mg/m体表面積。イホスファミド(3〜5日間投与の合計)は、0.1〜30 mg/m体表面積、好ましくは1〜20 mg/m体表面積、より好ましくは4.5〜15 mg/m体表面積。ゲムシタビン(1日間投与)は、0.1〜1000 mg/m2体表面積、好ましくは10〜900 mg/m体表面積、より好ましくは675〜900 mg/m体表面積。
(2)投与間隔
カフェインクエン酸塩:10週間1〜70回投与、好ましくは2日1〜2回投与、より好ましくは1日1回投与。詳しくは、1日〜10週間を1クールとして1〜30日間連続で1日1〜10回投与、好ましくは1〜6週間を1クールとして1〜15日間連続で1日1〜3回投与、より好ましくは2〜3週間を1クールとして3〜7日間連続で1日1回投与。
抗癌剤:1〜10週間1回投与、好ましくは2〜8週間1回投与、より好ましくは3〜6週間1回投与。
(3)併用投与
カフェインクエン酸塩と抗癌剤は同時投与、数時間の間隔を空けての投与、1日の間隔を空けての投与、数日の間隔を空けての投与、数週間の間隔を空けての投与、数か月の間隔を空けての投与のいずれでも良い。
また、カフェインクエン酸塩及び抗癌剤を、生理学的に許容されうる溶媒、担体、賦形剤、結合剤等と混合し、医薬組成物にした後に、該組成物を患者に投与してもよい。なお、本発明におけるカフェインクエン酸塩及び/又は抗癌剤は、プロドラッグ、またはそれらの薬理学的に許容される塩も対象とする。
溶媒としては、特に限定されないが、例えば、水、アルコール、生理食塩水等が挙げられる。
担体としては、特に限定されないが、例えば、酸、塩基、緩衝液、安定化剤、等張化剤、保存剤等が挙げられる。
賦形剤としては、特に限定されないが、例えば、充填剤、凝固剤、滑たく剤、崩壊剤、色素、甘味料、香料、コーティング剤等が挙げられる。
結合剤としては、特に限定されないが、例えば、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドン等が挙げられる。
さらに、カフェインクエン酸塩及び抗癌剤を別々に製剤化した場合において、別々に製剤化したものを使用時に希釈剤等を用いて混合して混合物にして後に、該混合物を患者に投与してもよい。
本発明の癌治療剤の投与方法又は癌治療方法では、経口的または非経口的に投与することができる。経口投与には、錠剤、カプセル、コーティング錠、トローチ、溶液または懸濁液などの液剤といった既知の投与用剤形を用いることができる。また、非経口投与は、注射による静脈内、筋肉内、または皮下への投与、スプレーやエアロゾルなどを用いた経鼻腔や口腔などの経粘膜投与、坐剤などを用いた直腸投与、パッチやリニメントやゲルなどを用いた経皮投与などを挙げることができる。好ましくは経口投与、経鼻腔投与、または注射による静脈内投与を挙げることができる。
(Administration method or cancer treatment method of the cancer therapeutic agent of the present invention)
The administration method of the cancer therapeutic agent of the present invention or the dosage and administration schedule in the cancer treatment method can be adjusted depending on the required amount for each individual treatment target, the treatment method, the disease or the degree of necessity. Specifically, the dosage can be determined according to age, weight, general health condition, sex, diet, administration time, administration method, excretion rate, combination of drugs, patient condition, etc. It may be determined in consideration of these factors.
Although the following can be illustrated, it is not specifically limited.
(1) One dose Caffeine citrate (total of administration for 3 days): 0.1 to 10,000 mg / m 2 body surface area, preferably 1 to 10000 mg / m 2 body surface area, more preferably 50 to 9000 mg / m 2 body surface area anticancer: cisplatin (administration 1 day) is, 0.1 to 150 mg / m 2 body surface area, preferably 10 to 150 mg / m 2 body surface area, more preferably 60 to 120 mg / m Two- body surface area. Doxorubicin (total for 2 days administration) is 0.1 to 120 mg / m 2 body surface area, preferably 10 to 90 mg / m 2 body surface area, more preferably 30 to 60 mg / m 2 body surface area. Ifosfamide (total for 3 to 5 days administration) is 0.1 to 30 mg / m 2 body surface area, preferably 1 to 20 mg / m 2 body surface area, more preferably 4.5 to 15 mg / m 2 body surface area. . Gemcitabine (administered one day) it is, 0.1 to 1000 mg / m @ 2 of body surface area, preferably 10 to 900 mg / m 2 body surface area, more preferably 675~900 mg / m 2 body surface area.
(2) Administration interval Caffeine citrate: Administered 1 to 70 times for 10 weeks, preferably administered 1 to 2 times for 2 days, more preferably administered once a day. Specifically, it is administered 1 to 10 times a day for 1 to 30 consecutive days as 1 course for 1 to 10 weeks, preferably 1 to 3 times daily for 1 to 15 days taking 1 course as 1 course, More preferably, once a day for 3 to 7 consecutive days with 1 to 2 weeks as one course.
Anticancer agent: administration once per 10 to 10 weeks, preferably once per 2 to 8 weeks, more preferably once per 3 to 6 weeks.
(3) Concomitant administration Caffeine citrate and anticancer agent are administered simultaneously, administered several hours apart, administered one day apart, administered several days apart, several weeks apart Either administration after an interval or administration after an interval of several months may be used.
Further, the caffeine citrate and the anticancer agent may be mixed with a physiologically acceptable solvent, carrier, excipient, binder, etc. to form a pharmaceutical composition, and then the composition may be administered to the patient. . In addition, the caffeine citrate and / or the anticancer agent in the present invention also includes prodrugs or pharmacologically acceptable salts thereof.
Although it does not specifically limit as a solvent, For example, water, alcohol, physiological saline, etc. are mentioned.
Although it does not specifically limit as a support | carrier, For example, an acid, a base, a buffer solution, a stabilizer, an isotonizing agent, a preservative, etc. are mentioned.
Although it does not specifically limit as an excipient | filler, For example, a filler, a coagulant, a slipping agent, a disintegrating agent, a pigment | dye, a sweetener, a fragrance | flavor, a coating agent etc. are mentioned.
The binder is not particularly limited. For example, water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate, polyvinyl Examples include pyrrolidone and the like.
Further, when the caffeine citrate and the anticancer agent are separately formulated, the separately formulated product may be mixed with a diluent at the time of use to make a mixture, and then the mixture may be administered to the patient. Good.
In the method for administering a cancer therapeutic agent or the method for treating cancer according to the present invention, it can be administered orally or parenterally. For oral administration, known dosage forms for administration such as tablets, capsules, coated tablets, troches, solutions such as solutions or suspensions can be used. Parenteral administration includes intravenous, intramuscular, or subcutaneous administration by injection, transmucosal administration such as nasal cavity or oral cavity using spray or aerosol, rectal administration using suppositories, patches or liniments. And transdermal administration using gel and gel. Preferred examples include oral administration, nasal administration, and intravenous administration by injection.

以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto.

[骨肉腫、軟部肉腫、肺癌及び胃癌培養細胞におけるカフェインクエン酸塩のシスプラチン効果増強の評価]
以下の方法により、骨肉腫、軟部肉腫、肺癌、胃癌に対するカフェインクエン酸塩の抗癌剤効果増強を評価した。
[Evaluation of enhanced cisplatin effect of caffeine citrate in cultured cells of osteosarcoma, soft tissue sarcoma, lung cancer and gastric cancer]
The following methods were used to evaluate the enhancement of anticancer drug effects of caffeine citrate against osteosarcoma, soft tissue sarcoma, lung cancer, and gastric cancer.

<材料>
・細胞株
骨肉腫としては、ヒト由来のHOS細胞(American Type Culture Collection(ATCC)より入手)を用いた。
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
肺癌としては、ヒト由来のRERF−LC−AI細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、国立研究開発法人理科学研究所バイオリソースセンター(理研BRC)より入手)を用いた。
胃癌としては、ヒト由来のMKN45細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・抗癌剤
シスプラチン(和光純薬工業株式会社より入手、以下、CDDPと称する場合がある)を用いた。
・併用薬
カフェインクエン酸塩(クエン酸カフェイン、ノーベルファーマ株式会社、商品名:レスピア(登録商標)、以下、cafCAと称する場合がある)、無水カフェイン(和光純薬工業株式会社、以下、cafと称する場合がある)又はクエン酸(和光純薬工業株式会社、以下、CAと称する場合がある)を用いた。
<Material>
-Cell line Human-derived HOS cells (obtained from the American Type Culture Collection (ATCC)) were used as osteosarcoma.
As the soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
As lung cancer, human-derived RERF-LC-AI cells (obtained from the National Institute for Science and Technology Bioresource Center (RIKEN BRC) via the National Bioresource Project of the Ministry of Education, Culture, Sports, Science and Technology) were used.
As gastric cancer, human-derived MKN45 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
-Anticancer agent Cisplatin (obtained from Wako Pure Chemical Industries, Ltd., hereinafter sometimes referred to as CDDP) was used.
Concomitant drugs Caffeine citrate (Caffeine citrate, Nobel Pharma Co., Ltd., trade name: Respia (registered trademark), hereinafter may be referred to as cafCA), anhydrous caffeine (Wako Pure Chemical Industries, Ltd., hereinafter) , Or caf) or citric acid (Wako Pure Chemical Industries, Ltd., hereinafter may be referred to as CA) was used.

