JP2019198603A - Decomposition method of organic halide - Google Patents

Decomposition method of organic halide Download PDF

Info

Publication number
JP2019198603A
JP2019198603A JP2018105516A JP2018105516A JP2019198603A JP 2019198603 A JP2019198603 A JP 2019198603A JP 2018105516 A JP2018105516 A JP 2018105516A JP 2018105516 A JP2018105516 A JP 2018105516A JP 2019198603 A JP2019198603 A JP 2019198603A
Authority
JP
Japan
Prior art keywords
fiber
catalyst
decomposition
organic halogen
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018105516A
Other languages
Japanese (ja)
Inventor
須郷 高信
Takanobu Sugo
高信 須郷
鈴木 晃一
Koichi Suzuki
晃一 鈴木
藤原 邦夫
Kunio Fujiwara
邦夫 藤原
斎藤 恭一
Kyoichi Saito
恭一 斎藤
岩崎 正樹
Masaki Iwasaki
正樹 岩崎
孝佳 原
Takayoshi Hara
孝佳 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Original Assignee
Chiba University NUC
Kankyo Joka Kenkyusyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Kankyo Joka Kenkyusyo KK filed Critical Chiba University NUC
Priority to JP2018105516A priority Critical patent/JP2019198603A/en
Publication of JP2019198603A publication Critical patent/JP2019198603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

To overcome a problem with a method for decomposing organic halide by using a catalyst carrying a platinum element, which is preferable in safety because it can be conducted at ordinary temperature and ordinary pressure, that solid solution separation is complicated with current catalysts, and catalyst performance is quickly reduced.SOLUTION: By decomposition treating organic halide by using a catalyst carrying a platinum element catalyst by inside of a fiber by introducing an anion exchange group to a graft side chain of an organic polymer fiber substrate and sodium formate as a hydrogen donor, decomposition of organic halide with easy solid liquid separation and small deterioration of catalyst performance can be done.SELECTED DRAWING: Figure 1

Description

発明の詳細な説明Detailed Description of the Invention

本発明は害虫の駆除剤であるペンタクロロフェノール(PCP)や絶縁材であるポリ塩化ビフェニル(PCB)など有機ハロゲン化合物を分解する方法に関するものである。  The present invention relates to a method for decomposing organic halogen compounds such as pentachlorophenol (PCP) which is a pest control agent and polychlorinated biphenyl (PCB) which is an insulating material.

廃棄物として排出される有機ハロゲン化合物には、ペンタクロロフェノール(PCP)等の害虫の駆除剤や、製造および新規使用が禁止になり回収および保管されているポリ塩化ビフェニル(PCB)等様々なものがある。これらは人体に対して有害であるばかりでなく、熱や酸化に対して非常に安定であり、この特徴が利点として利用された反面、環境への残留性や処理の困難さが現在では問題になっている。また焼却あるいは熱分解処理する場合、酸素雰囲気ではダイオキシン類の生成の可能性があり、徹底的に分解することが必要である。そのため、触媒や微生物を用いる処理法をはじめとして、多くの分解および無害化処理技術の開発が精力的に進められている。  Various organic halogen compounds discharged as waste include pesticides such as pentachlorophenol (PCP), and polychlorinated biphenyls (PCB) that are collected and stored after their manufacture and new use are prohibited. There is. These are not only harmful to the human body, but are very stable against heat and oxidation, and while this feature has been used as an advantage, the persistence in the environment and the difficulty of processing are now problematic. It has become. In addition, when incineration or thermal decomposition treatment, dioxins may be generated in an oxygen atmosphere, and it is necessary to decompose them thoroughly. Therefore, development of many decomposition and detoxification treatment techniques has been vigorously advanced, including treatment methods using catalysts and microorganisms.

触媒を用いる有機ハロゲン化合物の分解反応では、気相および液相中で水素ガスを用いて水素化脱ハロゲンを行う方法がある。比較的揮発性の高いものについては気相での反応が有効であるが、生成物としてHClガス等の強酸が生成し、ハロゲンの被毒による触媒劣化、装置の腐食等の問題がある。液相反応では、溶媒中への水素ガスの溶解度を上げるのに、通常50atm程度の加圧下で反応が行われるため安全性に問題が残る。  In the decomposition reaction of an organic halogen compound using a catalyst, there is a method of performing hydrodehalogenation using hydrogen gas in a gas phase and a liquid phase. For those having relatively high volatility, a reaction in the gas phase is effective, but a strong acid such as HCl gas is generated as a product, and there are problems such as catalyst deterioration due to halogen poisoning and corrosion of the apparatus. In the liquid phase reaction, in order to increase the solubility of hydrogen gas in the solvent, the reaction is usually performed under a pressure of about 50 atm, so that there remains a problem in safety.

これに対し、アルコール類、ギ酸塩等の各種有機化合物を水素源とする水素化脱ハロゲン反応が研究されてきた(特許文献1、非特許文献1)。この方法は、高価な水素ガスを使用することなく、常圧でしかも比較的低温で反応が進行するという特徴を持っている。既往の研究では活性炭にパラジウム(Pd)を担持したパラジウムカーボン(Pd/C)などを有機ハロゲン化合物の分解反応に使用してきた。これらは粒子であるため、カラムに充填し流通法で用いると圧力損失が大きいという問題やカラムへの充填や排出等の作業が煩雑になるという問題点がある。流通方式ではなく、回分法では、反応槽に触媒と被処理液を投入し、所定の条件で攪拌しながら有機ハロゲン化合物を分解するが、触媒と被処理液との固液分離操作が必要となり、ろ過や遠心分離など追加の操作を行う必要がある。したがって、固液分離操作が容易な新触媒の提案や新しい分解方法の開発への期待が高まっている。  In contrast, hydrodehalogenation reactions using various organic compounds such as alcohols and formates as hydrogen sources have been studied (Patent Document 1, Non-Patent Document 1). This method is characterized in that the reaction proceeds at normal pressure and at a relatively low temperature without using expensive hydrogen gas. Previous studies have used palladium carbon (Pd / C) with palladium (Pd) supported on activated carbon for the decomposition reaction of organic halogen compounds. Since these are particles, there are problems that the pressure loss is large when the column is packed and used in the flow method, and the operations such as packing and discharging the column become complicated. In the batch method rather than the distribution method, the catalyst and the liquid to be treated are introduced into the reaction tank, and the organic halogen compound is decomposed while stirring under predetermined conditions. However, a solid-liquid separation operation is required between the catalyst and the liquid to be treated. Additional operations such as filtration and centrifugation are required. Therefore, there is an increasing expectation for the proposal of a new catalyst that facilitates solid-liquid separation and the development of a new decomposition method.

固液分離が容易な触媒担体を提供できる製造方法として放射線グラフト重合法がある。放射線グラフト重合法は既存の高分子に機能を付与することができるため、さまざまな分野で応用が試みられている。有機高分子繊維に放射線を照射した後、アニオン交換基を導入し、パラジウムのクロロ錯体をイオン交換吸着させ、ヒドラジンを加えて還元処理を行い、繊維上にパラジウムを担持した例がある(特許文献2)。この先行例では、パラジウム担持繊維を水溶液中の過酸化水素等の酸化還元性物質の除去に使用してはいるが、純水中に存在するppbレベルの極微量の過酸化水素を除去するために利用しているだけであり、本発明の技術分野である有機ハロゲン化合物の触媒分解のような化学反応に応用したものではなかった。したがって、固液分離が容易である特長を生かしながら、有機ハロゲン化合物の分解速度が大きく触媒の繰返し性能が維持できる効率的な分解方法の開発が必要である。  There is a radiation graft polymerization method as a production method capable of providing a catalyst carrier that can be easily separated into solid and liquid. Since the radiation graft polymerization method can impart a function to an existing polymer, it has been applied in various fields. There is an example in which an organic polymer fiber is irradiated with radiation, an anion exchange group is introduced, a palladium chloro complex is ion-exchanged and adsorbed, hydrazine is added, reduction treatment is performed, and palladium is supported on the fiber (Patent Document) 2). In this prior example, the palladium-supported fiber is used for removing redox substances such as hydrogen peroxide in an aqueous solution, but in order to remove a very small amount of hydrogen peroxide at the ppb level present in pure water. However, it was not applied to a chemical reaction such as catalytic decomposition of an organic halogen compound, which is a technical field of the present invention. Therefore, it is necessary to develop an efficient decomposition method capable of maintaining the repeatability of the catalyst with a high decomposition rate of the organic halogen compound, while taking advantage of the feature that solid-liquid separation is easy.

特開平8−266888JP-A-8-266888 特開2017−70939JP 2017-70939 A

「2−プロパノール中でのPd/C触媒を用いた有機ハロゲン化合物の脱ハロゲン反応」日化、1998、No.5、p369−371“Dehalogenation reaction of organohalogen compound using Pd / C catalyst in 2-propanol”, Nikka, 1998, No. 1 5, p369-371

放射線グラフト重合法を利用して有機ハロゲン化合物の分解効率の高い白金族元素担持触媒の製造条件を見出し、さらにこの触媒を利用して新規な有機ハロゲン化合物の分解方法を提供することである。  The present invention is to find a production condition of a platinum group element-supported catalyst having high decomposition efficiency of an organic halogen compound by using a radiation graft polymerization method, and to provide a novel decomposition method of the organic halogen compound by using this catalyst.

