JP2019196990A - Impurity density measuring method - Google Patents

Impurity density measuring method Download PDF

Info

Publication number
JP2019196990A
JP2019196990A JP2018091225A JP2018091225A JP2019196990A JP 2019196990 A JP2019196990 A JP 2019196990A JP 2018091225 A JP2018091225 A JP 2018091225A JP 2018091225 A JP2018091225 A JP 2018091225A JP 2019196990 A JP2019196990 A JP 2019196990A
Authority
JP
Japan
Prior art keywords
concentration
measurement
impurity
carbon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018091225A
Other languages
Japanese (ja)
Other versions
JP6919625B2 (en
Inventor
木村 明浩
Akihiro Kimura
明浩 木村
一平 久保埜
Ippei KUBONO
一平 久保埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018091225A priority Critical patent/JP6919625B2/en
Publication of JP2019196990A publication Critical patent/JP2019196990A/en
Application granted granted Critical
Publication of JP6919625B2 publication Critical patent/JP6919625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide an impurity density measuring method capable of quickly and simply measuring absolute density of impurity in silicon single crystal.SOLUTION: A impurity density measuring method for acquiring impurity density in silicon single crystal using an FT-IR method includes: in acquiring impurity density using the FT-IR method, defining a sample with pre-acquired impurity density as reference, and acquiring a difference density in impurities between a measurement sample and the reference from a difference spectrum between the measurement sample and the reference; and adding the impurity density of the reference to the difference density to acquire absolute density of the impurities contained in the measurement sample.SELECTED DRAWING: Figure 1

Description

本発明は、不純物濃度の測定方法に関し、特にFT−IR法によりシリコン単結晶中の不純物濃度を測定する方法に関する。   The present invention relates to a method for measuring an impurity concentration, and more particularly to a method for measuring an impurity concentration in a silicon single crystal by an FT-IR method.

炭素や酸素の絶対濃度を測定する方法として、PL法やSIMS法が挙げられる。しかしPL法は、特許文献1にあるように、PL測定前に電子線照射を必要とするため、迅速に測定することが出来ず、特に製品の出荷検査としては適さない。SIMS法も同様に、測定に時間が掛かるため製品の出荷検査としては適さない。   Examples of a method for measuring the absolute concentration of carbon or oxygen include a PL method and a SIMS method. However, as disclosed in Patent Document 1, the PL method requires irradiation with an electron beam before PL measurement, so that it cannot be measured quickly and is not particularly suitable as a product shipping inspection. Similarly, the SIMS method is not suitable as a product shipping inspection because it takes time to measure.

一方、炭素や酸素の濃度を簡便に、かつ迅速に測定する方法としてFT−IR法が挙げられる。FT−IR法による炭素濃度の測定方法は、測定サンプルの吸光度スペクトルから、カーボンフリーのリファレンスの吸光度スペクトルを引き(これにより、差スペクトルが得られる)、差スペクトルの605cm−1のCsピーク強度を炭素濃度に換算する、というものである。特に特許文献2では、差スペクトルを求める際の差係数を求める方法が、また特許文献3では、Csピーク強度を求める際に差スペクトルにベースラインを引きやすいように、リファレンスの酸素濃度を測定サンプルより低濃度にすることが開示されている。また、FT−IR法による酸素濃度の測定方法は、炭素の場合と同様に差スペクトルを求め、1107cm−1もしくは515cm−1のOiピーク強度を酸素濃度に換算する、という方法である。 On the other hand, the FT-IR method can be cited as a method for measuring the concentration of carbon and oxygen simply and rapidly. The carbon concentration measurement method by the FT-IR method is to subtract the absorbance spectrum of the carbon-free reference from the absorbance spectrum of the measurement sample (this gives a difference spectrum), and obtain the Cs peak intensity at 605 cm −1 of the difference spectrum. It is to convert to carbon concentration. In particular, in Patent Document 2, a method for obtaining a difference coefficient when obtaining a difference spectrum is used. In Patent Document 3, a reference sample is used to measure a reference oxygen concentration so that a baseline can be easily drawn in a difference spectrum when obtaining a Cs peak intensity. Lower concentrations are disclosed. The oxygen concentration measurement method by the FT-IR method is a method in which a difference spectrum is obtained in the same manner as in the case of carbon, and an Oi peak intensity at 1107 cm −1 or 515 cm −1 is converted into an oxygen concentration.

特開平4−344443号公報JP-A-4-344443 特開平6−194310号公報JP-A-6-194310 特開平9−283584号公報Japanese Patent Laid-Open No. 9-283584

しかしこのような従来の方法で求められる炭素濃度または酸素濃度は、リファレンスに含まれる炭素濃度または酸素濃度との差濃度でしかない。測定サンプル中の炭素濃度または酸素濃度と、炭素または酸素フリーと考えているリファレンスに含まれる炭素濃度または酸素濃度に十分な濃度差がある従来はこの方法で良かったが、製品(測定サンプル)の不純物濃度が減少している現在では、差濃度と絶対濃度の乖離が大きくなってきている。   However, the carbon concentration or oxygen concentration required by such a conventional method is only a difference concentration from the carbon concentration or oxygen concentration contained in the reference. This method used to have a sufficient difference between the carbon concentration or oxygen concentration in the measurement sample and the carbon concentration or oxygen concentration contained in the reference considered to be carbon or oxygen free. At present, when the impurity concentration is decreasing, the difference between the difference concentration and the absolute concentration is increasing.