<WST−8アッセイ>
(1)上記の各癌種培養細胞について、HOS細胞、RERF−LC−AI細胞、及びMKN45細胞は、Roswell Park Memorial Institute(RPMI)1640培地を、HT1080細胞は、ダルベッコ改変イーグル培地(DMEM)を用いて、それぞれ3000〜5000個/100 μLの濃度で、37℃、CO 5%の条件で、24時間、96wellの培養プレートで培養した。
(2)培養後、各癌種培養細胞について、4つの群に分け、薬剤(CDDP、CDDP+caf、CDDP+CA、CDDP+cafCA)を100 μL添加した。各群に添加する薬剤のCDDP濃度は、水(滅菌精製水)にCDDPの粉末を溶かして高濃度のものを作成し、その後細胞に応じた培養液で希釈することで0.125、0.25、0.5、1.0、2.0 μMに調製した。各群の併用薬であるcaf及びCAの濃度は、水に粉末を溶かしてそれぞれ高濃度のものを作成し、その後細胞に応じた培養液で希釈することで一律0.5 mMに調製した。cafCAの濃度は、製品が液体であるので、そのまま細胞に応じた培養液で希釈し、caf、CAと同様の0.5 mMに調製した。対照として、一部のウェルには薬剤を添加しなかった(CDDP濃度0 μM)。
(3)薬剤投与後72時間後に、Cell Counting Kit−8(CCK−8)(Dojindo社)で発色し、2〜4時間後に450 nmの吸光度を測定した。対照の吸光度を1として、吸光度の比率から細胞生存率を決定した。
(4)(3)の結果について、Statcel 3(オーエムエス出版)で分散分析を行い、各CDDP濃度における4つの群間の細胞生存率の有意差を解析し、CDDP+cafCAの効果を検討した。
(5)CalcuSyn ver.2(BIOSOFT)にてcafCAのもたらす抗癌剤増強効果と、caf/CAのもたらす抗癌剤増強効果の相乗効果について解析した。解析には、Median Effect法及びIsobologram法を用いた(参照:Ting-Chao Chou, Cancer Res 2010; 70: 440-6.; Tallarida RJ, et al., Life Sci 1989; 45: 947-61.; Roering SC et al., J Pharmacol Exp Ther 1988; 247: 603-8.; Tallarida RJ, Chapman & Hall/CRC, Florida, USA, 2000.)。
0.125、0.25、0.5、1.0、2.0 μMの各CDDP濃度において、CDDP+cafにおけるcaf濃度と、CDDP+CAにおけるCA濃度とのコンビネーションを、CDDP+cafCAにおけるcafCA濃度として、Combination Index(CI)を求めた。
ここで、CDDPは、前記コンビネーションの前後で、同量・同濃度である。例えば、CDDP濃度1.0 μMの場合、CDDP(1.0 μM)+caf(0.5 μM)とCDDP(1.0 μM)+CA(0.5 μM)とのコンビネーションは、CDDP(1.0 μM)+cafCA(0.5 μM)である。
Median Effect法によるCIは、各濃度による細胞生存率から導かれた「細胞が50%生存するために必要と考えられるCDDP濃度(ED50)」を基準に、caf、CA、cafCAの各々の濃度およびその際の細胞生存率を対象として算出した数値である。
Isobologram法によるCIは、各CDDP濃度による細胞生存率から導かれた、CDDP+caf、CDDP+CA及びCDDP+cafCAの「各Effective dose(ED50、ED75、ED90)」を用いて算出した数値である。
CI<1のとき、相乗効果と判定した。なお、CI=1のときは、相加効果と判定し、CI>1のときは、拮抗効果と判定する。
<WST-8 assay>
(1) For each of the above cancer type cultured cells, HOS cells, RERF-LC-AI cells, and MKN45 cells are Roswell Park Memorial Institute (RPMI) 1640 medium, and HT1080 cells are Dulbecco's modified Eagle medium (DMEM). The cells were cultured in a 96-well culture plate for 24 hours at 37 ° C. and 5% CO 2 at a concentration of 3000 to 5000 cells / 100 μL.
(2) After culturing, each cancer type cultured cell was divided into four groups, and 100 μL of drug (CDDP, CDDP + caf, CDDP + CA, CDDP + cafCA) was added. The CDDP concentration of the drug added to each group is 0.125, 0.00 by dissolving a CDDP powder in water (sterilized and purified water) to prepare a high concentration, and then diluting with a culture solution according to the cells. Prepared to 25, 0.5, 1.0, 2.0 μM. The concentrations of caf and CA, which are concomitant drugs in each group, were uniformly adjusted to 0.5 mM by dissolving powders in water and preparing high concentrations, respectively, and then diluting with a culture solution according to the cells. Since the product was a liquid, the concentration of cafCA was diluted as it was with a culture solution according to the cells and adjusted to 0.5 mM, which was the same as for caf and CA. As a control, no drug was added to some wells (CDDP concentration 0 μM).
(3) 72 hours after drug administration, color was developed with Cell Counting Kit-8 (CCK-8) (Dojindo), and absorbance at 450 nm was measured 2 to 4 hours later. The cell viability was determined from the absorbance ratio, with the absorbance of the control being 1.
(4) The results of (3) were subjected to analysis of variance with Statcel 3 (OMS Publishing), and the significant difference in cell viability between the four groups at each CDDP concentration was analyzed to examine the effect of CDDP + cafCA.
(5) CalcuSyn ver. 2 (BIOSOFT) was analyzed for the synergistic effect of the anticancer agent enhancing effect caused by cafCA and the anticancer agent enhancing effect caused by caf / CA. For the analysis, the median effect method and the isobologram method were used (see: Ting-Chao Chou, Cancer Res 2010; 70: 440-6 .; Tallarida RJ, et al., Life Sci 1989; 45: 947-61 .; Roering SC et al., J Pharmacol Exp Ther 1988; 247: 603-8 .; Tallarida RJ, Chapman & Hall / CRC, Florida, USA, 2000.).
For each CDDP concentration of 0.125, 0.25, 0.5, 1.0, and 2.0 μM, the combination of the caf concentration in CDDP + caf and the CA concentration in CDDP + CA is defined as a combination index (cfCA concentration in CDDP + cafCA). CI) was determined.
Here, CDDP has the same amount and the same concentration before and after the combination. For example, when the CDDP concentration is 1.0 μM, the combination of CDDP (1.0 μM) + caf (0.5 μM) and CDDP (1.0 μM) + CA (0.5 μM) is CDDP (1.0 μM). μM) + cafCA (0.5 μM).
The CI by the median effect method is based on the “CDDP concentration that is considered necessary for 50% cell survival (ED50)” derived from the cell viability at each concentration, and the concentrations of caf, CA, and cafCA. It is a numerical value calculated for the cell viability at that time.
The CI by the Isobologram method is a numerical value calculated using “Effective doses (ED50, ED75, ED90)” of CDDP + caf, CDDP + CA and CDDP + cafCA derived from the cell viability by each CDDP concentration.
When CI <1, the synergistic effect was determined. When CI = 1, it is determined as an additive effect, and when CI> 1, it is determined as an antagonistic effect.

<骨肉腫の結果>
1.細胞生存率
図1に、HOS細胞における4つの群の450 nmの吸光度に基づく細胞生存率を示す。図1から明らかなように、HOS細胞(骨肉腫)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Results of osteosarcoma>
1. Cell Viability FIG. 1 shows the cell viability based on the 450 nm absorbance of four groups in HOS cells. As is clear from FIG. 1, in HOS cells (osteosarcoma), the CDDP + cafCA group had the lowest cell viability compared to the other groups at all CDDP concentrations.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
次に、Median Effect法によるHOS細胞における相乗効果の解析結果を、表1に示す。相乗効果の指標であるCIは、図1におけるCDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
表1から明らかなように、CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method Next, Table 1 shows the analysis result of the synergistic effect in HOS cells by the Median Effect method. CI, which is an index of synergistic effect, was calculated based on the cell viability for each CDDP concentration in FIG. 1 as a combination of CDDP + caf and CDDP + CA as CDDP + cafCA. A synergistic effect is observed when CI <1.0.
As is clear from Table 1, the CDDP + cafCA group had a CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

3.Isobologram法
Isobologram法によるHOS細胞における相乗効果の解析結果を図5に示す。
図5〜図8のIsobologram法の解析結果のグラフにおいて、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+cafの各Effective Doseと、CDDP+CAの各Effective Doseとを結んだ曲線上にあれば、相加効果を示し、曲線より左下にあれば、相乗効果を示し、曲線より右上にあれば、拮抗効果を示す。例えば、CDDP+cafCAのED50を示す円形の破線が、CDDP+cafのED50と、CDDP+CAのED50とを結んだ曲線上にあれば、相加効果を示し、曲線より左下にあれば、相乗効果を示し、曲線より右上にあれば、拮抗効果を示す。ED75、ED90についても同様である。
本解析における「Effective Dose」とは、各癌腫培養細胞を減少させるために必要なCDDP濃度を示しており、CDDP濃度毎の細胞生存率から導かれる。例えば、ED50であれば、細胞をベースから50%減少させる(細胞生存率を50%にする)ために必要なCDDP濃度を意味し、ED75であれば、細胞を75%減少させる(細胞生存率を25%にする)ために必要なCDDP濃度、ED90であれば、細胞を90%減少させる(細胞生存率を10%にする)ために必要なCDDP濃度を意味する。
図5のグラフから明らかなように、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+caf及びCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図5の表から明らかなように、CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram Method FIG. 5 shows the analysis result of the synergistic effect in HOS cells by the Isobologram method.
In the graphs of the analysis results of the Isobologram method in FIGS. 5 to 8, if a circular broken line indicating each Effective Dose of CDDP + cafCA is on a curve connecting each Effective Dose of CDDP + caf and each Effective Dose of CDDP + CA An additive effect is shown, and if it is in the lower left of the curve, it shows a synergistic effect, and if it is in the upper right of the curve, it shows an antagonistic effect. For example, if the circular broken line indicating the ED50 of CDDP + cafCA is on a curve connecting the ED50 of CDDP + caf and the ED50 of CDDP + CA, an additive effect is shown, and if it is on the lower left of the curve, a synergistic effect is shown. If it is in the upper right, an antagonistic effect is shown. The same applies to ED75 and ED90.
“Effective Dose” in the present analysis indicates the CDDP concentration necessary for reducing each carcinoma cell culture, and is derived from the cell viability for each CDDP concentration. For example, ED50 means the concentration of CDDP required to reduce cells by 50% from the base (to make cell viability 50%), and ED75 reduces cells by 75% (cell viability). ED90 means the CDDP concentration required to reduce the cells by 90% (to bring the cell viability to 10%).
As is clear from the graph of FIG. 5, since the circular broken lines indicating the effective doses of CDDP + cafCA are located at the lower left of the curves connecting the effective doses of CDDP + caf and CDDP + CA, a synergistic effect was recognized. .
As is apparent from the table of FIG. 5, the CDDP + cafCA group had a CI <1.0 at all effective doses of 50 to 90%, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

<軟部肉腫の結果>
1.細胞生存率
HT1080細胞における4つの群の450 nmの吸光度に基づく細胞生存率を図2に示す。図2から明らかなように、HT1080細胞(軟部肉腫)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Results of soft tissue sarcoma>
1. Cell viability Cell viability based on 450 nm absorbance of four groups in HT1080 cells is shown in FIG. As is clear from FIG. 2, in HT1080 cells (soft tissue sarcoma), the CDDP + cafCA group had the lowest cell viability compared to the other groups at all CDDP concentrations.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
Median Effect法によるHT1080細胞における相乗効果の解析結果を、表1に示す。相乗効果の指標であるCIは、図2におけるCDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。
表1から明らかなように、CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method Table 1 shows the analysis result of the synergistic effect in HT1080 cells by the Median Effect method. CI, which is an index of the synergistic effect, was calculated as a combination of CDDP + caf and CDDP + CA as CDDP + cafCA based on the cell viability for each CDDP concentration in FIG.
As is clear from Table 1, the CDDP + cafCA group had a CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

3.Isobologram法
Isobologram法によるHT1080細胞における相乗効果の解析結果を図6に示す。
図6のグラフから明らかなように、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+cafとCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図6の表から明らかなように、CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram Method FIG. 6 shows the analysis result of the synergistic effect in HT1080 cells by the Isobologram method.
As is clear from the graph of FIG. 6, since the circular broken lines indicating the effective doses of CDDP + cafCA are located at the lower left of the curves connecting the effective doses of CDDP + caf and CDDP + CA, a synergistic effect was recognized. .
As is apparent from the table of FIG. 6, the CDDP + cafCA group had CI <1 at all effective doses of 50 to 90%, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

<肺癌の結果>
1.細胞生存率
RERF−LC−AI細胞における4つの群の450 nmの吸光度に基づく細胞生存率を図3に示す。図3から明らかなように、RERF−LC−AI細胞(肺癌)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Results of lung cancer>
1. Cell viability Cell viability based on 450 nm absorbance of four groups in RERF-LC-AI cells is shown in FIG. As is clear from FIG. 3, in RERF-LC-AI cells (lung cancer), the CDDP + cafCA group had the lowest cell viability compared to the other groups at all CDDP concentrations.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
Median Effect法によるRERF−LC−AI細胞における相乗効果の解析結果を、表1に示す。相乗効果の指標であるCIは、図3におけるCDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。
表1から明らかなように、CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method Table 1 shows the results of analysis of the synergistic effect in RERF-LC-AI cells by the Median Effect method. CI, which is an index of synergistic effect, was calculated based on the cell viability for each CDDP concentration in FIG. 3 as a combination of CDDP + caf and CDDP + CA as CDDP + cafCA.
As is clear from Table 1, the CDDP + cafCA group had a CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

3.Isobologram法
Isobologram法によるRERF−LC−AI細胞における相乗効果の解析結果を図7に示す。
図7のグラフから明らかなように、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+cafとCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図7の表から明らかなように、CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram Method FIG. 7 shows the analysis result of the synergistic effect in RERF-LC-AI cells by the Isobologram method.
As is clear from the graph of FIG. 7, since the circular broken lines indicating the effective doses of CDDP + cafCA are located at the lower left of the curves connecting the effective doses of CDDP + caf and CDDP + CA, a synergistic effect was recognized. .
As is clear from the table of FIG. 7, the CDDP + cafCA group had CI <1 at all effective doses of 50 to 90%, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

<胃癌の結果>
1.細胞生存率
MKN45細胞における4つの群の450 nmの吸光度に基づく細胞生存率を図4に示す。図4から明らかなように、MKN45細胞(胃癌)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Results of stomach cancer>
1. Cell viability Cell viability based on 450 nm absorbance of four groups in MKN45 cells is shown in FIG. As is clear from FIG. 4, in MKN45 cells (gastric cancer), the CDDP + cafCA group had the lowest cell viability compared with the other groups at all CDDP concentrations.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
Median Effect法によるMKN45細胞における相乗効果の解析結果を、表1に示す。相乗効果の指標であるCIは、図4におけるCDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。
表1から明らかなように、CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method Table 1 shows the analysis results of the synergistic effect in MKN45 cells by the Median Effect method. CI, which is an index of synergistic effect, was calculated based on the cell viability for each CDDP concentration in FIG. 4 as the combination of CDDP + caf and CDDP + CA as CDDP + cafCA.
As is clear from Table 1, the CDDP + cafCA group had a CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

3.Isobologram法
Isobologram法によるMKN45細胞における相乗効果の解析結果を図8に示す。
図8のグラフから明らかなように、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+cafとCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図8の表から明らかなように、CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram Method FIG. 8 shows the analysis result of the synergistic effect in MKN45 cells by the Isobologram method.
As is clear from the graph of FIG. 8, a circular broken line indicating each effective dose of CDDP + cafCA is located at the lower left of the curve connecting each effective dose of CDDP + caf and CDDP + CA, and thus a synergistic effect was recognized. .
As is apparent from the table of FIG. 8, the CDDP + cafCA group had CI <1 at all effective doses of 50 to 90%, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

<総合評価>
以上の4種類の細胞株におけるMedian Effect法及びIsobologram法の実験結果をまとめると、図9の通りである。
図9から明らかなように、本発明の癌治療剤は、実験した全ての癌種において、CDDP+cafCA群は、Median Effect法及びIsobologram法の双方の解析により、CI<1.0となり、相乗効果を有することが確認された。
<Comprehensive evaluation>
The experimental results of the Median Effect method and Isobologram method in the above four cell lines are summarized as shown in FIG.
As is clear from FIG. 9, the cancer therapeutic agent of the present invention has a synergistic effect in all the cancer types tested, in which the CDDP + cafCA group has a CI <1.0 by the analysis of both the Median Effect method and the Isobologram method. It was confirmed to have.

