JP2019196850A - Cooling device, and power conversion device including cooling device - Google Patents

Cooling device, and power conversion device including cooling device Download PDF

Info

Publication number
JP2019196850A
JP2019196850A JP2018089661A JP2018089661A JP2019196850A JP 2019196850 A JP2019196850 A JP 2019196850A JP 2018089661 A JP2018089661 A JP 2018089661A JP 2018089661 A JP2018089661 A JP 2018089661A JP 2019196850 A JP2019196850 A JP 2019196850A
Authority
JP
Japan
Prior art keywords
self
heat pipe
cooling device
excited vibration
receiving plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018089661A
Other languages
Japanese (ja)
Inventor
陽介 安田
Yosuke Yasuda
陽介 安田
西原 淳夫
Atsuo Nishihara
淳夫 西原
史花 鍋島
Fumika Nabeshima
史花 鍋島
道宏 川下
Michihiro Kawashita
道宏 川下
秀一 寺門
Shuichi Terakado
秀一 寺門
敬介 堀内
Keisuke Horiuchi
敬介 堀内
正也 堀野
Masaya Horino
正也 堀野
秋山 悟
Satoru Akiyama
悟 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018089661A priority Critical patent/JP2019196850A/en
Publication of JP2019196850A publication Critical patent/JP2019196850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To improve performance of a cooling device by a self-excited vibration heat pipe, to secure strength against vibration, and to improve manufacturability as the cooling device.SOLUTION: A cooling device includes, for example, a heat receiving plate provided with a heat generation source on one surface, and a self-excited vibration heat pipe disposed on a surface at an opposite side, of the heat receiving plate. The self-excited vibration heat pipe has a structure obtained by bending a plate having a flow channel filled with a working fluid, in a manner of being reciprocated in a plurality of times to a longitudinal direction in a state that liquid columns and air columns alternately exist, and the reciprocative bent structure has a shape in which a bending angle of the adjacent plates in one reciprocation is 180 degrees or more.SELECTED DRAWING: Figure 2

Description

本発明は、自励振動ヒートパイプを適用した冷却装置に関し、特に電力変換装置用の冷却装置として鉄道車両や電気自動車等の電気車に適用する場合に好適である。   The present invention relates to a cooling device to which a self-excited vibration heat pipe is applied, and is particularly suitable when applied to an electric vehicle such as a railway vehicle or an electric vehicle as a cooling device for a power conversion device.

自励振動ヒートパイプは、一般的に、mmオーダーの細径流路により構成され、表面張力により液柱と気柱が交互に存在する状態で作動液が封入されている。流路中には、複数の受熱部(高温部)および放熱部(低温部)が交互に設けられ、受熱部における蒸発による圧力上昇と、放熱部における凝縮による圧力低下が間欠的に発生することにより、液柱と気柱が自励的に振動し、熱の輸送を行う。   The self-excited vibration heat pipe is generally constituted by a small-diameter channel of the order of mm, and the working fluid is sealed in a state where liquid columns and air columns are alternately present due to surface tension. A plurality of heat receiving portions (high temperature portions) and heat radiating portions (low temperature portions) are alternately provided in the flow path, and pressure rise due to evaporation in the heat receiving portions and pressure drop due to condensation in the heat radiating portions are generated intermittently. As a result, the liquid column and the air column vibrate self-excitingly to transport heat.

自励振動ヒートパイプは、従来のヒートパイプとは異なり、重力による還流を必要としないため、設置姿勢が自由であり、従来のヒートパイプに比べて小型にできるといった利点を有する。   Unlike the conventional heat pipe, the self-excited vibration heat pipe does not require reflux due to gravity, and thus has an advantage that the installation posture is free and can be made smaller than the conventional heat pipe.

特許文献1には、ヒートシンクに用いる自励振動ヒートパイプとして、帯状の薄型プレートをサーペンタイン曲げにしたプレート相互の平行部に、対向するプレート面相互間を伝熱的に連通して屈曲蛇行する薄肉リボンから成る補助フィンを設けた構造が記載されている。   In Patent Document 1, as a self-excited oscillating heat pipe used for a heat sink, a thin-walled plate that is bent and meandered in a heat-conducting manner between opposing plate surfaces in parallel portions of plates obtained by bending a belt-shaped thin plate into a serpentine bend A structure in which auxiliary fins made of ribbons are provided is described.

特許第4363501号公報Japanese Patent No. 4363501

本願発明者が、自励振動ヒートパイプを適用した、鉄道車両等の電力変換装置用の冷却装置の実用化について鋭意検討した結果、次の知見を得るに至った。   The inventor of the present application diligently studied the practical application of a cooling device for a power conversion device such as a railway vehicle to which a self-excited vibration heat pipe was applied. As a result, the following knowledge was obtained.