上述したように、FT−IR法による不純物濃度はリファレンスとの差濃度であるため、絶対濃度が不明であった。特に、製品の不純物濃度が減少している現在では、差濃度と絶対濃度の乖離が大きくなってきており、絶対濃度を求められなくなりつつある。   As described above, since the impurity concentration by the FT-IR method is a difference concentration from the reference, the absolute concentration is unknown. In particular, at the present time when the impurity concentration of products is decreasing, the difference between the difference concentration and the absolute concentration is increasing, and the absolute concentration cannot be obtained.

本発明は、上記問題点に鑑みてなされたものであって、シリコン単結晶中の不純物の絶対濃度を迅速かつ簡便に測定することができる不純物濃度の測定方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for measuring an impurity concentration that can quickly and easily measure the absolute concentration of impurities in a silicon single crystal.

上記目的を達成するために、本発明は、FT−IR法によりシリコン単結晶中の不純物濃度を求める不純物濃度の測定方法であって、FT−IR法により不純物濃度を求めるに際し、あらかじめ不純物濃度が求められている試料をリファレンスとし、測定サンプルと前記リファレンスとの差スペクトルから前記測定サンプルと前記リファレンスの不純物の差濃度を求め、これに前記リファレンスの不純物濃度を足すことで、前記測定サンプルに含まれる不純物の絶対濃度を求めることを特徴とする不純物濃度の測定方法を提供する。   In order to achieve the above object, the present invention is an impurity concentration measurement method for obtaining an impurity concentration in a silicon single crystal by an FT-IR method, and the impurity concentration is determined in advance when the impurity concentration is obtained by an FT-IR method. Using the obtained sample as a reference, obtain the difference concentration of the impurity of the measurement sample and the reference from the difference spectrum between the measurement sample and the reference, and add the impurity concentration of the reference to this to include in the measurement sample An impurity concentration measurement method is provided, characterized in that an absolute concentration of impurities to be obtained is obtained.

このように、あらかじめリファレンスに含まれる不純物濃度を測定しておけば、測定サンプルに含まれる不純物の絶対濃度は、リファレンスに含まれる不純物濃度と、FT−IR法により求められる不純物の差濃度との和で求めることが出来る。これにより、シリコン単結晶中の不純物の絶対濃度を迅速かつ簡便に測定することができる。   Thus, if the impurity concentration contained in the reference is measured in advance, the absolute concentration of the impurity contained in the measurement sample is the difference between the impurity concentration contained in the reference and the impurity concentration difference obtained by the FT-IR method. It can be obtained in the sum. Thereby, the absolute concentration of impurities in the silicon single crystal can be measured quickly and easily.

このとき、前記不純物は、炭素または酸素とすることができる。   At this time, the impurity may be carbon or oxygen.

炭素も酸素も、リファレンスの濃度はPL法やSIMS法で求めることが出来、また差濃度はFT−IR法で求めることが出来るため、不純物が炭素または酸素である場合に、本発明を好適に適用できる。   For both carbon and oxygen, the reference concentration can be obtained by the PL method or SIMS method, and the difference concentration can be obtained by the FT-IR method. Therefore, the present invention is suitable when the impurity is carbon or oxygen. Applicable.

このとき、前記リファレンスの不純物濃度を、PL法により求めることが好ましい。   At this time, the impurity concentration of the reference is preferably obtained by the PL method.

PL法であれば、精度良くリファレンスの不純物濃度を測定することが出来る。   With the PL method, the impurity concentration of the reference can be measured with high accuracy.

前記不純物が炭素の場合、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、炭素濃度=比例定数×酸素濃度×(G線強度/C線強度)となる比例定数をあらかじめ求めておき、前記リファレンスに前記PL測定と同条件で粒子線を照射し、前記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた酸素濃度を前記関係式に代入することで前記リファレンスの炭素濃度を求めることができる。   When the impurity is carbon, using the G-line intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration, carbon concentration = proportional constant × Proportional constant of oxygen concentration x (G-line intensity / C-line intensity) is obtained in advance, and the reference is irradiated with the particle beam under the same conditions as the PL measurement, and the PL measurement is performed under the same conditions as the PL measurement. The carbon concentration of the reference can be obtained by substituting the obtained G-ray intensity, C-line intensity, and separately obtained oxygen concentration into the relational expression.

このような方法に依れば、PL法による炭素濃度測定における酸素濃度の影響を受けずに、リファレンスの正確な炭素濃度を測定することが出来る。   According to such a method, the accurate carbon concentration of the reference can be measured without being affected by the oxygen concentration in the carbon concentration measurement by the PL method.

前記不純物が酸素の場合、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)となる比例定数をあらかじめ求めておき、前記リファレンスに前記PL測定と同条件で粒子線を照射し、前記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度を前記関係式に代入することで前記リファレンスの酸素濃度を求めることができる。   When the impurity is oxygen, using the G-line intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration, oxygen concentration = proportional constant × Proportional constant of carbon concentration x (C-line intensity / G-line intensity) is obtained in advance, the particle beam is irradiated to the reference under the same conditions as the PL measurement, and the PL measurement is performed under the same conditions as the PL measurement. The reference oxygen concentration can be obtained by substituting the obtained G-ray intensity, C-ray intensity, and separately obtained carbon concentration into the relational expression.

このような方法に依れば、SIMS法やFT−IR法では測定することの出来ない低酸素濃度の定量も可能である。   According to such a method, it is possible to determine a low oxygen concentration that cannot be measured by the SIMS method or the FT-IR method.

以上のように、本発明の不純物濃度の測定方法によれば、シリコン単結晶中の不純物の絶対濃度を迅速かつ簡便に測定することができる。   As described above, according to the impurity concentration measuring method of the present invention, the absolute concentration of impurities in a silicon single crystal can be measured quickly and easily.