以上の結果より、本発明の癌治療剤において、シスプラチンとカフェインクエン酸塩との組合せは、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンの抗癌剤効果をより増強すること、カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であることが明らかになった。   From the above results, in the cancer therapeutic agent of the present invention, the combination of cisplatin and caffeine citrate is significantly more significant than cisplatin alone, cisplatin and anhydrous caffeine, and cisplatin and citric acid. Further enhancing the anticancer agent effect of cisplatin, the anticancer agent enhancing effect of caffeine citrate is not just an additive effect of the anticancer agent enhancing effect of anhydrous caffeine and the anticancer agent enhancing effect of citric acid, It became clear that it was a synergistic effect.

[肝細胞癌、子宮癌、乳癌及び卵巣癌培養細胞におけるカフェインクエン酸塩のシスプラチン効果増強の評価]
肝細胞癌、子宮癌、乳癌及び卵巣癌に対するカフェインクエン酸塩の抗癌剤(シスプラチン)効果増強を評価した。以下の細胞株及び培地を用いた他は、実施例1と同様の材料及び方法により試験を行った。
[Evaluation of enhancement of cisplatin effect of caffeine citrate in cultured cells of hepatocellular carcinoma, uterine cancer, breast cancer and ovarian cancer]
The enhancement of the anticancer agent (cisplatin) effect of caffeine citrate against hepatocellular carcinoma, uterine cancer, breast cancer and ovarian cancer was evaluated. The test was performed using the same materials and methods as in Example 1 except that the following cell lines and media were used.

<材料>
・細胞株
肝細胞癌としては、ヒト由来のHepG2細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
子宮癌としては、ヒト由来のHela細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
乳癌としては、ヒト由来のMCF7細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
卵巣癌としては、ヒト由来のOVCAR−3細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・培地
上記の各癌種培養細胞について、HepG2細胞、Hela細胞、MCF7細胞及びOVCAR−3細胞は、いずれもRPMI1640培地を用いた。
<Material>
-Cell line As hepatocellular carcinoma, human-derived HepG2 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As uterine cancer, human-derived Hela cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As breast cancer, human-derived MCF7 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As the ovarian cancer, human-derived OVCAR-3 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology National BioResource Project) were used.
-Medium As for each of the above cancer type cultured cells, RPMI1640 medium was used for HepG2 cells, Hela cells, MCF7 cells, and OVCAR-3 cells.

<結果>
1.細胞生存率
図10、図13、図16及び図19に、それぞれHepG2細胞、Hela細胞、MCF7細胞及びOVCAR−3細胞における4つの群(CDDP、CDDP+caf、CDDP+CA、CDDP+cafCA)の450 nmの吸光度に基づく細胞生存率を示す。図10、図13、図16及び図19から明らかなように、HepG2細胞(肝細胞癌)、Hela細胞(子宮癌)、MCF7細胞(乳癌)及びOVCAR−3細胞(卵巣癌)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Result>
1. Cell viability Figures 10, 13, 16 and 19 are based on absorbance at 450 nm of four groups (CDDP, CDDP + caf, CDDP + CA, CDDP + cafCA) in HepG2 cells, Hela cells, MCF7 cells and OVCAR-3 cells, respectively. Cell viability is shown. As is clear from FIGS. 10, 13, 16, and 19, in the HepG2 cell (hepatocellular carcinoma), the Hela cell (uterine cancer), the MCF7 cell (breast cancer), and the OVCAR-3 cell (ovarian cancer), the CDDP + cafCA group Had the lowest cell viability compared to the other groups at all CDDP concentrations.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
次に、Median Effect法によるHepG2細胞、Hela細胞、MCF7細胞及びOVCAR−3細胞における相乗効果の解析結果を、図11、図14、図17及び図20に示す。相乗効果の指標であるCIは、図11、図14、図17及び図20におけるCDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
図11、図14、図17及び図20から明らかなように、CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method Next, the analysis results of the synergistic effect in HepG2 cells, Hela cells, MCF7 cells and OVCAR-3 cells by the Median Effect method are shown in FIGS. 11, 14, 17 and 20. FIG. CI, which is an index of synergistic effect, was calculated as a combination of CDDP + caf and CDDP + CA as CDDP + cafCA based on the cell viability for each CDDP concentration in FIG. 11, FIG. 14, FIG. 17 and FIG. A synergistic effect is observed when CI <1.0.
As is clear from FIGS. 11, 14, 17 and 20, the CDDP + cafCA group has a CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and for CDDP + caf and CDDP + CA, A synergistic effect was observed.

3.Isobologram法
Isobologram法によるHepG2細胞、Hela細胞、MCF7細胞及びOVCAR−3細胞における相乗効果の解析結果を図12、図15、図18及び図21に示す。
図12、図15、図18及び図21のグラフから明らかなように、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+caf及びCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図12、図15、図18及び図21の表から明らかなように、CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram method The results of analysis of the synergistic effect in HepG2 cells, Hela cells, MCF7 cells and OVCAR-3 cells by the Isobologram method are shown in FIG. 12, FIG. 15, FIG. 18 and FIG.
As is clear from the graphs of FIGS. 12, 15, 18 and 21, the circular broken lines indicating the effective doses of CDDP + cafCA are located on the lower left of the curves connecting the effective doses of CDDP + caf and CDDP + CA, respectively. Therefore, a synergistic effect was recognized.
As is apparent from the tables of FIGS. 12, 15, 18 and 21, the CDDP + cafCA group has a CI <1.0 at 50 to 90% of all effective doses, and has a synergistic effect on CDDP + caf and CDDP + CA. Was recognized.

[骨肉腫、軟部肉腫、胃癌及び子宮癌培養細胞におけるカフェインクエン酸塩のアドリアマイシン効果増強の評価]
骨肉腫、軟部肉腫、胃癌及び子宮癌に対するカフェインクエン酸塩の抗癌剤(アドリアマイシン)効果増強を評価した。以下の細胞株、抗癌剤及び培地を用いた他は、実施例1と同様の材料により試験を行った。
[Evaluation of enhanced adriamycin effect of caffeine citrate in cultured cells of osteosarcoma, soft tissue sarcoma, gastric cancer and uterine cancer]
The enhancement of anticancer agent (adriamycin) effect of caffeine catenate on osteosarcoma, soft tissue sarcoma, gastric cancer and uterine cancer was evaluated. The test was performed using the same materials as in Example 1 except that the following cell lines, anticancer agents and medium were used.

<材料>
・細胞株
骨肉腫としては、ヒト由来のHOS細胞(ATCCより入手)を用いた。
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
胃癌としては、ヒト由来のMKN45細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
子宮癌としては、ヒト由来のHela細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・抗癌剤
アドリアマイシン(和光純薬工業株式会社より入手、以下、ADMと称する場合がある)を用いた。
・培地
上記の各癌種培養細胞について、HOS細胞、MKN45細胞及びHela細胞は、RPMI1640培地を用いた。HT1080細胞は、DMEMを用いた。
<Material>
Cell line Human-derived HOS cells (obtained from ATCC) were used as osteosarcoma.
As the soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
As gastric cancer, human-derived MKN45 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As uterine cancer, human-derived Hela cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
Anticancer agent Adriamycin (obtained from Wako Pure Chemical Industries, Ltd., hereinafter sometimes referred to as ADM) was used.
-Medium About each said cancer type cultured cell, RPMI1640 medium was used for HOS cell, MKN45 cell, and Hela cell. For HT1080 cells, DMEM was used.

<WST−8アッセイ>
工程(2)を下記の通りに変更した他は、実施例1の方法に準じて試験を行った。
(2)培養後、各癌種培養細胞について、4つの群に分け、薬剤(ADM、ADM+caf、ADM+CA、ADM+cafCA)を100 μL添加した。各群に添加する薬剤のADM濃度は、水(滅菌精製水)にADMの粉末を溶かして高濃度のものを作成し、その後細胞に応じた培養液で希釈することで12.5、25、50、100、200 nMに調製した。各群の併用薬であるcaf及びCAの濃度は、水に粉末を溶かしてそれぞれ高濃度のものを作成し、その後細胞に応じた培養液で希釈することで一律0.5 mMに調製した。cafCAの濃度は、製品が液体であるので、そのまま細胞に応じた培養液で希釈し、caf、CAと同様の0.5 mMに調製した。対照として、一部のウェルには薬剤を添加しなかった(ADM濃度0 μM)。
<WST-8 assay>
A test was performed according to the method of Example 1 except that the step (2) was changed as follows.
(2) After culturing, each cancer type cultured cell was divided into four groups, and 100 μL of a drug (ADM, ADM + caf, ADM + CA, ADM + cafCA) was added. The ADM concentration of the drug added to each group is 12.5, 25, by dissolving the powder of ADM in water (sterilized purified water) to make a high concentration, and then diluting with a culture solution according to the cells. Prepared to 50, 100, 200 nM. The concentrations of caf and CA, which are concomitant drugs in each group, were uniformly adjusted to 0.5 mM by dissolving powders in water and preparing high concentrations, respectively, and then diluting with a culture solution according to the cells. Since the product was a liquid, the concentration of cafCA was diluted as it was with a culture solution according to the cells and adjusted to 0.5 mM, which was the same as for caf and CA. As a control, no drug was added to some wells (ADM concentration 0 μM).

<結果>
1.細胞生存率
図22、図25、図28及び図31に、それぞれHOS細胞、HT1080細胞、MKN45細胞及びHela細胞における4つの群(ADM、ADM+caf、ADM+CA、ADM+cafCA)の450 nmの吸光度に基づく細胞生存率を示す。図22、図25、図28及び図31から明らかなように、HOS細胞(骨肉腫)、HT1080細胞(軟部肉腫)、MKN45細胞(胃癌)及びHela細胞(子宮癌)において、ADM+cafCA群は、全てのADM濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、ADM+cafCA群は、各アドリアマイシン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、アドリアマイシンと組み合わせて添加することにより、アドリアマイシンの抗癌剤効果を増強することが、12.5〜200 nMの全てのアドリアマイシン濃度において確認できた。
<Result>
1. Cell viability FIGS. 22, 25, 28 and 31 show cell survival based on absorbance at 450 nm of four groups (ADM, ADM + caf, ADM + CA, ADM + cafCA) in HOS cells, HT1080 cells, MKN45 cells and Hela cells, respectively. Indicates the rate. As is clear from FIG. 22, FIG. 25, FIG. 28 and FIG. 31, in the HOS cell (osteosarcoma), HT1080 cell (soft tissue sarcoma), MKN45 cell (gastric cancer) and Hela cell (uterine cancer), the ADM + cafCA group is all The cell viability was lowest at the ADM concentration compared to the other groups.
As a result of analysis of variance, the ADM + cafCA group was significantly different from all other groups in each adriamycin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of adriamycin by adding it in combination with adriamycin at all adriamycin concentrations of 12.5 to 200 nM.

2.Median Effect法
次に、Median Effect法によるHOS細胞、HT1080細胞、MKN45細胞及びHela細胞における相乗効果の解析結果を、図23、図26、図29及び図32に示す。相乗効果の指標であるCIは、図23、図26、図29及び図32におけるADM濃度毎の細胞生存率に基づき、ADM+cafとADM+CAのコンビネーションをADM+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
図23、図26、図29及び図32から明らかなように、ADM+cafCA群は、12.5〜200 nMの全てのアドリアマイシン濃度で、CI<1.0となり、ADM+caf及びADM+CAに対して、相乗効果が認められた。
2. Median Effect Method Next, FIG. 23, FIG. 26, FIG. 29, and FIG. 32 show the analysis results of the synergistic effect in HOS cells, HT1080 cells, MKN45 cells, and Hela cells by the Median Effect method. CI, which is an index of synergistic effect, was calculated as a combination of ADM + caf and ADM + CA as ADM + cafCA based on the cell viability for each ADM concentration in FIGS. 23, 26, 29, and 32. A synergistic effect is observed when CI <1.0.
As is apparent from FIGS. 23, 26, 29 and 32, the ADM + cafCA group has a CI <1.0 at all adriamycin concentrations from 12.5 to 200 nM, and has a synergistic effect on ADM + caf and ADM + CA. Was recognized.

