JP2019195495A - Blood vessel diameter measuring system - Google Patents

Blood vessel diameter measuring system Download PDF

Info

Publication number
JP2019195495A
JP2019195495A JP2018091321A JP2018091321A JP2019195495A JP 2019195495 A JP2019195495 A JP 2019195495A JP 2018091321 A JP2018091321 A JP 2018091321A JP 2018091321 A JP2018091321 A JP 2018091321A JP 2019195495 A JP2019195495 A JP 2019195495A
Authority
JP
Japan
Prior art keywords
blood vessel
vessel diameter
measuring
electrode
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018091321A
Other languages
Japanese (ja)
Inventor
大地 鈴木
Daichi Suzuki
大地 鈴木
不破 耕
Ko Fuwa
耕 不破
前平 謙
Ken Maehira
謙 前平
靖知 大橋
Yasutomo Ohashi
靖知 大橋
藤田 勝博
Katsuhiro Fujita
勝博 藤田
大輔 川久保
Daisuke Kawakubo
大輔 川久保
芳賀 洋一
Yoichi Haga
洋一 芳賀
忠雄 松永
Tadao Matsunaga
忠雄 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Ulvac Inc
Original Assignee
Tohoku University NUC
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Ulvac Inc filed Critical Tohoku University NUC
Priority to JP2018091321A priority Critical patent/JP2019195495A/en
Publication of JP2019195495A publication Critical patent/JP2019195495A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a blood vessel diameter measuring system that has an ultrasonic probe capable of measuring a blood vessel diameter accurately with a good reproducibility and having a superior wearable property.SOLUTION: A blood vessel diameter measuring system for measuring a blood vessel diameter of a living body by a pulse-echo method includes: an ultrasonic probe AP having a transmitter-receiver 2 for oscillating an ultrasound by applying a pulse voltage to a piezoelectric element 22 of an array form, and receiving a reflected wave; and a measuring instrument body for measuring the blood vessel diameter. The probe is connected with the main body in a communicating manner. The system further includes a silicon substrate 3 assuming the fitting direction of the probe to be a bottom and forming a silicon through-electrode 31 penetrating vertically. The system is mounted with a drive circuit 41, a power source, an amplifier circuit 43 and an A/D conversion circuit. The system is connected to a first electrode 21 with which a lower surface of each piezoelectric element is brought into contact and a second electrode 25 with which an upper surface is brought into contact through an electrode, respectively. A main body of the system is provided with control means for controlling the drive circuit and measuring the blood vessel diameter, and notification means for notifying a user of the blood vessel diameter.SELECTED DRAWING: Figure 1

Description

本発明は、パルスエコー法により生体の血管径を測定する血管径測定システムに関する。   The present invention relates to a blood vessel diameter measuring system for measuring a blood vessel diameter of a living body by a pulse echo method.

この種の血管径測定システムは、例えば特許文献1で知られている。このものは、有線または無線により通信自在に接続される超音波プローブと測定器本体とを備える。生体に着脱自在に装着される超音波プローブは、同一平面内にアレイ状に配置される複数の圧電素子を有して各圧電素子にパルス電圧を印加して血管に向けて超音波を発振し、血管に衝突して反射する反射波を受信する送受信部(超音波トランデューサユニット)と、生体に対する装着方向を下とし、送受信部の上側に設けられる駆動回路及び通信回路と、これら駆動回路及び通信回路に電力供給するフィルムバッテリーとを備える。一方、測定器本体には、超音波プローブから送信される反射波を受信する反射波受信部と、反射波受信部で受信した反射波を増幅する増幅回路と、増幅された反射波をデジタル信号に変換するA/D変換回路と、デジタル信号を演算処理して血管径を測定する制御手段と、この測定される血管径を表示する表示手段とが設けられている。このような構成を採用した場合、超音波プローブの送受信部で受信した反射波を測定器本体の増幅回路で増幅してデジタル信号に変換するまでの伝送経路が長く、ノイズの影響を受け易いという問題があり、これでは、血管径の測定精度の低下を招く。   This type of blood vessel diameter measuring system is known from Patent Document 1, for example. This includes an ultrasonic probe and a measuring device main body that are communicably connected by wire or wirelessly. An ultrasonic probe detachably attached to a living body has a plurality of piezoelectric elements arranged in an array on the same plane, and applies a pulse voltage to each piezoelectric element to oscillate ultrasonic waves toward a blood vessel. A transmission / reception unit (ultrasonic transducer unit) that receives a reflected wave that collides with a blood vessel and reflects, a drive circuit and a communication circuit provided on the upper side of the transmission / reception unit, with the mounting direction with respect to a living body being downward, and these drive circuits, A film battery for supplying power to the communication circuit. On the other hand, the measuring instrument body includes a reflected wave receiving unit that receives the reflected wave transmitted from the ultrasonic probe, an amplification circuit that amplifies the reflected wave received by the reflected wave receiving unit, and the amplified reflected wave as a digital signal. An A / D conversion circuit for converting the signal into a digital signal, a control means for calculating a blood vessel diameter by processing a digital signal, and a display means for displaying the measured blood vessel diameter. When such a configuration is adopted, the transmission path from the reflected wave received by the transmitter / receiver of the ultrasonic probe to the digital signal after being amplified by the amplifier circuit of the measuring instrument main body is long, and is easily affected by noise. There is a problem, and this causes a decrease in the measurement accuracy of the blood vessel diameter.

また、上記従来例には、送受信部の上側に、測定器本体側の回路も含む上記各回路を専用のICで作成し、これらのICをベアチップ実装してなるシステム部を搭載し、生体に装着される超音波プローブに、表示機能を除く測定器本体の機能を超音波プローブ側に一体に組み込み、測定結果のみを表示素子に送信して表示させることも提案されている(特許文献1、図9〜図11参照)。ここで、各圧電素子から発振され超音波が血管に衝突して反射するとき、この反射波の周波数は、通常、20MHz程度である。このため、超音波プローブ側で超音波の発振から血管径を測定までの一連の処理を行うのでは、制御負荷が大きく、しかも、消費電力も多大となる。このため、バッテリーとして大容量のものが必要となるばかりか、測定中の発熱量も多くなるという問題がある。   In addition, in the above conventional example, the above-described circuits including the circuit on the measuring instrument main body side are created on the upper side of the transmission / reception unit with a dedicated IC, and a system unit formed by mounting these ICs in a bare chip is mounted on a living body. It has also been proposed that the function of the measuring instrument main body excluding the display function is integrated into the ultrasonic probe to be mounted on the ultrasonic probe side, and only the measurement result is transmitted to the display element for display (Patent Document 1, Patent Document 1). 9 to 11). Here, when an ultrasonic wave oscillated from each piezoelectric element collides with a blood vessel and is reflected, the frequency of the reflected wave is usually about 20 MHz. For this reason, if a series of processing from the oscillation of the ultrasonic wave to the measurement of the blood vessel diameter is performed on the ultrasonic probe side, the control load is large and the power consumption is also large. For this reason, there is a problem that not only a battery with a large capacity is required, but also the amount of heat generated during measurement increases.