本発明は次の特徴を有する有機ハロゲン化合物の分解方法を提供することにより、課題を解決する。  The present invention solves the problem by providing a method for decomposing an organic halogen compound having the following characteristics.

(1)白金族元素が担持されたアニオン交換体と有機ハロゲン化合物及びアニオン性水素供与体とを水性媒体中で接触させることを特徴とする有機ハロゲン化合物の分解方法
(2)前記アニオン性水素供与体がギ酸ナトリウムである(1)記載の有機ハロゲン化合物の分解方法
(3)前記白金族元素が担持されたアニオン交換体は、単体の白金族元素又は白金族元素錯体アニオンがアニオン交換体に付与されたものである(1)又は(2)記載の有機ハロゲン化合物の分解方法
(4)前記白金族元素は、パラジウム、ルテニウム、ロジウム及び白金から選択されたものである(1)〜(3)のいずれかに記載の有機ハロゲン化合物の分解方法
(5)前記アニオン交換体は、有機高分子繊維に放射線を照射した後、アニオン交換基を有するか又はアニオン交換基に転換可能なモノマーをグラフト重合することによって得られ、アニオン交換基に転換可能なモノマーをグラフト重合した場合には、次にアニオン交換基導入反応を行うことによって得られるものである(1)〜(4)のいずれかに記載の有機ハロゲン化合物の分解方法
(1) A method for decomposing an organic halogen compound, comprising contacting an anion exchanger carrying a platinum group element with an organic halogen compound and an anionic hydrogen donor in an aqueous medium. (2) The anionic hydrogen donation (3) The anion exchanger carrying the platinum group element is imparted to the anion exchanger by a single platinum group element or a platinum group element complex anion. (1) to (3) The method for decomposing an organohalogen compound according to (1) or (2), wherein the platinum group element is selected from palladium, ruthenium, rhodium and platinum (5) The anion exchanger may have an anion exchange group after irradiating the organic polymer fiber with radiation. It is obtained by graft polymerization of a monomer that can be converted to an anion exchange group. When the monomer that can be converted to an anion exchange group is graft polymerized, it is obtained by carrying out an anion exchange group introduction reaction next ( 1) A method for decomposing an organic halogen compound according to any one of (4)

白金族元素を担持するための担体としてはさまざまな材料が提案されているが、白金族元素の多くがクロロ錯体を形成し、アニオンとして存在するため、アニオン交換体が好ましい。アニオン交換体としては、代表的な市販のスチレンージビニルベンゼン系のビーズ状のアニオン交換樹脂を利用できるが、形状がビーズ状であるため、カラムへ充填し被処理液を流通させるカラム流通方式など使用方法が限定される。アニオン交換樹脂の官能基としては、4級アンモニウム基を有する強塩基性アニオン交換樹脂や3級アミノ基や2級アミノ基など低級のアミノ基を有する弱塩基性アニオン交換樹脂などがあり、いずれも使用できる。  Various materials have been proposed as carriers for supporting platinum group elements, but anion exchangers are preferred because many of the platinum group elements form chloro complexes and exist as anions. As the anion exchanger, a typical commercially available styrene-divinylbenzene-based bead-shaped anion exchange resin can be used. However, since the shape is a bead shape, a column distribution system for filling the column and circulating the liquid to be treated, etc. Usage is limited. Examples of the functional group of the anion exchange resin include a strong basic anion exchange resin having a quaternary ammonium group and a weak basic anion exchange resin having a lower amino group such as a tertiary amino group and a secondary amino group. Can be used.

放射線グラフト重合法は既存の様々な形状の高分子にアニオン交換基を導入できるため、従来のイオン交換樹脂にない使用方法が可能である。既存の高分子を基材として放射線を照射した後、アニオン交換基を有する重合性単量体(モノマー)を重合させるか又はアニオン交換基に転換できるモノマーを重合させた後、アニオン交換基を導入することによって基材の高分子の形状を生かしたアニオン交換体を作製することができる。この放射線を利用する方法は、放射線グラフト重合法と呼ばれ、触媒反応に適した表面積の大きな材料を選定できるため、本発明のように特殊な有害物を少量処理するのに好適である。  Since the radiation graft polymerization method can introduce an anion exchange group into existing polymers having various shapes, it can be used in a manner not found in conventional ion exchange resins. After irradiating radiation with an existing polymer as a base material, polymerizing a polymerizable monomer (monomer) having an anion exchange group, or polymerizing a monomer that can be converted to an anion exchange group, and then introducing an anion exchange group By doing so, an anion exchanger utilizing the shape of the polymer of the substrate can be produced. This method using radiation is called a radiation graft polymerization method, and a material having a large surface area suitable for catalytic reaction can be selected, so that it is suitable for treating a small amount of special harmful substances as in the present invention.

以下、さらに詳細に説明するため、白金族元素としてパラジウム、白金族元素の担体として、繊維に放射線グラフト重合法を適用してアニオン交換基を導入したアニオン交換繊維、有機ハロゲン化合物として2−クロロフェノール(2−CClO)を例にとり、具体的に説明する。Hereinafter, in order to explain in more detail, palladium as a platinum group element, an anion exchange fiber in which an anion exchange group is introduced by applying a radiation graft polymerization method to a fiber as a carrier of the platinum group element, and 2-chlorophenol as an organic halogen compound A specific description will be given by taking (2-C 6 H 5 ClO) as an example.

本発明の白金族元素担持触媒の製造工程及びそれを用いた有機ハロゲン化合物の分解工程を図1に示す。基材となるポリオレフィン系繊維にガンマ線を照射後、ジメチルアミノエチルメタクリレート(DMAEMA)をグラフト重合することによって、3級アミノ基を有するグラフト繊維を得る工程、次に塩化パラジウム(PdCl 2−)錯体をイオン交換吸着させる工程、吸着した塩化パラジウム錯体をギ酸ナトリウム水溶液で還元し金属パラジウム(Pd)を繊維上に担持する工程を示している。さらに、このPd担持繊維および水素供与体としてギ酸ナトリウムを使用し、有機ハロゲン化合物を分解する工程までを記載している。FIG. 1 shows a production process of the platinum group element-supported catalyst of the present invention and an organic halogen compound decomposition process using the same. A process of obtaining a graft fiber having a tertiary amino group by graft polymerization of dimethylaminoethyl methacrylate (DMAEMA) after irradiating the polyolefin fiber as a base material with gamma rays, and then a palladium chloride (PdCl 4 2− ) complex. Shows a step of ion-exchange adsorption, a step of reducing the adsorbed palladium chloride complex with an aqueous sodium formate solution and supporting metal palladium (Pd 0 ) on the fiber. Furthermore, the Pd 0 using sodium formate as carrier fibers and a hydrogen donor, describes until decomposing organohalogen compounds.

放射線グラフト重合法は既存のさまざまな形状の高分子基材を利用できる点が特徴であるが、基材の内部にもイオン交換基を導入できる点も大きな特長である。放射線の種類や照射エネルギーにも依存するが、放射線を照射すると、基材高分子の内部にまでラジカルを生成でき、その箇所を開始点としてグラフト重合が進行する。単なる表面改質とは大きく異なる特徴である。したがって、繊維を基材として選定した場合、繊維表層だけでなく内部にまでラジカルが均一に生成する。そのため、グラフト重合が繊維表面ばかりでなく内部にも起こり、官能基量を大きくできる。例えば、グラフト率(重量増加率)は容易に50%以上が得られ、100%以上も可能である。グラフト率が100%という数値の意味は、グラフト側鎖の重量が基材繊維の重量と同一であることを示し、大きなイオン交換容量が得られ繊維直径もかなり太くなる。  The radiation graft polymerization method is characterized in that it can use existing polymer substrates of various shapes, but it is also a great feature that ion exchange groups can be introduced into the substrate. Although depending on the type of radiation and the irradiation energy, when irradiated with radiation, radicals can be generated even inside the base polymer, and graft polymerization proceeds from that point as the starting point. This is a feature that differs greatly from mere surface modification. Therefore, when a fiber is selected as the base material, radicals are uniformly generated not only in the fiber surface layer but also inside. Therefore, graft polymerization occurs not only on the fiber surface but also inside, and the amount of functional groups can be increased. For example, the graft rate (weight increase rate) can easily be 50% or more, and can be 100% or more. The meaning of the numerical value that the graft ratio is 100% indicates that the weight of the graft side chain is the same as the weight of the base fiber, so that a large ion exchange capacity is obtained and the fiber diameter is considerably increased.