3.Isobologram法
Isobologram法によるHOS細胞、HT1080細胞、MKN45細胞及びHela細胞における相乗効果の解析結果を図24、図27、図30及び図33に示す。
図24、図27、図30及び図33のグラフから明らかなように、ADM+cafCAの各Effective Doseを示す円形の破線が、それぞれ、ADM+caf及びADM+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図24、図27、図30及び図33の表から明らかなように、ADM+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、ADM+caf及びADM+CAに対して、相乗効果が認められた。
3. Isobologram method FIGS. 24, 27, 30 and 33 show analysis results of synergistic effects in HOS cells, HT1080 cells, MKN45 cells and Hela cells by the Isobologram method.
As is clear from the graphs of FIGS. 24, 27, 30 and 33, the circular broken lines indicating the effective doses of ADM + cafCA are located on the lower left side of the curves connecting the effective doses of ADM + caf and ADM + CA, respectively. Therefore, a synergistic effect was recognized.
As is apparent from the tables of FIGS. 24, 27, 30 and 33, the ADM + cafCA group has a CI <1.0 at all effective doses of 50 to 90%, and has a synergistic effect on ADM + caf and ADM + CA. Was recognized.

以上の結果より、本発明の癌治療剤において、アドリアマイシンとカフェインクエン酸塩との組合せは、アドリアマイシン単独、アドリアマイシンと無水カフェインとの組合せ、アドリアマイシンとクエン酸との組合せと比較して、有意にアドリアマイシンの抗癌剤効果をより増強すること、カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であることが明らかになった。   From the above results, in the cancer therapeutic agent of the present invention, the combination of adriamycin and caffeine citrate is significantly more significant than the combination of adriamycin alone, the combination of adriamycin and anhydrous caffeine, and the combination of adriamycin and citric acid. Further enhancing the anticancer drug effect of adriamycin, the anticancer drug potentiating effect of caffeine citrate is not just an additive effect of the anticancer drug potentiating effect of anhydrous caffeine and the anticancer drug potentiating effect of citric acid, It became clear that it was a synergistic effect.

[骨肉腫、胃癌及び卵巣癌培養細胞におけるカフェインクエン酸塩のゲムシタビン効果増強の評価]
骨肉腫、胃癌及び卵巣癌に対するカフェインクエン酸塩の抗癌剤(ゲムシタビン)効果増強を評価した。以下の細胞株、抗癌剤及び培地を用いた他は、実施例1と同様の材料により試験を行った。
[Evaluation of enhancement of gemcitabine effect of caffeine citrate in cultured cells of osteosarcoma, gastric cancer and ovarian cancer]
The enhancement of anticancer agent (gemcitabine) effect of caffeine citrate against osteosarcoma, gastric cancer and ovarian cancer was evaluated. The test was performed using the same materials as in Example 1 except that the following cell lines, anticancer agents and medium were used.

<材料>
・細胞株
骨肉腫としては、ヒト由来のHOS細胞(ATCCより入手)を用いた。
胃癌としては、ヒト由来のMKN45細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
卵巣癌としては、ヒト由来のOVCAR−3細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・抗癌剤
ゲムシタビン(和光純薬工業株式会社より入手、以下、GEMと称する場合がある)を用いた。
・培地
上記の各癌種培養細胞について、HOS細胞、MKN45細胞及びOVCAR−3細胞は、RPMI1640培地を用いた。
<Material>
Cell line Human-derived HOS cells (obtained from ATCC) were used as osteosarcoma.
As gastric cancer, human-derived MKN45 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As the ovarian cancer, human-derived OVCAR-3 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology National BioResource Project) were used.
Anticancer agent Gemcitabine (obtained from Wako Pure Chemical Industries, Ltd., hereinafter sometimes referred to as GEM) was used.
-Medium About each said cancer type cultured cell, RPMI1640 medium was used for HOS cell, MKN45 cell, and OVCAR-3 cell.

<WST−8アッセイ>
工程(2)を下記の通りに変更した他は、実施例1の方法に準じて試験を行った。
(2)培養後、各癌種培養細胞について、4つの群に分け、薬剤(GEM、GEM+caf、GEM+CA、GEM+cafCA)を100 μL添加した。各群に添加する薬剤のGEM濃度は、水(滅菌精製水)にGEMの粉末を溶かして高濃度のものを作成し、その後細胞に応じた培養液で希釈することで0.5、1、2、4、8 nMに調製した。各群の併用薬であるcaf及びCAの濃度は、水に粉末を溶かしてそれぞれ高濃度のものを作成し、その後細胞に応じた培養液で希釈することで一律0.5 mMに調製した。cafCAの濃度は、製品が液体であるので、そのまま細胞に応じた培養液で希釈し、caf、CAと同様の0.5 mMに調製した。対照として、一部のウェルには薬剤を添加しなかった(GEM濃度0 μM)。
<WST-8 assay>
A test was performed according to the method of Example 1 except that the step (2) was changed as follows.
(2) After the culture, each cancer type cultured cell was divided into four groups, and 100 μL of a drug (GEM, GEM + caf, GEM + CA, GEM + cafCA) was added. The GEM concentration of the drug added to each group is 0.5, 1 by dissolving the GEM powder in water (sterilized purified water) to make a high concentration, and then diluting with a culture solution according to the cells. Prepared to 2, 4, 8 nM. The concentrations of caf and CA, which are concomitant drugs in each group, were uniformly adjusted to 0.5 mM by dissolving powders in water and preparing high concentrations, respectively, and then diluting with a culture solution according to the cells. Since the product was a liquid, the concentration of cafCA was diluted as it was with a culture solution according to the cells and adjusted to 0.5 mM, which was the same as for caf and CA. As a control, no drug was added to some wells (GEM concentration 0 μM).

<結果>
1.細胞生存率
図34、図37及び図40に、それぞれHOS細胞、MKN45細胞及びOVCAR−3細胞における4つの群(GEM、GEM+caf、GEM+CA、GEM+cafCA)の450 nmの吸光度に基づく細胞生存率を示す。図34、図37及び図40から明らかなように、HOS細胞(骨肉腫)、MKN45細胞(胃癌)及びOVCAR−3細胞(卵巣癌)において、GEM+cafCA群は、全てのGEM濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、GEM+cafCA群は、各ゲムシタビン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、ゲムシタビンと組み合わせて添加することにより、ゲムシタビンの抗癌剤効果を増強することが、0.5〜8.0 nMの全てのゲムシタビン濃度において確認できた。
<Result>
1. Cell Viability FIG. 34, FIG. 37 and FIG. 40 show the cell viability based on the absorbance at 450 nm of four groups (GEM, GEM + caf, GEM + CA, GEM + cafCA) in HOS cells, MKN45 cells and OVCAR-3 cells, respectively. As is apparent from FIGS. 34, 37 and 40, in HOS cells (osteosarcoma), MKN45 cells (gastric cancer) and OVCAR-3 cells (ovarian cancer), the GEM + cafCA group is the other group at all GEM concentrations. The cell viability was the lowest compared with.
As a result of analysis of variance, the GEM + cafCA group was significantly different from all other groups in each gemcitabine concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer agent effect of gemcitabine by adding it in combination with gemcitabine at all gemcitabine concentrations of 0.5 to 8.0 nM.

2.Median Effect法
次に、Median Effect法によるHOS細胞、MKN45細胞及びOVCAR−3における相乗効果の解析結果を、図35、図38及び図41に示す。相乗効果の指標であるCIは、図35、図38及び図41におけるGEM濃度毎の細胞生存率に基づき、GEM+cafとGEM+CAのコンビネーションをGEM+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
図35、図38及び図41から明らかなように、GEM+cafCA群は、0.5〜8.0 nMの全てのゲムシタビン濃度で、CI<1.0となり、GEM+caf及びGEM+CAに対して、相乗効果が認められた。
2. Median Effect Method Next, FIG. 35, FIG. 38, and FIG. 41 show the analysis results of synergistic effects in HOS cells, MKN45 cells, and OVCAR-3 by the Median Effect method. CI, which is an index of the synergistic effect, was calculated as a combination of GEM + caf and GEM + CA as GEM + cafCA based on the cell viability for each GEM concentration in FIG. 35, FIG. 38 and FIG. A synergistic effect is observed when CI <1.0.
As is apparent from FIGS. 35, 38 and 41, the GEM + cafCA group has a CI <1.0 at all gemcitabine concentrations from 0.5 to 8.0 nM, and has a synergistic effect on GEM + caf and GEM + CA. Admitted.

3.Isobologram法
Isobologram法によるHOS細胞、MKN45細胞及びOVCAR−3における相乗効果の解析結果を図36、図39及び図42に示す。
図36及び図39のグラフから明らかなように、GEM+cafCAの各Effective Doseを示す円形の破線が、それぞれ、GEM+caf及びGEM+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
図36、図39及び図42の表から明らかなように、GEM+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、GEM+caf及びGEM+CAに対して、相乗効果が認められた。
3. Isobologram method The results of analysis of the synergistic effect in HOS cells, MKN45 cells and OVCAR-3 by the Isobologram method are shown in FIGS. 36, 39 and 42.
As is apparent from the graphs of FIGS. 36 and 39, since the circular broken lines indicating the effective doses of GEM + cafCA are located on the lower left side of the curves connecting the effective doses of GEM + caf and GEM + CA, respectively, there is a synergistic effect. Admitted.
As is clear from the tables of FIGS. 36, 39 and 42, the GEM + cafCA group has a CI <1.0 at all effective doses of 50 to 90%, and a synergistic effect is observed with respect to GEM + caf and GEM + CA. It was.

以上の結果より、本発明の癌治療剤において、ゲムシタビンとカフェインクエン酸塩との組合せは、ゲムシタビン単独、ゲムシタビンと無水カフェインとの組合せ、ゲムシタビンとクエン酸との組合せと比較して、有意にゲムシタビンの抗癌剤効果をより増強すること、カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であることが明らかになった。   From the above results, in the cancer therapeutic agent of the present invention, the combination of gemcitabine and caffeine citrate is significantly more significant than the combination of gemcitabine alone, the combination of gemcitabine and anhydrous caffeine, or the combination of gemcitabine and citric acid. To enhance the anticancer agent effect of gemcitabine, the anticancer agent enhancing effect of caffeine citrate is not just an additive effect of the anticancer agent enhancing effect of anhydrous caffeine and the anticancer agent enhancing effect of citric acid, It became clear that it was a synergistic effect.

[骨肉腫及び軟部肉腫培養細胞におけるカフェインクエン酸塩の抗癌剤による細胞増殖抑制効果の増強の評価]
以下の方法により、骨肉腫及び軟部肉腫に対するカフェインクエン酸塩の抗癌剤による細胞増殖抑制効果の増強を評価した。
[Evaluation of enhancement of cell growth inhibitory effect of caffeine citrate by anticancer agent in cultured cells of osteosarcoma and soft tissue sarcoma]
By the following method, the enhancement of the cell growth inhibitory effect of caffeine catenate anticancer agent against osteosarcoma and soft tissue sarcoma was evaluated.

<材料>
・細胞株
骨肉腫としては、ヒト由来のHOS細胞(ATCCより入手)を用いた。
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
・抗癌剤
シスプラチン(和光純薬工業株式会社より入手)を用いた。
・併用薬
カフェインクエン酸塩(cafCA、クエン酸カフェイン、ノーベルファーマ株式会社より入手)、無水カフェイン(caf、和光純薬工業株式会社より入手)又はクエン酸(CA、和光純薬工業株式会社より入手)を用いた。
・培地
HOS細胞は、RPMI1640培地を用い、HT1080細胞は、DMEMを用いた。
<Material>
Cell line Human-derived HOS cells (obtained from ATCC) were used as osteosarcoma.
As the soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
-The anticancer agent cisplatin (available from Wako Pure Chemical Industries, Ltd.) was used.
-Concomitant drugs Caffeine citrate (cafCA, citrate caffeine, obtained from Nobel Pharma Co., Ltd.), anhydrous caffeine (caf, obtained from Wako Pure Chemical Industries, Ltd.) or citric acid (CA, Wako Pure Chemical Industries Ltd.) Obtained from the company).
-Medium HMI cells used RPMI1640 medium, and HT1080 cells used DMEM.

