JP2019194952A - Power storage device exterior material and power storage device - Google Patents

Power storage device exterior material and power storage device Download PDF

Info

Publication number
JP2019194952A
JP2019194952A JP2018088642A JP2018088642A JP2019194952A JP 2019194952 A JP2019194952 A JP 2019194952A JP 2018088642 A JP2018088642 A JP 2018088642A JP 2018088642 A JP2018088642 A JP 2018088642A JP 2019194952 A JP2019194952 A JP 2019194952A
Authority
JP
Japan
Prior art keywords
resin layer
storage device
protective resin
exterior material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018088642A
Other languages
Japanese (ja)
Other versions
JP7226922B2 (en
JP2019194952A5 (en
Inventor
圭太郎 川北
Keitaro Kawakita
圭太郎 川北
大介 中嶋
Daisuke Nakajima
大介 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Packaging Corp
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2018088642A priority Critical patent/JP7226922B2/en
Priority to CN201920547748.1U priority patent/CN210325862U/en
Priority to CN202311710542.3A priority patent/CN117507508A/en
Priority to CN201910322424.2A priority patent/CN110459702B/en
Priority to KR1020190046547A priority patent/KR20190126710A/en
Publication of JP2019194952A publication Critical patent/JP2019194952A/en
Publication of JP2019194952A5 publication Critical patent/JP2019194952A5/ja
Priority to JP2023018468A priority patent/JP2023058621A/en
Application granted granted Critical
Publication of JP7226922B2 publication Critical patent/JP7226922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a power storage device exterior material that has excellent scratch resistance, excellent moldability, and hardly undergoes discoloration due to molding.SOLUTION: A power storage device exterior material includes a heat-resistant resin layer 2 as an outer layer, a heat-fusible resin layer 3 as an inner layer, and a metal foil layer 4 disposed between these two layers, a protective resin layer 7 is laminated on the outer side of the heat-resistant resin layer 2, the protective resin layer 7 includes a resin and a spacer agent that is not compatible with the resin, and a part of the spacer agent protrudes outward from the surface of the protective resin layer 7.SELECTED DRAWING: Figure 1

Description

本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材および該外装材で外装された蓄電デバイスに関する。   The present invention is for batteries and capacitors used for portable devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, storage devices such as batteries and capacitors used for storage of night electricity. The present invention relates to an exterior material and an electricity storage device that is exteriorized with the exterior material.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層(基材層)/外側接着剤層/金属箔層/内側接着剤層/熱融着性樹脂層(内側シーラント層)からなる積層体が用いられている(特許文献1参照)。また、電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。前記外装材に対して張り出し成形や深絞り成形が行われることによって、略直方体形状等の立体形状に成形される。このような立体形状に成形することにより、蓄電デバイス本体部を収容するための収容空間を確保することができる。   In recent years, as mobile electrical devices such as smartphones and tablet terminals have become thinner and lighter, power storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double-layer capacitors that are installed in these devices have been reduced. As an exterior material, instead of a conventional metal can, a heat resistant resin layer (base material layer) / outer adhesive layer / metal foil layer / inner adhesive layer / heat-sealable resin layer (inner sealant layer) is used. A laminate is used (see Patent Document 1). In addition, a power source for an electric vehicle, a large-scale power source for power storage, a capacitor, and the like are increasingly covered with a laminate (exterior material) having the above-described configuration. By performing overhang molding or deep drawing molding on the exterior material, the exterior material is molded into a three-dimensional shape such as a substantially rectangular parallelepiped shape. By forming into such a three-dimensional shape, an accommodation space for accommodating the electricity storage device main body can be secured.

また、外装材の保護や成形性の向上を図るために前記基材層の外側にマットニス層を設けた構成のものも提案されている(特許文献2参照)。前記マットニス層としては、例えば、セルローズ系、ポリアミド系、塩酢ビ系、変性ポリオレフィン系、ゴム系、アクリル系、ウレタン系等のオレフィン系、あるいはアルキッド系合成樹脂に、シリカ系、カオリン系などの無機材料系のマット剤を適量添加したマットニスが例示されている(特許文献2参照)。   In addition, a configuration in which a mat varnish layer is provided outside the base material layer in order to protect the exterior material and improve the moldability has been proposed (see Patent Document 2). Examples of the mat varnish layer include cellulose-based, polyamide-based, vinyl chloride-based, modified polyolefin-based, rubber-based, acrylic-based, urethane-based olefin-based, alkyd-based synthetic resins, silica-based, kaolin-based, etc. An example is a mat varnish to which an appropriate amount of an inorganic material matting agent is added (see Patent Document 2).

特開2003−288865号公報JP 2003-288865 A 特開2011−54563号公報JP 2011-54563 A

ところで、上記従来の外装材に張り出し成形等の成形を行って外装ケースを得た場合には、外装ケースの表面に変色が生じるという問題があった。   By the way, when the exterior case is obtained by performing overmolding or the like on the conventional exterior material, there is a problem that discoloration occurs on the surface of the exterior case.

また、従来の外装材では、搬送時等における擦過により擦り傷等の外観不良を生じやすいという問題もあった。   In addition, the conventional exterior material has a problem in that appearance defects such as scratches are likely to occur due to abrasion during transportation.

本発明は、かかる技術的背景に鑑みてなされたものであって、耐擦過性に優れていると共に、成形性にも優れ、かつ成形による変色が生じ難い蓄電デバイス用外装材および該外装材で外装した蓄電デバイスを提供することを目的とする。   The present invention has been made in view of such a technical background, and has an exterior material for an electricity storage device and an exterior material that are excellent in scratch resistance, excellent in moldability, and hardly discolored by molding. An object is to provide a packaged electricity storage device.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]外側層としての耐熱性樹脂層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む蓄電デバイス用外装材であって、
前記耐熱性樹脂層のさらに外側に保護樹脂層が積層され、
前記保護樹脂層は、樹脂と、該樹脂に対して相溶性を有しないスペーサー剤と、を含有し、
前記スペーサー剤の一部が前記保護樹脂層の表面から外方に突出していることを特徴とする蓄電デバイス用外装材。
[1] A power storage device exterior material including a heat-resistant resin layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between both layers,
A protective resin layer is laminated on the outer side of the heat resistant resin layer,
The protective resin layer contains a resin and a spacer agent that is not compatible with the resin,
A part of the spacer agent protrudes outward from the surface of the protective resin layer.