ところで、この種の血管径測定システムを利用する者には高齢者も含まれることから、高齢者にとって超音波プローブを装着したときの快適性を考慮すると、超音波プローブは軽量であることが好ましく、しかも、測定中に不快感を与えるものであってはならない。上記従来例のように、測定器本体の機能を超音波プローブ側に一体に組み込むと共に大容量のバッテリーを用いるのでは、軽量化を図ることができず、また、測定中の発熱量が多くなると、使用者に不快感を与えてしまう虞もある。   By the way, since a person using this type of blood vessel diameter measurement system includes an elderly person, it is preferable that the ultrasound probe is lightweight in consideration of comfort when the ultrasound probe is worn for the elderly person. Moreover, it should not be uncomfortable during the measurement. If the function of the measuring instrument body is integrated on the ultrasonic probe side and a large-capacity battery is used as in the conventional example, the weight cannot be reduced, and the amount of heat generated during measurement increases. There is also a risk that the user may feel uncomfortable.

特開2006−51105号公報JP 2006-51105 A

本発明は、以上の点に鑑み、血管径を精度よく且つ再現性よく測定することができ、ウェアラブル性に優れた超音波プローブを有する血管径測定システムを提供することをその課題とするものである。   An object of the present invention is to provide a blood vessel diameter measuring system having an ultrasonic probe that can measure a blood vessel diameter with high accuracy and reproducibility and has excellent wearability. is there.

上記課題を解決するために、パルスエコー法により生体の血管径を測定する本発明の血管径測定システムは、同一平面内にアレイ状に配置される複数の圧電素子を有して各圧電素子にパルス電圧を印加して血管に向けて超音波を発振し、血管に衝突して反射する反射波を受信する送受信部を有する超音波プローブと、受信した反射波を解析して血管径を測定する測定器本体とを備え、超音波プローブと測定器本体とが通信自在に接続され、超音波プローブが、生体に対する装着方向を下とし、上下方向に貫通するシリコン貫通電極を形成したシリコン基板を更に備え、シリコン基板上に、各圧電素子に対して選択的にパルス電圧を印加する駆動回路と、駆動回路に電力供給する電源と、受信した反射波を増幅する増幅回路と、この増幅された反射波をデジタル信号に変換するA/D変換回路とが搭載されて、各圧電素子の下面が接触する第1電極とそれらの上面が接触する第2電極とにシリコン貫通電極を介して夫々接続され、測定器本体に、駆動回路を制御すると共にデジタル信号を演算処理して血管径を測定する制御手段と、この測定される血管径を報知する報知手段とを設けることを特徴とする。   In order to solve the above problems, a blood vessel diameter measuring system of the present invention for measuring a blood vessel diameter of a living body by a pulse echo method has a plurality of piezoelectric elements arranged in an array on the same plane, and each piezoelectric element is An ultrasonic probe having a transmission / reception unit that receives a reflected wave reflected from a blood vessel by oscillating an ultrasonic wave toward a blood vessel by applying a pulse voltage, and measuring the diameter of the blood vessel by analyzing the received reflected wave A silicon substrate on which an ultrasonic probe and a measuring instrument body are connected to be communicably connected to each other, and the ultrasonic probe is formed with a silicon penetrating electrode penetrating in a vertical direction with a mounting direction with respect to a living body facing downward. A drive circuit for selectively applying a pulse voltage to each piezoelectric element on the silicon substrate, a power supply for supplying power to the drive circuit, an amplifier circuit for amplifying the received reflected wave, and the amplified circuit An A / D conversion circuit that converts a radiation wave into a digital signal is mounted, and is connected to a first electrode that is in contact with the lower surface of each piezoelectric element and a second electrode that is in contact with the upper surface via a silicon through electrode. The measuring device main body is provided with control means for controlling the drive circuit and processing the digital signal to measure the blood vessel diameter, and notifying means for notifying the measured blood vessel diameter.

本発明によれば、送受信部で受信した反射波を増幅するまでの伝送経路が可及的に短くなることで、ノイズの影響を受け難くなって血管径を精度よく且つ再現性よく測定することができる。また、超音波プローブ側では、超音波の発振と、受信した反射波を増幅してデジタル信号に変換するまでの機能のみに限定しているため、消費電力は少なくて済み、その上、発熱量も然程多くない。その結果、超音波プローブは、軽量で、且つ、測定中に使用者に不快感を与えるといった不具合もなく、ウエアラブル性に優れたものとなる。   According to the present invention, since the transmission path until the reflected wave received by the transmission / reception unit is amplified becomes as short as possible, it is difficult to be affected by noise, and the blood vessel diameter is accurately and reproducibly measured. Can do. Also, on the ultrasonic probe side, it is limited to only the function of oscillating the ultrasonic wave and amplifying the received reflected wave and converting it to a digital signal. There are not so many. As a result, the ultrasonic probe is light in weight and has excellent wearability without causing problems such as discomfort to the user during measurement.

また、本発明によれば、アレイ状に配置される複数の圧電素子を高速信号切り替え駆動する際にノイズの影響を受け難くすることができ、超音波ビーム収束による分解能の向上、反射波(反射エコー)受信時の計測点感度向上が期待され、さらにアレイ状に配置される複数の圧電素子をフェーズドアレイ駆動することよる深く広い範囲の計測及びイメージングが可能になると期待される。前述の目的で高速信号切り換えを行う回路も同様にシリコン基板上に搭載することができる。   In addition, according to the present invention, it is possible to reduce the influence of noise when driving a plurality of piezoelectric elements arranged in an array at high speed signal switching, improving resolution by ultrasonic beam convergence, and reflecting waves (reflected waves). Echo) It is expected that measurement point sensitivity at the time of reception will be improved, and that measurement and imaging in a deep and wide range will be possible by driving a plurality of piezoelectric elements arranged in an array in a phased array. A circuit that performs high-speed signal switching for the above-described purpose can be similarly mounted on the silicon substrate.