本発明の不純物濃度の測定方法を示すフロー図である。It is a flowchart which shows the measuring method of the impurity concentration of this invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

以下、本発明の不純物濃度の測定方法について、図1を参照しながら説明する。
図1は、本発明の不純物濃度の測定方法を示すフロー図である。
Hereinafter, the impurity concentration measuring method of the present invention will be described with reference to FIG.
FIG. 1 is a flowchart showing the impurity concentration measuring method of the present invention.

初めに、あらかじめ不純物濃度が求められている試料をリファレンスとする(図1のS11参照)。
リファレンスの不純物濃度は、例えば、PL法で測定することができる。
First, a sample whose impurity concentration is obtained in advance is used as a reference (see S11 in FIG. 1).
The reference impurity concentration can be measured by, for example, the PL method.

不純物が炭素の場合は以下のようにして測定すれば、精度良く絶対濃度を測定できる。
まず、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、

炭素濃度[atoms/cm]=比例定数×酸素濃度[ppma−JEITA]×(G線強度/C線強度)・・・(1)

となる比例定数をあらかじめ求めておく。
具体的には、炭素濃度、および酸素濃度が異なるシリコン単結晶基板(検量線用サンプル)を15水準用意する。このとき、導出される比例定数の精度を上げる為、5水準以上用意することが好ましい。そして、これらのサンプルの炭素濃度、および酸素濃度をSIMS法で測定する。その後、電子線照射装置により各シリコン単結晶基板に2MVの加速電圧で1.0×1015electrons/cmの電子線を照射し、シリコン単結晶基板にG線、およびC線を生成させ、それらのピーク強度をPL法で測定する。なお、このときのサンプル温度は液体ヘリウム温度とする。これらシリコン単結晶基板において、得られた炭素濃度、酸素濃度、G線強度、およびC線強度を上記の関係式(1)に代入し、得られた比例定数の平均値を比例定数とする。このようにして、比例定数として4.45×1014が得られた。
次に、リファレンスに上記PL測定と同条件で粒子線を照射し、上記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた酸素濃度を上記関係式(1)に代入することでリファレンスの炭素濃度を求めることができる。このとき、リファレンスの酸素濃度は、例えばSIMS法により測定することができる。
When the impurity is carbon, the absolute concentration can be accurately measured by measuring as follows.
First, using the G-ray intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration,

Carbon concentration [atoms / cm 3 ] = proportional constant × oxygen concentration [ppma-JEITA] × (G-line intensity / C-line intensity) (1)

The proportionality constant is obtained in advance.
Specifically, 15 levels of silicon single crystal substrates (calibration curve samples) having different carbon concentrations and oxygen concentrations are prepared. At this time, it is preferable to prepare five or more levels in order to increase the accuracy of the derived proportionality constant. Then, the carbon concentration and oxygen concentration of these samples are measured by the SIMS method. Thereafter, each silicon single crystal substrate is irradiated with an electron beam of 1.0 × 10 15 electrons / cm 2 at an accelerating voltage of 2 MV by an electron beam irradiation apparatus, and G line and C line are generated on the silicon single crystal substrate, Those peak intensities are measured by the PL method. The sample temperature at this time is the liquid helium temperature. In these silicon single crystal substrates, the obtained carbon concentration, oxygen concentration, G-ray intensity, and C-line intensity are substituted into the relational expression (1), and the average value of the obtained proportionality constants is used as the proportionality constant. In this way, 4.45 × 10 14 was obtained as a proportionality constant.
Next, the reference is irradiated with a particle beam under the same conditions as in the above-mentioned PL measurement, and the G-line intensity, C-line intensity obtained by performing the PL measurement under the same conditions as the above-mentioned PL measurement, and the separately obtained oxygen concentration are represented by the above relational expression ( By substituting in 1), the carbon concentration of the reference can be obtained. At this time, the oxygen concentration of the reference can be measured by, for example, the SIMS method.

不純物が酸素の場合は以下のようにして測定すれば、精度良く絶対濃度を測定できる。
まず、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、

酸素濃度[ppma−JEITA]=比例定数×炭素濃度[atoms/cm]×(C線強度/G線強度)・・・(2)

となる比例定数をあらかじめ求めておく。
具体的には、炭素濃度、および酸素濃度が異なるシリコン単結晶基板(検量線用サンプル)を15水準用意する。そして、これらのサンプルの炭素濃度および酸素濃度をSIMS法で測定する。その後、電子線照射装置により各シリコン単結晶基板に2MVの加速電圧で1.0×1015electrons/cmの電子線を照射し、シリコン単結晶基板にG線、およびC線を生成させ、それらのピーク強度をPL法で測定した。なお、このときのサンプル温度は液体ヘリウム温度とする。これらシリコン単結晶基板において、得られた酸素濃度、炭素濃度、G線強度、およびC線強度を上記の関係式(2)に代入し、得られた比例定数の平均値を比例定数とする。このようにして、比例定数として2.25×10−15が得られた。
次に、リファレンスに上記PL測定と同条件で粒子線を照射し、上記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度を上記の関係式(2)に代入することでリファレンスの酸素濃度を求める。このとき、リファレンスの炭素濃度は、例えばSIMS法などにより測定することができる。
When the impurity is oxygen, the absolute concentration can be accurately measured by measuring as follows.
First, using the G-ray intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration,

Oxygen concentration [ppma-JEITA] = proportional constant × carbon concentration [atoms / cm 3 ] × (C line intensity / G line intensity) (2)