[2]前記スペーサー剤は、複数個のスペーサー剤の凝集物の形態で前記保護樹脂層中に含有されている前項1に記載の蓄電デバイス用外装材。   [2] The electricity storage device exterior material according to item 1, wherein the spacer agent is contained in the protective resin layer in the form of an aggregate of a plurality of spacer agents.

[3]前記凝集物を構成する各スペーサー剤の平均粒子径が1μm〜20μmである前項2に記載の蓄電デバイス用外装材。   [3] The packaging material for an electricity storage device according to item 2 above, wherein each spacer agent constituting the aggregate has an average particle diameter of 1 μm to 20 μm.

[4]前記保護樹脂層中における前記スペーサー剤凝集物の平面視での平均長径が10μm〜120μmの範囲である前項2または3に記載の蓄電デバイス用外装材。   [4] The exterior packaging material for an electricity storage device according to the above item 2 or 3, wherein an average major axis in a plan view of the spacer agent aggregate in the protective resin layer is in the range of 10 μm to 120 μm.

[5]前記スペーサー剤凝集物が、前記保護樹脂層の表面から外方に突出している突出高さが1μm以上である前項2〜4のいずれか1項に記載の蓄電デバイス用外装材。   [5] The exterior material for an electricity storage device according to any one of the above items 2 to 4, wherein the protruding height of the spacer agent aggregate protruding outward from the surface of the protective resin layer is 1 μm or more.

[6]前記保護樹脂層の表面から前記スペーサー剤凝集物が外方に突出している突出高さが1μm以上である突出部分の平面視面積は、前記保護樹脂層の全体の平面視面積の4%〜20%である前項2〜5のいずれか1項に記載の蓄電デバイス用外装材。   [6] The planar view area of the protruding portion having a protruding height of 1 μm or more from which the spacer agent aggregate protrudes outward from the surface of the protective resin layer is 4 of the entire planar view area of the protective resin layer. 6. The exterior device for an electricity storage device according to any one of 2 to 5 above, which is% to 20%.

[7]前記保護樹脂層の表面から前記スペーサー剤凝集物が外方に突出している突出高さが0.5μm〜10μmであり、前記保護樹脂層中の前記スペーサー剤凝集物の平面視での平均長径が10μm〜120μmの範囲である前項2〜4のいずれか1項に記載の蓄電デバイス用外装材。   [7] The protrusion height at which the spacer agent aggregate protrudes outward from the surface of the protective resin layer is 0.5 μm to 10 μm, and the spacer agent aggregate in the protective resin layer in plan view 5. The exterior packaging material for an electricity storage device according to any one of items 2 to 4, wherein the average major axis is in the range of 10 μm to 120 μm.

[8]前記スペーサー剤は、ワックス類およびポリマーパウダーからなる群より選ばれる1種または2種以上のスペーサー剤である前項1〜7のいずれか1項に記載の蓄電デバイス用外装材。   [8] The exterior material for an electricity storage device according to any one of items 1 to 7, wherein the spacer agent is one or more spacer agents selected from the group consisting of waxes and polymer powders.

[9]前記スペーサー剤の融点が90℃〜350℃である前項1〜8のいずれか1項に記載の蓄電デバイス用外装材。   [9] The exterior material for an electricity storage device according to any one of 1 to 8 above, wherein the spacer agent has a melting point of 90 ° C to 350 ° C.

[10]前記保護樹脂層における前記スペーサー剤の含有率が2質量%〜20質量%である前項1〜9のいずれか1項に記載の蓄電デバイス用外装材。   [10] The exterior material for an electricity storage device according to any one of items 1 to 9, wherein the content of the spacer agent in the protective resin layer is 2% by mass to 20% by mass.

[11]前記樹脂が、ポリオールとポリイソシアネートとの反応生成樹脂である前項1〜10のいずれか1項に記載の蓄電デバイス用外装材。   [11] The exterior material for an electricity storage device according to any one of 1 to 10 above, wherein the resin is a reaction product resin of a polyol and a polyisocyanate.

[12]前記保護樹脂層は、さらに微粒子からなるマット剤を含有し、前記保護樹脂層の平面視において該保護樹脂層中の前記マット剤の平均長径が0.3μm〜7μmの範囲である前項1〜11のいずれか1項に記載の蓄電デバイス用外装材。   [12] The aforementioned protective resin layer further contains a matting agent composed of fine particles, and the average major axis of the matting agent in the protective resin layer in a plan view of the protective resin layer is in the range of 0.3 μm to 7 μm. The exterior material for electrical storage devices of any one of 1-11.

[13]前項1〜12のいずれか1項に記載の蓄電デバイス用外装材の成形体からなる蓄電デバイス用外装ケース。   [13] An exterior case for an electricity storage device comprising a molded body of the exterior material for an electricity storage device according to any one of 1 to 12 above.

[14]蓄電デバイス本体部と、
前項1〜12のいずれか1項に記載の蓄電デバイス用外装材及び/又は前項13に記載の蓄電デバイス用外装ケースからなる外装部材とを備え、
前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
[14] An electricity storage device body,
The exterior member for an electricity storage device according to any one of items 1 to 12 and / or the exterior member comprising the exterior case for an energy storage device according to item 13 above,
The electricity storage device, wherein the electricity storage device body is covered with the exterior member.