鉄道車両等を駆動する電動機を制御するための電力変換装置は、半導体素子が大電流を導通させるためにスイッチングするため、半導体素子による熱損失が大きい。この電力変換装置を冷却するために、自励振動ヒートパイプを冷却装置に適用する場合には、自励振動ヒートパイプは、受熱面積および冷却面積を大きくするほど性能が向上する傾向があるため、限られた寸法制約の中でも受熱面積および冷却面積を極力大きくする必要がある。   A power conversion device for controlling an electric motor that drives a railway vehicle or the like has a large heat loss due to the semiconductor element because the semiconductor element is switched to conduct a large current. When applying a self-excited vibration heat pipe to the cooling device to cool this power conversion device, the self-excited vibration heat pipe tends to improve in performance as the heat receiving area and the cooling area increase. It is necessary to increase the heat receiving area and the cooling area as much as possible even under limited dimensional constraints.

また、鉄道車両等を駆動する電動機を制御するための電力変換装置は、鉄道車両等の床下等に設置されることが一般的であるため、電力変換装置向けの冷却装置も同様に、鉄道車両等の床下等に設置されることが多い。鉄道車両等の走行中に発生する振動により、鉄道車両等の床下に設置される機器には数十から百数十Hzの加振力が作用するため、これらの機器はその加振力に耐え得る強度を有する必要がある。   In addition, since a power conversion device for controlling an electric motor that drives a railway vehicle or the like is generally installed under the floor of a railway vehicle or the like, a cooling device for the power conversion device is similarly applied to the railway vehicle. It is often installed under the floor. Exciting force of several tens to hundreds of Hz is applied to equipment installed under the floor of railway vehicles, etc. due to vibrations generated during running of railway vehicles, etc., so these equipments can withstand the exciting force. It is necessary to have strength to obtain.

さらに、一般的に知られる自励振動ヒートパイプは、内部流路も含めて構造が複雑であり、その製作も困難であるため、製作性の良い構造とする必要がある。   Furthermore, a generally known self-excited vibration heat pipe has a complicated structure including an internal flow path, and its manufacture is difficult. Therefore, it is necessary to provide a structure with good manufacturability.

本発明は、自励振動ヒートパイプによる冷却装置の性能を向上させ、かつ振動に対する強度を確保し、冷却装置としての製作性を向上させることを目的とする。   It is an object of the present invention to improve the performance of a cooling device using a self-excited vibration heat pipe, to secure strength against vibration, and to improve manufacturability as a cooling device.

本発明に係る冷却装置は、上記課題を解決するために、例えば、発熱源を片面に設けた受熱板と、受熱板の反対側の面に設けた自励振動ヒートパイプとを備え、自励振動ヒートパイプは、液柱と気柱が交互に存在する状態で作動液が封入された流路を内部に設けたプレートが長手方向に対して複数回往復に折り曲げられた構造を有し、当該往復に折り曲げられた構造は、一往復した隣り合うプレート同士の曲げ角度が180度より大きい形状であることを特徴とする。   In order to solve the above-described problem, a cooling device according to the present invention includes, for example, a heat receiving plate having a heat source provided on one side and a self-excited vibration heat pipe provided on the opposite side of the heat receiving plate. The vibration heat pipe has a structure in which a plate provided with a flow path enclosing a working liquid in a state where liquid columns and air columns are alternately present is bent back and forth multiple times in the longitudinal direction, The structure that is folded back and forth is characterized in that the bending angle between adjacent plates after one round trip is larger than 180 degrees.

本発明によれば、自励振動ヒートパイプの受熱面積および冷却面積を拡大させることにより、冷却性能を向上させることができる。併せて、自励振動ヒートパイプの振動に対する強度を確保することができる。さらに、自励振動ヒートパイプの曲げ加工に要求される寸法公差を緩和できるため、製作性も向上する。   According to the present invention, the cooling performance can be improved by expanding the heat receiving area and the cooling area of the self-excited vibration heat pipe. In addition, the strength against vibration of the self-excited vibration heat pipe can be ensured. Furthermore, since the dimensional tolerance required for bending the self-excited vibration heat pipe can be relaxed, the manufacturability is also improved.

実施例1に係る冷却装置を備えた電力変換装置を鉄道車両に搭載した場合の断面図である。It is sectional drawing at the time of mounting the power converter device provided with the cooling device which concerns on Example 1 on a rail vehicle. 実施例1に係る冷却装置を備えた電力変換装置および電力変換素子を鉄道車両等の進行方向から見た断面図である。It is sectional drawing which looked at the power converter device provided with the cooling device which concerns on Example 1, and a power converter element from the advancing direction of a railcar etc. 実施例1に係る冷却装置を構成する自励振動ヒートパイプ内の流路構造を示す断面図である。It is sectional drawing which shows the flow-path structure in the self-excited vibration heat pipe which comprises the cooling device which concerns on Example 1. FIG. 図3に示す自励振動ヒートパイプのA−A断面図である。It is AA sectional drawing of the self-excited vibration heat pipe shown in FIG. 実施例1に係る自励振動ヒートパイプを折り曲げた状態を示す斜視図である。It is a perspective view which shows the state which bent the self-excited vibration heat pipe which concerns on Example 1. FIG. 実施例1に係る自励振動ヒートパイプと受熱板とを分離した状態を示す斜視図である。It is a perspective view which shows the state which isolate | separated the self-excited vibration heat pipe and heat receiving plate which concern on Example 1. FIG. 実施例1に係る自励振動ヒートパイプと受熱板とを接合した状態を示す斜視図である。It is a perspective view which shows the state which joined the self-excited vibration heat pipe and heat receiving plate which concern on Example 1. FIG. 実施例2に係る自励振動ヒートパイプを折り曲げた状態を示す斜視図である。It is a perspective view which shows the state which bent the self-excited vibration heat pipe which concerns on Example 2. FIG. 実施例2に係る自励振動ヒートパイプおよび受熱板を分解した状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled the self-excited vibration heat pipe and heat receiving plate which concern on Example 2. FIG. 実施例2に係る冷却装置を備えた電力変換装置を鉄道車両等の進行方向から見た断面図である。It is sectional drawing which looked at the power converter device provided with the cooling device which concerns on Example 2 from the advancing direction, such as a rail vehicle. 実施例3に係る冷却装置を備えた電力変換装置を鉄道車両等の進行方向から見た断面図である。It is sectional drawing which looked at the power converter device provided with the cooling device which concerns on Example 3 from the advancing direction, such as a rail vehicle.