本発明の実施形態の血管径測定システムを構成する超音波プローブの部分断面図。The fragmentary sectional view of the ultrasonic probe which constitutes the blood vessel diameter measuring system of the embodiment of the present invention. 超音波プローブと測定器本体の機能を説明する概略ブロック図。The schematic block diagram explaining the function of an ultrasonic probe and a measuring device main body. (a)〜(e)は、図1に示す超音波プローブの製作工程を夫々示す断面図。(A)-(e) is sectional drawing which each shows the manufacturing process of the ultrasonic probe shown in FIG. (a)及び(b)は、図1に示す超音波プローブの製作工程を夫々示す断面図。(A) And (b) is sectional drawing which each shows the manufacturing process of the ultrasonic probe shown in FIG.

以下、図面を参照して、パルスエコー法により生体の血管径を測定する場合を例に、本発明の実施形態に係る血管径測定システムを説明する。   Hereinafter, a blood vessel diameter measurement system according to an embodiment of the present invention will be described with reference to the drawings, taking as an example the case of measuring a blood vessel diameter of a living body by a pulse echo method.

図1及び図2を参照して、MSは、血管径測定システムである。血管径測定システムMSは、有線または無線により通信自在に接続されるアレイ型の超音波プローブAPと測定器本体MBとを備える。   1 and 2, MS is a blood vessel diameter measurement system. The blood vessel diameter measuring system MS includes an array-type ultrasonic probe AP and a measuring device main body MB that are connected to be communicably wired or wirelessly.

超音波プローブAPは、音響整合層1と、送受信部2と、シリコン基板3とを備える。超音波プローブAPは、測定対象としての手首橈骨動脈の血管Bの径を測定する手首Wの所定位置に装着される。以下において、上、下等の方向を示す用語は、図1に示す超音波プローブAPの測定対象に対する装着姿勢を基準とする。   The ultrasonic probe AP includes an acoustic matching layer 1, a transmission / reception unit 2, and a silicon substrate 3. The ultrasonic probe AP is attached to a predetermined position of the wrist W that measures the diameter of the blood vessel B of the wrist radial artery as a measurement target. In the following, terms indicating directions such as up and down are based on the mounting posture of the ultrasonic probe AP shown in FIG.

音響整合層1は、生体の音響インピーダンスと後述する超音波素子たる圧電素子22の音響インピーダンスとを整合させるものであり、例えば、ポリイミド、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリウレタン、パリレン、ポリ尿素から選択される1種の材料で形成され、その厚さは10μm〜50μmの範囲に設定される。   The acoustic matching layer 1 matches the acoustic impedance of a living body and the acoustic impedance of a piezoelectric element 22 as an ultrasonic element described later. For example, the acoustic matching layer 1 is made of polyimide, polyvinylidene fluoride, polyvinyl chloride, polyurethane, parylene, or polyurea. It is formed of one selected material, and its thickness is set in the range of 10 μm to 50 μm.

送受信部2は、上記音響整合層1上に形成される、後述する各圧電素子22の下面(一方の主面)22aが接触する第1電極膜21と、駆動電圧(パルス電圧)が印加されて血管Bに向けて超音波を発振し、血管Bに衝突して反射する反射波を受信する複数の圧電素子22と、音響整合層1及び第1電極膜21上に積層され、圧電素子22と同等の厚さを持つと共に圧電素子22を夫々囲繞する第1開口23aが開設された第1ドライフィルムレジスト23と、第1ドライフィルムレジスト23上に積層され、圧電素子22の上面22bを部分的に露出させる第2開口24aが開設されて当該第2開口24aの周縁部と第1電極膜21との間で圧電素子22を夫々挟持する第2ドライフィルムレジスト24と、各圧電素子22の上面(他方の主面)22bが接触する第2電極膜25とで構成されている。   The transmission / reception unit 2 is applied with a driving voltage (pulse voltage) and a first electrode film 21 formed on the acoustic matching layer 1 and in contact with a lower surface (one main surface) 22a of each piezoelectric element 22 described later. The piezoelectric element 22 is laminated on the acoustic matching layer 1 and the first electrode film 21, and oscillates ultrasonic waves toward the blood vessel B and receives reflected waves that collide with the blood vessel B and reflect. A first dry film resist 23 having a first opening 23a that surrounds the piezoelectric element 22, and a top surface 22b of the piezoelectric element 22 that is partially laminated on the first dry film resist 23. A second opening 24a that is exposed to light, a second dry film resist 24 that sandwiches the piezoelectric element 22 between the peripheral edge portion of the second opening 24a and the first electrode film 21, and each piezoelectric element 22 Top surface (the other Surface) 22b is constituted by the second electrode film 25 in contact.

圧電素子22の各々は、PZTやチタン酸バリウムなどの圧電セラミックスや、PMN−PTなどの圧電単結晶で構成され、両主面22a,22bの面積が0.5mmで、80μm〜120μmの範囲の所定厚さ(好ましくは、90μm)を持つ直方体形状に加工されている。第1及び第2のドライフィルムレジスト23,24は、厚さのみが異なる同一形態のもので構成され、このような第1及び第2の各ドライフィルムレジスト23,24としては、例えば光硬化性や熱溶融性といった機能を持つものであり、樹脂製のシート状支持体表面に感光性樹脂組成物が形成された公知のものが利用できる(例えば、TMMF−S20シリーズ(東京応化工業社製))。この場合、第1及び第2のドライフィルムレジスト23,24としては、20μm〜45μmの範囲の所定厚さのものが選択される。そして、第1及び第2の各ドライフィルムレジスト23,24に対し、図外のフォトマスクを配置して第1及び第2の各ドライフィルムレジスト23,24を夫々露光し、フォトマスクを除去した後に現像することで、第1及び第2の各開口23a,24aがアレイ状にパターニングされて開設される。第1及び第2の各開口23a,24aは、矩形の輪郭を持つように形成されるが、例えば圧電素子22の主面22a,22bの輪郭に応じて適宜変更することもできる。 Each of the piezoelectric elements 22 is composed of a piezoelectric ceramic such as PZT or barium titanate, or a piezoelectric single crystal such as PMN-PT, and both main surfaces 22a and 22b have an area of 0.5 mm 2 and range from 80 μm to 120 μm. Are processed into a rectangular parallelepiped shape having a predetermined thickness (preferably 90 μm). The first and second dry film resists 23 and 24 are configured in the same form having different thicknesses. Such first and second dry film resists 23 and 24 are, for example, photocurable. And known functions in which a photosensitive resin composition is formed on the surface of a resin sheet-like support (for example, TMMF-S20 series (manufactured by Tokyo Ohka Kogyo Co., Ltd.) ). In this case, as the first and second dry film resists 23 and 24, those having a predetermined thickness in the range of 20 μm to 45 μm are selected. Then, a photomask (not shown) is arranged on each of the first and second dry film resists 23 and 24, and the first and second dry film resists 23 and 24 are respectively exposed to remove the photomask. By developing later, the first and second openings 23a, 24a are patterned and opened in an array. Each of the first and second openings 23a and 24a is formed to have a rectangular outline, but may be appropriately changed according to the outline of the main surfaces 22a and 22b of the piezoelectric element 22, for example.