[1]の発明では、耐熱性樹脂層のさらに外側に設けられた保護樹脂層は、樹脂と、該樹脂に対して相溶性を有しないスペーサー剤と、を含有し、スペーサー剤(凝集物を含む)の一部が、保護樹脂層の表面から外方に突出しているから、本発明の蓄電デバイス用外装材は、耐擦過性に優れている。また、本発明の蓄電デバイス用外装材を成形する際には、スペーサー剤(凝集物を含む)の一部が保護樹脂層の表面から外方に突出していることで、成形型の成形面と保護樹脂層とが直接に接触することが防止されるので、成形性に優れると共に、成形した外装材に変色が生じ難い。   In the invention of [1], the protective resin layer provided on the outer side of the heat-resistant resin layer contains a resin and a spacer agent that is not compatible with the resin. Part) protrudes outward from the surface of the protective resin layer, so that the exterior material for an electricity storage device of the present invention is excellent in scratch resistance. Further, when molding the exterior material for an electricity storage device of the present invention, a part of the spacer agent (including aggregates) protrudes outward from the surface of the protective resin layer, so that the molding surface of the molding die Since direct contact with the protective resin layer is prevented, the moldability is excellent and discoloration hardly occurs in the molded exterior material.

[2]の発明では、スペーサー剤は、複数個のスペーサー剤の凝集物の形態で保護樹脂層中に含有されているので、成形型の成形面とスペーサー剤凝集物(凝集物の突出部分)が接触したときに凝集物が崩れやすくて滑り性が良く、成形性をさらに向上させることができる。   In the invention of [2], since the spacer agent is contained in the protective resin layer in the form of an aggregate of a plurality of spacer agents, the molding surface of the mold and the spacer agent aggregate (protruding portion of the aggregate) When they come into contact with each other, the agglomerates are liable to collapse and the slipperiness is good, and the moldability can be further improved.

[3]の発明では、凝集物を構成する各スペーサー剤の平均粒子径が5μm〜10μmであるので、成形型の成形面と凝集物が接触したときに凝集物がより崩れやすくなり滑り性をより向上できる。   In the invention of [3], since the average particle diameter of each spacer agent constituting the aggregate is 5 μm to 10 μm, when the molding surface of the mold comes into contact with the aggregate, the aggregate is more easily broken and slippery. It can be improved.

[4]の発明では、保護樹脂層中におけるスペーサー剤凝集物の平面視での平均長径が30μm〜120μmの範囲であるから、成形型の成形面と保護樹脂層とが直接に接触することを十分に防止できる。   In the invention of [4], since the average major axis in the plan view of the spacer agent aggregate in the protective resin layer is in the range of 30 μm to 120 μm, the molding surface of the mold and the protective resin layer are in direct contact with each other. It can be sufficiently prevented.

[5]の発明では、スペーサー剤凝集物が、保護樹脂層の表面から外方に突出している突出高さが1μm以上であるので、外装材の耐擦過性をより向上させることができるとともに、成形した外装材における成形による変色発生をより一層防止することができる。   In the invention of [5], since the protrusion height of the spacer agent aggregate protruding outward from the surface of the protective resin layer is 1 μm or more, the scratch resistance of the exterior material can be further improved, Discoloration due to molding in the molded exterior material can be further prevented.

[6]の発明では、成形型の成形面と保護樹脂層とが直接に接触することをより十分に防止できる。   In the invention of [6], direct contact between the molding surface of the mold and the protective resin layer can be more sufficiently prevented.

[7]の発明では、成形型の成形面と保護樹脂層とが直接に接触することをより十分に防止できる。   In the invention of [7], direct contact between the molding surface of the mold and the protective resin layer can be more sufficiently prevented.

[8]の発明では、上記特定のスペーサー剤を使用しているので、前記保護樹脂層中におけるスペーサー剤(スペーサー剤凝集物を含む)の分散性が良く、保護樹脂層の表面から均一に外方突出部を形成できて、優れた耐擦過性および優れた成形性を安定して確保できる。   In the invention of [8], since the specific spacer agent is used, the dispersibility of the spacer agent (including spacer agent aggregates) in the protective resin layer is good, and it is uniformly removed from the surface of the protective resin layer. A side protrusion can be formed, and excellent scratch resistance and excellent moldability can be stably secured.

[9]の発明では、スペーサー剤の融点が90℃〜180℃であるから、保護樹脂層の形成時の乾燥の際にスペーサー剤が融解することなく保護樹脂層を形成できると共に、電池要素を外装材で熱封止する際にスペーサー剤の形状を保持することができる。   In the invention of [9], since the melting point of the spacer agent is 90 ° C. to 180 ° C., the protective resin layer can be formed without melting the spacer agent during drying during the formation of the protective resin layer, and the battery element is The shape of the spacer agent can be maintained when heat sealing with the exterior material.

[10]の発明では、保護樹脂層におけるスペーサー剤の含有率が2質量%〜20質量%であり、2質量%以上であることで優れた耐擦過性および優れた成形性を十分に確保できると共に、20質量%以下であることで保護樹脂層の保護機能を十分に発現させることができる。   In the invention of [10], the content of the spacer agent in the protective resin layer is 2% by mass to 20% by mass, and when it is 2% by mass or more, excellent scratch resistance and excellent moldability can be sufficiently secured. At the same time, the protective function of the protective resin layer can be sufficiently exhibited by being 20% by mass or less.

[11]の発明では、外装材の耐薬品性(耐溶剤性、耐酸性など)をより向上させることができる。   In the invention of [11], the chemical resistance (solvent resistance, acid resistance, etc.) of the exterior material can be further improved.

[12]の発明では、保護樹脂層は、さらに微粒子からなるマット剤を含有し、前記保護樹脂層の平面視において該保護樹脂層中の前記マット剤の平均長径が0.3μm〜7μmの範囲であるから、マット調の外観の調整を容易に行うことができて、所望の外観を確実に発現させることができる。   In the invention of [12], the protective resin layer further contains a matting agent composed of fine particles, and the average major axis of the matting agent in the protective resin layer in a plan view of the protective resin layer is in the range of 0.3 μm to 7 μm. Therefore, the mat-like appearance can be easily adjusted, and the desired appearance can be surely expressed.

[13]の発明によれば、耐擦過性に優れていると共に、良好に成形された変色が無い蓄電デバイス用外装ケースを提供できる。   According to the invention of [13], it is possible to provide an outer case for an electricity storage device that has excellent scratch resistance and is well-formed and has no discoloration.