グラフト側鎖の性状については図2をみると理解しやすい。ポリエチレンやポリアミドなど通常の高分子は左の図のように非晶部1と結晶部2から構成される。グラフト側鎖は片端が基材高分子と共有結合しているが、他端は自由端であるため、繊維内部にとどまっている部分と繊維表面から外部に伸長している部分とがある。前者をポリマールーツ3、後者をポリマーブラシ4と呼ぶ。グラフト側鎖は架橋構造を有しておらず、吸着速度や被吸着イオンの拡散速度が大きく分離材料として優れた性質を示す。  The nature of the graft side chain can be easily understood by referring to FIG. A normal polymer such as polyethylene or polyamide is composed of an amorphous part 1 and a crystalline part 2 as shown in the left figure. One end of the graft side chain is covalently bonded to the base polymer, but the other end is a free end, so that there are a portion staying inside the fiber and a portion extending from the fiber surface to the outside. The former is called polymer root 3 and the latter is called polymer brush 4. The graft side chain does not have a cross-linked structure, and has a high adsorption rate and diffusion rate of adsorbed ions and exhibits excellent properties as a separation material.

イオン交換基は種類により正負に帯電する。例えばアミノ基のようなアニオン交換基の場合は正、スルホン酸基やカルボキシル基のようなカチオン交換基の場合は負に帯電する。イオン交換基を有するグラフト側鎖が結合すると、ルーツ及びブラシともに荷電反発し、グラフト側鎖間が拡張する。そのため、水溶液中のアニオンや被吸着物質などが容易に繊維内部へ進入できる。塩化パラジウムはPdCl 2−の形態で2価のアニオンであるため、繊維内部にまで進入しイオン交換吸着する。ポリマーブラシはグラフト側鎖の自由端が伸長しているため、イオンや荷電粒子の吸着分離に好ましい。イオン交換樹脂はジビニルベンゼンなどの架橋剤によって架橋構造を有し、膨潤が抑えられるため、イオンの拡散移動には適しておらず、この点からも放射線グラフト重合法は触媒担体の製造方法として好ましい。The ion exchange group is positively or negatively charged depending on the type. For example, an anion exchange group such as an amino group is positively charged, and a cation exchange group such as a sulfonic acid group or a carboxyl group is negatively charged. When a graft side chain having an ion exchange group is bonded, both the roots and the brush are repelled and the space between the graft side chains is expanded. Therefore, anions and adsorbed substances in the aqueous solution can easily enter the fiber. Since palladium chloride is a divalent anion in the form of PdCl 4 2− , it enters the inside of the fiber and adsorbs by ion exchange. Since the free end of the graft side chain is extended, the polymer brush is preferable for adsorption separation of ions and charged particles. An ion exchange resin has a cross-linked structure with a cross-linking agent such as divinylbenzene, and is not suitable for ion diffusion transfer because swelling is suppressed. From this point also, the radiation graft polymerization method is preferable as a method for producing a catalyst carrier. .

吸着した塩化パラジウムは、触媒として利用するために、Pd2+をPdに還元する必要がある。還元剤としてはヒドラジン水和物、塩酸ヒドラジンや硫酸ヒドラジンなどのヒドラジン塩、ギ酸、アスコルビン酸、シュウ酸などの有機酸及びそのアルカリ金属塩、亜硫酸ナトリウム、水素化ホウ素ナトリウムなどから選択することができる。しかしながら、本発明では放射線グラフト重合法によるアニオン交換体、特に繊維状アニオン交換体を担体として使用するため、担体内部のアニオン交換基まで容易に進入でき、還元速度が速いギ酸ナトリウムのようなアニオン性還元剤が好ましい。In order to use the adsorbed palladium chloride as a catalyst, it is necessary to reduce Pd 2+ to Pd 0 . The reducing agent can be selected from hydrazine hydrate, hydrazine salts such as hydrazine hydrochloride and hydrazine sulfate, organic acids such as formic acid, ascorbic acid and oxalic acid and alkali metal salts thereof, sodium sulfite, sodium borohydride and the like. . However, in the present invention, an anion exchanger obtained by radiation graft polymerization, particularly a fibrous anion exchanger, is used as a carrier, so that it can easily enter the anion exchange group inside the carrier and has an anionic property such as sodium formate, which has a high reduction rate. A reducing agent is preferred.

放射線グラフト重合法でDMAEMAをグラフト重合した弱塩基性アニオン交換繊維に塩化パラジウム(PdCl 2−)を仕込み量を変えて吸着させ、塩化パラジウム吸着量とDMAEMA繊維のアニオン交換基との関係を調べたところ図3の結果が得られた。官能基量を2で除す理由は塩化パラジウムが2価のアニオンであるためである。[仕込み量]/[交換容量の1/2]の値が1で塩化パラジウムの吸着量が飽和している。この飽和時の重量増加率はグラフト率から計算される重量増加率とほぼ同様の値であり、繊維表面および内部に導入したイオン交換基に塩化パラジウムは定量的に吸着していることがわかる。Palladium chloride (PdCl 4 2− ) was adsorbed on a weakly basic anion exchange fiber grafted with DMAEMA by the radiation graft polymerization method, and the relationship between the adsorption amount of palladium chloride and the anion exchange group of DMAEMA fiber was investigated. As a result, the result of FIG. 3 was obtained. The reason for dividing the functional group amount by 2 is that palladium chloride is a divalent anion. The value of [charging amount] / [1/2 of the exchange capacity] is 1, and the adsorption amount of palladium chloride is saturated. The weight increase rate at the time of saturation is almost the same value as the weight increase rate calculated from the graft rate, and it can be seen that palladium chloride is quantitatively adsorbed on the ion exchange groups introduced into the fiber surface and inside.

DMAEMAグラフト繊維への塩化パラジウム吸着量と還元後のPd担持量との関係を図4に示す。吸着量と担持量が1対1の関係を示しており、ギ酸ナトリウムとの接触によりPd2+がPdに還元される際、欠落がないことを示している。したがって、Pdの担持量は、グラフト率及び塩化パラジウム(PdCl 2−)の量によって容易に制御できる。他の還元剤、例えばヒドラジン水和物(N.HO)を使用した場合、反応時間を長くし濃度を高くするなど最適化をすることによってもPdへの還元が可能であるが、ギ酸ナトリウムは有機ハロゲン化合物を分解する際に使用する水素供与体としても有効に利用でき、薬品の共通化が可能なこと、さらに有機ハロゲン化合物の分解速度が大きいなど長所が多く、ギ酸ナトリウムが好ましい。The relationship between the Pd 0 carrying amount after reducing the palladium chloride adsorbed amount to the DMAEMA grafted fibers shown in FIG. The adsorption amount and the loading amount are in a one-to-one relationship, indicating that there is no omission when Pd 2+ is reduced to Pd 0 by contact with sodium formate. Therefore, the supported amount of Pd 0 can be easily controlled by the graft ratio and the amount of palladium chloride (PdCl 4 2− ). When other reducing agents such as hydrazine hydrate (N 2 H 4 .H 2 O) are used, reduction to Pd 0 can also be achieved by optimizing the reaction time by increasing the concentration. However, sodium formate can be effectively used as a hydrogen donor used when decomposing organic halogen compounds, and it has many advantages such as the ability to share chemicals and the high decomposition rate of organic halogen compounds. Sodium is preferred.

放射線グラフト重合法によるグラフト側鎖は先に述べたように、繊維の内外にルーツおよびブラシとして存在している。このグラフト側鎖に、塩化パラジウム(PdCl 2−)が2価のアニオンとして吸着し、還元剤との接触によってその場で金属パラジウムが担持される。ポリマーブラシ部分に吸着したPdCl 2−は繊維表面付近にPdとして担持される。通常の無機系材料であれば、塩化パラジウムの添着及び金属パラジウムへの還元担持が担体の表面で行われ、還元処理操作等に伴うPd粒子の凝集などにより欠落する場合があるのに対し、本発明のパラジウムは繊維の表面ばかりでなく、内部にまで吸着と還元が起こり、その場で超微粒子として担持される。As described above, graft side chains by the radiation graft polymerization method exist as roots and brushes inside and outside the fiber. Palladium chloride (PdCl 4 2− ) is adsorbed on the graft side chain as a divalent anion, and metal palladium is supported on the spot by contact with the reducing agent. PdCl 4 2− adsorbed on the polymer brush portion is supported as Pd 0 near the fiber surface. In the case of a normal inorganic material, the addition of palladium chloride and the reduction support to the metal palladium are performed on the surface of the support, and may be lost due to the aggregation of Pd 0 particles accompanying the reduction treatment operation or the like, The palladium of the present invention is adsorbed and reduced not only on the fiber surface but also inside, and is supported as ultrafine particles on the spot.