<細胞増殖(EdU)アッセイ>
EdU(5−エチニル−2'−デオキシウリジン)とは、チミジンのヌクレオシド類似体(アナログ)であり、活発なDNA合成の間にDNAに取り込まれる。すなわち、EdUを検出することで、活発なDNA合成が起こっている増殖細胞を検出できる。
そこで、本実験は、以下の手順で、EdUを検出することにより、薬剤投与による細胞増殖能の変化を確認し、CDDP+cafCAによる細胞増殖抑制効果の増強を調べた。
(1)上記の各癌種培養細胞について、それぞれ3000〜5000個/100 μLの濃度で、上記の培地、37℃、CO 5%の条件で、24時間、チャンバースライド(Lab−Tec(登録商標)、Thermo Scientific Fisher)で培養した。
(2)培養後、各癌種培養細胞について、5つの群(Non−drug、CDDP、CDDP+caf、CDDP+CA、CDDP+cafCA)に分け、培養液を入れ替えた。Non−drug群は0.5 mLの培養液を、薬剤投与群はCDDPが0.25 μM、caf、CA及びcafCAがそれぞれ0.5 mMとなるように調整した培養液を0.5 mL添加した。各群に添加する薬剤のCDDP濃度は、水(滅菌精製水)にCDDPの粉末を溶かして高濃度のものを作成し、その後細胞に応じた培養液で希釈することで0.25 μMに調製した。各群の併用薬であるcaf及びCAの濃度は、水に粉末を溶かしてそれぞれ高濃度のものを作成し、その後細胞に応じた培養液で希釈することで一律0.5 mMに調製した。cafCAの濃度は、製品が液体であるので、そのまま細胞に応じた培養液で希釈し、caf、CAと同様の0.5 mMに調製した。対照として、一部のウェルには薬剤を添加しなかった(Non−drug:0 μM)。
(3)薬剤添加後24時間後に、Click−iT(登録商標) Plus EdU Alexa Fluor(登録商標)555 Imaging Kit(Thermo Fisher Scientific社)、並びにNucBlue(商標) Live Cell Stain ReadyProbes(商標) reagent (molecular probes by life technologies)(Thermo Fisher Scientific社)を用いて、メーカーのマニュアルに従い、DNA合成を行っている細胞の核を染色した(Hoechst(Hoechst33342):核を検出、EdU検出試薬(Alexa Fluor(登録商標)555):DNA合成中の核を検出)。蛍光顕微鏡(BIOREVO:BZ−9000、KEYENCE社)により、Hoechstを光らせるためのフィルターはDAPI(励起波長:360±40 nm、ダイクロイックミラー波長:400 nm、吸収波長:460±50 nm)を、EdUを光らせるためのフィルターはTRITC(励起波長:540±25 nm、ダイクロイックミラー波長:565 nm、吸収波長:605±55 nm)を用い、各群の定点5視野を写真撮影した。Hoechst及びEdUの検出を行った。Non−drugと比較して、EdU検出シグナルが少なく(弱く)なるほど、細胞増殖を抑制しているといえる。
(4)(3)の写真の画面中の細胞をカウントした。なお、EdU発色率は以下の通りに算出した。EdU発色率=DNA合成細胞数(EdU検出細胞数)/細胞総数(Hoechst検出細胞数)。各群5視野のEdU発色率の平均値を算出し、Non−drugの平均値を1とした比率から、Statcel 3(オーエムエス出版)を用いて、各群のEdU発色率の有意差について分散分析した。
<Cell proliferation (EdU) assay>
EdU (5-ethynyl-2′-deoxyuridine) is a nucleoside analog (analog) of thymidine that is incorporated into DNA during active DNA synthesis. That is, by detecting EdU, proliferating cells in which active DNA synthesis is occurring can be detected.
Therefore, in this experiment, by detecting EdU according to the following procedure, the change in cell growth ability due to drug administration was confirmed, and the enhancement of the cell growth inhibitory effect by CDDP + cafCA was examined.
(1) For each cancer type cultured cells described above, at a concentration of 3000 to 5000 pieces / 100 [mu] L each, above the medium, 37 ° C., with CO 2 5% of the conditions, 24 hours, chamber slides (Lab-Tec (registered (Trademark), Thermo Scientific Fisher).
(2) After the culture, each cancer type cultured cell was divided into five groups (Non-drug, CDDP, CDDP + caf, CDDP + CA, CDDP + cafCA), and the culture solution was replaced. Non-drug group added 0.5 mL of culture solution, and drug-administered group added 0.5 mL of culture solution adjusted so that CDDP was 0.25 μM, caf, CA, and cafCA were each 0.5 mM. did. The CDDP concentration of the drug to be added to each group is adjusted to 0.25 μM by dissolving CDDP powder in water (sterilized purified water) to make a high concentration, and then diluting with a culture solution suitable for the cells. did. The concentrations of caf and CA, which are concomitant drugs in each group, were uniformly adjusted to 0.5 mM by dissolving powders in water and preparing high concentrations, respectively, and then diluting with a culture solution according to the cells. Since the product was a liquid, the concentration of cafCA was diluted as it was with a culture solution according to the cells and adjusted to 0.5 mM, which was the same as for caf and CA. As a control, no drug was added to some wells (Non-drug: 0 μM).
(3) 24 hours after drug addition, Click-iT (registered trademark) Plus EdU Alexa Fluor (registered trademark) 555 Imaging Kit (Thermo Fisher Scientific), and NucBlue (registered trademark) Live Cell Stent Reagent trademark Using probes by life technologies (Thermo Fisher Scientific), the nuclei of cells undergoing DNA synthesis were stained according to the manufacturer's manual (Hoechst (Hoechst 33342): nuclei detected, EdU detection reagent (Alexa Fluor (registered Alexa Fluor (registered Alexa Fluor))) (Trademark) 555): detection of nuclei during DNA synthesis). With a fluorescence microscope (BIOREVO: BZ-9000, KEYENCE), the filter for illuminating Hoechst is DAPI (excitation wavelength: 360 ± 40 nm, dichroic mirror wavelength: 400 nm, absorption wavelength: 460 ± 50 nm), EdU TRITC (excitation wavelength: 540 ± 25 nm, dichroic mirror wavelength: 565 nm, absorption wavelength: 605 ± 55 nm) was used as a filter for illuminating, and five fixed points of each field were photographed. Hoechst and EdU were detected. It can be said that as the EdU detection signal is smaller (weaker) compared to non-drug, cell proliferation is suppressed.
(4) Cells in the screen of the photo in (3) were counted. The EdU color development rate was calculated as follows. EdU color development rate = DNA synthetic cell number (EdU detected cell number) / cell total number (Hoechst detected cell number). The average value of the EdU color development rate of each group of 5 visual fields is calculated, and from the ratio where the average value of Non-drug is 1, dispersion of the significant difference in the EdU color development rate of each group using Statcel 3 (OMS Publishing) analyzed.

<結果>
HOS細胞及びHT1080細胞における結果を、それぞれ図43及び図44に示す。
図43から明らかなように、HOS細胞(骨肉腫)において、CDDP+cafCA群は、他の群と比較して、最もHoechst検出細胞数に対するEdU検出細胞数の割合が少なかった。すなわち、CDDP+cafCA群は、他の群と比較して、最もHOS細胞(骨肉腫)の細胞増殖を抑制した。
図44から明らかなように、HT1080細胞(軟部肉腫)において、CDDP+cafCA群は、他の群と比較して、最もHoechst検出シグナルに対するEdU検出シグナルの割合が少なかった。すなわち、CDDP+cafCA群は、他の群と比較して、最もHT1080細胞(軟部肉腫)の細胞増殖を抑制した。
HOS細胞及びHT1080細胞における各群のEdU発色率の有意差の解析結果を図45に示す。
図45から明らかなように、CDDP+cafCA群は、HOS細胞及びHT1080細胞において、他の全ての群との間で有意差があった(p<0.01)。また、HOS細胞において、CDDP+cafCA群のEdU発色率は、Non−Drug群と比較して約51%、CDDP群と比較して約58%、CDDP+caf群と比較して約66%、CDDP+CA群と比較して約61%であり、大きく低下した。HT1080細胞において、CDDP+cafCA群のEdU発色率は、Non−Drug群と比較して約51%、CDDP群と比較して約56%、CDDP+caf群と比較して約72%、CDDP+CA群と比較して約57%であり、大きく低下した。
よって、カフェインクエン酸塩は、骨肉腫及び軟部肉腫において、シスプラチンと組み合わせて添加することにより、シスプラチンの細胞増殖抑制効果を増強することが確認できた。
<Result>
The results in HOS cells and HT1080 cells are shown in FIGS. 43 and 44, respectively.
As is clear from FIG. 43, in the HOS cells (osteosarcoma), the CDDP + cafCA group had the smallest ratio of the EdU detected cells to the Hoechst detected cells compared to the other groups. That is, in the CDDP + cafCA group, cell growth of HOS cells (osteosarcoma) was most suppressed as compared with other groups.
As is clear from FIG. 44, in the HT1080 cells (soft tissue sarcoma), the CDDP + cafCA group had the lowest ratio of the EdU detection signal to the Hoechst detection signal compared to the other groups. That is, the CDDP + cafCA group most suppressed the cell growth of HT1080 cells (soft tissue sarcoma) as compared with the other groups.
The analysis result of the significant difference of the EdU coloring rate of each group in HOS cell and HT1080 cell is shown in FIG.
As is clear from FIG. 45, the CDDP + cafCA group was significantly different from all other groups in HOS cells and HT1080 cells (p <0.01). In HOS cells, the EdU color development rate of the CDDP + cafCA group is about 51% compared to the non-drug group, about 58% compared to the CDDP group, about 66% compared to the CDDP + caf group, and compared to the CDDP + CA group. About 61%. In HT1080 cells, the EdU color development rate of the CDDP + cafCA group is about 51% compared to the Non-Drug group, about 56% compared to the CDDP group, about 72% compared to the CDDP + caf group, and compared to the CDDP + CA group. It was about 57%, which was greatly reduced.
Therefore, it was confirmed that caffeine citrate enhances the cell growth inhibitory effect of cisplatin when added in combination with cisplatin in osteosarcoma and soft tissue sarcoma.

以上の結果より、本発明の癌治療剤において、シスプラチンとカフェインクエン酸塩との組合せは、骨肉腫及び軟部肉腫において、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンの細胞増殖抑制効果をより増強することが明らかとなった。   From the above results, in the cancer therapeutic agent of the present invention, the combination of cisplatin and caffeine citrate is cisplatin alone, cisplatin and anhydrous caffeine, cisplatin and citric acid in osteosarcoma and soft tissue sarcoma. Compared with the combination, it was found that the cell growth inhibitory effect of cisplatin was significantly enhanced.

[骨肉腫及び軟部肉腫培養細胞におけるカフェインクエン酸塩の抗癌剤によるアポトーシス(細胞死)誘導効果の増強の評価]
以下の方法により、骨肉腫及び軟部肉腫に対するカフェインクエン酸塩の抗癌剤によるアポトーシス誘導効果の増強を評価した。
[Evaluation of enhancement of apoptosis (cell death) inducing effect of caffeine citrate by anticancer agent in cultured cells of osteosarcoma and soft tissue sarcoma]
By the following method, the enhancement of apoptosis-inducing effect of caffeine citrate anticancer agent against osteosarcoma and soft tissue sarcoma was evaluated.

<材料>
・細胞株
骨肉腫としては、ヒト由来のHOS細胞(ATCCより入手)を用いた。
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
・抗癌剤
シスプラチン(和光純薬工業株式会社より入手)を用いた。
・併用薬
カフェインクエン酸塩(cafCA、クエン酸カフェイン、ノーベルファーマ株式会社より入手)、無水カフェイン(caf、和光純薬工業株式会社より入手)又はクエン酸(CA、和光純薬工業株式会社より入手)を用いた。
・培地
HOS細胞は、RPMI1640培地を用い、HT1080細胞は、DMEMを用いた。
<Material>
Cell line Human-derived HOS cells (obtained from ATCC) were used as osteosarcoma.
As the soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
-The anticancer agent cisplatin (available from Wako Pure Chemical Industries, Ltd.) was used.
-Concomitant drugs Caffeine citrate (cafCA, citrate caffeine, obtained from Nobel Pharma Co., Ltd.), anhydrous caffeine (caf, obtained from Wako Pure Chemical Industries, Ltd.) or citric acid (CA, Wako Pure Chemical Industries Ltd.) Obtained from the company).
-Medium HMI cells used RPMI1640 medium, and HT1080 cells used DMEM.