以下、本発明を実施するための形態として、本発明の実施例1〜3について、図面を参照しながら説明する。   Hereinafter, Examples 1 to 3 of the present invention will be described with reference to the drawings as modes for carrying out the present invention.

図1は、本発明の実施例1に係る冷却装置を備えた電力変換装置を鉄道車両に搭載した場合の断面図である。
電力変換装置2は、鉄道車両1の床下に設置される。電力変換装置2の内部には、電力変換装置2の電力変換回路を構成する複数の半導体素子3および電気部品群4が設置される。半導体素子3は、冷却装置5を構成する受熱板6の片面に取り付けられる。また、受熱板6の反対面には、冷却装置5を構成する自励振動ヒートパイプ7が設置される。冷却装置5には、鉄道車両1が走行した際に発生する走行風8が供給され、半導体素子3から発生する熱損失を放熱する。
FIG. 1 is a cross-sectional view when a power conversion device including a cooling device according to a first embodiment of the present invention is mounted on a railway vehicle.
The power conversion device 2 is installed under the floor of the railway vehicle 1. Inside the power conversion device 2, a plurality of semiconductor elements 3 and an electrical component group 4 constituting a power conversion circuit of the power conversion device 2 are installed. The semiconductor element 3 is attached to one side of the heat receiving plate 6 constituting the cooling device 5. A self-excited vibration heat pipe 7 that constitutes the cooling device 5 is installed on the opposite surface of the heat receiving plate 6. The cooling device 5 is supplied with traveling wind 8 generated when the railway vehicle 1 travels, and dissipates heat loss generated from the semiconductor element 3.

次に、本発明の実施例1に係る冷却装置の構造について、図2から図7により説明する。
以下に示す各実施例では、本発明に係る冷却装置を鉄道車両用の電力変換装置に適用した場合を例としているが、本発明に係る冷却装置は、鉄道車両用の電力変換装置に限定されるものではなく、他の用途(例えば、自動車のような移動体用や一般産業機器用)の電力変換装置にも適用できるものである。
Next, the structure of the cooling device according to the first embodiment of the present invention will be described with reference to FIGS.
In each embodiment shown below, the cooling device according to the present invention is applied to a power conversion device for a railway vehicle, but the cooling device according to the present invention is limited to the power conversion device for a rail vehicle. However, the present invention can also be applied to power conversion devices for other uses (for example, for mobile objects such as automobiles and general industrial equipment).

図2は、実施例1に係る冷却装置を備えた電力変換装置および電力変換回路を構成する半導体素子を鉄道車両等の進行方向から見た断面図である。
冷却装置5は、受熱板6および自励振動ヒートパイプ7から構成される。受熱板6の一方の片面には、複数の半導体素子3が設置され、もう一方の片面には、自励振動ヒートパイプ7が設置される。
FIG. 2 is a cross-sectional view of a power conversion device including the cooling device according to the first embodiment and a semiconductor element constituting the power conversion circuit as viewed from the traveling direction of a railcar or the like.
The cooling device 5 includes a heat receiving plate 6 and a self-excited vibration heat pipe 7. A plurality of semiconductor elements 3 are installed on one side of the heat receiving plate 6, and a self-excited vibration heat pipe 7 is installed on the other side.

まず、自励振動ヒートパイプ7の構造について説明する。
図3は、実施例1に係る冷却装置を構成する自励振動ヒートパイプ内の流路構造を示す断面図、図4は、図3に示す自励振動ヒートパイプのA−A断面図である。
自励振動ヒートパイプ7は、プレート形状の構造を成し、そのプレートの内部には、図4に示すように、複数の矩形断面の流路9が、長手方向に向かって平行並列に形成される。流路9の内部には作動液が所定量封入される。なお、複数の独立した流路9が並行並列に形成されたものに限られず、プレートの内部には、単数又は複数の流路9が屈曲蛇行して配置されていてもよい。また、流路9の断面形状は、矩形に限定されるものではなく、円形のような他の形状であってもよい。
First, the structure of the self-excited vibration heat pipe 7 will be described.
FIG. 3 is a cross-sectional view showing a flow path structure in a self-excited vibration heat pipe constituting the cooling device according to the first embodiment, and FIG. 4 is a cross-sectional view taken along line AA of the self-excited vibration heat pipe shown in FIG. .
The self-excited oscillating heat pipe 7 has a plate-like structure, and a plurality of rectangular cross-section channels 9 are formed in the plate in parallel and parallel to the longitudinal direction, as shown in FIG. The A predetermined amount of hydraulic fluid is sealed in the flow path 9. In addition, it is not restricted to the thing in which the several independent flow path 9 was formed in parallel parallel, The single or several flow path 9 may be arrange | positioned inside the plate by meandering. Moreover, the cross-sectional shape of the flow path 9 is not limited to a rectangle, and may be another shape such as a circle.