シリコン基板3には、上下方向に貫通するシリコン貫通電極(TSV:Through Silicon Via)31が形成されている。シリコン基板3の上面側及び下面側には、配線層32a,32b及びバンプ電極33a,33bが夫々形成されている。尚、34a,34bは、バンプ電極33a,33bを相互に絶縁するためのエポキシ樹脂を示す。シリコン基板3の下面側のバンプ電極33aが第2電極膜25に接触するように、送受信部2上にシリコン基板3が設置される。   The silicon substrate 3 is formed with a through silicon via (TSV: Through Silicon Via) 31 penetrating in the vertical direction. On the upper surface side and lower surface side of the silicon substrate 3, wiring layers 32a and 32b and bump electrodes 33a and 33b are formed, respectively. Reference numerals 34a and 34b denote epoxy resins for insulating the bump electrodes 33a and 33b from each other. The silicon substrate 3 is placed on the transmission / reception unit 2 so that the bump electrode 33a on the lower surface side of the silicon substrate 3 is in contact with the second electrode film 25.

シリコン基板3上には、通信回路40と、駆動回路41と、電源42と、増幅回路43と、A/D変換回路44と、信号圧縮回路45とが搭載されている。駆動回路41及び増幅回路43は、第1及び第2の電極膜21,25にシリコン貫通電極31を介して夫々接続されるため、送受信部2で受信した反射波を増幅するまでの伝送経路を可及的に短くなる。通信回路40は、後述する測定器本体MBの通信部50との間で無線通信を行うものである。駆動回路41は、各圧電素子22に対して選択的にパルス電圧を印加する集積回路である。尚、駆動回路41は、パルス電圧を印加する圧電素子22を切り替える切替手段(図示省略)を有する。電源42は、制御負荷が小さく消費電力の少ない駆動回路41にのみ電力供給を行えば足りるため、家庭用の一般電源のような大容量のものではなく、薄型で小容量のバッテリで十分である。増幅回路43は、シリコン貫通電極31を介して受信した反射波(アナログ信号)を増幅する集積回路であり、A/D変換回路44は、増幅回路43で増幅した反射波をデジタル信号に変換する集積回路である。A/D変換回路44で変換されたデジタル信号は、信号圧縮回路45で圧縮された後、通信回路40から測定器本体MBに無線送信される。   On the silicon substrate 3, a communication circuit 40, a drive circuit 41, a power source 42, an amplifier circuit 43, an A / D conversion circuit 44, and a signal compression circuit 45 are mounted. Since the drive circuit 41 and the amplifier circuit 43 are respectively connected to the first and second electrode films 21 and 25 through the silicon through electrode 31, a transmission path until the reflected wave received by the transmission / reception unit 2 is amplified is provided. It will be as short as possible. The communication circuit 40 performs wireless communication with a communication unit 50 of the measuring instrument main body MB described later. The drive circuit 41 is an integrated circuit that selectively applies a pulse voltage to each piezoelectric element 22. The drive circuit 41 has switching means (not shown) for switching the piezoelectric element 22 to which the pulse voltage is applied. Since the power supply 42 needs to supply power only to the drive circuit 41 having a small control load and low power consumption, a thin and small-capacity battery is sufficient instead of a large-capacity power supply like a general power supply for home use. . The amplifier circuit 43 is an integrated circuit that amplifies the reflected wave (analog signal) received via the through silicon via 31, and the A / D conversion circuit 44 converts the reflected wave amplified by the amplifier circuit 43 into a digital signal. Integrated circuit. The digital signal converted by the A / D conversion circuit 44 is compressed by the signal compression circuit 45 and then wirelessly transmitted from the communication circuit 40 to the measuring device main body MB.

測定器本体MBは、通信部50と、信号展開手段51と、制御手段(CPU)52と、報知手段53と、電源54とを備える。通信部50は、超音波プローブAPの通信回路40との間で無線通信を行うものである。信号展開手段51は、超音波プローブAPから受信した、圧縮されたデジタル信号を展開し、展開したデジタル信号を制御手段52に出力するものであり、例えば、集積回路で構成される。制御手段52は、超音波プローブAPの駆動回路41を制御すると共に、信号展開手段51から入力されたデジタル信号を演算処理して血管径を測定するものである。報知手段53は、測定した血管径を使用者に報知するものであり、例えば、測定した血管径を表示するディスプレイ等の表示部を有する。電源54としては、制御手段52の制御負荷が大きく、消費電力が大きいことを考慮して、家庭用の一般電源を用いることが望ましい。   The measuring instrument main body MB includes a communication unit 50, a signal expansion means 51, a control means (CPU) 52, a notification means 53, and a power supply 54. The communication unit 50 performs wireless communication with the communication circuit 40 of the ultrasonic probe AP. The signal expansion means 51 expands the compressed digital signal received from the ultrasonic probe AP, and outputs the expanded digital signal to the control means 52, and is constituted by an integrated circuit, for example. The control means 52 controls the driving circuit 41 of the ultrasonic probe AP and measures the blood vessel diameter by calculating the digital signal input from the signal expansion means 51. The notification unit 53 notifies the user of the measured blood vessel diameter, and includes a display unit such as a display for displaying the measured blood vessel diameter. As the power source 54, it is desirable to use a general household power source in consideration of the large control load of the control means 52 and the large power consumption.