<ミトコンドリア膜電位変化(TMRE)アッセイ>
TMRE(tetramethylrhodamine,ethyl ester)とは、膜電位の保たれているミトコンドリア内に蓄積される色素である。ミトコンドリア膜電位が消失すると、TMREは分散され、検出シグナル強度が弱くなる。アポトーシスでは、初期の段階として、ミトコンドリア外膜が破壊され、膜電位の消失が起こるため、TMREの蓄積は少なくなり、TMRE検出シグナル強度が弱くなる。
そこで、本実験は、以下の手順で、TMREを検出することにより、薬剤投与による膜電位の変化を確認し、CDDP+cafCAによるミトコンドリア膜電位の減弱・消失(アポトーシス誘導効果)の増強を調べた。
(1)上記の各癌種培養細胞について、それぞれ3000〜5000個/100 μLの濃度で、上記の培地、37℃、CO 5%の条件で、24時間、チャンバースライド(Lab−Tec(登録商標)、Thermo Scientific Fisher)で培養した。
(2)培養後、各癌種培養細胞について、5つの群(Non−drug、CDDP、CDDP+caf、CDDP+CA、CDDP+cafCA)に分け、培養液を入れ替えた。Non−drug群は0.5 mLの培養液を、薬剤投与群はCDDPが0.25 μM、caf、CA及びcafCAがそれぞれ0.5 mMとなるように調整した培養液を0.5 mL添加した。各群に添加する薬剤のCDDP濃度は、水(滅菌精製水)にCDDPの粉末を溶かして高濃度のものを作成し、その後細胞に応じた培養液で希釈することで0.25 μMに調製した。各群の併用薬であるcaf及びCAの濃度は、水に粉末を溶かしてそれぞれ高濃度のものを作成し、その後細胞に応じた培養液で希釈することで一律0.5 mMに調製した。cafCAの濃度は、製品が液体であるので、そのまま細胞に応じた培養液で希釈し、caf、CAと同様の0.5 mMに調製した。対照として、一部のウェルには薬剤を添加しなかった(Non−drug:0 μM)。
(3)薬剤添加後24時間後に、TMRE−Mitochondrial Membrane Potential Assay Kit(アブカム社)を用いて、メーカーのマニュアルに従い、DNA合成を行っている細胞の核を染色した(Hoechst(Hoechst33342):核を検出、TMRE:膜電位の保たれているミトコンドリアを検出)。蛍光顕微鏡(BIOREVO:BZ−9000、KEYENCE社)によりHoechstを光らせるためのフィルターはDAPI(励起波長:360±40 nm、ダイクロイックミラー波長:400 nm、吸収波長:460±50 nm)を、TMREを光らせるためのフィルターはTRITC(励起波長:540±25 nm、ダイクロイックミラー波長:565 nm、吸収波長:605±55 nm)を用い、各群の定点5視野を写真撮影した。Hoechst及びTMREの検出を行った。Non−drugと比較して、TMRE検出シグナルが弱くなるほど、アポトーシスを誘導しているといえる。
(4)(3)の写真の画面中の細胞をカウントした。なお、1細胞あたりのTMRE輝度は以下の通りに算出した。1細胞あたりのTMRE輝度=TMRE輝度(検出シグナル強度)総和/細胞総数(Hoechst検出細胞数)。各群5視野の1細胞あたりのTMRE輝度の平均値を算出し、Non−drugの平均値を1とした比率から、Statcel 3(オーエムエス出版)を用いて、各群の1細胞あたりのTMRE輝度の有意差について分散分析した。
<Mitochondrial membrane potential change (TMRE) assay>
TMRE (tetramethylrhodamine, ethyl ester) is a pigment that accumulates in mitochondria where the membrane potential is maintained. When the mitochondrial membrane potential disappears, TMRE is dispersed and the detection signal intensity is weakened. In apoptosis, as an early stage, the outer mitochondrial membrane is destroyed and the membrane potential disappears, so that TMRE accumulation is reduced and the TMRE detection signal intensity is weakened.
Therefore, in this experiment, TMRE was detected by the following procedure to confirm the change in membrane potential due to drug administration, and the enhancement of mitochondrial membrane potential attenuation / disappearance (apoptosis induction effect) by CDDP + cafCA was examined.
(1) For each cancer type cultured cells described above, at a concentration of 3000 to 5000 pieces / 100 [mu] L each, above the medium, 37 ° C., with CO 2 5% of the conditions, 24 hours, chamber slides (Lab-Tec (registered (Trademark), Thermo Scientific Fisher).
(2) After the culture, each cancer type cultured cell was divided into five groups (Non-drug, CDDP, CDDP + caf, CDDP + CA, CDDP + cafCA), and the culture solution was replaced. Non-drug group added 0.5 mL of culture solution, and drug administration group added 0.5 mL of culture solution adjusted so that CDDP was 0.25 μM, caf, CA and cafCA were 0.5 mM each. did. The CDDP concentration of the drug to be added to each group is adjusted to 0.25 μM by dissolving CDDP powder in water (sterilized purified water) to make a high concentration, and then diluting with a culture solution suitable for the cells. did. The concentrations of caf and CA, which are concomitant drugs in each group, were uniformly adjusted to 0.5 mM by dissolving powders in water and preparing high concentrations, respectively, and then diluting with a culture solution according to the cells. Since the product was a liquid, the concentration of cafCA was diluted as it was with a culture solution according to the cells and adjusted to 0.5 mM, which was the same as for caf and CA. As a control, no drug was added to some wells (Non-drug: 0 μM).
(3) Twenty-four hours after the addition of the drug, the nucleus of the cell undergoing DNA synthesis was stained according to the manufacturer's manual using TMRE-Mitochondral Membrane Potential Assay Kit (Abcam) (Hoechst (Hoechst 33342): Nucleus Detection, TMRE: Detect mitochondria with membrane potential maintained). A filter for illuminating Hoechst with a fluorescence microscope (BIOREVO: BZ-9000, KEYENCE) emits TMRE with DAPI (excitation wavelength: 360 ± 40 nm, dichroic mirror wavelength: 400 nm, absorption wavelength: 460 ± 50 nm). As a filter for this purpose, TRITC (excitation wavelength: 540 ± 25 nm, dichroic mirror wavelength: 565 nm, absorption wavelength: 605 ± 55 nm) was used, and five fixed points of each field were photographed. Detection of Hoechst and TMRE was performed. It can be said that apoptosis is more induced as the TMRE detection signal becomes weaker than non-drug.
(4) Cells in the screen of the photo in (3) were counted. The TMRE luminance per cell was calculated as follows. TMRE luminance per cell = TMRE luminance (detection signal intensity) sum / cell total number (Hoechst detection cell number). The average value of TMRE luminance per cell in each group of 5 visual fields was calculated, and the TMRE per cell of each group was calculated using Statcel 3 (OMS Publishing) from the ratio where the average value of Non-drug was 1. Analysis of variance was performed for significant differences in luminance.

<結果>
HOS細胞及びHT1080細胞における結果を、それぞれ図46及び図47に示す。
図46から明らかなように、HOS細胞(骨肉腫)において、CDDP+cafCA群は、他の群と比較して、最もHoechst検出細胞数に対するTMRE検出シグナル強度が弱かった。すなわち、CDDP+cafCA群は、他の群と比較して、最もHOS細胞(骨肉腫)のアポトーシスを誘導する可能性を確認した。
図47から明らかなように、HT1080細胞(軟部肉腫)において、CDDP+cafCA群は、他の群と比較して、最もHoechst検出細胞数に対するTMRE検出シグナル強度が弱かった。すなわち、CDDP+cafCA群は、他の群と比較して、最もHT1080細胞(軟部肉腫)のアポトーシスを誘導する可能性を確認した。
HOS細胞及びHT1080細胞における各群の1細胞あたりのTMRE輝度の有意差の解析結果を図48に示す。
図48から明らかなように、CDDP+cafCA群は、HOS細胞及びHT1080細胞において、他の全ての群との間で有意差があった(p<0.05又はp<0.01)。
また、HOS細胞において、CDDP+cafCA群の1細胞あたりのTMRE輝度は、Non−Drug群と比較して約51%、CDDP群と比較して約65%、CDDP+caf群と比較して約77%、CDDP+CA群と比較して約71%であり、大きく低下した。HT1080細胞において、CDDP+cafCA群の1細胞あたりのTMRE輝度は、Non−Drug群と比較して約35%、CDDP群と比較して約38%、CDDP+caf群と比較して約57%、CDDP+CA群と比較して約52%であり、大きく低下した。
よって、カフェインクエン酸塩は、骨肉腫及び軟部肉腫において、シスプラチンと組み合わせて添加することにより、ミトコンドリア膜電位が減弱・消失し、シスプラチンのアポトーシス誘導効果を増強する可能性を確認した。
<Result>
The results in HOS cells and HT1080 cells are shown in FIGS. 46 and 47, respectively.
As is clear from FIG. 46, in the HOS cells (osteosarcoma), the CDDP + cafCA group had the weakest TMRE detection signal intensity with respect to the number of Hoechst detected cells as compared with the other groups. That is, the CDDP + cafCA group was confirmed to be most likely to induce apoptosis of HOS cells (osteosarcoma) compared to the other groups.
As is clear from FIG. 47, in HT1080 cells (soft tissue sarcoma), the CDDP + cafCA group had the weakest TMRE detection signal intensity with respect to the number of Hoechst detected cells as compared with the other groups. That is, the CDDP + cafCA group was confirmed to be most likely to induce apoptosis of HT1080 cells (soft tissue sarcoma) compared to other groups.
The analysis result of the significant difference of TMRE brightness | luminance per cell of each group in HOS cell and HT1080 cell is shown in FIG.
As is clear from FIG. 48, the CDDP + cafCA group was significantly different from all other groups in HOS cells and HT1080 cells (p <0.05 or p <0.01).
In addition, in HOS cells, the TMRE brightness per cell in the CDDP + cafCA group is about 51% compared to the Non-Drug group, about 65% compared to the CDDP group, about 77% compared to the CDDP + caf group, CDDP + CA Compared with the group, it was about 71%, which was greatly reduced. In HT1080 cells, the TMRE brightness per cell of the CDDP + cafCA group is about 35% compared to the Non-Drug group, about 38% compared to the CDDP group, about 57% compared to the CDDP + caf group, and the CDDP + CA group Compared to about 52%, it was greatly reduced.
Therefore, it was confirmed that caffeine citrate was added in combination with cisplatin in osteosarcoma and soft tissue sarcoma, whereby the mitochondrial membrane potential was attenuated / disappeared and the apoptosis-inducing effect of cisplatin could be enhanced.

以上の結果より、本発明の癌治療剤において、シスプラチンとカフェインクエン酸塩との組合せは、骨肉腫及び軟部肉腫において、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンのアポトーシス誘導効果をより増強する可能性を確認した。   From the above results, in the cancer therapeutic agent of the present invention, the combination of cisplatin and caffeine citrate is cisplatin alone, cisplatin and anhydrous caffeine, cisplatin and citric acid in osteosarcoma and soft tissue sarcoma. Compared with the combination, the possibility of significantly enhancing the apoptosis-inducing effect of cisplatin was confirmed.

[皮膚癌、膵癌及び胆管癌培養細胞におけるカフェインクエン酸塩のシスプラチン効果増強の評価]
皮膚癌、膵癌及び胆管癌に対するカフェインクエン酸塩の抗癌剤(シスプラチン)効果増強を評価した。以下の細胞株及び培地を用いた他は、実施例1と同様の材料及び方法により試験を行った。
[Evaluation of enhancement of cisplatin effect of caffeine citrate in skin, pancreatic and cholangiocarcinoma cells]
The enhancement of anticancer agent (cisplatin) effect of caffeine citrate against skin cancer, pancreatic cancer and bile duct cancer was evaluated. The test was performed using the same materials and methods as in Example 1 except that the following cell lines and media were used.

<材料>
・細胞株
皮膚癌としては、ヒト由来のA375細胞(DSファーマバイオメディカル株式会社より入手)を用いた。
膵癌としては、ヒト由来のPANC−1細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
胆管癌としては、ヒト由来のTFK−1細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・培地
上記の各癌種培養細胞について、A375細胞、PANC−1細胞及びTFK−1細胞は、いずれもRPMI1640培地を用いた。
<Material>
-Cell line Human skin A375 cells (obtained from DS Pharma Biomedical Co., Ltd.) were used as skin cancer.
As pancreatic cancer, human-derived PANC-1 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As bile duct cancer, TFK-1 cells derived from humans (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
-Medium About RPMA1640 culture medium, as for each A375 cell, PANC-1 cell, and TFK-1 cell about each said cancer type cultured cell.