ギ酸ナトリウムはPd2+をPdへと還元するための還元剤として使用できるばかりでなく、水素供与体としても使用することができる。また、有機ハロゲン化合物との相溶性が高く、クロロフェノールとはアルコール等の有機溶剤の添加がなくとも溶解し触媒と接触できる。また、ギ酸ナトリウムはアニオン性還元剤であるため、繊維内部のアニオン交換基にまで容易に拡散浸透でき、金属パラジウム微粒子と接触する。アルコール等の有機溶媒を加えず有機ハロゲン化合物の分解を実施できるため、作業や環境対策にも好ましい。アルコールを加えると、繊維内部に導入したアニオン交換基周辺の水分を除去してしまうため、グラフト側鎖間が収縮し、物質移動が小さくなるため、触媒分解反応にとって好ましくない。ギ酸ナトリウムに混ざらない有機ハロゲン化合物の場合は、分解速度が大きく低下しない範囲でアルコール等の有機溶剤や水酸化ナトリウムの添加を行ってもよい。Sodium formate can be used not only as a reducing agent to reduce Pd 2+ to Pd 0 , but also as a hydrogen donor. Further, it is highly compatible with organic halogen compounds, and chlorophenol can be dissolved and contacted with a catalyst without the addition of an organic solvent such as alcohol. In addition, since sodium formate is an anionic reducing agent, it can easily diffuse and penetrate into the anion exchange group inside the fiber and come into contact with the metal palladium fine particles. Since the organic halogen compound can be decomposed without adding an organic solvent such as alcohol, it is preferable for work and environmental measures. When alcohol is added, moisture around the anion exchange group introduced into the fiber is removed, so that the graft side chains shrink and mass transfer is reduced, which is not preferable for the catalytic decomposition reaction. In the case of an organic halogen compound that is not mixed with sodium formate, an organic solvent such as alcohol or sodium hydroxide may be added within a range in which the decomposition rate does not greatly decrease.

アニオン性のギ酸ナトリウムを水素供与体として用いた場合、ヒドラジンやその塩のようなカチオン性の水素供与体と比べ大きなクロロフェノール分解速度が得られる。Pd2+をPdに還元する際、ギ酸ナトリウムがアニオン性還元剤で繊維内部に容易に侵入できるため、大きな還元速度が得られるが、クロロフェノールの分解においても同様であり、繊維内部の金属パラジウムを有効に利用しているためと思われる。When anionic sodium formate is used as a hydrogen donor, a larger chlorophenol decomposition rate can be obtained than a cationic hydrogen donor such as hydrazine or a salt thereof. When Pd 2+ is reduced to Pd 0 , sodium formate can easily penetrate into the fiber with an anionic reducing agent, so that a large reduction rate can be obtained. This seems to be due to the effective use of.

触媒性能は繰返し使用により低下せず長期に性能を維持できる触媒が好ましい。例えば、有機ハロゲン化合物の分解処理においては、共存する油性成分などによる汚染のために触媒性能が低下することが知られている。本発明の触媒は親水性の触媒担持部位が表面ばかりでなく繊維内部にまで及んでいるため、Pdの欠落が少ない点や疎水性の有機汚染物が接近し付着するのを妨げている点などが触媒の性能維持に有効に働いていると考えられる。そのため、触媒を繰返し使用しても性能劣化が小さい。The catalyst performance is preferably a catalyst capable of maintaining the performance for a long time without being deteriorated by repeated use. For example, in the decomposition process of an organic halogen compound, it is known that the catalyst performance is lowered due to contamination by coexisting oily components. That the catalyst of the present invention are preventing the hydrophilicity of the catalyst supporting sites because it extends to the inside of the fiber as well as the surface, it adheres closely organic contaminants missing small dots or hydrophobic Pd 0 This is considered to work effectively to maintain the catalyst performance. Therefore, even if the catalyst is used repeatedly, the performance deterioration is small.

塩化パラジウム(PdCl 2−)のPd2+をギ酸ナトリウム水溶液で還元し、Pdを担持させた触媒繊維を用いてクロロフェノールを分解した結果を図5に示す。また、Pd2+の還元処理を行う工程を省略し、水素供与体としてギ酸ナトリウムを用いクロロフェノールの分解を行った結果も図5に併記した。クロロフェノールの分解速度に差は認められないことから、吸着した塩化パラジウムをPdに還元する工程が不要であることが分かる。水素供与体として使用するギ酸ナトリウムが還元剤としても機能している。ギ酸ナトリウムを還元剤及び水素供与体としても使用することで薬剤を共通化でき、分解装置及び分解工程の簡素化にも有効である。簡素化された有機ハロゲン化合物の分解工程は図6のとおりである。FIG. 5 shows the results of reducing Pd 2+ of palladium chloride (PdCl 4 2− ) with an aqueous sodium formate solution and decomposing chlorophenol using catalyst fibers supporting Pd 0 . Further, the results of the decomposition of chlorophenol using sodium formate as a hydrogen donor were omitted, and the step of reducing Pd 2+ was omitted. Since there is no difference in the decomposition rate of chlorophenol, it can be seen that the step of reducing the adsorbed palladium chloride to Pd 0 is unnecessary. Sodium formate used as a hydrogen donor also functions as a reducing agent. By using sodium formate as a reducing agent and a hydrogen donor, the chemical can be made common, and it is effective for simplifying the decomposition apparatus and the decomposition process. The simplified decomposition process of the organic halogen compound is as shown in FIG.

触媒の性能はすぐに劣化するため、長期間繰返し使用できることが重要な性能評価項目である。従来の触媒は性能劣化した場合、新品又は再生品との交換や補給が必要であり、触媒メーカーから調達しなければならない。本発明の有機ハロゲン化合物の分解方法においては、初期の分解効率を長期に維持できるが、劣化は必ず起こると考えなければならない。本発明の有機ハロゲン化合物の分解方法によれば、触媒性能が劣化した場合でも、アニオン交換体のイオン交換容量が残存していれば、分解処理を実施する前に予め塩化パラジウムを吸着させておくことにより、分解性能を長期に維持できる。  Since the performance of the catalyst deteriorates quickly, it is an important performance evaluation item that it can be used repeatedly for a long time. When the performance of a conventional catalyst deteriorates, it must be replaced or replenished with a new or regenerated product and must be procured from a catalyst manufacturer. In the method for decomposing an organic halogen compound of the present invention, the initial decomposition efficiency can be maintained for a long time, but it must be considered that deterioration always occurs. According to the method for decomposing an organic halogen compound of the present invention, palladium chloride is adsorbed in advance before performing the decomposition treatment if the ion exchange capacity of the anion exchanger remains even if the catalyst performance is deteriorated. Therefore, the decomposition performance can be maintained for a long time.

パラジウム触媒の存在下、ギ酸ナトリウムを水素供与体として有機ハロゲン化合物の分解を行うと、脱ハロゲン化反応によって生成した塩酸などがギ酸ナトリウムによって中和され、装置の腐食が抑制される。装置の健全性維持に好ましい。
(4)発明の効果
When an organic halogen compound is decomposed using sodium formate as a hydrogen donor in the presence of a palladium catalyst, hydrochloric acid produced by the dehalogenation reaction is neutralized by sodium formate, and corrosion of the apparatus is suppressed. It is preferable for maintaining the soundness of the apparatus.
(4) Effects of the invention

有機ハロゲン化合物は安定であるため、分解方法としては高温高圧を使用するなど安全性に問題があった。近年、触媒を利用し温和な条件で分解する方法が開発されてきたが、高価な触媒を利用するため、分解処理コストが高く作業工程も複雑であった。本発明は、既存の有機高分子に放射線を照射し、アニオン交換基を有するモノマーをグラフト重合するという放射線グラフト重合法を採用することにより、有機ハロゲン化合物の保管状態に応じた分解触媒をさまざまな形状で提供できる。特に、基材として表面積の大きな繊維を選択することによって、反応速度を早くすることができる点や成型加工性がよいため、従来の使用方法よりも容易に作業できるようになった。また、アニオン交換体に白金族元素を担持し、ギ酸ナトリウムのようなアニオン性水素供与体を加えることで有機ハロゲン化合物の分解速度を大きくでき、また繰返し使用時の触媒性能が長期間維持できるようになった。さらに、劣化した触媒を簡単な処理で性能回復させることができることも実用的に重要である。  Since organohalogen compounds are stable, there have been safety issues such as the use of high temperature and pressure as a decomposition method. In recent years, a method for decomposing under mild conditions using a catalyst has been developed. However, since an expensive catalyst is used, the cost of decomposition treatment is high and the work process is complicated. The present invention employs a radiation graft polymerization method in which an existing organic polymer is irradiated with radiation and a monomer having an anion exchange group is graft-polymerized, whereby various decomposition catalysts according to the storage state of the organic halogen compound can be used. Can be provided in shape. In particular, by selecting a fiber having a large surface area as the base material, the reaction rate can be increased and the molding processability is good. Therefore, it has become possible to work more easily than conventional methods of use. In addition, the platinum group element is supported on the anion exchanger and an anionic hydrogen donor such as sodium formate can be added to increase the decomposition rate of the organic halogen compound, and the catalyst performance during repeated use can be maintained for a long time. Became. Furthermore, it is also practically important that the performance of a deteriorated catalyst can be recovered by a simple treatment.