[14]の発明では、耐擦過性に優れた外装部材で外装された蓄電デバイスを提供できる。   In the invention of [14], an electricity storage device covered with an exterior member having excellent scratch resistance can be provided.

本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the exterior material for electrical storage devices which concerns on this invention. 外側層と保護層の一部を拡大して模式的に示す断面図である。It is sectional drawing which expands and schematically shows a part of outer layer and protective layer. 本発明に係る蓄電デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electrical storage device which concerns on this invention.

本発明に係る蓄電デバイス用外装材1の一実施形態を図1に示す。この蓄電デバイス用外装材1は、金属箔層4の一方の面(上面)に第1接着剤層5を介して耐熱性樹脂層(外側層)2が積層一体化されると共に、前記金属箔層4の他方の面(下面)に第2接着剤層6を介して熱融着性樹脂層(内側層)3が積層一体化され、前記耐熱性樹脂層2の外側に(前記耐熱性樹脂層2における前記金属箔層4側とは反対側に)保護樹脂層7が積層された構成からなる。本実施形態では、前記耐熱性樹脂層2の外面に(前記耐熱性樹脂層2における前記金属箔層4側とは反対側の面に)直接に前記保護樹脂層7が積層されている(図1参照)。また、本実施形態では、前記耐熱性樹脂層2の外面に直接に、グラビアコート法により樹脂組成物が塗布されて前記保護樹脂層7が積層されている。   One embodiment of an exterior material 1 for an electricity storage device according to the present invention is shown in FIG. The power storage device exterior material 1 includes a heat-resistant resin layer (outer layer) 2 laminated and integrated on one surface (upper surface) of a metal foil layer 4 with a first adhesive layer 5 interposed therebetween. A heat-fusible resin layer (inner layer) 3 is laminated and integrated on the other surface (lower surface) of the layer 4 via a second adhesive layer 6, and on the outer side of the heat-resistant resin layer 2 (the heat-resistant resin). The protective resin layer 7 is laminated on the side of the layer 2 opposite to the metal foil layer 4 side. In the present embodiment, the protective resin layer 7 is directly laminated on the outer surface of the heat resistant resin layer 2 (on the surface opposite to the metal foil layer 4 side of the heat resistant resin layer 2) (FIG. 1). In the present embodiment, the protective resin layer 7 is laminated by applying a resin composition directly to the outer surface of the heat resistant resin layer 2 by a gravure coating method.

前記耐熱性樹脂層(外側層)2は、外装材1として良好な成形性を確保する役割を主に担う部材である、即ち成形時の金属箔のネッキングによる破断を防止する役割を担うものである。   The heat-resistant resin layer (outer layer) 2 is a member mainly responsible for ensuring good moldability as the exterior material 1, that is, plays a role of preventing breakage due to necking of the metal foil during molding. is there.

前記耐熱性樹脂層(外側層)2を構成する耐熱性樹脂としては、蓄電デバイス用外装材1をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱融着性樹脂層3を構成する樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱融着性樹脂層3を構成する樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。   As the heat-resistant resin constituting the heat-resistant resin layer (outer layer) 2, a heat-resistant resin that does not melt at the heat sealing temperature when heat-sealing the power storage device exterior material 1 is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the resin constituting the heat-fusible resin layer 3, and the melting point of the resin constituting the heat-fusible resin layer 3 It is particularly preferable to use a heat resistant resin having a melting point higher than 20 ° C.

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、延伸ナイロンフィルム等の延伸ポリアミドフィルム、延伸ポリエステルフィルム等が挙げられる。中でも、前記耐熱性樹脂延伸フィルム層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。また、前記耐熱性樹脂延伸フィルム層2としては、同時2軸延伸法により延伸された耐熱性樹脂二軸延伸フィルムを用いるのが好ましい。前記ナイロンとしては、特に限定されるものではないが、例えば、6ナイロン、6,6ナイロン、MXDナイロン等が挙げられる。なお、前記耐熱性樹脂層2は、単層(単一の延伸フィルム)で形成されていても良いし、或いは、例えば延伸ポリエステルフィルム/延伸ポリアミドフィルムからなる複層(延伸PETフィルム/延伸ナイロンフィルムからなる複層等)で形成されていても良い。   The heat-resistant resin layer (outer layer) 2 is not particularly limited, and examples thereof include a stretched polyamide film such as a stretched nylon film and a stretched polyester film. Among them, the heat-resistant resin stretched film layer 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film, or a biaxially stretched film. It is particularly preferable to use a polyethylene naphthalate (PEN) film. Moreover, as the heat resistant resin stretched film layer 2, it is preferable to use a heat resistant resin biaxially stretched film stretched by a simultaneous biaxial stretching method. Although it does not specifically limit as said nylon, For example, 6 nylon, 6, 6 nylon, MXD nylon etc. are mentioned. The heat-resistant resin layer 2 may be formed as a single layer (single stretched film), or a multilayer (stretched PET film / stretched nylon film) made of, for example, a stretched polyester film / stretched polyamide film. Etc.).

なお、前記耐熱性樹脂層(外側層)2は、耐熱性樹脂が塗布されることにより形成された樹脂層であってもよい。   The heat resistant resin layer (outer layer) 2 may be a resin layer formed by applying a heat resistant resin.

前記耐熱性樹脂層2の厚さは、12μm〜50μmであるのが好ましい。ポリエステル樹脂を用いる場合には厚さは12μm〜50μmであるのが好ましく、ナイロン樹脂を用いる場合には厚さは15μm〜50μmであるのが好ましい。上記好適下限値以上に設定することで外装材1として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形時や絞り成形時の応力を小さくできて成形性を向上させることができる。   The heat-resistant resin layer 2 preferably has a thickness of 12 μm to 50 μm. When using a polyester resin, the thickness is preferably 12 μm to 50 μm, and when using a nylon resin, the thickness is preferably 15 μm to 50 μm. By setting it above the preferred lower limit value, it is possible to ensure sufficient strength as the exterior material 1, and by setting it below the preferred upper limit value, it is possible to reduce the stress at the time of stretch molding or draw molding and improve the moldability. be able to.