図5は、本発明に用いる自励振動ヒートパイプの構造形状として、自励振動ヒートパイプを折り曲げた状態を示す斜視図である。
本発明に用いる自励振動ヒートパイプの構造は、図3に示す自励振動ヒートパイプ7のプレートを原形として、長手方向に対して複数回往復に折り曲げることにより形成される。その際に、自励振動ヒートパイプ7は、一往復した隣り合うプレート同士が180度より大きい曲げ角度で複数回往復に折り曲げられた構造を有することから、この一往復した隣り合うプレート同士は平行ではない。すなわち、一往復した隣り合うプレート同士の間隔は、長手方向に連続的に変化し一定でない。
さらに、一往復した隣り合うプレート同士の折り曲げ部は互いに接する構造とすることにより、一往復分の隣り合うプレート同士で形成される隙間は、短手方向(図5に示す矢印方向)から見るとほぼ三角形の形状となる。ここで、短手方向(図5に示す矢印方向)は、鉄道車両等の進行方向すなわち走行風の方向である。
FIG. 5 is a perspective view showing a state where the self-excited vibration heat pipe is bent as the structural shape of the self-excited vibration heat pipe used in the present invention.
The structure of the self-excited vibration heat pipe used in the present invention is formed by bending the self-excited vibration heat pipe 7 shown in FIG. At that time, the self-excited vibration heat pipe 7 has a structure in which the adjacent plates reciprocated once are folded back and forth a plurality of times at a bending angle larger than 180 degrees. is not. That is, the interval between adjacent plates that have made one reciprocation changes continuously in the longitudinal direction and is not constant.
Furthermore, the bent portion of the adjacent plates that have made one reciprocal contact with each other, and the gap formed between the adjacent plates for one reciprocation is viewed from the short direction (the arrow direction shown in FIG. 5). The shape is almost triangular. Here, the short direction (the arrow direction shown in FIG. 5) is the traveling direction of the railway vehicle or the like, that is, the traveling wind direction.

図6は、自励振動ヒートパイプと受熱板とを分離した状態を示す斜視図であり、図7は、自励振動ヒートパイプと受熱板とを接合した状態を示す斜視図である。
図6に示すように、受熱板6には窪み10が形成され、この窪み10の中にはロウ材やハンダなどの接合部材11を設置する。また、図7に示すように、複数回往復に折り曲げられた自励振動ヒートパイプ7が窪み10に設置される。その際に、接合部材11を加熱することで接合部材11を溶解させ、その後温度を低下させることで接合部材11が凝固し、それにより、受熱板6と自励振動ヒートパイプ7とは接合部材11を介して接合される。
なお、自励振動ヒートパイプ7の片端部あるいは両端部は、受熱板6と接合される箇所とは反対側に配置される。図7に示す本実施例1では、自励振動ヒートパイプ7の両端部が受熱板6と接合される箇所とは反対側に配置される。この配置とするのは、一つには内部の流路9へ作動液を封入する作業を容易にすることに起因する。
FIG. 6 is a perspective view showing a state where the self-excited vibration heat pipe and the heat receiving plate are separated, and FIG. 7 is a perspective view showing a state where the self-excited vibration heat pipe and the heat receiving plate are joined.
As shown in FIG. 6, a recess 10 is formed in the heat receiving plate 6, and a joining member 11 such as a brazing material or solder is installed in the recess 10. In addition, as shown in FIG. 7, a self-excited vibration heat pipe 7 that is bent back and forth a plurality of times is installed in the recess 10. At that time, the joining member 11 is melted by heating the joining member 11, and the joining member 11 is then solidified by lowering the temperature, whereby the heat receiving plate 6 and the self-excited vibration heat pipe 7 are joined to each other. 11 is joined.
Note that one end or both ends of the self-excited vibration heat pipe 7 are arranged on the opposite side of the place where the heat receiving plate 6 is joined. In the first embodiment shown in FIG. 7, both end portions of the self-excited vibration heat pipe 7 are disposed on the opposite side from the place where the heat receiving plate 6 is joined. This arrangement is due in part to facilitating the work of sealing the working fluid into the internal flow path 9.

一方、図2に示すように、窪み10に樹脂などの封止部材12などを流し込み、受熱板6と自励振動ヒートパイプ7の接合部を覆って固めることによっても、受熱板6と自励振動ヒートパイプ7との接合を強固にすることができる。   On the other hand, as shown in FIG. 2, a sealing member 12 such as a resin is poured into the recess 10 and the joint between the heat receiving plate 6 and the self-excited vibration heat pipe 7 is covered and hardened. Bonding with the vibration heat pipe 7 can be strengthened.