本発明のパラジウム担持繊維の作製方法と有機ハロゲン化合物の分解方法を示すフロー図である。It is a flowchart which shows the preparation method of the palladium carrying | support fiber of this invention, and the decomposition | disassembly method of an organic halogen compound. 高分子基材に放射線グラフト重合を行った場合における、グラフト側鎖の性状を示す概念図である。It is a conceptual diagram which shows the property of the graft side chain at the time of performing radiation graft polymerization to a polymer base material. 塩化パロジウムの仕込み量とDMAEMA繊維のアニオン交換基×1/2との比([塩化パラジウム]/[官能基量÷2])と塩化パラジウム吸着後の重量増加率との関係を示す図である。It is a figure which shows the relationship between the ratio of the preparation amount of a palladium chloride and the anion exchange group of DMAEMA fiber x1 / 2 ([palladium chloride] / [functional group amount / 2]) and the weight increase rate after palladium chloride adsorption. . DMAEMAグラフト繊維への塩化パラジウム吸着量と還元後のPd担持量との関係を示す図である。吸着量と担持量が1対1の関係を示しており、ギ酸ナトリウムとの接触によりPd2+がPdに還元される際、定量的に還元され欠落がないことを示している。Is a diagram showing a relationship between palladium chloride adsorbed amount and Pd 0 carrying amount after reduction to DMAEMA grafted fibers. The adsorption amount and the loading amount have a one-to-one relationship, and when Pd 2+ is reduced to Pd 0 by contact with sodium formate, it is quantitatively reduced and there is no omission. Pd繊維を用いた場合と還元処理を経ないで塩化パラジウム(PdCl 2−)を吸着させたままクロロフェノールを分解した場合の両方の分解特性を示す図である。どちらの繊維もクロロフェノール分解速度が同一であり、Pd2+をPdにするための還元処理工程が不要であることを示す図である。Pd is a graph showing the degradation characteristics of both in the case of decomposing while chlorophenol adsorbed palladium chloride (PdCl 4 2-) without passing through the reduction treatment in the case of using a 0 fiber. Both fibers also chlorophenol degradation rate is the same, the reduction process for the Pd 2+ to Pd 0 is a diagram showing that it is not necessary. 本発明のパラジウム担持繊維の作製方法と還元処理工程を経ない有機ハロゲン化合物の分解方法を示すフロー図である。It is a flowchart which shows the preparation method of the palladium carrying | support fiber of this invention, and the decomposition | disassembly method of the organic halogen compound which does not pass through a reduction process process. モール状構造物Mall-like structure ワインドフィルターWind filter 水素供与体としてギ酸ナトリウム及びヒドラジンを用いた場合におけるクロロフェノール分解速度を比較した図である。ギ酸ナトリウムの場合、約1時間で分解率が100%に到達するが、ヒドラジンでは8時間反応して90%をやや超える分解率であり、ギ酸ナトリウムの分解速度が大きいことを示す図である。It is the figure which compared the chlorophenol decomposition | disassembly rate in the case of using sodium formate and hydrazine as a hydrogen donor. In the case of sodium formate, the decomposition rate reaches 100% in about 1 hour, but in the case of hydrazine, the decomposition rate is slightly higher than 90% after reacting for 8 hours. This is a diagram showing that the decomposition rate of sodium formate is high. ギ酸ナトリウムを水素供与体としてPd担持触媒のクロロフェノール分解試験を5回繰返した場合の分解率の変化を示す図である。5回繰返した後も分解率90%以上を維持し触媒性能の劣化が小さい。Is a graph showing changes in degradation rate when repeated chlorophenol decomposition test of Pd 0 supported catalyst 5 times Sodium formate as hydrogen donor. Even after being repeated five times, the decomposition rate is maintained at 90% or more, and the deterioration of the catalyst performance is small. 塩酸ヒドラジンを水素供与体としてPd担持触媒のクロロフェノール分解試験を5回繰返した場合の分解率の変化を示す図である。2回目から分解率は50%に低下し、その後3回繰り返しても約50%の分解率であった。Is a graph showing changes in degradation rate when repeated 5 times chlorophenol decomposition test of Pd 0 supported catalyst the hydrazine hydrochloride as a hydrogen donor. From the second time, the decomposition rate decreased to 50%, and after that, the decomposition rate was about 50% even if it was repeated three times.

放射線グラフト重合の特長には、既存のさまざまな形状の高分子、例えば、単繊維、単繊維の集合体である撚糸、単繊維をシート状に加工した織布や不織布、フィルムや多孔性フィルム、多孔性中空糸、粒子などいずれも利用可能である。したがって、表面積が大きく成型加工の容易な繊維を利用することで、吸着速度を上げることができる。撚糸を使用したワインドフィルター及び不織布を使用したプリーツフィルターなどの成型加工品はろ過とイオン吸着という機能の複合化ができる。  The characteristics of radiation graft polymerization are the existing polymers of various shapes, such as single fibers, twisted yarns that are aggregates of single fibers, woven or non-woven fabrics that have been processed into sheets, films and porous films, Any of porous hollow fibers and particles can be used. Therefore, the adsorption rate can be increased by using fibers that have a large surface area and are easy to mold. Molded products such as a wind filter using twisted yarn and a pleated filter using non-woven fabric can be combined with functions of filtration and ion adsorption.

繊維材質としては、合成繊維、綿などの天然繊維セルロース系繊維、絹や羊毛など動物性繊維、若しくは再生繊維、またはそれらの混合繊維が挙げられる。合成繊維にはポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等が含まれる。セルロース系繊維には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維が含まれる。動物性繊維には、羊毛等の獣毛繊維、絹等が含まれる。再生繊維には、キチン・キトサン繊維、コラーゲン繊維などが含まれる。この中でも、ポリエチレンに代表されるポリオレフィン系、ナイロンに代表されるポリアミド系、セルロース系などの高分子が特に好ましい。これら材質の中で、耐放射線性、グラフト重合性、耐薬品性などを考慮しながら適宜決定できる。  Examples of the fiber material include synthetic fibers, natural fiber cellulose fibers such as cotton, animal fibers such as silk and wool, regenerated fibers, or mixed fibers thereof. Synthetic fibers include polyester, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polyurethane, polyvinyl alcohol, fluorine, and the like. Cellulosic fibers include natural cellulose fibers such as cotton and hemp, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, and semi-synthetic fibers such as acetate and diacetate. It is. Animal fibers include animal hair fibers such as wool, silk and the like. The recycled fiber includes chitin / chitosan fiber, collagen fiber and the like. Among these, polymers such as polyolefins typified by polyethylene, polyamides typified by nylon, and celluloses are particularly preferable. Among these materials, it can be appropriately determined in consideration of radiation resistance, graft polymerizability, chemical resistance and the like.

繊維に照射する電離性放射線は、α線、β線、ガンマ線、電子線、中性子線、紫外線などが含まれるが、基材である繊維の表面から深い部分まで透過する能力を有するガンマ線及び電子線を用いることが好ましい。放射線の照射条件は、特に限定はないが、充分なグラフト効率を得るためには、脱酸素状態で、5〜200kGy、特に15〜100kGyとすることが好ましい。この際、酸素濃度は、必要とされる重合率でのグラフト重合が達成される濃度であればよく、好ましくは、酸素濃度1%以下、より好ましくは、酸素濃度100ppm以下である。図1ではガンマ線を用いている。  Ionizing radiation to irradiate fibers includes α rays, β rays, gamma rays, electron beams, neutron rays, ultraviolet rays, etc., but gamma rays and electron beams that have the ability to penetrate from the surface of the fiber that is the substrate to deep parts. Is preferably used. The irradiation condition of radiation is not particularly limited, but in order to obtain sufficient grafting efficiency, it is preferably 5 to 200 kGy, particularly 15 to 100 kGy in a deoxygenated state. At this time, the oxygen concentration may be a concentration at which graft polymerization can be achieved at a required polymerization rate, and is preferably 1% or less, more preferably 100 ppm or less. In FIG. 1, gamma rays are used.

繊維に電離性放射線を照射すると、繊維表面ならびに内部にラジカルが発生する。ここに、イオン交換基を有するモノマーか又はイオン交換基に転換可能なモノマーを接触させると、発生したラジカルを基点としてモノマーが重合する。グラフト重合は、放射線の照射のタイミングにより、前照射グラフト重合法と同時照射グラフト重合法とに分けられる。前照射グラフト重合法とは、あらかじめ基材に放射線を照射した後、基材とモノマーとを接触させる重合方法であり、単独重合物の生成量が少ないため一般的には分離材料の製造方法にふさわしい方法である。同時照射グラフト重合法とは、基材とモノマーとの共存下に放射線を照射するグラフト重合法である。本発明はどちらの照射方法をも採用できるが、単独重合物(ホモポリマー)生成量の少ない前照射グラフト重合法を用いることが本発明の用途である分離材料の製造方法としてより好ましい。図1では、前照射グラフト重合法でグラフト重合した例を示している。  When the fiber is irradiated with ionizing radiation, radicals are generated on the fiber surface and inside. If the monomer which has an ion exchange group or the monomer which can be converted into an ion exchange group is made to contact here, a monomer will superpose | polymerize on the basis of the generated radical. Graft polymerization is divided into a pre-irradiation graft polymerization method and a simultaneous irradiation graft polymerization method depending on the timing of radiation irradiation. The pre-irradiation graft polymerization method is a polymerization method in which a base material and a monomer are brought into contact with each other after irradiating the base material in advance, and is generally used as a method for producing a separation material because the amount of homopolymer is small. It is a suitable method. The simultaneous irradiation graft polymerization method is a graft polymerization method in which radiation is irradiated in the presence of a substrate and a monomer. Although any irradiation method can be adopted in the present invention, it is more preferable as a method for producing a separation material, which is an application of the present invention, to use a pre-irradiation graft polymerization method with a small amount of homopolymer (homopolymer). FIG. 1 shows an example of graft polymerization by a pre-irradiation graft polymerization method.