ここで、デジタル信号の通信には、現在汎用的に利用されているBluetooth(登録商標)や無線LAN等の通信規格を用いることが考えられる。この場合、20MHzの反射波の生データはデータ量が多いため、この生データを十分なサンプリング周波数で2値化(デジタル化)して送信することは難しく、送信できない虞がある。そこで、本実施形態では、デジタル信号の圧縮/展開を行う信号圧縮回路45及び信号展開手段51を備えている。圧縮/展開のアルゴリズムとしては、既知の音声圧縮/展開アルゴリズム又は専用のアルゴリズムを用いることが望ましい。その理由は、普通の圧縮方法では、制御手段52による解析に必要な情報の欠落が発生してしまい、一旦欠落した情報は復元できないためである。但し、当然ではあるが、圧電素子22が利用する周波数帯域に合わせると共に可逆圧縮が可能な帯域を1decard以上とすることが必要である。   Here, it is conceivable to use communication standards such as Bluetooth (registered trademark) and wireless LAN, which are currently used for general purposes, for digital signal communication. In this case, since the raw data of the reflected wave of 20 MHz has a large amount of data, it is difficult to binarize (digitalize) and transmit this raw data at a sufficient sampling frequency, and there is a possibility that it cannot be transmitted. In view of this, the present embodiment includes a signal compression circuit 45 that compresses / decompresses a digital signal and a signal expansion unit 51. As the compression / decompression algorithm, it is desirable to use a known speech compression / decompression algorithm or a dedicated algorithm. The reason is that in an ordinary compression method, information necessary for analysis by the control means 52 is lost, and information once lost cannot be restored. However, as a matter of course, it is necessary to match the frequency band used by the piezoelectric element 22 and set the band capable of reversible compression to 1 decade or more.

次に、図3及び図4を参照して、上記超音波プローブAPの製造方法を説明する。先ず、同等の厚さを有する(即ち、発振周波数の揃った)圧電素子22の複数を準備する。併せて、シリコン等の剛性を持つ支持体6の上面全面に亘って熱剥離性又は紫外線硬化性の剥離シート7を貼付したものを準備する。支持体6が準備されると、剥離シート7の上面に音響整合層1を形成する(図3(a)参照)。ここで、音響整合層1の形成方法としては、接着剤や溶剤を用いて貼り付ける方法、蒸着重合法等により形成する方法などを用いることができる。音響整合層1をポリイミド、パリレン、ポリ尿素で形成する場合、蒸着重合法を用いて形成することが好ましい。また、本実施形態では、シリコン貫通電極31を介した配線接続を行うための配線層形成用の開口1aを音響整合層1に形成している。   Next, a method for manufacturing the ultrasonic probe AP will be described with reference to FIGS. First, a plurality of piezoelectric elements 22 having the same thickness (that is, having the same oscillation frequency) are prepared. At the same time, a sheet having a heat-peelable or ultraviolet-curing release sheet 7 attached to the entire upper surface of the support 6 having rigidity such as silicon is prepared. When the support 6 is prepared, the acoustic matching layer 1 is formed on the upper surface of the release sheet 7 (see FIG. 3A). Here, as a method of forming the acoustic matching layer 1, a method of attaching using an adhesive or a solvent, a method of forming by a vapor deposition polymerization method, or the like can be used. When the acoustic matching layer 1 is formed of polyimide, parylene, or polyurea, it is preferably formed using a vapor deposition polymerization method. In the present embodiment, an opening 1 a for forming a wiring layer for performing wiring connection through the silicon through electrode 31 is formed in the acoustic matching layer 1.

次に、音響整合層1の上面に第1電極膜21を形成する(図3(b)参照)。第1電極膜21としては、例えば、金、銅やクロム等の導電性の金属材料が用いられ、公知のスパッタリング装置や真空蒸着装置等を用いて形成される。次に、音響整合層1及び第1電極膜21上に圧電素子22と同等の厚さを有する第1ドライフィルムレジスト23を貼付する。この場合、音響整合層1及び第1電極膜21上面の全面に亘って密着性良く第1ドライフィルムレジスト23を貼付するために、加熱しながらロールで圧着するロール式や、減圧下の真空チャンバ内で加熱圧着する真空式のラミネート装置を利用することができる。次に、図外のフォトマスクを配置して第1ドライフィルムレジスト23を露光し、フォトマスクを除去した後に現像して圧電素子22を囲繞する複数の第1開口23aをアレイ状に開設する(図3(c)参照)。この場合、第1開口23aは、圧電素子22の輪郭より僅かに大きくなるように設定される。本実施形態では、第1開口23aの開設と同時に、開口1aの直上に、フレキシブル配線基板4との配線接続を行うための配線層形成用の開口23bを第1ドライフィルムレジスト23に形成している。なお、露光、現像、露光部分または未露光部分の除去については公知のものが利用できるため、ここでは詳細な説明は省略する。   Next, the first electrode film 21 is formed on the upper surface of the acoustic matching layer 1 (see FIG. 3B). As the first electrode film 21, for example, a conductive metal material such as gold, copper, or chromium is used, and the first electrode film 21 is formed using a known sputtering apparatus, vacuum deposition apparatus, or the like. Next, a first dry film resist 23 having a thickness equivalent to that of the piezoelectric element 22 is pasted on the acoustic matching layer 1 and the first electrode film 21. In this case, in order to apply the first dry film resist 23 over the entire surfaces of the acoustic matching layer 1 and the first electrode film 21 with good adhesion, a roll type in which pressure is applied with a roll while heating, or a vacuum chamber under reduced pressure. A vacuum-type laminating apparatus that performs thermocompression bonding inside can be used. Next, a photomask (not shown) is arranged to expose the first dry film resist 23, and after removing the photomask, development is performed to open a plurality of first openings 23a surrounding the piezoelectric element 22 in an array ( (Refer FIG.3 (c)). In this case, the first opening 23 a is set to be slightly larger than the contour of the piezoelectric element 22. In the present embodiment, simultaneously with the opening of the first opening 23a, an opening 23b for forming a wiring layer for performing wiring connection with the flexible wiring board 4 is formed in the first dry film resist 23 immediately above the opening 1a. Yes. In addition, since a well-known thing can be utilized about exposure, image development, and removal of an exposed part or an unexposed part, detailed description is abbreviate | omitted here.