<結果>
1.細胞生存率
図49、図50及び図51に、それぞれA375細胞、PANC−1細胞及びTFK−1細胞における4つの群(CDDP、CDDP+caf、CDDP+CA、CDDP+cafCA)の450 nmの吸光度に基づく細胞生存率を示す。図49、図50及び図51から明らかなように、A375細胞(皮膚癌)、PANC−1細胞(膵癌)及びTFK−1細胞(胆管癌)において、CDDP+cafCA群は、全てのCDDP濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、CDDP+cafCA群は、各シスプラチン濃度において、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、シスプラチンと組み合わせて添加することにより、シスプラチンの抗癌剤効果を増強することが、0.125〜2.0 μMの全てのシスプラチン濃度において確認できた。
<Result>
1. Cell Viability FIG. 49, FIG. 50 and FIG. 51 show the cell viability based on the absorbance at 450 nm of four groups (CDDP, CDDP + caf, CDDP + CA, CDDP + cafCA) in A375 cells, PANC-1 cells and TFK-1 cells, respectively. Show. As is apparent from FIGS. 49, 50 and 51, in A375 cells (skin cancer), PANC-1 cells (pancreatic cancer) and TFK-1 cells (bile duct cancer), the CDDP + cafCA group is the other at all CDDP concentrations. The cell viability was the lowest as compared with the group.
As a result of analysis of variance, the CDDP + cafCA group was significantly different from all other groups at each cisplatin concentration (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of cisplatin when added in combination with cisplatin at all cisplatin concentrations of 0.125 to 2.0 μM.

2.Median Effect法
Median Effect法によるA375細胞、PANC−1細胞及びTFK−1細胞における相乗効果の解析を行った(図省略)。相乗効果の指標であるCIは、実施例1と同様に、CDDP濃度毎の細胞生存率に基づき、CDDP+cafとCDDP+CAのコンビネーションをCDDP+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
CDDP+cafCA群は、0.125〜2.0 μMの全てのシスプラチン濃度で、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
2. Median Effect Method A synergistic effect on A375 cells, PANC-1 cells and TFK-1 cells was analyzed by the Median Effect method (not shown). CI, which is an index of synergistic effect, was calculated as CDDP + cafCA as a combination of CDDP + caf and CDDP + CA based on the cell viability for each CDDP concentration, as in Example 1. A synergistic effect is observed when CI <1.0.
In the CDDP + cafCA group, CI <1.0 at all cisplatin concentrations of 0.125 to 2.0 μM, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

3.Isobologram法
Isobologram法によるA375細胞、PANC−1細胞及びTFK−1細胞における相乗効果の解析を行った(図省略)。
実施例1と同様に、CDDP+cafCAの各Effective Doseを示す円形の破線が、それぞれ、CDDP+caf及びCDDP+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
CDDP+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、CDDP+caf及びCDDP+CAに対して、相乗効果が認められた。
3. Isobologram method The synergistic effect in A375 cells, PANC-1 cells, and TFK-1 cells was analyzed by the Isobologram method (not shown).
Similar to Example 1, since the circular broken lines indicating the effective doses of CDDP + cafCA are located at the lower left of the curves connecting the effective doses of CDDP + caf and CDDP + CA, a synergistic effect was recognized.
In the CDDP + cafCA group, CI <1.0 at all effective doses of 50 to 90%, and a synergistic effect was observed for CDDP + caf and CDDP + CA.

[軟部肉腫、皮膚癌、膵癌及び胆管癌培養細胞におけるカフェインクエン酸塩のゲムシタビン効果増強の評価]
軟部肉腫、皮膚癌、膵癌及び胆管癌に対するカフェインクエン酸塩の抗癌剤(ゲムシタビン)効果増強を評価した。以下の細胞株及び培地を用いた他は、実施例4と同様の材料及び方法により試験を行った。
[Evaluation of enhancement of gemcitabine effect of caffeine citrate in cultured soft tissue sarcoma, skin cancer, pancreatic cancer and cholangiocarcinoma cells]
The enhancement of the anticancer agent (gemcitabine) effect of caffeine citrate against soft tissue sarcoma, skin cancer, pancreatic cancer and bile duct cancer was evaluated. The test was conducted using the same materials and methods as in Example 4 except that the following cell lines and media were used.

<材料>
・細胞株
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
皮膚癌としては、ヒト由来のA375細胞(DSファーマバイオメディカル株式会社より入手)を用いた。
膵癌としては、ヒト由来のPANC−1細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
胆管癌としては、ヒト由来のTFK−1細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
・培地
上記の各癌種培養細胞について、HT1080細胞はDMEMを用い、A375細胞、PANC−1細胞及びTFK−1細胞は、いずれもRPMI1640培地を用いた。
<Material>
-Cell line As soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
As skin cancer, human-derived A375 cells (obtained from DS Pharma Biomedical Co., Ltd.) were used.
As pancreatic cancer, human-derived PANC-1 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As bile duct cancer, TFK-1 cells derived from humans (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
-Medium About each said cancer type cultured cell, HT1080 cell used DMEM, and A375 cell, PANC-1 cell, and TFK-1 cell all used RPMI1640 medium.

<結果>
1.細胞生存率
図52、図53、図54及び図55に、それぞれHT1080細胞、A375細胞、PANC−1細胞及びTFK−1細胞における4つの群(GEM、GEM+caf、GEM+CA、GEM+cafCA)の450 nmの吸光度に基づく細胞生存率を示す。図52、図53、図54及び図55から明らかなように、HT1080細胞(軟部肉腫(線維肉腫))、A375細胞(皮膚癌)、PANC−1細胞(膵癌)及びTFK−1細胞(胆管癌)において、GEM+cafCA群は、全てのゲムシタビン濃度で、他の群と比較して、最も細胞生存率が低かった。
また、分散分析の結果、GEM+cafCA群は、他の全ての群との間で有意差があった(p<0.01)。
よって、カフェインクエン酸塩は、ゲムシタビンと組み合わせて添加することにより、ゲムシタビンの抗癌剤効果を増強することが確認できた。
<Result>
1. Cell viability FIGS. 52, 53, 54 and 55 show the absorbance at 450 nm of four groups (GEM, GEM + caf, GEM + CA, GEM + cafCA) in HT1080 cells, A375 cells, PANC-1 cells and TFK-1 cells, respectively. The cell viability based on is shown. As is apparent from FIGS. 52, 53, 54 and 55, HT1080 cells (soft tissue sarcoma (fibrosarcoma)), A375 cells (skin cancer), PANC-1 cells (pancreatic cancer) and TFK-1 cells (bile duct cancer) ), The GEM + cafCA group had the lowest cell viability compared to the other groups at all gemcitabine concentrations.
As a result of analysis of variance, the GEM + cafCA group was significantly different from all other groups (p <0.01).
Therefore, it was confirmed that caffeine citrate enhances the anticancer drug effect of gemcitabine when added in combination with gemcitabine.

2.Median Effect法
Median Effect法によるHT1080細胞、A375細胞、PANC−1細胞及びTFK−1細胞における相乗効果の解析を行った(図省略)。相乗効果の指標であるCIは、実施例1と同様に、GEM濃度毎の細胞生存率に基づき、GEM+cafとGEM+CAのコンビネーションをGEM+cafCAとして算出した。CI<1.0のとき、相乗効果が認められる。
GEM+cafCA群は、0.125〜2.0 μMの全てのゲムシタビン濃度で、CI<1.0となり、GEM+caf及びGEM+CAに対して、相乗効果が認められた。
2. Median Effect Method The synergistic effect in HT1080 cells, A375 cells, PANC-1 cells and TFK-1 cells was analyzed by the Median Effect method (not shown). CI, which is an index of the synergistic effect, was calculated as GEM + cafCA based on the cell viability for each GEM concentration as in Example 1, based on the combination of GEM + caf and GEM + CA. A synergistic effect is observed when CI <1.0.
The GEM + cafCA group had a CI <1.0 at all gemcitabine concentrations from 0.125 to 2.0 μM, and a synergistic effect was observed for GEM + caf and GEM + CA.

3.Isobologram法
Isobologram法によるHT1080細胞、A375細胞、PANC−1細胞及びTFK−1細胞における相乗効果の解析を行った(図省略)。
実施例1と同様に、GEM+cafCAの各Effective Doseを示す円形の破線が、それぞれ、GEM+caf及びGEM+CAの各Effective Doseを結んだ曲線よりも左下に位置することから、相乗効果が認められた。
GEM+cafCA群は、50〜90%の全てのEffective Doseで、CI<1.0となり、GEM+caf及びGEM+CAに対して、相乗効果が認められた。
3. Isobologram method The synergistic effect in HT1080 cells, A375 cells, PANC-1 cells, and TFK-1 cells was analyzed by the Isobologram method (not shown).
As in Example 1, a circular broken line indicating each GEM + cafCA Effective Dose is located at the lower left of the curve connecting each GEM + caf and GEM + CA Effective Dose, and thus a synergistic effect was recognized.
In the GEM + cafCA group, CI <1.0 at all effective doses of 50 to 90%, and a synergistic effect was observed for GEM + caf and GEM + CA.

[癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強の評価]
以下の方法により、癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強を評価した。さらに、カフェインクエン酸塩及び抗癌剤の濃度を変化させてカフェインクエン酸塩の抗癌剤効果増強を評価した。
[Evaluation of enhancement of anticancer effects of caffeine citrate in mice bearing cancer cells]
The enhancement of anticancer effect of caffeine citrate in mice carrying cancer cells was evaluated by the following method. Further, the enhancement of anticancer agent effect of caffeine citrate was evaluated by changing the concentration of caffeine citrate and anticancer agent.

<材料>
・マウスは、BALB/c-nu(日本チャールズリバー社より入手)を用いた。
・細胞株
骨肉腫としては、マウス由来のLM8細胞(文部科学省ナショナルバイオリソースプロジェクトを介して、理研BRCより入手)を用いた。
軟部肉腫としては、ヒト由来のHT1080細胞(ATCCより入手)を用いた。
・抗癌剤
シスプラチン(和光純薬工業株式会社より入手)を用いた。
・併用薬
カフェインクエン酸塩(cafCA、クエン酸カフェイン、ノーベルファーマ株式会社より入手)、無水カフェイン(caf、和光純薬工業株式会社より入手)又はクエン酸(CA、和光純薬工業株式会社より入手)を用いた。
・培地
LM8細胞は、RPMI1640培地を用い、HT1080細胞は、DMEMを用いた。
<Material>
-As the mouse, BALB / c-nu (obtained from Charles River, Japan) was used.
-Cell line As the osteosarcoma, mouse-derived LM8 cells (obtained from RIKEN BRC through the Ministry of Education, Culture, Sports, Science and Technology's National BioResource Project) were used.
As the soft tissue sarcoma, human-derived HT1080 cells (obtained from ATCC) were used.
-The anticancer agent cisplatin (available from Wako Pure Chemical Industries, Ltd.) was used.
-Concomitant drugs Caffeine citrate (cafCA, citrate caffeine, obtained from Nobel Pharma Co., Ltd.), anhydrous caffeine (caf, obtained from Wako Pure Chemical Industries, Ltd.) or citric acid (CA, Wako Pure Chemical Industries Ltd.) Obtained from the company).
-Medium LM8 cells used RPMI1640 medium, and HT1080 cells used DMEM.

<評価方法>
(1)マウス由来のLM8細胞(5×10個)を背部皮下に移植したヌードマウスでの評価系
下記の表2及び図56のスケジュールに従い、癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強を評価した。
(2)ヒト由来のHT1080細胞(5×10個)を背部皮下に移植したヌードマウスでの評価系
下記の表2及び図56のスケジュールに従い、癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強を評価した。
(3)カフェインクエン酸塩低投与量を特徴とするマウス由来のLM8細胞(5×10個)を背部皮下に移植したヌードマウスでの評価系
下記の表3及び図56のスケジュールに従い、癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強を評価した。
(4)抗癌剤低投与量を特徴とするマウス由来のLM8細胞(5×10個)を背部皮下に移植したヌードマウスでの評価系
下記の表4及び図56のスケジュールに従い、癌細胞を担持したマウスにおけるカフェインクエン酸塩の抗癌剤効果増強を評価した。
<Evaluation method>
(1) Evaluation system in nude mice transplanted subcutaneously on the back of mice with LM8 cells (5 × 10 5 cells) derived from mice According to the schedule shown in Table 2 and FIG. The anticancer drug efficacy enhancement of was evaluated.
(2) Evaluation system in nude mice transplanted with human-derived HT1080 cells (5 × 10 5 cells) subcutaneously on the back caffeine citrate in mice carrying cancer cells according to the schedule shown in Table 2 below and FIG. The anticancer drug efficacy enhancement of was evaluated.
(3) Evaluation system in nude mice in which LM8 cells (5 × 10 5 cells) derived from mice characterized by low doses of caffeine citrate were subcutaneously implanted in the back, according to the schedule in Table 3 below and FIG. The enhancement of anticancer drug effect of caffeine citrate was evaluated in mice bearing cancer cells.
(4) Evaluation system in nude mice in which LM8 cells (5 × 10 5 cells) derived from mice characterized by a low dose of anticancer agent are transplanted subcutaneously on the back, carrying cancer cells according to the schedule of Table 4 below and FIG. The anticancer effect enhancement of caffeine citrate was evaluated in mice.