グラフト重合の際、接触させるモノマーが液体である場合は液相グラフト重合法と呼び、気体である場合は気相グラフト重合法と呼ぶ。また、液相グラフト重合法においてエマルションモノマー溶液を用いる場合はエマルショングラフト重合法と呼ぶ。さらに、液相グラフト重合法と気相グラフト重合法の中間に位置づけられる含浸グラフト重合法がある。含浸グラフト重合法は、予め所定のグラフト率が得られるようモノマー量を計算し、必要量のモノマーを予め有機高分子成形体に浸み込ませておくグラフト重合法である。本発明ではいずれの方法を適用することが可能である。  In the graft polymerization, when the monomer to be contacted is a liquid, it is called a liquid phase graft polymerization method, and when it is a gas, it is called a gas phase graft polymerization method. Further, when an emulsion monomer solution is used in the liquid phase graft polymerization method, it is called an emulsion graft polymerization method. Furthermore, there is an impregnation graft polymerization method positioned between the liquid phase graft polymerization method and the gas phase graft polymerization method. The impregnation graft polymerization method is a graft polymerization method in which a monomer amount is calculated in advance so that a predetermined graft ratio is obtained, and a necessary amount of monomer is immersed in an organic polymer molded body in advance. Any method can be applied in the present invention.

エマルショングラフト重合法は特許文献(特開2005−344047)に記載されている方法を採用できる。即ち、GMAやスチレンなどの疎水性モノマー、界面活性剤、及び水からなるエマルション溶液を作製し、液相グラフト重合法により実施でき、グラフト率100%以上が容易に得られる。界面活性剤としてはカチオン系、アニオン系、ノニオン系のいずれも利用することができる。  As the emulsion graft polymerization method, a method described in a patent document (Japanese Patent Application Laid-Open No. 2005-344047) can be adopted. That is, an emulsion solution comprising a hydrophobic monomer such as GMA or styrene, a surfactant, and water can be prepared and carried out by a liquid phase graft polymerization method, and a graft ratio of 100% or more can be easily obtained. As the surfactant, any of cationic, anionic and nonionic surfactants can be used.

放射線照射によって、ラジカルを生成させた後、アニオン交換基を有するモノマーと接触させることにより、アニオン交換基を有するグラフト側鎖が成長する。このようにして繊維にアニオン交換基を導入することができる。アニオン交換基を有するモノマーとしてビニルベンジルトリメチルアンモニウムクロライド、アリールアミン、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノエチルメタクリレート(DMAEMA)、N,N−ジエチルアミノエチルメタクリレート、N,N−ジメチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミドの4級アンモニウム塩などが挙げられる。  After generating a radical by irradiation, the graft side chain having an anion exchange group grows by contacting with a monomer having an anion exchange group. In this way, an anion exchange group can be introduced into the fiber. As monomers having an anion exchange group, vinylbenzyltrimethylammonium chloride, arylamine, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate (DMAEMA), N, N-diethylaminoethyl methacrylate, N, N-dimethyl Examples include acrylamide, N, N-dimethylaminopropyl acrylamide, and quaternary ammonium salts of N, N-dimethylaminopropyl acrylamide.

モノマー自体にはアニオン交換基を有していないが、二次反応でアニオン交換基に転換できるモノマーも利用でき、メタクリル酸グリシジル(GMA)、スチレン、クロロメチルスチレンなどがある。これらのモノマーをグラフト重合した後、例えばGMAの場合はジメチルアミン、ジエチルアミン、ジエタノールアミンなど2級アミンを有するアミンを反応させることにより、3級アミノ基が導入できる。トリメチルアミンやトリエチルアミン又はそれらの塩、トリエチレンジアミンなどのようなポリアミンを反応させることにより4級アンモニウム基を導入することができ、本発明の白金族元素担持用担体として利用できる。  Although the monomer itself does not have an anion exchange group, a monomer that can be converted into an anion exchange group by a secondary reaction can also be used, such as glycidyl methacrylate (GMA), styrene, chloromethyl styrene and the like. After graft polymerization of these monomers, for example, in the case of GMA, a tertiary amino group can be introduced by reacting an amine having a secondary amine such as dimethylamine, diethylamine or diethanolamine. A quaternary ammonium group can be introduced by reacting a polyamine such as trimethylamine, triethylamine or a salt thereof, triethylenediamine and the like, and can be used as a support for supporting a platinum group element of the present invention.

アニオン交換体への塩化パラジウムの吸着、その後のギ酸ナトリウムによるPdへの還元はバッチ方式やカラム方式で可能である。Pdの担持量はグラフト率や使用する塩化パラジウムの量によって容易に制御できるが、有機ハロゲン化合物の処理量や濃度、また分解処理条件によって適宜設定することができる。塩化パラジウムは高価な薬品であるため、アニオン交換基に相当する量を加える必要がない。本発明の簡素化された有機ハロゲン化合物の分解方法によれば、有機ハロゲン化合物の処理の前に少量の塩化パラジウムを吸着させておくことで、Pdが担持された場合と同等の効果が認められる。最初から多量のパラジウムを担持した触媒を使用する必要はなく、触媒の性能が低下し始める際、有機ハロゲン化合物の分解処理を行う前段階において、少量の塩化パラジウムを接触させ、残存するアニオン交換基にPd2+を吸着させれば、触媒性能を長期間維持でき、パラジウムの節約にもなる。Adsorption of palladium chloride on the anion exchanger, and subsequent reduction to Pd 0 with sodium formate can be done in a batch or column manner. The supported amount of Pd 0 can be easily controlled by the graft ratio and the amount of palladium chloride used, but can be appropriately set according to the treatment amount and concentration of the organic halogen compound and the decomposition treatment conditions. Since palladium chloride is an expensive chemical, it is not necessary to add an amount corresponding to the anion exchange group. According to the simplified method for decomposing an organic halogen compound of the present invention, by adsorbing a small amount of palladium chloride before the treatment of the organic halogen compound, an effect equivalent to that when Pd 0 is supported is recognized. It is done. It is not necessary to use a catalyst carrying a large amount of palladium from the beginning. When the catalyst performance starts to deteriorate, a small amount of palladium chloride is contacted with the remaining anion exchange group before the decomposition treatment of the organic halogen compound. If Pd 2+ is adsorbed on the catalyst, the catalyst performance can be maintained for a long time, and palladium can be saved.

有機ハロゲン化合物の分解処理においては、ギ酸ナトリウム水溶液と有機ハロゲン化合物との混合液にPd担持繊維を加え、所定時間分解反応を行うことができる。分解終了時には、繊維を取り除くことで固液分離ができる。必要なPd担持触媒繊維量や処理条件は、処理対象である有機ハロゲン化合物の質、量、処理条件等により、予め予備試験により決定することができる。ギ酸ナトリウムと有機ハロゲン化合物が混合しない場合は、アルコール等の有機溶媒を加えてもよい。予備試験を行うことにより有機溶媒の必要性を検討することができる。In the decomposition treatment of the organic halogen compound, addition of Pd 0 supporting fiber in a mixture of sodium formate solution and an organic halogen compound, it can be carried out for a predetermined time decomposition reaction. At the end of decomposition, solid-liquid separation can be performed by removing the fibers. Required Pd 0 supported catalyst fiber content and processing conditions, the quality of the organic halogen compound to be processed, the amount, the processing conditions and the like, can be determined beforehand by preliminary tests. When sodium formate and the organic halogen compound are not mixed, an organic solvent such as alcohol may be added. The need for organic solvents can be examined by conducting a preliminary test.

繊維状吸着材はグラフト重合後に成型加工が容易なため、使用環境によって様々な形状と使用方法を選択できる。吸着材製造時には撚糸や不織布などの形状が取り扱いやすい。また、成形品としては、撚糸を巻いたボビン状構造物、カートリッジフィルター構造物、モール状(組みひも状)繊維構造物、ロープ状、不織布や織布などのシート状の繊維集合体、その切断加工品より選択されたものを利用できる。  Since the fibrous adsorbent can be easily molded after graft polymerization, various shapes and usage methods can be selected depending on the use environment. Shapes such as twisted yarn and non-woven fabric are easy to handle when manufacturing the adsorbent. In addition, as molded products, bobbin-like structures wound with twisted yarn, cartridge filter structures, molding-like (braid-like) fiber structures, rope-like, sheet-like fiber aggregates such as nonwoven fabrics and woven fabrics, and their cutting The one selected from the processed products can be used.