さらに、図2に示す自励振動ヒートパイプ7のように、受熱板6と接合されていない側で一往復して隣り合う折り曲げ部同士を、溶接やハンダなどの接合手段により接合してもよい(図2では、溶接部13として示す)。   Furthermore, like the self-excited vibration heat pipe 7 shown in FIG. 2, the adjacent bent portions may be joined back and forth on the side not joined to the heat receiving plate 6 by joining means such as welding or soldering. (In FIG. 2, it shows as the welding part 13).

ここで、本実施例1の作用効果について説明する。
自励振動ヒートパイプ7は、熱を受け取る加熱部および熱を外気に放熱する放熱部の面積が大きいほど、冷却性能が向上する。本発明においては、自励振動ヒートパイプ7のうち、受熱板6に接合されている部分が加熱部、それ以外の走行風にさらされる部分が放熱部である。
Here, the function and effect of the first embodiment will be described.
As the self-excited vibration heat pipe 7 has a larger area of the heating unit that receives heat and the heat radiation unit that radiates heat to the outside air, the cooling performance is improved. In the present invention, in the self-excited vibration heat pipe 7, the part joined to the heat receiving plate 6 is a heating part, and the other part exposed to traveling wind is a heat radiating part.

本実施例1では、自励振動ヒートパイプ7を長手方向に対して複数回往復に折り曲げる際に、一往復分の隣り合うプレート同士が180度より大きい曲げ角度で折り曲げることにより、この隣り合うプレート同士は平行ではないことから、自励振動ヒートパイプ7の放熱部は、受熱板6に対して垂直ではなく斜めに配置される構造となる。これにより、自励振動ヒートパイプ7を平行に折り曲げた構造とする場合よりも放熱部の面積が拡大し、冷却性能が向上することになる。   In the first embodiment, when the self-excited vibration heat pipe 7 is folded back and forth a plurality of times in the longitudinal direction, the adjacent plates for one round-trip are bent at a bending angle larger than 180 degrees, thereby the adjacent plates. Since they are not parallel to each other, the heat radiating portion of the self-excited vibration heat pipe 7 is not perpendicular to the heat receiving plate 6 but is arranged obliquely. Thereby, the area of a heat radiating part is expanded and the cooling performance is improved as compared with a case where the self-excited vibration heat pipe 7 is bent in parallel.

また、自励振動ヒートパイプ7の一往復して隣り合う折り曲げ部が互いに接することで、受熱板6と接合される面積が拡大し、すなわち自励振動ヒートパイプ7の加熱部の面積が拡大することになり、冷却性能が向上する。   Further, when the self-excited vibration heat pipe 7 is reciprocated and adjacent bent portions are in contact with each other, the area joined to the heat receiving plate 6 is expanded, that is, the area of the heating portion of the self-excited vibration heat pipe 7 is expanded. As a result, the cooling performance is improved.

さらに、自励振動ヒートパイプ7は、上記のような折り曲げにより、一往復分の隣り合うプレート同士で形成される隙間の形状が短手方向から見て三角形のような形状になることから、この三角形の底辺部となる加熱部を受熱板6の窪み10に樹脂などの封止部材12を流し込んで固める。併せて、受熱板6と接合されていない部分の一往復した隣り合うプレート同士の折り曲げ部を溶接などの接合手段により接合させる。これにより、自励振動ヒートパイプ7は変形が生じにくい形状となり、自励振動ヒートパイプ7を平行に折り曲げた構造とする場合よりも、振動に対する強度を向上させることができる。   Furthermore, since the self-excited vibration heat pipe 7 is bent as described above, the shape of the gap formed between the adjacent plates for one reciprocation becomes a triangular shape when viewed from the short side. The heating part which becomes the base of the triangle is poured into the recess 10 of the heat receiving plate 6 and a sealing member 12 such as a resin is poured and hardened. At the same time, the bent portions of the adjacent plates that have reciprocated once in a portion that is not joined to the heat receiving plate 6 are joined by a joining means such as welding. Thereby, the self-excited vibration heat pipe 7 has a shape in which deformation is difficult to occur, and the strength against vibration can be improved as compared with the case where the self-excited vibration heat pipe 7 is bent in parallel.

実施例2は、実施例1と比較して、自励振動ヒートパイプ7の曲げピッチを小さくしたものである。以下、実施例1との相違点を中心に説明する。   In the second embodiment, the bending pitch of the self-excited vibration heat pipe 7 is reduced as compared with the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.