本発明において、前記耐熱性樹脂層2の外側に(前記耐熱性樹脂層2における前記金属箔層4側とは反対側に)保護樹脂層7が積層されている必要がある。前記保護樹脂層7は、樹脂と、該樹脂に対して相溶性を有しないスペーサー剤8と、を含有し、前記スペーサー剤8の一部が前記保護樹脂層7の表面から外方に突出した構成になっている(図2参照)。   In the present invention, a protective resin layer 7 needs to be laminated on the outside of the heat resistant resin layer 2 (on the side opposite to the metal foil layer 4 side in the heat resistant resin layer 2). The protective resin layer 7 contains a resin and a spacer agent 8 that is not compatible with the resin, and a part of the spacer agent 8 protrudes outward from the surface of the protective resin layer 7. It has a configuration (see FIG. 2).

本実施形態では、前記スペーサー剤は、複数個のスペーサー剤の凝集物8の形態で前記保護樹脂層7中に分散して含有されている(図2参照)。前記凝集物を構成する各スペーサー剤の平均粒子径が1μm〜20μmであるのが好ましく、5μm〜10μmであるのが特に好ましい。しかして、前記保護樹脂層7中における前記スペーサー剤凝集物8の長径が10μm〜120μmの範囲になっているのが好ましい。中でも、前記保護樹脂層7中における前記スペーサー剤凝集物8の長径は、40μm〜70μmの範囲になっているのがより好ましく、さらに50μm〜60μmの範囲になっているのが特に好ましい。   In this embodiment, the spacer agent is dispersed and contained in the protective resin layer 7 in the form of an aggregate 8 of a plurality of spacer agents (see FIG. 2). The average particle diameter of each spacer agent constituting the aggregate is preferably 1 μm to 20 μm, and particularly preferably 5 μm to 10 μm. Therefore, the major axis of the spacer agent aggregate 8 in the protective resin layer 7 is preferably in the range of 10 μm to 120 μm. Among these, the major axis of the spacer agent aggregate 8 in the protective resin layer 7 is more preferably in the range of 40 μm to 70 μm, and particularly preferably in the range of 50 μm to 60 μm.

前記スペーサー剤8やスペーサー剤凝集物8は、前記保護樹脂層7の表面から外方に突出している突出高さHが1μm以上であるのが好ましい(図2参照)。突出高さHが1μm以上であることで、外装材1の耐擦過性を更に向上させることができるし、外装材1を成形する際には、成形型の成形面と保護樹脂層7とが直接に接触することが防止されるので、成形性に優れると共に、成形した外装材に変色が生じ難い。中でも、前記突出高さHが1.5μm〜10.0μmの範囲であるのがより好ましい。   The spacer agent 8 or the spacer agent aggregate 8 preferably has a protruding height H of 1 μm or more protruding outward from the surface of the protective resin layer 7 (see FIG. 2). When the protrusion height H is 1 μm or more, the scratch resistance of the exterior material 1 can be further improved. When the exterior material 1 is molded, the molding surface of the molding die and the protective resin layer 7 are provided. Since direct contact is prevented, the moldability is excellent and discoloration hardly occurs in the molded exterior material. Among these, the protrusion height H is more preferably in the range of 1.5 μm to 10.0 μm.

更に、前記保護樹脂層7の表面から前記スペーサー剤8又は/及び前記スペーサー剤凝集物8が外方に突出している突出高さが1μm以上である突出部分の平面視面積が、前記保護樹脂層7の全体の平面視面積の4%〜20%であるのが好ましく、6%〜15%であるのがより好ましく、5%〜10%であるのが特に好ましい。   Furthermore, the planar view area of the protruding portion where the protruding height at which the spacer agent 8 or / and the spacer agent aggregate 8 protrude outward from the surface of the protective resin layer 7 is 1 μm or more is the protective resin layer. It is preferably 4% to 20%, more preferably 6% to 15%, and particularly preferably 5% to 10% of the entire plane view area of 7.

前記保護樹脂層7を構成する樹脂としては、特に限定されないものの、ポリオールとポリイソシアネートとの反応生成樹脂を用いるのが好ましい。前記ポリオールとしては、特に限定されるものではないが、例えば、ポリエステルポリオール、ポリウレタンポリオール、ポリエーテルポリオール等が挙げられる。前記ポリオールの重量平均分子量(Mw)は、3000〜50000であるのが好ましい。   Although it does not specifically limit as resin which comprises the said protective resin layer 7, It is preferable to use the reaction product resin of a polyol and polyisocyanate. Although it does not specifically limit as said polyol, For example, a polyester polyol, a polyurethane polyol, a polyether polyol etc. are mentioned. The weight average molecular weight (Mw) of the polyol is preferably 3000 to 50000.

前記ポリイソシアネートとしては、特に限定されるものではないが、例えば、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HMDI)、TDIのトリメチロールプロパン付加体、HMDIのトリメチロールプロパン付加体等が挙げられる。中でも、前記ポリイソシアネートとしては、TDIのトリメチロールプロパン付加体、HMDIのトリメチロールプロパン付加体、または「TDIのトリメチロールプロパン付加体とHMDIのトリメチロールプロパン付加体の混合物」を用いるのが好ましい。   The polyisocyanate is not particularly limited, and examples thereof include tolylene diisocyanate (TDI), hexamethylene diisocyanate (HMDI), TDI trimethylolpropane adduct, HMDI trimethylolpropane adduct, and the like. . Among these, as the polyisocyanate, it is preferable to use a trimethylolpropane adduct of TDI, a trimethylolpropane adduct of HMDI, or a “mixture of a trimethylolpropane adduct of TDI and a trimethylolpropane adduct of HMDI”.