The proportionality constant is obtained in advance.
Specifically, 15 levels of silicon single crystal substrates (calibration curve samples) having different carbon concentrations and oxygen concentrations are prepared. Then, the carbon concentration and oxygen concentration of these samples are measured by the SIMS method. Thereafter, each silicon single crystal substrate is irradiated with an electron beam of 1.0 × 10 15 electrons / cm 2 at an accelerating voltage of 2 MV by an electron beam irradiation apparatus, and G line and C line are generated on the silicon single crystal substrate, Their peak intensities were measured by the PL method. The sample temperature at this time is the liquid helium temperature. In these silicon single crystal substrates, the obtained oxygen concentration, carbon concentration, G-ray intensity, and C-line intensity are substituted into the relational expression (2), and the average value of the obtained proportionality constants is set as the proportionality constant. In this way, 2.25 × 10 −15 was obtained as a proportionality constant.
Next, the particle beam is irradiated to the reference under the same conditions as the above-mentioned PL measurement, and the G-line intensity, the C-line intensity obtained by performing the PL measurement under the same conditions as the above-mentioned PL measurement, and the separately obtained carbon concentration are the above relational expressions. By substituting into (2), the oxygen concentration of the reference is obtained. At this time, the carbon concentration of the reference can be measured by, for example, the SIMS method.

次に、上記リファレンスを用いて、測定サンプルをFT−IR法で測定し、測定サンプルとリファレンスとの差スペクトルから測定サンプルとリファレンスの不純物の差濃度を求める。(図1のS12参照)。
具体的には、従来の方法に倣えば良く、炭素の場合はJEITA EM−3503にあるように、差スペクトルにおける605cm−1のCsピーク強度を、酸素の場合は差スペクトルにおける1107cm−1もしくは515cm−1のOiピーク強度を、それぞれ炭素濃度または酸素濃度に換算して、リファレンスとの差濃度を求める。
Next, using the reference, the measurement sample is measured by the FT-IR method, and the impurity concentration difference between the measurement sample and the reference is determined from the difference spectrum between the measurement sample and the reference. (See S12 in FIG. 1).
Specifically, the conventional method may be followed, and in the case of carbon, as in JEITA EM-3503, the Cs peak intensity at 605 cm −1 in the difference spectrum, and in the case of oxygen, 1107 cm −1 or 515 cm in the difference spectrum. The −1 Oi peak intensity is converted into a carbon concentration or an oxygen concentration, respectively, and a difference concentration from the reference is obtained.

その後、上記リファレンスの不純物濃度と、図1のS12で求めた不純物の差濃度の和を測定サンプルに含まれる不純物の絶対濃度とする(図1のS13参照)。ここで、差スペクトルにおけるCsピークもしくはOiピークが負の場合(すなわち、凹形状の場合)は、差濃度はマイナスの値としてリファレンスの不純物濃度との和を求める。負のピークということは、測定サンプルに含まれる不純物濃度がリファレンスに含まれる不純物濃度よりも低い、ということを意味しているためである。   Thereafter, the sum of the reference impurity concentration and the impurity difference concentration obtained in S12 of FIG. 1 is used as the absolute concentration of impurities contained in the measurement sample (see S13 of FIG. 1). Here, when the Cs peak or Oi peak in the difference spectrum is negative (that is, in the case of a concave shape), the difference concentration is a negative value and the sum of the reference impurity concentration is obtained. This is because the negative peak means that the impurity concentration contained in the measurement sample is lower than the impurity concentration contained in the reference.

また本発明は、リファレンスの不純物の絶対濃度に対する差濃度を求め、両者の和を測定サンプルの不純物の絶対濃度とするものであるので、従来のように、リファレンスは無炭素や無酸素に限定されず、自由に選択することが出来る。   In addition, since the present invention obtains the difference concentration with respect to the absolute concentration of the reference impurity and uses the sum of the two as the absolute concentration of the impurity of the measurement sample, the reference is limited to carbon-free or oxygen-free as in the prior art. You can choose freely.

上記で説明した本発明の不純物濃度の測定方法であれば、シリコン単結晶中の不純物の絶対濃度を迅速かつ簡便に測定することができる。   With the impurity concentration measuring method of the present invention described above, the absolute concentration of impurities in the silicon single crystal can be measured quickly and easily.

また、本発明の不純物濃度の測定方法において、不純物は炭素または酸素とすることができる。炭素も酸素も、リファレンスの濃度はPL法やSIMS法で求めることができ、また差濃度はFT−IR法で求めることが出来るため、不純物が炭素または酸素である場合に、本発明を好適に適用できる。   In the impurity concentration measuring method of the present invention, the impurity can be carbon or oxygen. For both carbon and oxygen, the reference concentration can be obtained by the PL method or SIMS method, and the difference concentration can be obtained by the FT-IR method. Therefore, the present invention is suitable when the impurity is carbon or oxygen. Applicable.