モール状構造物とは、図7に示すように撚糸5を芯6の外側に放射状に突出させた構造の一種の組みひもである。モール状構造物は有機ハロゲン化合物を液中に浸漬して使用するのに向いている。一定時間浸漬し、所定の処理が終了した時点で、モールの一端を巻き取るなどの方法により、容易に回収できる。このほか、カット繊維は充填塔に充填し流通方式で利用できるほか、流動方式でも利用できる。  As shown in FIG. 7, the molding structure is a kind of braid having a structure in which the twisted yarn 5 is radially projected outside the core 6. The molding structure is suitable for use by immersing an organic halogen compound in a liquid. It can be easily collected by a method such as immersing for a certain period of time and winding up one end of the molding when a predetermined treatment is completed. In addition, the cut fiber can be packed in a packed tower and used in a distribution system, or can be used in a flow system.

カートリッジフィルター構造物とは、例えば図8のワインドフィルターでは、触媒繊維を担持した撚糸5を内筒(穴開きコア)7に巻いたものや不織布シート又は多孔膜シートを内筒の周りにプリーツ状に加工して巻いたプリーツフィルター(図示せず)のようなものである。カートリッジフィルターは前置ろ過機として適当なハウジングに収納して利用される場合が多く、本発明もこのようなハウジングに収納して利用することができる。もともとカートリッジフィルターはろ過機能を有しており、ろ過と触媒分解の両方の機能の複合化が可能となる。  For example, in the case of the wind filter shown in FIG. 8, the cartridge filter structure is a pleated shape in which a twisted yarn 5 carrying catalyst fibers is wound around an inner cylinder (perforated core) 7 or a non-woven sheet or a porous membrane sheet around the inner cylinder. It is like a pleated filter (not shown) that has been processed and rolled. The cartridge filter is often used by being housed in a suitable housing as a pre-filter, and the present invention can also be used by being housed in such a housing. Originally, the cartridge filter has a filtration function, so that both functions of filtration and catalyst decomposition can be combined.

以上、本発明は、放射線グラフト重合法で製造したアニオン交換体を使用した例を説明したが、市販のアニオン交換樹脂も利用できる。また、パラジウムを担持した触媒を例にとり説明したが、ルテニウムやロジウムなど他の白金族元素を付与した触媒についても同様である。有機ハロゲン化合物の代表例として2−クロロフェノールを例にとり説明したが、他の有機ハロゲン化合物にも適用できる。  As mentioned above, although this invention demonstrated the example using the anion exchanger manufactured by the radiation graft polymerization method, a commercially available anion exchange resin can also be utilized. Further, although the description has been given by taking the catalyst supporting palladium as an example, the same applies to the catalyst to which other platinum group elements such as ruthenium and rhodium are added. Although 2-chlorophenol has been described as an example of a representative example of the organic halogen compound, it can be applied to other organic halogen compounds.

以下の具体的実施例により本発明をさらに詳細に説明する。The following specific examples further illustrate the present invention.

(1)弱塩基性アニオン交換繊維の製造
直径約25μmのポリエチレン繊維500gをチャック付ポリ袋で窒素置換した後、ガンマ線100kGyを照射した。この照射済み繊維を予め窒素バブリングを30分行ったジメチルアミノエチルメタクリレート(DMAEMA)10%水溶液に浸漬し、40℃で5時間反応した。反応後の繊維を取出し、40℃の純水で5回バッチ洗浄した。乾燥後の重量を測定したところ、重量増加率は58%、即ちグラフト率58%であった。この繊維は3級アミンを2.8mmol/g有する弱塩基性アニオン交換繊維であった。
(1) Production of weakly basic anion exchange fiber After replacing 500 g of polyethylene fiber having a diameter of about 25 μm with a plastic bag with a chuck, irradiation with 100 kGy of gamma rays was performed. This irradiated fiber was immersed in a 10% aqueous solution of dimethylaminoethyl methacrylate (DMAEMA) previously subjected to nitrogen bubbling for 30 minutes, and reacted at 40 ° C. for 5 hours. The fibers after the reaction were taken out and batch-washed 5 times with pure water at 40 ° C. When the weight after drying was measured, the weight increase rate was 58%, that is, the graft rate was 58%. This fiber was a weakly basic anion exchange fiber having a tertiary amine of 2.8 mmol / g.

(2)Pdの担持
グラフト重合済み繊維10gをとり、塩化パラジウム1%液1Lに室温で1時間浸漬し、塩化パラジウムを吸着させた。取出した繊維を純水1Lで5回バッチ洗浄し、乾燥した。乾燥後の重量増加率は21.8%であり、アニオン交換容量から計算される重量増加率の97%であった。放射線グラフト重合法では繊維の表層のみならず内部まで3級アミンが導入されているため、繊維内部にまで均一に塩化パラジウムが吸着された。次に、ギ酸ナトリウム2%水溶液に浸漬し、Pd2+をPdに還元担持した。Pdは弱塩基性アニオン交換繊維に対し10.6%の重量増加率であった。
(2) Supporting Pd 0 10 g of graft-polymerized fiber was taken and immersed in 1 L of 1% palladium chloride solution at room temperature for 1 hour to adsorb palladium chloride. The taken out fiber was batch washed with 1 L of pure water 5 times and dried. The weight increase after drying was 21.8%, which was 97% of the weight increase calculated from the anion exchange capacity. In the radiation graft polymerization method, tertiary amine is introduced not only into the surface layer of the fiber but also into the interior, so that palladium chloride is uniformly adsorbed into the interior of the fiber. Next, it was immersed in a 2% aqueous solution of sodium formate, and Pd 2+ was supported on Pd 0 by reduction. Pd 0 was a weight increase rate of 10.6% with respect to the weakly basic anion exchange fiber.

(3)ギ酸ナトリウムによるクロロフェノール分解試験
0.1gのPd担持繊維を2.4mmolのクロロフェノール(CClO)を含有する0.69Mギ酸ナトリウム(HCOONa)溶液に30℃、液繊維比200ml/gの条件で5時間振とう浸漬した。ここで、クロロフェノール/PdCl 2−のモル比は20、ギ酸ナトリウム/PdCl は100であった。クロロフェノール分解反応中、所定時間ごとにサンプリングし、ガスクロマトグラフ分析装置にてクロロフェノール及びフェノールを分析した。結果を図9に示す。クロロフェノールは反応直後から急激に分解を始め、約1時間で分解率100%に達した。
(3) Chlorophenol degradation test with sodium formate 0.1 g of Pd 0- supported fiber was added to a 0.69 M sodium formate (HCOONa) solution containing 2.4 mmol of chlorophenol (C 6 H 5 ClO) at 30 ° C., liquid fiber It was immersed in shaking for 5 hours under the condition of a ratio of 200 ml / g. Here, the molar ratio of chlorophenol / PdCl 4 2− was 20, and sodium formate / PdCl 4 was 100. During the chlorophenol decomposition reaction, sampling was performed every predetermined time, and chlorophenol and phenol were analyzed with a gas chromatograph analyzer. The results are shown in FIG. Chlorophenol began to decompose rapidly immediately after the reaction and reached a decomposition rate of 100% in about 1 hour.

[比較例1]
(4)塩酸ヒドラジンによるクロロフェノール分解試験
(3)のギ酸ナトリウムに替えて、0.4M塩酸ヒドラジン溶液を使用した以外は同様の条件でクロロフェノールの分解試験を行った。ここで、塩酸ヒドラジンは1M−NaOH/エタノール=37.5/62.5(v/v)%の溶液に溶解した。結果を図9に併記した。反応後2時間で約50%、4時間経過後も75%の分解率にとどまり、分解速度が小さかった。
[Comparative Example 1]
(4) Chlorophenol degradation test with hydrazine hydrochloride A chlorophenol degradation test was conducted under the same conditions except that a 0.4 M hydrazine hydrochloride solution was used instead of sodium formate in (3). Here, hydrazine hydrochloride was dissolved in a solution of 1M NaOH / ethanol = 37.5 / 62.5 (v / v)%. The results are also shown in FIG. The decomposition rate was about 50% in 2 hours after the reaction and 75% after 4 hours, and the decomposition rate was low.

実施例1及び比較例1より、放射線グラフト重合法によるアニオン交換繊維にPd担持触媒繊維を用いた2−クロロフェノールの分解試験の結果、水素供与体として塩酸ヒドラジンよりもギ酸ナトリウムの方が大きい分解速度が得られた。From Example 1 and Comparative Example 1, radiation-induced graft polymerization anion exchange fibers to Pd 0 supported catalyst fibers of 2-chlorophenol decomposition test results with by, the larger sodium formate than hydrazine hydrochloride as a hydrogen donor Degradation rate was obtained.