前記スペーサー剤8としては、特に限定されないものの、ワックス類及びポリマーパウダーからなる群より選ばれる1種または2種以上のスペーサー剤を用いるのが好ましい。前記ワックス類としては、特に限定されるものではないが、例えば、パラフィンワックス、マイクロクリスタリンワックス、炭化水素系ワックス、低分子量ポリエチレンワックス等が挙げられる。前記ポリマーパウダーとしては、特に限定されるものではないが、例えば、超高分子量ポリエチレンパウダー、ポリエチレンパウダー、低分子量ポリエチレンパウダー、ポリプロピレンパウダー、低分子量ポリプロピレンパウダー等が挙げられる。   The spacer agent 8 is not particularly limited, but it is preferable to use one or more spacer agents selected from the group consisting of waxes and polymer powders. The waxes are not particularly limited, and examples thereof include paraffin wax, microcrystalline wax, hydrocarbon wax, and low molecular weight polyethylene wax. The polymer powder is not particularly limited, and examples thereof include ultra high molecular weight polyethylene powder, polyethylene powder, low molecular weight polyethylene powder, polypropylene powder, and low molecular weight polypropylene powder.

前記スペーサー剤8の重量平均分子量(分子量分布がない時は単に「分子量」)は、100〜6,000,000であるのが好ましく、中でも、1000〜8000の範囲であるのがより好ましく、1000〜6000の範囲であるのが特に好ましい。   The weight average molecular weight of the spacer agent 8 (when there is no molecular weight distribution, simply “molecular weight”) is preferably 100 to 6,000,000, more preferably 1000 to 8000, A range of ˜6000 is particularly preferred.

前記スペーサー剤8の融点は、50℃〜350℃であるのが好ましく、50℃〜180℃であるのがより好ましく、90℃〜160℃であるのが特に好ましい。   The melting point of the spacer agent 8 is preferably 50 ° C to 350 ° C, more preferably 50 ° C to 180 ° C, and particularly preferably 90 ° C to 160 ° C.

前記スペーサー剤8の密度は、0.85g/cm3〜3.0g/cm3であるのが好ましく、0.88g/cm3〜2.3g/cm3であるのがより好ましい。 Density of the spacer material 8 is preferably a 0.85g / cm 3 ~3.0g / cm 3 , and more preferably 0.88g / cm 3 ~2.3g / cm 3 .

前記保護樹脂層7におけるスペーサー剤の含有率は、2質量%〜20質量%であるのが好ましい。2質量%以上であることで優れた耐擦過性および優れた成形性を十分に確保できると共に、20質量%以下であることで保護樹脂層の保護機能を十分に発現させることができる。中でも、前記保護樹脂層7におけるスペーサー剤の含有率は、5質量%〜15質量%であるのが好ましい。また、前記保護樹脂層7における前記樹脂の含有率は、60質量%〜98質量%であるのが好ましい。   The content of the spacer agent in the protective resin layer 7 is preferably 2% by mass to 20% by mass. When it is 2% by mass or more, excellent scratch resistance and excellent moldability can be sufficiently ensured, and when it is 20% by mass or less, the protective function of the protective resin layer can be sufficiently exhibited. Especially, it is preferable that the content rate of the spacer agent in the said protective resin layer 7 is 5 mass%-15 mass%. Moreover, it is preferable that the content rate of the said resin in the said protective resin layer 7 is 60 mass%-98 mass%.

前記保護樹脂層7は、さらに微粒子からなるマット剤を含有してもよい。この場合、前記保護樹脂層7の平面視において該保護樹脂層7中の前記マット剤の長径の平均値が0.3μm〜7μmの範囲であるのが好ましい。前記マット剤は、保護樹脂層7の表面に凹凸形状を形成し、光を乱反射させることによって、保護樹脂層7の表面の光沢度を低下させ、落ち着いた風合いの外観を形成する機能を果たす微粒子である。前記マット剤としては、特に限定されるものではないが、例えば、無機微粒子(例えば、硫酸バリウム微粒子、シリカ微粒子等)、樹脂ビーズ(例えばアクリル樹脂ビーズ、スチレン樹脂ビーズ等)などが挙げられる。前記マット剤の平均粒子径は、0.5μm〜5μmの範囲であるのが特に好ましい。前記マット剤として硫酸バリウム微粒子を用いる場合には平均粒子径が0.3μm〜3μmの硫酸バリウム微粒子を用いるのが好ましい。また、前記マット剤としてアクリル樹脂ビーズを用いる場合には平均粒子径が3μm〜5μmのアクリル樹脂ビーズを用いるのが好ましい。   The protective resin layer 7 may further contain a matting agent made of fine particles. In this case, it is preferable that the average value of the major axis of the matting agent in the protective resin layer 7 in a plan view of the protective resin layer 7 is in a range of 0.3 μm to 7 μm. The matting agent has an irregular shape on the surface of the protective resin layer 7 and diffuses light, thereby reducing the glossiness of the surface of the protective resin layer 7 and forming finely textured appearance. It is. The matting agent is not particularly limited, and examples thereof include inorganic fine particles (eg, barium sulfate fine particles, silica fine particles), resin beads (eg, acrylic resin beads, styrene resin beads). The average particle size of the matting agent is particularly preferably in the range of 0.5 μm to 5 μm. When barium sulfate fine particles are used as the matting agent, it is preferable to use barium sulfate fine particles having an average particle diameter of 0.3 μm to 3 μm. When acrylic resin beads are used as the matting agent, it is preferable to use acrylic resin beads having an average particle diameter of 3 μm to 5 μm.

前記保護樹脂層7の厚さ(乾燥後の厚さ;スペーサー剤の突出部を除く)は、0.5μm〜10μmであるのが好ましい。   The thickness of the protective resin layer 7 (thickness after drying; excluding the protruding portion of the spacer agent) is preferably 0.5 μm to 10 μm.