また、本発明の不純物濃度の測定方法において、リファレンスの不純物濃度を、PL法により求めることが好ましい。PL法であれば、精度良くリファレンスの不純物濃度を測定することが出来る。   In the impurity concentration measuring method of the present invention, it is preferable to obtain the reference impurity concentration by the PL method. With the PL method, the impurity concentration of the reference can be measured with high accuracy.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(実施例1)
まず、FT−IR測定に用いるリファレンスの炭素濃度を求めた。
直径300mmのCZシリコン結晶から、厚さ2mmの両面研磨サンプルを用意した。初めにSIMS法により酸素濃度を測定し、12.4ppma−JEITAと求まった。次にこれを2分割し、一方には電子線を照射し、上記に記載した方法で炭素濃度を求めた。即ち、加速電圧2MV、照射量1.0×1015electrons/cmで電子線を照射し、液体ヘリウム温度でPL測定したところ、G線強度=485(a.u.)、C線強度=53477(a.u.)と求まった。これらを上記の関係式(1)(比例定数は4.45×1014)に代入することで、このサンプルの炭素濃度は5.0×1013atoms/cmと求まった。そこで、電子線を照射しなかった残りのサンプルをFT−IR測定のリファレンスとした。
(Example 1)
First, the carbon concentration of a reference used for FT-IR measurement was determined.
A double-side polished sample having a thickness of 2 mm was prepared from a CZ silicon crystal having a diameter of 300 mm. First, the oxygen concentration was measured by the SIMS method and found to be 12.4 ppma-JEITA. Next, this was divided into two, one was irradiated with an electron beam, and the carbon concentration was determined by the method described above. That is, when an electron beam was irradiated at an acceleration voltage of 2 MV, an irradiation amount of 1.0 × 10 15 electrons / cm 2 , and PL measurement was performed at a liquid helium temperature, G-line intensity = 485 (au), C-line intensity = 53477 (au). By substituting these into the above relational expression (1) (proportional constant is 4.45 × 10 14 ), the carbon concentration of this sample was found to be 5.0 × 10 13 atoms / cm 3 . Therefore, the remaining sample that was not irradiated with the electron beam was used as a reference for FT-IR measurement.

次に、リファレンスサンプルとは異なる引上条件で引き上げた直径300mmのCZシリコン結晶から、厚さ2mmの両面研磨サンプルを用意した。このサンプルの炭素濃度をJEITA EM−3503に従ってFT−IR法で求めたところ、Csピークは凸形状(すなわち、正の差濃度)で、その差濃度は5.2×1014atoms/cmと求まった。よって、絶対濃度は、リファレンスの濃度と上記で求めた差濃度の和として、5.7×1014atoms/cmと求まった。 Next, a double-side polished sample having a thickness of 2 mm was prepared from a CZ silicon crystal having a diameter of 300 mm pulled under a pulling condition different from that of the reference sample. When the carbon concentration of this sample was determined by the FT-IR method according to JEITA EM-3503, the Cs peak had a convex shape (that is, a positive difference concentration), and the difference concentration was 5.2 × 10 14 atoms / cm 3 . I wanted. Therefore, the absolute concentration was found to be 5.7 × 10 14 atoms / cm 3 as the sum of the reference concentration and the difference concentration obtained above.

(実施例2)
実施例1とは別のリファレンス用サンプルを用意し、実施例1と同様の方法でこのサンプルの炭素濃度を求めた。即ち、新たに用意した直径300mmのCZシリコン結晶から切り出した厚さ2mmの両面研磨サンプルの酸素濃度はSIMS法により12.0ppma−JEITAと求まった。これを2分割し、一方には電子線を照射し、上記に記載した方法で炭素濃度を求めた。即ち、加速電圧2MV、照射量1.0×1015electrons/cmで電子線を照射し、液体ヘリウム温度でPL測定したところ、G線強度=1996(a.u.)、C線強度=6662(a.u.)と求まった。これらを上記の関係式(1)(比例定数は4.45×1014)に代入することで、このサンプルの炭素濃度は1.6×1015atoms/cmと求まった。そこで、電子線を照射しなかった残りのサンプルをFT−IR測定のリファレンスとした。
(Example 2)
A reference sample different from that in Example 1 was prepared, and the carbon concentration of this sample was determined in the same manner as in Example 1. That is, the oxygen concentration of a 2 mm thick double-side polished sample cut out from a newly prepared CZ silicon crystal with a diameter of 300 mm was determined to be 12.0 ppma-JEITA by the SIMS method. This was divided into two, one was irradiated with an electron beam, and the carbon concentration was determined by the method described above. That is, when an electron beam was irradiated at an acceleration voltage of 2 MV, an irradiation amount of 1.0 × 10 15 electrons / cm 2 , and PL measurement was performed at a liquid helium temperature, G-line intensity = 1996 (au), C-line intensity = 6662 (au). By substituting these into the above relational expression (1) (proportional constant is 4.45 × 10 14 ), the carbon concentration of this sample was determined to be 1.6 × 10 15 atoms / cm 3 . Therefore, the remaining sample that was not irradiated with the electron beam was used as a reference for FT-IR measurement.

測定サンプルとしては、実施例1と同じものを用いた。このサンプルの炭素濃度も実施例1と同様にJEITA EM−3503に従ってFT−IR法で求めたところ、Csピークは凹形状(すなわち、負の差濃度)で、差濃度は、−1.03×1015atoms/cmと求まった。従って、絶対濃度は、リファレンスの濃度と上記で求めた差濃度の和として、5.7×1014atoms/cmと求められ、実施例1の結果と同等であった。 The same measurement sample as in Example 1 was used. The carbon concentration of this sample was also determined by the FT-IR method according to JEITA EM-3503 in the same manner as in Example 1. As a result, the Cs peak was concave (that is, a negative difference concentration), and the difference concentration was −1.03 ×. It was determined to be 10 15 atoms / cm 3 . Therefore, the absolute concentration was obtained as 5.7 × 10 14 atoms / cm 3 as the sum of the reference concentration and the difference concentration obtained above, and was equivalent to the result of Example 1.