そして、第1電極膜21で支持されるように、第1開口23aの内側に、下面22a側から圧電素子22を夫々配置する(図3(d)参照)。各圧電素子22が配置されると、上記第1ドライフィルムレジスト23と同様にして、圧電素子22の上面22bを含む第1ドライフィルムレジスト23上に第2ドライフィルムレジスト24を貼付し、露光現像して第2開口24aを形成し、第2開口24aの周縁部と第1電極膜21とで圧電素子22が挟持されるようにする(図3(e)参照)。本実施形態では、第2開口24aの開設と同時に、開口23bの直上に開口24bを第2ドライフィルムレジスト24に形成している。次に、第2開口24aが開設されると、各圧電素子22の上面22bに、第2ドライフィルムレジスト24の上面までのびるように第2電極膜25を夫々形成する(図4(a)参照)。これにより、送受信部2が形成される。第2電極膜25としては、第1電極膜21と同様に、例えば、金、銅やクロム等の導電性の金属材料が用いられ、スパッタリング装置や真空蒸着装置等を用いて形成される。   And the piezoelectric element 22 is each arrange | positioned from the lower surface 22a side inside the 1st opening 23a so that it may be supported by the 1st electrode film 21 (refer FIG.3 (d)). When each piezoelectric element 22 is disposed, the second dry film resist 24 is pasted on the first dry film resist 23 including the upper surface 22b of the piezoelectric element 22 in the same manner as the first dry film resist 23, and exposure development is performed. Thus, the second opening 24a is formed, and the piezoelectric element 22 is sandwiched between the peripheral edge of the second opening 24a and the first electrode film 21 (see FIG. 3E). In the present embodiment, simultaneously with the opening of the second opening 24a, the opening 24b is formed in the second dry film resist 24 immediately above the opening 23b. Next, when the second opening 24a is opened, the second electrode film 25 is formed on the upper surface 22b of each piezoelectric element 22 so as to extend to the upper surface of the second dry film resist 24 (see FIG. 4A). ). Thereby, the transmission / reception unit 2 is formed. As the second electrode film 25, similarly to the first electrode film 21, for example, a conductive metal material such as gold, copper, or chromium is used, and is formed using a sputtering apparatus, a vacuum evaporation apparatus, or the like.

そして、シリコン貫通電極31、配線層32a,32b及びバンプ電極33a,33bが予め形成されたシリコン基板3を準備し、シリコン基板3の下面側のバンプ電極33aが第2電極膜25に接続されるように、送受信部2上にシリコン基板3を設置する。なお、シリコン基板3の設置に先立って、配線層形成用の開口1a,23b,24bで画成される空間には、例えば、銀ペースト8が充填され、配線を強化するようにしている(図4(a)参照)。次に、バンプ電極33bと電気的に接続されるように、シリコン基板3上に駆動回路41、増幅回路43、A/D変換回路44及び信号圧縮回路45を実装する(図4(b)参照)。これと共に、シリコン基板3上に通信回路40及び電源42を実装する。最後に、特に図示しないが、支持体6を加熱して音響整合層1と剥離シート7との間の界面で剥離することで、アレイ型の超音波プローブAPが製作される。   Then, the silicon substrate 3 on which the silicon through electrode 31, the wiring layers 32 a and 32 b and the bump electrodes 33 a and 33 b are formed in advance is prepared, and the bump electrode 33 a on the lower surface side of the silicon substrate 3 is connected to the second electrode film 25. Thus, the silicon substrate 3 is installed on the transmission / reception unit 2. Prior to the installation of the silicon substrate 3, the spaces defined by the wiring layer forming openings 1a, 23b, and 24b are filled with, for example, silver paste 8 to strengthen the wiring (FIG. 4 (a)). Next, the drive circuit 41, the amplifier circuit 43, the A / D conversion circuit 44, and the signal compression circuit 45 are mounted on the silicon substrate 3 so as to be electrically connected to the bump electrode 33b (see FIG. 4B). ). At the same time, the communication circuit 40 and the power source 42 are mounted on the silicon substrate 3. Finally, although not particularly illustrated, the support 6 is heated and peeled off at the interface between the acoustic matching layer 1 and the peeling sheet 7, whereby the array type ultrasonic probe AP is manufactured.

次に、上記血管径測定システムMSを用いた血管径の測定定方法について説明する。使用者の手首に超音波プローブAPを装着した状態で、測定器本体MBの制御手段52により駆動回路41を駆動し、シリコン貫通電極31を介して各圧電素子22に40〜100Vの範囲のパルス電圧を選択的に印加すると、各圧電素子22は約20MHzの超音波を発振し、音響整合層1を介して生体に送信される。血管Bで反射した超音波(反射波)を各圧電素子22が受信すると、反射波(アナログ信号)がシリコン貫通電極31を介して増幅回路43に入力され、増幅される。増幅された反射波(アナログ信号)はA/D変換回路44でデジタル信号に変換される。A/D変換回路44で変換されたデジタル信号は、信号圧縮回路45で圧縮された後、通信回路40から測定器本体MBに無線送信される。測定器本体MBの通信部50で受信したデジタル信号は、信号展開手段51で展開された後、制御手段52に送られ、制御手段52はデジタル信号を演算処理して血管径を測定する。尚、デジタル信号から血管径を測定する方法については公知のものが利用できるため、これ以上の詳細な説明を省略する。制御手段52により測定された血管径は、報知手段53により使用者に報知される。例えば、ディスプレイ等の表示部に血管径が表示される。   Next, a blood vessel diameter measurement and determination method using the blood vessel diameter measurement system MS will be described. With the ultrasonic probe AP attached to the user's wrist, the drive circuit 41 is driven by the control means 52 of the measuring instrument main body MB, and a pulse in the range of 40 to 100 V is applied to each piezoelectric element 22 via the silicon through electrode 31. When voltage is selectively applied, each piezoelectric element 22 oscillates an ultrasonic wave of about 20 MHz and is transmitted to the living body through the acoustic matching layer 1. When each piezoelectric element 22 receives the ultrasonic wave (reflected wave) reflected by the blood vessel B, the reflected wave (analog signal) is input to the amplifier circuit 43 via the through silicon via 31 and amplified. The amplified reflected wave (analog signal) is converted into a digital signal by the A / D conversion circuit 44. The digital signal converted by the A / D conversion circuit 44 is compressed by the signal compression circuit 45 and then wirelessly transmitted from the communication circuit 40 to the measuring device main body MB. The digital signal received by the communication unit 50 of the measuring device main body MB is developed by the signal development means 51 and then sent to the control means 52. The control means 52 calculates the blood vessel diameter by performing arithmetic processing on the digital signal. In addition, since the well-known thing can be utilized about the method of measuring the blood vessel diameter from a digital signal, the further detailed description is abbreviate | omitted. The blood vessel diameter measured by the control means 52 is notified to the user by the notification means 53. For example, the blood vessel diameter is displayed on a display unit such as a display.