前記保護樹脂層7の形成方法は、特に限定されないが、例えば、前記耐熱性樹脂層2の表面に、上記樹脂と、スペーサー剤8と、を含有する水性エマルジョン(水系エマルジョン)を塗布して乾燥させることによって保護樹脂層7を形成することができる。前記塗布方法としては、特に限定されるものではないが、例えば、スプレーコート法、グラビアロールコート法、リバースロールコート法、リップコート法等が挙げられる。   The method for forming the protective resin layer 7 is not particularly limited. For example, an aqueous emulsion (water-based emulsion) containing the resin and the spacer agent 8 is applied to the surface of the heat resistant resin layer 2 and dried. By doing so, the protective resin layer 7 can be formed. The coating method is not particularly limited, and examples thereof include a spray coating method, a gravure roll coating method, a reverse roll coating method, and a lip coating method.

前記熱融着性樹脂層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液などに対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。   The heat-fusible resin layer (inner layer) 3 has excellent chemical resistance against highly corrosive electrolytes used in lithium ion secondary batteries and the like, and heat sealability on the exterior material. It plays the role of granting.

前記熱融着性樹脂層3としては、特に限定されるものではないが、熱可塑性樹脂未延伸フィルム層であるのが好ましい。前記熱可塑性樹脂未延伸フィルム層3は、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムにより構成されるのが好ましい。   The heat-fusible resin layer 3 is not particularly limited, but is preferably a thermoplastic resin unstretched film layer. The thermoplastic resin unstretched film layer 3 is not particularly limited, but is at least one thermoplastic selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers. It is preferably composed of an unstretched film made of a resin.

前記熱融着性樹脂層3の厚さは、20μm〜80μmに設定されるのが好ましい。20μm以上とすることでピンホールの発生を十分に防止できると共に、80μm以下に設定することで樹脂使用量を低減できてコスト低減を図り得る。中でも、前記熱融着性樹脂層3の厚さは30μm〜50μmに設定されるのが特に好ましい。なお、前記熱融着性樹脂層3は、単層であってもよいし、複層であってもよい。   The thickness of the heat-fusible resin layer 3 is preferably set to 20 μm to 80 μm. When the thickness is 20 μm or more, pinholes can be sufficiently prevented from being generated, and by setting the thickness to 80 μm or less, the amount of resin used can be reduced, and the cost can be reduced. Especially, it is especially preferable that the thickness of the heat-fusible resin layer 3 is set to 30 μm to 50 μm. The heat-fusible resin layer 3 may be a single layer or a multilayer.

前記熱融着性樹脂層3には、通常、滑剤が添加される。前記滑剤が添加されていることで成形時の成形性を向上させることができる。前記熱融着性樹脂層3における滑剤の含有率は、200ppm〜5000ppmの範囲に設定されるのが好ましい。   A lubricant is usually added to the heat-fusible resin layer 3. The moldability at the time of molding can be improved by adding the lubricant. The content of the lubricant in the heat-fusible resin layer 3 is preferably set in the range of 200 ppm to 5000 ppm.

前記滑剤としては、特に限定されるものではないが、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族系ビスアミド等が挙げられる。   The lubricant is not particularly limited, and examples thereof include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Can be mentioned.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔等が挙げられ、アルミニウム箔が一般的に用いられる。前記金属箔層4の厚さは、20μm〜100μmであるのが好ましい。20μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、100μm以下であることで張り出し成形時や絞り成形時の応力を小さくできて成形性を向上させることができる。   The metal foil layer 4 plays a role of imparting a gas barrier property to the exterior material 1 to prevent entry of oxygen and moisture. Although it does not specifically limit as said metal foil layer 4, For example, aluminum foil, copper foil, etc. are mentioned, Aluminum foil is generally used. The thickness of the metal foil layer 4 is preferably 20 μm to 100 μm. When it is 20 μm or more, it can prevent the occurrence of pinholes during rolling when manufacturing a metal foil, and when it is 100 μm or less, it can reduce the stress at the time of stretch forming or draw forming and improve the formability. it can.

前記金属箔層4は、少なくとも内側の面4a(第2接着剤層6側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液、食品、医薬品等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸、クロム酸及びフッ化物の金属塩の混合物からなる水溶液
2)リン酸、クロム酸、フッ化物金属塩及び非金属塩の混合物からなる水溶液
3)アクリル系樹脂又は/及びフェノール系樹脂と、リン酸と、クロム酸と、フッ化物金属塩との混合物からなる水溶液
のいずれかを塗工した後乾燥することにより化成処理を施す。
The metal foil layer 4 is preferably subjected to a chemical conversion treatment on at least the inner surface 4a (surface on the second adhesive layer 6 side). By such chemical conversion treatment, corrosion of the surface of the metal foil due to the contents (battery electrolyte, food, medicine, etc.) can be sufficiently prevented. For example, the metal foil is subjected to chemical conversion treatment by the following treatment. That is, for example, on the surface of the metal foil that has been degreased,
1) Aqueous solution comprising a mixture of phosphoric acid, chromic acid and fluoride metal salt 2) Aqueous solution comprising a mixture of phosphoric acid, chromic acid, fluoride metal salt and non-metal salt 3) Acrylic resin and / or phenolic resin Then, a chemical conversion treatment is performed by applying one of an aqueous solution composed of a mixture of phosphoric acid, chromic acid, and a fluoride metal salt and then drying.

前記第1接着剤層(外側接着剤層)5としては、特に限定されるものではないが、例えば、2液反応型接着剤により形成された接着剤層等が挙げられる。前記2液反応型接着剤としては、例えば、ポリウレタン系ポリオール、ポリエステル系ポリオール及びポリエーテル系ポリオールからなる群より選ばれるポリオールの1種または2種以上からなる第1液と、ポリイソシアネートからなる第2液(硬化剤)とで構成される2液反応型接着剤などが挙げられる。前記第1接着剤層5は、例えば、前記2液反応型接着剤等の接着剤が、前記「金属箔層4の上面」に、又は/及び、「前記耐熱性樹脂層2の下面」に、グラビアコート法等の手法により塗布されることによって形成される。   Although it does not specifically limit as said 1st adhesive bond layer (outer adhesive layer) 5, For example, the adhesive bond layer etc. which were formed with the 2 liquid reaction type adhesive agent are mentioned. Examples of the two-component reactive adhesive include a first liquid composed of one or more polyols selected from the group consisting of polyurethane-based polyols, polyester-based polyols, and polyether-based polyols, and a polyisocyanate-containing first liquid. Examples thereof include a two-component reactive adhesive composed of two components (curing agent). For example, the first adhesive layer 5 has an adhesive such as the two-component reactive adhesive on the “upper surface of the metal foil layer 4” and / or “lower surface of the heat-resistant resin layer 2”. It is formed by applying by a technique such as gravure coating.