(実施例3)
まず、FT−IR測定に用いるリファレンスの酸素濃度を求めた。
直径200mmのFZシリコン結晶から、厚さ2mmの両面研磨サンプルを用意した。初めにSIMS法により炭素濃度を測定し、3.4×1014atoms/cmと求まった。次にこれを2分割し、一方には電子線を照射し、上記に記載した方法で酸素濃度を求めた。即ち、加速電圧2MV、照射量1.0×1015electrons/cmで電子線を照射し、液体ヘリウム温度でPL測定したところ、G線強度=10699(a.u.)、C線強度=3217(a.u.)と求まった。これらを上記の関係式(2)(比例定数は2.25x10−15)に代入することで、このサンプルの酸素濃度は0.23ppma−JEITAと求まった。そこで、電子線を照射しなかった残りのサンプルをFT−IR測定のリファレンスとした。
(Example 3)
First, the reference oxygen concentration used in the FT-IR measurement was determined.
A double-side polished sample having a thickness of 2 mm was prepared from an FZ silicon crystal having a diameter of 200 mm. First, the carbon concentration was measured by the SIMS method, and found to be 3.4 × 10 14 atoms / cm 3 . Next, this was divided into two, one was irradiated with an electron beam, and the oxygen concentration was determined by the method described above. That is, when an electron beam was irradiated at an acceleration voltage of 2 MV, an irradiation amount of 1.0 × 10 15 electrons / cm 2 , and PL measurement was performed at a liquid helium temperature, G-line intensity = 10699 (au), C-line intensity = 3217 (au). By substituting these into the above relational expression (2) (proportional constant is 2.25 × 10 −15 ), the oxygen concentration of this sample was determined to be 0.23 ppma-JEITA. Therefore, the remaining sample that was not irradiated with the electron beam was used as a reference for FT-IR measurement.

次に、直径300mmのCZシリコン結晶から厚さ2mmの両面研磨サンプルを用意した。このサンプルの酸素濃度を、FT−IR測定して得られた差スペクトルにおける1107cm−1(Oi)ピーク強度から求めたところ、Oiピークは凸形状(すなわち、正の差濃度)で、その差濃度は12.30ppmaと求まった。よって、絶対濃度は、リファレンスの濃度と上記で求めた差濃度の和として、12.53ppmaと求まった。 Next, a double-side polished sample having a thickness of 2 mm was prepared from a CZ silicon crystal having a diameter of 300 mm. When the oxygen concentration of this sample was determined from the 1107 cm −1 (Oi) peak intensity in the difference spectrum obtained by FT-IR measurement, the Oi peak had a convex shape (that is, a positive difference concentration). Was determined to be 12.30 ppma. Therefore, the absolute concentration was found to be 12.53 ppma as the sum of the reference concentration and the difference concentration obtained above.

(実施例4)
実施例3とは異なり、リファレンスをCZシリコン結晶とし、まずこのリファレンスの酸素濃度を実施例3と同様の方法で求めた。即ち、直径300mmのCZ結晶から、厚さ2mmの両面研磨サンプルを用意した。初めにSIMS法により炭素濃度を測定し、4.3×1014atoms/cmと求まった。次にこれを2分割し、一方には電子線を照射し、上記に記載した方法で酸素濃度を求めた。即ち、加速電圧2MV、照射量1.0×1015electrons/cmで電子線を照射し、液体ヘリウム温度でPL測定したところ、G線強度=2284(a.u.)、C線強度=32342(a.u.)と求まった。これらを上記の関係式(2)(比例定数は2.25×10−15)に代入することで、このサンプルの酸素濃度は13.7ppma−JEITAと求まった。そこで、電子線を照射しなかった残りのサンプルをFT−IR測定のリファレンスとした。
(Example 4)
Unlike Example 3, the reference was CZ silicon crystal, and the oxygen concentration of this reference was first determined by the same method as in Example 3. That is, a double-side polished sample having a thickness of 2 mm was prepared from a CZ crystal having a diameter of 300 mm. First, the carbon concentration was measured by the SIMS method and found to be 4.3 × 10 14 atoms / cm 3 . Next, this was divided into two, one was irradiated with an electron beam, and the oxygen concentration was determined by the method described above. That is, when an electron beam was irradiated at an acceleration voltage of 2 MV, an irradiation amount of 1.0 × 10 15 electrons / cm 2 , and PL measurement was performed at a liquid helium temperature, G-line intensity = 2284 (au), C-line intensity = 32342 (au) was obtained. By substituting these into the above relational expression (2) (proportional constant is 2.25 × 10 −15 ), the oxygen concentration of this sample was determined to be 13.7 ppma-JEITA. Therefore, the remaining sample that was not irradiated with the electron beam was used as a reference for FT-IR measurement.

測定サンプルとしては、実施例3と同じものを用いた。このサンプルの酸素濃度も実施例3と同様のFT−IR法で求めたところ、Oiピークは凹形状(すなわち、負の差濃度)で、差濃度は、−1.17ppmaと求まった。従って、絶対濃度は、リファレンスの濃度と上記で求めた差濃度の和として、12.53ppmaと求められ、実施例3の結果と同等であった。   The same measurement sample as in Example 3 was used. The oxygen concentration of this sample was also determined by the same FT-IR method as in Example 3. As a result, the Oi peak had a concave shape (that is, a negative difference concentration), and the difference concentration was found to be -1.17 ppma. Therefore, the absolute concentration was found to be 12.53 ppma as the sum of the reference concentration and the difference concentration obtained above, and was equivalent to the result of Example 3.