以上の実施形態によれば、送受信部2で受信した反射波を増幅回路43で増幅するまでの伝送経路が可及的に短くなることで、ノイズの影響を受け難くなって血管径を精度よく且つ再現性よく測定することができる。また、超音波プローブAP側では、超音波の発振と、受信した反射波を増幅してデジタル信号に変換するまでの機能のみに限定しているため、消費電力は少なくて済み、その上、発熱量も然程多くない。その結果、超音波プローブAPは、軽量で、且つ、測定中に使用者に不快感を与えるといった不具合もなく、ウェアラブル性に優れたものとなる。   According to the above embodiment, since the transmission path until the reflected wave received by the transmission / reception unit 2 is amplified by the amplifier circuit 43 is shortened as much as possible, it is less susceptible to noise and the blood vessel diameter is accurately adjusted. And it can measure with good reproducibility. Further, on the ultrasonic probe AP side, since it is limited only to the function of oscillating ultrasonic waves and a function of amplifying the received reflected waves and converting them into digital signals, it consumes less power and generates heat. The amount is not so large. As a result, the ultrasonic probe AP is light in weight, has no inconvenience to the user during measurement, and has excellent wearability.

また、本実施形態によれば、アレイ状に配置される複数の圧電素子22を高速信号切り替え駆動する際にノイズの影響を受け難くすることができ、超音波ビーム収束による分解能の向上、反射波(反射エコー)受信時の計測点感度向上が期待され、さらにアレイ状に配置される複数の圧電素子22をフェーズドアレイ駆動することよる深く広い範囲の計測及びイメージングが可能になると期待される。前述の目的で高速信号切り換えを行う回路も同様にシリコン基板3上に搭載することができる。   In addition, according to the present embodiment, it is possible to make the plurality of piezoelectric elements 22 arranged in an array form less susceptible to noise when driving to switch signals at high speed, improving resolution by ultrasonic beam convergence, and reflecting waves (Reflected echo) Measurement point sensitivity at the time of reception is expected to be improved, and it is expected that measurement and imaging in a deep and wide range by driving a plurality of piezoelectric elements 22 arranged in an array form a phased array. A circuit that performs high-speed signal switching for the above-described purpose can be similarly mounted on the silicon substrate 3.

以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で適宜変形することが可能である。例えば、上記実施形態では、報知手段53が測定した血管径を画像で報知するディスプレイ等の表示部を有する場合を例に説明したが、血管径を音声で報知するスピーカを有するものであってもよい。   Although the embodiments of the present invention have been described above, modifications can be made as appropriate without departing from the spirit of the present invention. For example, in the above-described embodiment, the case where the display unit such as a display that notifies the blood vessel diameter measured by the notification unit 53 with an image has been described as an example. Good.

また、送受信部2上に設けられるシリコン基板としては、図1に示すものに限定されず、圧電素子22と増幅回路43とを接続するシリコン貫通電極31が形成されているものであれば用いることができる。   Further, the silicon substrate provided on the transmission / reception unit 2 is not limited to that shown in FIG. 1, and any silicon substrate on which the silicon through electrode 31 that connects the piezoelectric element 22 and the amplifier circuit 43 is formed may be used. Can do.

また、上記実施形態では、超音波プローブAPと測定器本体MBとの間で無線通信する場合を例に説明したが、両者の間で有線通信する場合にも本発明を適用することができる。   In the above embodiment, the case where wireless communication is performed between the ultrasonic probe AP and the measuring device main body MB has been described as an example. However, the present invention can also be applied to a case where wired communication is performed between the ultrasonic probe AP and the measuring device main body MB.

また、上記実施形態では、信号圧縮回路45により圧縮したデジタル信号を測定器本体MBに送信すると共に、信号展開手段51により展開したデジタル信号を制御手段52に送る構成を採用したが、制御手段52による演算処理に対して要求される精度が高い場合には、これら信号圧縮回路45及び信号展開回路51を設けなくてもよい。この場合、A/D変換後のデジタル信号が通信回路40に送られ、通信回路40から測定器本体MBにデジタル信号が無線送信され、通信部50により受信されたデジタル信号は制御手段52に対して出力される。これによれば、超音波プローブAPの消費電力をより低減できると共により軽量化を図ることができ、よりウエアラブル性が向上する。   In the above embodiment, the digital signal compressed by the signal compression circuit 45 is transmitted to the measuring device main body MB and the digital signal expanded by the signal expansion means 51 is sent to the control means 52. When the accuracy required for the arithmetic processing by the above is high, the signal compression circuit 45 and the signal expansion circuit 51 may not be provided. In this case, the digital signal after A / D conversion is sent to the communication circuit 40, the digital signal is wirelessly transmitted from the communication circuit 40 to the measuring instrument body MB, and the digital signal received by the communication unit 50 is sent to the control means 52. Is output. According to this, the power consumption of the ultrasonic probe AP can be further reduced, the weight can be further reduced, and the wearability is further improved.

AP…超音波プローブ、MB…測定器本体、MS…血管径測定システム、2…送受信部、21…第1電極膜(第1電極)、22…圧電素子、25…第2電極膜(第2電極)、3…シリコン基板、31…シリコン貫通電極、41…駆動回路、42…電源、43…増幅回路、44…A/D変換回路、52…制御手段、53…報知手段。   AP ... Ultrasonic probe, MB ... Measuring instrument body, MS ... Blood vessel diameter measuring system, 2 ... Transmission / reception unit, 21 ... First electrode film (first electrode), 22 ... Piezoelectric element, 25 ... Second electrode film (second) Electrode), 3 ... silicon substrate, 31 ... silicon through electrode, 41 ... drive circuit, 42 ... power supply, 43 ... amplifier circuit, 44 ... A / D conversion circuit, 52 ... control means, 53 ... notification means.