図8は、実施例2に係る自励振動ヒートパイプを折り曲げた状態を示す斜視図で、図9は、実施例2に係る自励振動ヒートパイプおよび受熱板を分解した状態を示す斜視図である。
本実施例2では、自励振動ヒートパイプ7の放熱面積を拡大するために曲げピッチを小さくしたために、図8に示すように、折り曲げ部が、実施例1とは異なり曲面のみで構成されることになる。これにより、本実施例2に係る自励振動ヒートパイプ7の一往復した隣り合うプレート同士で形成される隙間は、短手方向(図8に示す矢印方向)から見るとほぼしずく形の形状となることから、この折り曲げ部が受熱板6と接合する際に接合面積が不足することが懸念される。
そこで、図9に示すように、受熱板6の窪み10の中に、自励振動ヒートパイプ7の折り曲げ部の曲面に沿う形状の溝部14を設置する。さらに、この溝部14に接合部材11(実施例1と同様に、ロウ材やハンダなどを使用)を設置し、自励振動ヒートパイプ7と接合させる。
FIG. 8 is a perspective view showing a state where the self-excited vibration heat pipe according to the second embodiment is bent, and FIG. 9 is a perspective view showing a state where the self-excited vibration heat pipe and the heat receiving plate according to the second embodiment are disassembled. is there.
In the second embodiment, since the bending pitch is reduced in order to increase the heat radiation area of the self-excited vibration heat pipe 7, the bent portion is configured by only a curved surface, unlike the first embodiment, as shown in FIG. It will be. As a result, the gap formed by the one reciprocating adjacent plates of the self-excited vibration heat pipe 7 according to the second embodiment is substantially drop-shaped when viewed from the short direction (the arrow direction shown in FIG. 8). Therefore, there is a concern that the bent area is insufficient when the bent portion is bonded to the heat receiving plate 6.
Therefore, as shown in FIG. 9, a groove portion 14 having a shape along the curved surface of the bent portion of the self-excited vibration heat pipe 7 is installed in the recess 10 of the heat receiving plate 6. Further, a joining member 11 (using a brazing material, solder or the like as in the first embodiment) is installed in the groove portion 14 and joined to the self-excited vibration heat pipe 7.

このような形状とすることで、自励振動ヒートパイプ7と受熱板6の接合面積が拡大、すなわち自励振動ヒートパイプ7の加熱部の面積が拡大し、冷却性能が向上する。また、自励振動ヒートパイプ7を受熱板6に接合する際に、受熱板6の反対側から外力を加えて自励振動ヒートパイプ7を受熱板6に押し付ける場合、溝部14が自励振動ヒートパイプ7の位置合わせの役割を持つ他、自励振動ヒートパイプ7が溝部14の形状に沿うように変形する。これにより、自励振動ヒートパイプ7を折り曲げる際の寸法公差を緩和することができるため、製作性が向上する。   By setting it as such a shape, the junction area of the self-excited vibration heat pipe 7 and the heat receiving plate 6 is expanded, that is, the area of the heating portion of the self-excited vibration heat pipe 7 is expanded, and the cooling performance is improved. Further, when the self-excited vibration heat pipe 7 is joined to the heat receiving plate 6, when an external force is applied from the opposite side of the heat receiving plate 6 to press the self-excited vibration heat pipe 7 against the heat receiving plate 6, the groove portion 14 is self-excited vibration heat. In addition to the role of positioning the pipe 7, the self-excited vibration heat pipe 7 is deformed so as to follow the shape of the groove 14. Thereby, since the dimensional tolerance at the time of bending the self-excited vibration heat pipe 7 can be relieved, manufacturability improves.

図10は、本実施例2に係る自励振動ヒートパイプおよび受熱板から成る冷却装置を備えた鉄道車両等の電力変換装置を鉄道車両等の進行方向から見た断面図である。実施例1と同様に、受熱板6と接合されていない側で一往復して隣り合う折り曲げ部同士を、溶接部13のように接合してもよい   FIG. 10 is a cross-sectional view of a power conversion apparatus such as a railway vehicle provided with a cooling device including a self-excited vibration heat pipe and a heat receiving plate according to the second embodiment when viewed from the traveling direction of the railway vehicle. Similar to the first embodiment, the adjacent bent portions may be joined together like the welded portion 13 by reciprocating once on the side not joined to the heat receiving plate 6.

実施例3は、実施例1および実施例2と比較して自励振動ヒートパイプ7の折り曲げ部同士の接合方法を変えたものである。以下、実施例1および実施例2との相違点を中心に説明する。   Example 3 is different from Example 1 and Example 2 in that the method of joining the bent portions of the self-excited vibration heat pipe 7 is changed. Hereinafter, the difference from the first embodiment and the second embodiment will be mainly described.

図11は、実施例3に係る冷却装置を備えた鉄道車両等の電力変換装置を鉄道車両等の進行方向から見た断面図である。本実施例3は、受熱板6と反対側に補強部材15を設置し、補強部材15により、受熱板6とは反対側の自励振動ヒートパイプ7の折り曲げ部同士を接合する。また、自励振動ヒートパイプ7が、実施例2で示したように曲げピッチを小さくした場合には、補強部材15側の接合面に対しても自励振動ヒートパイプ7の折り曲げ部の曲面に沿う形状の溝部を設けてもよい。   FIG. 11: is sectional drawing which looked at power converters, such as a rail vehicle provided with the cooling device concerning Example 3, from the advancing direction of a rail vehicle. In the third embodiment, a reinforcing member 15 is installed on the side opposite to the heat receiving plate 6, and the bent portions of the self-excited vibration heat pipe 7 on the side opposite to the heat receiving plate 6 are joined by the reinforcing member 15. Further, when the self-excited vibration heat pipe 7 has a small bending pitch as shown in the second embodiment, the curved surface of the bent portion of the self-excited vibration heat pipe 7 is also formed on the joint surface on the reinforcing member 15 side. You may provide the groove part of the shape which follows.