<評価結果>
マウス由来のLM8細胞を背部皮下に移植したヌードマウスでの評価系の結果を図57及び図58に示す。
ヒト由来のHT1080細胞を背部皮下に移植したヌードマウスでの評価系の結果を図59及び図60に示す。
カフェインクエン酸塩低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスでの評価系の結果を図61及び図62に示す。
抗癌剤低投与量を特徴とするマウス由来のLM8細胞を背部皮下に移植したヌードマウスでの評価系の結果を図63及び図64に示す。
図57〜64から明らかなように、CDDP+cafCA群は、他の群と比較して、腫瘍の成長(体積及び重さ)を非常に強く抑制した。加えて、カフェインクエン酸塩及び抗癌剤の濃度を変化させても、CDDP+cafCA群は、他の群と比較して、腫瘍の成長(体積及び重さ)を非常に強く抑制した。
以上の結果により、本発明の抗癌剤(カフェインクエン酸塩)及び治療方法は、In vitro評価系でも抗癌剤増強効果を有することを確認した。
<Evaluation results>
57 and 58 show the results of an evaluation system using nude mice transplanted with mouse-derived LM8 cells subcutaneously on the back.
The results of the evaluation system in nude mice transplanted with human-derived HT1080 cells subcutaneously in the back are shown in FIG. 59 and FIG.
61 and 62 show the results of the evaluation system in nude mice in which LM8 cells derived from mice characterized by low doses of caffeine citrate are transplanted subcutaneously in the back.
FIG. 63 and FIG. 64 show the results of the evaluation system in nude mice in which LM8 cells derived from mice characterized by low doses of anticancer agents were transplanted subcutaneously in the back.
As is apparent from FIGS. 57 to 64, the CDDP + cafCA group suppressed tumor growth (volume and weight) very strongly as compared with the other groups. In addition, even when the concentrations of caffeine citrate and anticancer agent were changed, the CDDP + cafCA group suppressed tumor growth (volume and weight) very strongly compared to the other groups.
From the above results, it was confirmed that the anticancer agent (caffeine citrate) and the treatment method of the present invention have an anticancer agent enhancing effect even in an in vitro evaluation system.

[安全性の評価]
以下の方法により、本発明の癌治療剤の安全性を評価した。
[Evaluation of safety]
The safety of the cancer therapeutic agent of the present invention was evaluated by the following method.

<安全性評価方法>
以下の表5に従い、ヌードマウス(担癌マウスではない)の体重推移を評価した。
外部委託して、前記ヌードマウスを採血、臓器摘出を行い、血液検査及び病理組織学的検査を実施した。
<Safety evaluation method>
According to the following Table 5, the weight transition of nude mice (not cancer-bearing mice) was evaluated.
Outsourced, the nude mice were bled and organs removed, and blood and histopathological examinations were performed.

体重推移の評価を図65に示す。各郡では体重増加に有意差がなかった。
血液検査及び病理組織学的検査では、有害事象は認められなかった。
以上により、本発明の癌治療剤及び癌治療方法は安全性に問題がないことを確認した。
The evaluation of weight transition is shown in FIG. There was no significant difference in weight gain in each county.
Blood tests and histopathology revealed no adverse events.
From the above, it was confirmed that the cancer therapeutic agent and cancer treatment method of the present invention have no problem in safety.

[ADMによる心筋障害の評価]
ADMは心筋障害の有害事象をきたすことがある。そこで、in vitroによるWST−8アッセイにより、本発明のADMを含む癌治療剤による心筋細胞の障害を評価した。本実施例では、心筋細胞の生存細胞数の減少は、ADM+caf、ADM+CA、ADM+cafCAそれぞれが、ADM単独と同等であった。
[Evaluation of myocardial damage by ADM]
ADM can cause adverse events of myocardial injury. Therefore, the damage of cardiomyocytes caused by the cancer therapeutic agent containing the ADM of the present invention was evaluated by an in vitro WST-8 assay. In this Example, the decrease in the number of viable cells of cardiomyocytes was equivalent to ADM + caf, ADM + CA, and ADM + cafCA, respectively, with ADM alone.

<総論>
以上の結果より、本発明の癌治療剤及び癌治療方法は、以下の有利な効果を有することが明らかになった。
(1)シスプラチンとカフェインクエン酸塩との組合せは、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンの抗癌剤効果をより増強すること。カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であること。
(2)アドリアマイシンとカフェインクエン酸塩との組合せは、アドリアマイシン単独、アドリアマイシンと無水カフェインとの組合せ、アドリアマイシンとクエン酸との組合せと比較して、有意にアドリアマイシンの抗癌剤効果をより増強すること。カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であること。
(3)ゲムシタビンとカフェインクエン酸塩との組合せは、ゲムシタビン単独、ゲムシタビンと無水カフェインとの組合せ、ゲムシタビンとクエン酸との組合せと比較して、有意にゲムシタビンの抗癌剤効果をより増強すること。カフェインクエン酸塩の有する抗癌剤増強効果は、無水カフェインの有する抗癌剤増強効果と、クエン酸の有する抗癌剤増強効果との、単なる相加効果ではなく、相乗効果であること。
(4)シスプラチンとカフェインクエン酸塩との組合せは、骨肉腫及び軟部肉腫において、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンの細胞増殖抑制効果をより増強すること。
(5)シスプラチンとカフェインクエン酸塩との組合せは、骨肉腫及び軟部肉腫において、シスプラチン単独、シスプラチンと無水カフェインとの組合せ、シスプラチンとクエン酸との組合せと比較して、有意にシスプラチンのアポトーシス誘導効果をより増強する可能性がある。
(6)安全性に問題がない。
<Overview>
From the above results, it was revealed that the cancer therapeutic agent and cancer treatment method of the present invention have the following advantageous effects.
(1) The combination of cisplatin and caffeine citrate significantly enhances the anticancer drug effect of cisplatin compared to cisplatin alone, cisplatin and anhydrous caffeine, or cisplatin and citric acid. . The anticancer agent enhancement effect of caffeine citrate is not a mere additive effect of the anticancer agent enhancement effect of anhydrous caffeine and the anticancer agent enhancement effect of citric acid, but a synergistic effect.
(2) The combination of adriamycin and caffeine citrate significantly enhances the anticancer drug effect of adriamycin, compared to adriamycin alone, a combination of adriamycin and anhydrous caffeine, and a combination of adriamycin and citric acid. . The anticancer agent enhancement effect of caffeine citrate is not a mere additive effect of the anticancer agent enhancement effect of anhydrous caffeine and the anticancer agent enhancement effect of citric acid, but a synergistic effect.
(3) The combination of gemcitabine and caffeine citrate significantly enhances the anticancer drug effect of gemcitabine compared to gemcitabine alone, a combination of gemcitabine and anhydrous caffeine, or a combination of gemcitabine and citric acid . The anticancer agent enhancement effect of caffeine citrate is not a mere additive effect of the anticancer agent enhancement effect of anhydrous caffeine and the anticancer agent enhancement effect of citric acid, but a synergistic effect.
(4) The combination of cisplatin and caffeine citrate is significantly more effective in osteosarcoma and soft tissue sarcoma than cisplatin alone, cisplatin and anhydrous caffeine, and cisplatin and citric acid. To further enhance the cell growth inhibitory effect.
(5) The combination of cisplatin and caffeine citrate is significantly more effective in osteosarcoma and soft tissue sarcoma than cisplatin alone, cisplatin and anhydrous caffeine, and cisplatin and citric acid. There is a possibility of further enhancing the apoptosis-inducing effect.
(6) There is no problem in safety.

従来の化学療法よりも強力な治療効果を有する癌治療剤及び癌治療方法を提供する。   Provided are a cancer therapeutic agent and a cancer treatment method having a stronger therapeutic effect than conventional chemotherapy.

Claims (12)

有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする軟部肉腫治療剤。
A therapeutic agent for soft tissue sarcoma characterized by combining caffeine citrate, which is an active ingredient, with gemcitabine, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする胃癌治療剤。
A therapeutic agent for gastric cancer, wherein caffeine citrate as an active ingredient is combined with gemcitabine as an anticancer agent as an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする皮膚癌治療剤。
A skin cancer therapeutic agent comprising a combination of caffeine citrate, which is an active ingredient, with gemcitabine, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるゲムシタビンと組み合わせたことを特徴とする膵癌治療剤。
A therapeutic agent for pancreatic cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with gemcitabine, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるアドリアマイシンと組み合わせたことを特徴とする胃癌治療剤。
A therapeutic agent for gastric cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with adriamycin, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるアドリアマイシンと組み合わせたことを特徴とする子宮癌治療剤。
A therapeutic agent for uterine cancer, comprising a combination of caffeine citrate, which is an active ingredient, with adriamycin, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする肺癌治療剤。
A lung cancer therapeutic agent characterized by combining caffeine citrate, which is an active ingredient, with cisplatin, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする乳癌治療剤。
A therapeutic agent for breast cancer, comprising a combination of caffeine citrate, which is an active ingredient, with cisplatin, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする子宮癌治療剤。
A therapeutic agent for uterine cancer, characterized in that caffeine citrate, which is an active ingredient, is combined with cisplatin, which is an anticancer agent, which is an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする皮膚癌治療剤。
A skin cancer therapeutic agent characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする卵巣癌治療剤。
A therapeutic agent for ovarian cancer, characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.
有効成分であるカフェインクエン酸塩を、有効成分である抗癌剤であるシスプラチンと組み合わせたことを特徴とする胆管癌治療剤。   A therapeutic agent for cholangiocarcinoma characterized by combining caffeine citrate as an active ingredient with cisplatin as an anticancer agent as an active ingredient.
JP2019135796A 2016-10-17 2019-07-24 Cancer treatment Active JP6820567B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016203793 2016-10-17
JP2016203793 2016-10-17
JP2017061056 2017-03-27
JP2017061056 2017-03-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018524506A Division JP6581308B2 (en) 2016-10-17 2017-10-17 Cancer treatment

Publications (2)

Publication Number Publication Date
JP2019199477A true JP2019199477A (en) 2019-11-21
JP6820567B2 JP6820567B2 (en) 2021-01-27

Family

ID=62018488

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018524506A Active JP6581308B2 (en) 2016-10-17 2017-10-17 Cancer treatment
JP2019135796A Active JP6820567B2 (en) 2016-10-17 2019-07-24 Cancer treatment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018524506A Active JP6581308B2 (en) 2016-10-17 2017-10-17 Cancer treatment

Country Status (2)

Country Link
JP (2) JP6581308B2 (en)
WO (1) WO2018074451A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096615A1 (en) * 2008-01-31 2009-08-06 Korea Institute Of Science And Technology Composition for preventing or treating brain cancers
EP2389352B1 (en) * 2009-01-26 2019-05-08 The Trustees Of The University Of Pennsylvania Arginase inhibitors and methods of use
JP5973204B2 (en) * 2011-03-30 2016-08-23 興和株式会社 Caffeine-containing liquid composition and capsule filled with the composition
CN104487075A (en) * 2012-02-29 2015-04-01 普马特里克斯公司 Inhalable dry powders

Also Published As

Publication number Publication date
JP6820567B2 (en) 2021-01-27
WO2018074451A1 (en) 2018-04-26
JPWO2018074451A1 (en) 2018-10-18
JP6581308B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
RU2605335C2 (en) Combination therapy with an antitumor alkaloid
EP3169312B1 (en) Treatment of cancer with a combination of radiation, cerium oxide nanoparticles, and a chemotherapeutic agent
AU2019315550B2 (en) Combination of Bcl-2/Bcl-xL inhibitors and chemotherapeutic agent and use thereof
US20220265592A1 (en) Use of bipolar trans carotenoids with chemotherapy and radiotherapy for treatment of cancer
CN110494166A (en) Combination treatment
TW201330845A (en) Therapeutic agent for pancreatic cancer and/or biliary tract cancer
KR20140040728A (en) Methods of treating mesothelioma with a pi3k inhibitor compound
US11491168B2 (en) Combination of Bcl-2/Bcl-xL inhibitors and chemotherapeutic agent and use thereof
Lee et al. Outcomes of modified FOLFOX-6 as first line treatment in patients with advanced gastric cancer in a single institution; retrospective analysis
WO2017160568A1 (en) Combination therapy comprising the cdk4/6 inhibitor necitumumab and the egfr inhibitor abemaciclib for use in treating cancer
JP6581308B2 (en) Cancer treatment
TW201717926A (en) Compositions and methods for treating EWING FAMILY TUMORS
US20220168319A1 (en) COMBINED USE OF A-NOR-5alpha ANDROSTANE COMPOUND DRUG AND ANTICANCER DRUG
WO2020228656A1 (en) Quinoline derivative used for soft tissue sarcoma combination therapy
US20210379095A1 (en) Methods and Combination Therapy to Treat Biliary Tract Cancer
CN106572992A (en) Combination therapies with CURAXINS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6820567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250