Claims (1)

パルスエコー法により生体の血管径を測定する血管径測定システムであって、
同一平面内にアレイ状に配置される複数の圧電素子を有して各圧電素子にパルス電圧を印加して血管に向けて超音波を発振し、血管に衝突して反射する反射波を受信する送受信部を有する超音波プローブと、受信した反射波を解析して血管径を測定する測定器本体とを備え、超音波プローブと測定器本体とが通信自在に接続されるものにおいて、
超音波プローブが、生体に対する装着方向を下とし、上下方向に貫通するシリコン貫通電極を形成したシリコン基板を更に備え、
シリコン基板上に、各圧電素子に対して選択的にパルス電圧を印加する駆動回路と、駆動回路に電力供給する電源と、受信した反射波を増幅する増幅回路と、この増幅された反射波をデジタル信号に変換するA/D変換回路とが搭載されて、各圧電素子の下面が接触する第1電極とそれらの上面が接触する第2電極とにシリコン貫通電極を介して夫々接続され、
測定器本体に、駆動回路を制御すると共にデジタル信号を演算処理して血管径を測定する制御手段と、この測定される血管径を報知する報知手段とを設けることを特徴とする血管径測定システム。
A blood vessel diameter measuring system for measuring a blood vessel diameter of a living body by a pulse echo method,
It has a plurality of piezoelectric elements arranged in an array on the same plane, applies a pulse voltage to each piezoelectric element, oscillates ultrasonic waves toward the blood vessels, and receives reflected waves that collide with the blood vessels and are reflected In an ultrasonic probe having a transmission / reception unit and a measuring instrument main body that measures the diameter of a blood vessel by analyzing a received reflected wave, the ultrasonic probe and the measuring instrument main body are connected in a communicable manner.
The ultrasonic probe further includes a silicon substrate on which a silicon through electrode penetrating in the vertical direction is formed with the mounting direction with respect to the living body facing down,
A drive circuit that selectively applies a pulse voltage to each piezoelectric element on a silicon substrate, a power source that supplies power to the drive circuit, an amplifier circuit that amplifies the received reflected wave, and the amplified reflected wave An A / D conversion circuit for converting to a digital signal is mounted, and is connected to the first electrode with which the lower surface of each piezoelectric element contacts and the second electrode with which the upper surface contacts with each other through a silicon through electrode,
A blood vessel diameter measuring system, characterized in that a control device for controlling a driving circuit and processing a digital signal to measure a blood vessel diameter and a notification means for notifying the measured blood vessel diameter are provided in the measuring device main body. .
JP2018091321A 2018-05-10 2018-05-10 Blood vessel diameter measuring system Pending JP2019195495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018091321A JP2019195495A (en) 2018-05-10 2018-05-10 Blood vessel diameter measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018091321A JP2019195495A (en) 2018-05-10 2018-05-10 Blood vessel diameter measuring system

Publications (1)

Publication Number Publication Date
JP2019195495A true JP2019195495A (en) 2019-11-14

Family

ID=68537017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091321A Pending JP2019195495A (en) 2018-05-10 2018-05-10 Blood vessel diameter measuring system

Country Status (1)

Country Link
JP (1) JP2019195495A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051105A (en) * 2004-08-10 2006-02-23 Toshiba Corp Ultrasonic probe and biological information measuring system
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
JP2014158554A (en) * 2013-02-19 2014-09-04 Hitachi Aloka Medical Ltd Manufacturing method of ultrasonic vibrator unit
US20150293214A1 (en) * 2009-05-08 2015-10-15 Siemens Medical Solutions Usa, Inc. Ultrasound system with multi-head wireless probe
JP2017023554A (en) * 2015-07-24 2017-02-02 セイコーエプソン株式会社 Ultrasonic device, ultrasonic module, electronic apparatus and ultrasonic measuring device
JP2017103316A (en) * 2015-12-01 2017-06-08 キヤノン株式会社 Manufacturing method of penetration wiring board, and manufacturing method of electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051105A (en) * 2004-08-10 2006-02-23 Toshiba Corp Ultrasonic probe and biological information measuring system
US20150293214A1 (en) * 2009-05-08 2015-10-15 Siemens Medical Solutions Usa, Inc. Ultrasound system with multi-head wireless probe
JP2012085789A (en) * 2010-10-19 2012-05-10 Seiko Epson Corp Blood vessel diameter measurement device
JP2014158554A (en) * 2013-02-19 2014-09-04 Hitachi Aloka Medical Ltd Manufacturing method of ultrasonic vibrator unit
JP2017023554A (en) * 2015-07-24 2017-02-02 セイコーエプソン株式会社 Ultrasonic device, ultrasonic module, electronic apparatus and ultrasonic measuring device
JP2017103316A (en) * 2015-12-01 2017-06-08 キヤノン株式会社 Manufacturing method of penetration wiring board, and manufacturing method of electronic device

Similar Documents

Publication Publication Date Title
US10086404B2 (en) Ultrasonic device, ultrasonic probe, electronic equipment, and ultrasonic imaging apparatus
CN109643378B (en) Ultrasonic transducer and electronic device
KR101915255B1 (en) Method of manufacturing the ultrasonic probe and the ultrasonic probe
JP5659564B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
US6924587B2 (en) Piezoelectric transducer, manufacturing method of piezoelectric transducer and pulse wave detector
EP2840060B1 (en) Method for manufacturing a capacitive transducer
JP5807459B2 (en) Ultrasonic sensor control device and biopsy device
US6744178B2 (en) Pulse detection device and method of manufacturing the same
JP2017092097A (en) Piezoelectric element, ultrasonic probe, ultrasonic measuring device and manufacturing method of piezoelectric element
JPWO2013132747A1 (en) Piezoelectric device, ultrasonic probe, droplet discharge apparatus, and method for manufacturing piezoelectric device
US10363016B2 (en) Piezoelectric element, ultrasonic probe, ultrasonic measurement device, and manufacturing method of piezoelectric element
JP2006051105A (en) Ultrasonic probe and biological information measuring system
US10828013B2 (en) Piezoelectric element, ultrasonic probe, ultrasonic measurement device, and manufacturing method of piezoelectric element
CN109561886B (en) Device, method for manufacturing device, and method for manufacturing matrix-type ultrasonic probe
CN113453809B (en) Flexible ultrasound array
JP2019195495A (en) Blood vessel diameter measuring system
JP2019169920A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
TW201808221A (en) An ultrasonic sensing tape and a sensing device using same
CN114864806A (en) Ultrasonic transducer with short waveguide structure, manufacturing method and ultrasonic detection device
JP6265578B1 (en) Device, device manufacturing method, and array-type ultrasonic probe manufacturing method
KR101572118B1 (en) Flip-chip bonding device used in contact condition
KR20170126579A (en) Ultrasound Probe
CN214073368U (en) Miniature ultrasonic blood pressure detection device
JP2021023395A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2016007411A (en) Ultrasonic measurement apparatus, ultrasonic measurement system, information processor and information processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011