このような形状で冷却装置を構成することで、自励振動ヒートパイプ7に対して変形の生じさせない形状となり、振動に対する強度が向上する。   By configuring the cooling device in such a shape, the self-excited vibration heat pipe 7 is shaped so as not to be deformed, and the strength against vibration is improved.

また、図示はしないが、各実施例に係る自励振動ヒートパイプの隣り合うプレート同士の間に、例えば特許文献1で補助フィンとして示されるように、コルゲートフィンを設けて、冷却性能の更なる向上を図ってもよい。   Although not shown, corrugated fins are provided between adjacent plates of the self-excited vibration heat pipes according to each embodiment, for example, as auxiliary fins in Patent Document 1 to further improve the cooling performance. Improvements may be made.

1:鉄道車両、2:電力変換装置、3:半導体素子、4:電気部品群、5:冷却装置、
6:受熱板、7:自励振動ヒートパイプ、8:走行風の方向、9:流路、10:窪み、
11:接合部材、12:封止部材、13:溶接部、14:溝部、15:補強部材
1: railway vehicle, 2: power converter, 3: semiconductor element, 4: electrical component group, 5: cooling device,
6: heat receiving plate, 7: self-excited vibration heat pipe, 8: direction of traveling wind, 9: flow path, 10: depression,
11: Joining member, 12: Sealing member, 13: Welded part, 14: Groove part, 15: Reinforcing member

Claims (10)

発熱源を片面に設けた受熱板と、
前記受熱板の反対側の面に設けた自励振動ヒートパイプと
を備え、
前記自励振動ヒートパイプは、液柱と気柱が交互に存在する状態で作動液が封入された流路を内部に設けたプレートが長手方向に対して複数回往復に折り曲げられた構造を有し、当該往復に折り曲げられた構造は、一往復した隣り合うプレート同士の曲げ角度が180度より大きい形状である
ことを特徴とする冷却装置。
A heat receiving plate provided with a heat source on one side;
A self-excited vibration heat pipe provided on the opposite surface of the heat receiving plate,
The self-excited vibration heat pipe has a structure in which a plate in which a working fluid is sealed in a state where liquid columns and air columns exist alternately is bent back and forth multiple times in the longitudinal direction. And the structure bent in the said reciprocation is a cooling device characterized by the bending angle of adjacent plates which carried out one reciprocation being larger than 180 degree | times.
発熱源を片面に設けた受熱板と、
前記受熱板の反対側の面に設けた自励振動ヒートパイプと
を備え、
前記自励振動ヒートパイプは、液柱と気柱が交互に存在する状態で作動液が封入された流路を内部に設けたプレートが長手方向に対して複数回往復に折り曲げられた構造を有し、当該往復に折り曲げられた構造は、一往復した隣り合うプレート同士の間隔が長手方向に連続的に変化し一定でない形状である
ことを特徴とする冷却装置。
A heat receiving plate provided with a heat source on one side;
A self-excited vibration heat pipe provided on the opposite surface of the heat receiving plate,
The self-excited vibration heat pipe has a structure in which a plate in which a working fluid is sealed in a state where liquid columns and air columns exist alternately is bent back and forth multiple times in the longitudinal direction. And the structure bent in the said reciprocation is the cooling device characterized by the space | interval of the adjacent plates which carried out one reciprocation changing continuously in a longitudinal direction, and the shape which is not constant.
発熱源を片面に設けた受熱板と、
前記受熱板の反対側の面に設けた自励振動ヒートパイプと
を備え、
前記自励振動ヒートパイプは、液柱と気柱が交互に存在する状態で作動液が封入された流路を内部に設けたプレートが長手方向に対して複数回往復に折り曲げられ、かつ一往復した隣り合うプレート同士の折り曲げ部が互いに接する構造を有し、当該一往復した隣り合うプレート同士で形成される隙間は、短手方向から見てほぼ三角形またはほぼしずく形の形状である
ことを特徴とする冷却装置。
A heat receiving plate provided with a heat source on one side;
A self-excited vibration heat pipe provided on the opposite surface of the heat receiving plate,
The self-excited oscillating heat pipe has a plate in which a working fluid is sealed in a state where liquid columns and air columns are alternately present, and a plate in which a flow path is enclosed is bent a plurality of times in the longitudinal direction, and is reciprocated once. The bent portions of the adjacent plates are in contact with each other, and the gap formed between the adjacent plates that have reciprocated once is substantially triangular or substantially drop-shaped when viewed from the short side direction. And cooling device.
請求項1〜3のいずれか1項に記載の冷却装置であって、
前記受熱板は窪みを有し、前記受熱板と当該窪みに設置した前記自励振動ヒートパイプとは接合部材を用いて接合された構造である
ことを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 3,
The heat receiving plate has a recess, and the cooling device has a structure in which the heat receiving plate and the self-excited vibration heat pipe installed in the recess are bonded using a bonding member.
請求項4に記載の冷却装置であって、
前記受熱板と前記自励振動ヒートパイプとが前記接合部材を用いて接合された接合部および前記窪みは、封止部材により覆われた構造である
ことを特徴とする冷却装置。
The cooling device according to claim 4,
The cooling device, wherein the heat receiving plate and the self-excited vibration heat pipe are bonded to each other using the bonding member, and the depression is covered with a sealing member.
請求項4または5に記載の冷却装置であって、
前記窪みは、前記自励振動ヒートパイプが有する前記複数回往復に折り曲げた構造の折り曲げ部の曲面に沿う形状である溝部を有する
ことを特徴とする冷却装置。
The cooling device according to claim 4 or 5, wherein
The said hollow has a groove part which is a shape along the curved surface of the bending part of the structure which the said self-excited vibration heat pipe bent in the said multiple times reciprocation.
請求項1〜6のいずれか1項に記載の冷却装置であって、
前記自励振動ヒートパイプが有する前記一往復した隣り合うプレート同士の折り曲げ部の中で前記受熱板とは反対側に位置する当該折り曲げ部は互いに接合された構造である
ことを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 6,
The cooling device characterized in that the bent portions located on the opposite side of the heat receiving plate in the bent portions of the one-way adjacent plates of the self-excited vibration heat pipe are joined to each other. .
請求項1〜7のいずれか1項に記載の冷却装置であって、
前記自励振動ヒートパイプを構成する前記プレートの片端部または両端部は、前記受熱板とは反対側に配置される構造である
ことを特徴とする冷却装置。
The cooling device according to any one of claims 1 to 7,
The cooling device according to claim 1, wherein one or both ends of the plate constituting the self-excited vibration heat pipe are arranged on the opposite side of the heat receiving plate.
請求項1〜8のいずれか1項に記載の冷却装置を備えた電力変換装置であって、
前記発熱源として電力変換回路を構成する半導体素子を前記受熱板の前記片面に設けた
ことを特徴とする電力変換装置。
It is a power converter device provided with the cooling device according to any one of claims 1 to 8,
A power conversion apparatus comprising a semiconductor element constituting a power conversion circuit as the heat generation source on the one surface of the heat receiving plate.
電気車に搭載する請求項9に記載の電力変換装置であって、
前記自励振動ヒートパイプの短手方向が前記電気車の進行方向である
ことを特徴とする電力変換装置。
The power conversion device according to claim 9, which is mounted on an electric vehicle,
The power converter according to claim 1, wherein a short direction of the self-excited vibration heat pipe is a traveling direction of the electric vehicle.
JP2018089661A 2018-05-08 2018-05-08 Cooling device, and power conversion device including cooling device Pending JP2019196850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089661A JP2019196850A (en) 2018-05-08 2018-05-08 Cooling device, and power conversion device including cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089661A JP2019196850A (en) 2018-05-08 2018-05-08 Cooling device, and power conversion device including cooling device