(比較例1)
実施例1と同じリファレンス、測定サンプルを用いて、従来のFT−IR法(すなわち、差濃度のみで不純物濃度を特定)で炭素濃度を求めたところ、実施例1に記したように5.2×1014atoms/cmであり、絶対濃度との乖離が見られた。
(Comparative Example 1)
Using the same reference and measurement sample as in Example 1, the carbon concentration was determined by the conventional FT-IR method (that is, the impurity concentration was specified only by the difference concentration), and as described in Example 1, it was 5.2. × 10 14 atoms / cm 3 , and a deviation from the absolute concentration was observed.

(比較例2)
実施例2と同じリファレンス、測定サンプルを用いて、炭素濃度についてFT−IR測定したところ、実施例2に記したようにCsピークが凹形状(すなわち、負の差濃度)になってしまい、炭素濃度を定量できなかった。
(Comparative Example 2)
When the FT-IR measurement was performed on the carbon concentration using the same reference and measurement sample as in Example 2, the Cs peak had a concave shape (that is, a negative difference concentration) as described in Example 2, and carbon The concentration could not be quantified.

(比較例3)
実施例3と同じリファレンス、測定サンプルを用いて、従来のFT−IR法(すなわち、差濃度のみで不純物濃度を特定)で酸素濃度を求めたところ、実施例3に記したように12.30ppmaであり、絶対濃度との乖離が見られた。
(Comparative Example 3)
Using the same reference and measurement sample as in Example 3, the oxygen concentration was determined by the conventional FT-IR method (that is, the impurity concentration was specified only by the difference concentration). As described in Example 3, 12.30 ppma A deviation from the absolute concentration was observed.

(比較例4)
実施例4と同じリファレンス、測定サンプルを用いて、酸素濃度についてFT−IR測定したところ、実施例4に記したようにOiピークが凹形状(すなわち、負の差濃度)になってしまい、酸素濃度を定量できなかった。
(Comparative Example 4)
When the FT-IR measurement was performed on the oxygen concentration using the same reference and measurement sample as in Example 4, the Oi peak had a concave shape (that is, a negative difference concentration) as described in Example 4, and the oxygen concentration was reduced. The concentration could not be quantified.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (5)

FT−IR法によりシリコン単結晶中の不純物濃度を求める不純物濃度の測定方法であって、
FT−IR法により不純物濃度を求めるに際し、あらかじめ不純物濃度が求められている試料をリファレンスとし、測定サンプルと前記リファレンスとの差スペクトルから前記測定サンプルと前記リファレンスの不純物の差濃度を求め、これに前記リファレンスの不純物濃度を足すことで、前記測定サンプルに含まれる不純物の絶対濃度を求めることを特徴とする不純物濃度の測定方法。
An impurity concentration measurement method for obtaining an impurity concentration in a silicon single crystal by an FT-IR method,
When obtaining the impurity concentration by the FT-IR method, a sample for which the impurity concentration has been obtained in advance is used as a reference, and the difference concentration between the measurement sample and the reference is obtained from the difference spectrum between the measurement sample and the reference. An impurity concentration measurement method, wherein the absolute concentration of impurities contained in the measurement sample is obtained by adding the impurity concentration of the reference.
前記不純物は、炭素または酸素であることを特徴とする請求項1に記載の不純物濃度の測定方法。   2. The impurity concentration measuring method according to claim 1, wherein the impurity is carbon or oxygen. 前記リファレンスの不純物濃度を、PL法により求めることを特徴とする請求項1または請求項2に記載の不純物濃度の測定方法。   3. The impurity concentration measuring method according to claim 1, wherein the impurity concentration of the reference is obtained by a PL method. 前記不純物が炭素の場合、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、炭素濃度=比例定数×酸素濃度×(G線強度/C線強度)となる比例定数をあらかじめ求めておき、前記リファレンスに前記PL測定と同条件で粒子線を照射し、前記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた酸素濃度を前記関係式に代入することで前記リファレンスの炭素濃度を求めることを特徴とする請求項3に記載の不純物濃度の測定方法。   When the impurity is carbon, using the G-line intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration, carbon concentration = proportional constant × Proportional constant of oxygen concentration x (G-line intensity / C-line intensity) is obtained in advance, and the reference is irradiated with the particle beam under the same conditions as the PL measurement, and the PL measurement is performed under the same conditions as the PL measurement. 4. The impurity concentration measuring method according to claim 3, wherein the carbon concentration of the reference is obtained by substituting the obtained G-ray intensity, C-line intensity and separately obtained oxygen concentration into the relational expression. 前記不純物が酸素の場合、粒子線を照射した検量線用サンプルをPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度、酸素濃度を用いて、酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)となる比例定数をあらかじめ求めておき、前記リファレンスに前記PL測定と同条件で粒子線を照射し、前記PL測定と同条件でPL測定して得られるG線強度、C線強度、および別に求めた炭素濃度を前記関係式に代入することで前記リファレンスの酸素濃度を求めることを特徴とする請求項3に記載の不純物濃度の測定方法。   When the impurity is oxygen, using the G-line intensity, C-line intensity obtained by PL measurement of the calibration curve sample irradiated with the particle beam, and the separately obtained carbon concentration and oxygen concentration, oxygen concentration = proportional constant × Proportional constant of carbon concentration x (C-line intensity / G-line intensity) is obtained in advance, the particle beam is irradiated to the reference under the same conditions as the PL measurement, and the PL measurement is performed under the same conditions as the PL measurement. 4. The impurity concentration measuring method according to claim 3, wherein the oxygen concentration of the reference is obtained by substituting the obtained G-line intensity, C-line intensity, and separately obtained carbon concentration into the relational expression.
JP2018091225A 2018-05-10 2018-05-10 Impurity concentration measurement method Active JP6919625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091225A JP6919625B2 (en) 2018-05-10 2018-05-10 Impurity concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091225A JP6919625B2 (en) 2018-05-10 2018-05-10 Impurity concentration measurement method