(5)水素供与体としてギ酸ナトリウムを用いたクロロフェノール分解繰返し試験
(3)のクロロフェノール分解試験を5回繰返し、クロロフェノールの分解率を測定した。結果を図10に示す。反応回数5回目においても100%近い分解率が得られ、劣化の傾向は認められなかった。
(5) Chlorophenol decomposition repeated test using sodium formate as a hydrogen donor The chlorophenol decomposition test of (3) was repeated 5 times, and the decomposition rate of chlorophenol was measured. The results are shown in FIG. Even at the fifth reaction, a decomposition rate close to 100% was obtained and no tendency to deteriorate was observed.

[比較例2]
(6)水素供与体として塩酸ヒドラジンを用いた繰返し試験
[比較例1]の(4)のクロロフェノール分解試験を5回繰返し、クロロフェノールの分解率を測定した。結果を図11に示す。反応回数2回目の分解率が初期の45%に低下し、2回目以降は分解率が約45%で一定していた。
[Comparative Example 2]
(6) Repeated test using hydrazine hydrochloride as a hydrogen donor The chlorophenol decomposition test of (4) in [Comparative Example 1] was repeated 5 times to measure the decomposition rate of chlorophenol. The results are shown in FIG. The decomposition rate of the second reaction was lowered to 45% of the initial value, and the decomposition rate was constant at about 45% after the second time.

実施例2及び比較例2より、塩酸ヒドラジンよりもギ酸ナトリウムの方が、触媒性能の低下が少なく水素供与体として好ましい結果が得られた。  From Example 2 and Comparative Example 2, sodium formate had a smaller decrease in catalyst performance than hydrazine hydrochloride, and a favorable result as a hydrogen donor was obtained.

[実施例2]において、塩化パラジウム吸着繊維(Pd2+繊維)を還元せず、そのまま用いて(3)と同様のクロロフェノール分解試験を行った。結果は約1時間で約100%の分解率が得られ、予めPd2+をPdに還元する操作を行わなくともクロロフェノール分解が可能であり、分解工程の簡略化が可能であると実証された。In [Example 2], the same chlorophenol decomposition test as in (3) was performed using palladium chloride-adsorbed fibers (Pd 2+ fibers) without reduction. As a result, a decomposition rate of about 100% was obtained in about 1 hour, and it was demonstrated that chlorophenol can be decomposed without performing an operation of reducing Pd 2+ to Pd 0 in advance, and that the decomposition process can be simplified. It was.

本発明により、有機ハロゲン化合物の分解速度が大きく、触媒性能の低下が小さく、固液分離が容易というさまざまな特長を有する有機ハロゲン化合物の分解が可能となった。  According to the present invention, it is possible to decompose an organic halogen compound having various features such as a high decomposition rate of the organic halogen compound, a small decrease in catalyst performance, and easy solid-liquid separation.

1 非晶部
2 結晶
3 ポリマールーツ
4 ポリマーブラシ
5 触媒繊維
6 芯
7 コア
DESCRIPTION OF SYMBOLS 1 Amorphous part 2 Crystal 3 Polymer roots 4 Polymer brush 5 Catalyst fiber 6 Core 7 Core

Claims (5)

白金族元素が担持されたアニオン交換体と有機ハロゲン化合物及びアニオン性水素供与体とを水性媒体中で接触させることを特徴とする有機ハロゲン化合物の分解方法  A method for decomposing an organic halogen compound, comprising contacting an anion exchanger carrying a platinum group element with an organic halogen compound and an anionic hydrogen donor in an aqueous medium. 前記アニオン性水素供与体がギ酸ナトリウムである請求項1記載の有機ハロゲン化合物の分解方法  The method for decomposing an organic halogen compound according to claim 1, wherein the anionic hydrogen donor is sodium formate. 前記白金族元素が担持されたアニオン交換体は、単体の白金族元素又は白金族元素錯体アニオンがアニオン交換体に付与されたものである請求項1又は2記載の有機ハロゲン化合物の分解方法  3. The method for decomposing an organic halogen compound according to claim 1, wherein the platinum group element-supported anion exchanger is obtained by adding a single platinum group element or a platinum group element complex anion to the anion exchanger. 前記白金族元素は、パラジウム、ルテニウム、ロジウムから選択されたものである請求項1〜3のいずれか一項に記載の有機ハロゲン化合物の分解方法  The method for decomposing an organic halogen compound according to any one of claims 1 to 3, wherein the platinum group element is selected from palladium, ruthenium, and rhodium. 前記アニオン交換体は、有機高分子繊維に放射線を照射した後、アニオン交換基を有するか又はアニオン交換基に転換可能なモノマーをグラフト重合することによって得られ、アニオン交換基に転換可能なモノマーをグラフト重合した場合には、さらにアニオン交換基導入反応を行う請求項1〜4のいずれか一項に記載の有機ハロゲン化合物の分解方法  The anion exchanger is obtained by irradiating an organic polymer fiber with radiation, and then graft-polymerizing a monomer having an anion exchange group or being convertible to an anion exchange group. The method for decomposing an organic halogen compound according to any one of claims 1 to 4, further comprising an anion exchange group introduction reaction in the case of graft polymerization.
JP2018105516A 2018-05-16 2018-05-16 Decomposition method of organic halide Pending JP2019198603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105516A JP2019198603A (en) 2018-05-16 2018-05-16 Decomposition method of organic halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105516A JP2019198603A (en) 2018-05-16 2018-05-16 Decomposition method of organic halide

Publications (1)

Publication Number Publication Date
JP2019198603A true JP2019198603A (en) 2019-11-21

Family

ID=68611495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105516A Pending JP2019198603A (en) 2018-05-16 2018-05-16 Decomposition method of organic halide

Country Status (1)

Country Link
JP (1) JP2019198603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241551A1 (en) * 2020-05-26 2021-12-02 株式会社荏原製作所 Metal-supporting nonwoven fabric and production method thereof, catalyst, unsaturated compound hydrogenation method, and carbon-carbon bond forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241551A1 (en) * 2020-05-26 2021-12-02 株式会社荏原製作所 Metal-supporting nonwoven fabric and production method thereof, catalyst, unsaturated compound hydrogenation method, and carbon-carbon bond forming method
JP2021188236A (en) * 2020-05-26 2021-12-13 株式会社荏原製作所 Metal-supported nonwoven fabric and its manufacturing method, catalyst, hydrogenation method of unsaturated compound, as well as formation method of carbon-nitrogen bond
JP2021186705A (en) * 2020-05-26 2021-12-13 株式会社荏原製作所 Metal-supported nonwoven fabric and its manufacturing method, catalyst, hydrogenation method of unsaturated compound, as well as formation method of carbon-nitrogen bond
JP7113866B2 (en) 2020-05-26 2022-08-05 株式会社荏原製作所 METAL-SUPPORTING NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, CATALYST, METHOD FOR HYDROGENATION OF UNSATURATED COMPOUND, AND METHOD FOR FORMING CARBON-NITROGEN BOND
CN115942993A (en) * 2020-05-26 2023-04-07 株式会社荏原制作所 Metal-supported nonwoven fabric, method for producing same, catalyst, method for hydrogenating unsaturated compound, and method for forming carbon-nitrogen bond

Similar Documents

Publication Publication Date Title
Yang et al. Adsorption and photocatalytic degradation of sulfamethoxazole by a novel composite hydrogel with visible light irradiation
US20170361304A1 (en) Amidoxime-functionalized materials and their use in extracting metal ions from liquid solutions
JP6156832B2 (en) Method for producing radioactive material collection material
DE69323226T2 (en) Process for the treatment of a liquid containing volatile halogenated organic compounds
JP2019218535A (en) Novel cyclodextrin polymer which rapidly adsorbs organic contaminants dissolved in water
JP3200458B2 (en) Electric regeneration type desalination equipment
Zhang et al. PAA/TiO2@ C composite hydrogels with hierarchical pore structures as high efficiency adsorbents for heavy metal ions and organic dyes removal
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
WO2001029104A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
EP1310293B1 (en) Ozone removing material and method for preparing the same
JP2019198603A (en) Decomposition method of organic halide
US20050218068A1 (en) Filter cartridge
JP5838645B2 (en) Production method of ultra pure water
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
JP2016024183A (en) Radioactive iodine removal material and method for producing the same, and radioactive iodine removal method
US6844371B1 (en) Material having separating function
JP2018114488A (en) Tritium removing material, its manufacturing method and cleaning method of tritium-containing contaminated water using its adsorption material
JP2015114315A (en) Method for removing strontium using crystallization
JP6172671B2 (en) Environmentally friendly anion exchanger and method for producing the same
JP2017070939A (en) Fiber carrying metal catalyst, production method of the same, and removal method of oxidative or reductive substance using the same
JP2014133225A (en) Method for removing urea within pure water
JP2018158327A (en) Anion absorbent carrying rare earth-containing hydroxide and manufacturing method therefor
JP6149326B2 (en) Aging odor adsorbent and method for producing the same.
JPS6393327A (en) Treatment of waste ozon