Publications (1)

Publication Number Publication Date
JP2019196850A true JP2019196850A (en) 2019-11-14

Family

ID=68537376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089661A Pending JP2019196850A (en) 2018-05-08 2018-05-08 Cooling device, and power conversion device including cooling device

Country Status (1)

Country Link
JP (1) JP2019196850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635647A (en) * 2020-12-22 2021-04-09 杭州大和热磁电子有限公司 Thermoelectric module capable of well radiating and manufacturing method thereof
DE102020200110A1 (en) * 2020-01-08 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020200110A1 (en) * 2020-01-08 2021-07-08 Robert Bosch Gesellschaft mit beschränkter Haftung Cooling device
CN112635647A (en) * 2020-12-22 2021-04-09 杭州大和热磁电子有限公司 Thermoelectric module capable of well radiating and manufacturing method thereof
CN112635647B (en) * 2020-12-22 2022-10-25 杭州大和热磁电子有限公司 Thermoelectric module capable of well dissipating heat and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7958934B2 (en) Counter-stream-mode oscillating-flow heat transport apparatus
EP2003691B1 (en) Base for power module
US8593812B2 (en) Heat exchanger, semiconductor device, method for manufacturing the heat exchanger, and method for manufacturing the semiconductor device
WO2020158324A1 (en) Heat sink for self-oscillating heat pipe
JP2007019203A (en) Heat radiator
JP6286543B2 (en) Power module device, power conversion device, and method of manufacturing power module device
WO2018021009A1 (en) Cooling apparatus
US20180149061A1 (en) Thermoelectric Generator for Converting Heat of a Hot Gas Flow Into Electric Energy
JP2019196850A (en) Cooling device, and power conversion device including cooling device
JP2008282969A (en) Cooler and electronic instrument
JP4265500B2 (en) Heating element cooling device
JP2002151636A (en) Heat sink
JP2010129806A (en) Power semiconductor device and process of manufacturing the same
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP4937951B2 (en) Power semiconductor device and manufacturing method thereof
JP2009068836A (en) Counter-stream-mode oscillating-flow heat transport apparatus and cooling device
WO2019151375A1 (en) Electric power conversion apparatus and method for manufacturing self-excited vibration heat pipe
JP7222920B2 (en) Cooling system
US20210066568A1 (en) Thermoelectric power generator
WO2017047563A1 (en) Thermoelectric power generation device
JP2005203732A (en) Cooler
JP2005085887A (en) Cooling plate and its manufacturing method
JP2007324351A (en) Pressure-contact semiconductor module
EP1863085A2 (en) Two-phase cooling system for cooling power electronic components
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same