Publications (2)

Publication Number Publication Date
JP2019196990A true JP2019196990A (en) 2019-11-14
JP6919625B2 JP6919625B2 (en) 2021-08-18

Family

ID=68538345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091225A Active JP6919625B2 (en) 2018-05-10 2018-05-10 Impurity concentration measurement method

Country Status (1)

Country Link
JP (1) JP6919625B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117031A (en) * 1984-07-03 1986-01-25 Nec Corp Method and apparatus for measuring concentration of interstitial oxygen in silicon crystal
JPH09283584A (en) * 1996-04-09 1997-10-31 Toshiba Ceramics Co Ltd Method of measuring carbon concn. measuring method in silicon crystal
US20050211901A1 (en) * 2004-03-26 2005-09-29 Wacker-Chemie Gmbh Method for determining the substitutional carbon content in monocrystalline or polycrystalline silicon
WO2012117601A1 (en) * 2011-03-01 2012-09-07 大日本スクリーン製造株式会社 Carbon-content-percentage acquisition device and carbon-content-percentage acquisition method
JP2012220212A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Method for measuring carbon concentration in polycrystal silicon
CN103712946A (en) * 2014-01-14 2014-04-09 乐山乐电天威硅业科技有限责任公司 Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum
JP2015156420A (en) * 2014-02-20 2015-08-27 信越半導体株式会社 Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device
US20150338276A1 (en) * 2014-05-23 2015-11-26 Globalwafers Japan Co., Ltd. Calibration curve formation method, impurity concentration measurement method, and semiconductor wafer manufacturing method
JP2015225081A (en) * 2014-05-28 2015-12-14 天津先陽科技発展有限公司 Diffusion spectrum data processing method and processing device
US20170027526A1 (en) * 2014-09-05 2017-02-02 Panasonic Healthcareings Co., Ltd. Method for quantifying glucose concentration and glucose concentration measurement device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117031A (en) * 1984-07-03 1986-01-25 Nec Corp Method and apparatus for measuring concentration of interstitial oxygen in silicon crystal
JPH09283584A (en) * 1996-04-09 1997-10-31 Toshiba Ceramics Co Ltd Method of measuring carbon concn. measuring method in silicon crystal
US20050211901A1 (en) * 2004-03-26 2005-09-29 Wacker-Chemie Gmbh Method for determining the substitutional carbon content in monocrystalline or polycrystalline silicon
WO2012117601A1 (en) * 2011-03-01 2012-09-07 大日本スクリーン製造株式会社 Carbon-content-percentage acquisition device and carbon-content-percentage acquisition method
JP2012220212A (en) * 2011-04-04 2012-11-12 Shin Etsu Chem Co Ltd Method for measuring carbon concentration in polycrystal silicon
CN103712946A (en) * 2014-01-14 2014-04-09 乐山乐电天威硅业科技有限责任公司 Method for determining content of substituted carbon in monocrystal silicon through low-temperature infrared spectrum
JP2015156420A (en) * 2014-02-20 2015-08-27 信越半導体株式会社 Evaluation method for carbon concentration in silicon single crystal, and method of manufacturing semiconductor device
US20150338276A1 (en) * 2014-05-23 2015-11-26 Globalwafers Japan Co., Ltd. Calibration curve formation method, impurity concentration measurement method, and semiconductor wafer manufacturing method
JP2015225081A (en) * 2014-05-28 2015-12-14 天津先陽科技発展有限公司 Diffusion spectrum data processing method and processing device
US20170027526A1 (en) * 2014-09-05 2017-02-02 Panasonic Healthcareings Co., Ltd. Method for quantifying glucose concentration and glucose concentration measurement device

Also Published As

Publication number Publication date
JP6919625B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP5524894B2 (en) Method for measuring carbon concentration in polycrystalline silicon
Saito et al. Efficient production of reference materials of hazardous organics using smart calibration by nuclear magnetic resonance
US20140284478A1 (en) X-ray analyzing apparatus
WO1997006430A1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
KR940015507A (en) Elemental Analysis Method
JP2019196990A (en) Impurity density measuring method
JP6617736B2 (en) Carbon concentration measurement method
US10234281B2 (en) Method for evaluating haze
Itoh et al. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a)
TWI807057B (en) Film thickness measuring device and correction method
EP3671817B1 (en) Carbon concentration measurement method
US10317338B2 (en) Method and assembly for determining the carbon content in silicon
CN111830007B (en) Method and system for measuring gallium vacancy concentration of gallium nitride material
JP2019124483A (en) Carbon concentration evaluation method
SG10201706295QA (en) A Method and A Device for Measuring Gas Dissociation Degrees with an Optical Spectrometer
Qiu et al. Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy
JP6933201B2 (en) Carbon concentration measurement method
JP2016145738A (en) Gas concentration measuring device and gas concentration measuring method
JP6844561B2 (en) Oxygen concentration evaluation method
JP2020085758A (en) Oxygen concentration measurement method
CN109613180B (en) In-situ calibration method
JP2513094B2 (en) X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
McDonald Quantitative Infra-Red Analysis of Mixtures
CN112654856B (en) Method and device for measuring carbon concentration of monocrystalline silicon
SU112894A1 (en) Compensation method for measuring small fluctuation voltages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150