前記第2接着剤層(内側接着剤層)6としては、特に限定されるものではないが、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤層が挙げられる。中でも、酸変性オレフィン系樹脂(無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン等)からなる第1液と、ポリイソシアネートからなる第2液(硬化剤)とで構成される2液反応型接着剤を用いるのが好ましく、この場合には、外装材1の耐電解液性及び水蒸気バリア性をさらに向上させることができる。   The second adhesive layer (inner adhesive layer) 6 is not particularly limited, and examples thereof include polyurethane adhesives, acrylic adhesives, epoxy adhesives, polyolefin adhesives, and elastomer adhesives. And an adhesive layer formed of an adhesive, a fluorine-based adhesive, and the like. Among them, a two-component reactive adhesive composed of a first liquid composed of an acid-modified olefin resin (maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, etc.) and a second liquid (curing agent) composed of polyisocyanate. In this case, it is possible to further improve the electrolytic solution resistance and the water vapor barrier property of the outer packaging material 1.

なお、上記実施形態では、第1接着剤層5と第2接着剤層6を設けた構成を採用しているが、これら両層5、6は、いずれも必須の構成層ではなく、これらを設けない構成を採用することもできる。   In addition, in the said embodiment, although the structure which provided the 1st adhesive bond layer 5 and the 2nd adhesive bond layer 6 is employ | adopted, these both layers 5 and 6 are not an indispensable structural layer, These are not included. It is also possible to adopt a configuration that is not provided.

しかして、本発明に係る蓄電デバイス用外装材1を成形(深絞り成形、張り出し成形等)することにより、図3に示すような蓄電デバイス用外装ケース1Aを得ることができる。前記蓄電デバイス用外装ケース1Aの形状としては、特に限定されないが、例えば、図3に示すような1つの面(上面)が開放された略直方体形状等が挙げられる。   Thus, by forming the power storage device exterior material 1 according to the present invention (deep drawing molding, stretch molding, etc.), a power storage device exterior case 1A as shown in FIG. 3 can be obtained. The shape of the electricity storage device exterior case 1A is not particularly limited, and examples thereof include a substantially rectangular parallelepiped shape having one surface (upper surface) opened as shown in FIG.

次に、本発明に係る蓄電デバイス30の一実施形態を図3に示す。図3に示すように、本発明の蓄電デバイス用外装材1を成形して得られた外装ケース1Aの収容凹部内に、略直方体形状の蓄電デバイス本体部31が収容され、該蓄電デバイス本体部31の上に、本発明の蓄電デバイス用外装材1がその内側層3側を内方(下側)にして配置され、該平面状外装材1の内側層3の周縁部と、前記外装ケース1Aのフランジ部(封止用周縁部)29の内側層3とがヒートシールによりシール接合されて封止されることによって、本発明の蓄電デバイス30が構成されている。   Next, an embodiment of the electricity storage device 30 according to the present invention is shown in FIG. As shown in FIG. 3, a power storage device main body 31 having a substantially rectangular parallelepiped shape is accommodated in a housing recess of an outer case 1 </ b> A obtained by molding the power storage device exterior material 1 of the present invention. 31 is disposed with the inner layer 3 side thereof inward (lower side), the peripheral portion of the inner layer 3 of the planar outer member 1, and the outer case. The power storage device 30 of the present invention is configured by sealing and sealing the inner layer 3 of the flange portion (sealing peripheral portion) 29 of 1A by heat sealing.

図4において、39は、前記外装材1の周縁部と、前記外装ケース1Aのフランジ部(封止用周縁部)29とが接合(溶着)されたヒートシール部である。   In FIG. 4, 39 is a heat seal part where the peripheral part of the exterior material 1 and the flange part (sealing peripheral part) 29 of the external case 1A are joined (welded).

前記蓄電デバイス本体部31としては、特に限定されるものではないが、例えば、電池本体部、キャパシタ本体部、コンデンサ本体部等が挙げられる。   The power storage device main body 31 is not particularly limited, and examples thereof include a battery main body, a capacitor main body, and a capacitor main body.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<使用したスペーサー剤>
(ポリエチレンワックスA)
平均粒子径が9μm、重量平均分子量(Mw)が3000、融点が120℃、密度が0.96g/cm3であるポリエチレンワックス(ワックス類)
(ポリエチレンワックスB)
平均粒子径が12μm、重量平均分子量(Mw)が4000、融点が128℃、密度が0.98g/cm3であるポリエチレンワックス(ワックス類)
(ポリエチレンワックスC)
平均粒子径が5μm、重量平均分子量(Mw)が6000、融点が116℃、密度が0.95g/cm3であるポリエチレンワックス(ワックス類)
(PTFEワックスD)
平均粒子径が2μm、重量平均分子量(Mw)が5000、融点が320℃、密度が2.10g/cm3であるポリテトラフルオロエチレン(PTFE)ワックス(ワックス類)
(低分子量ポリエチレンパウダー)
平均粒子径が20μm、重量平均分子量(Mw)が8500、融点が121℃、密度が0.94g/cm3である低分子量ポリエチレン(PE)パウダー
(低分子量ポリプロピレンパウダー)
平均粒子径が15μm、重量平均分子量(Mw)が7000、融点が145℃、密度が0.89g/cm3である低分子量ポリプロピレン(PP)パウダー。
<Spacer used>
(Polyethylene wax A)
Polyethylene wax (waxes) having an average particle size of 9 μm, a weight average molecular weight (Mw) of 3000, a melting point of 120 ° C., and a density of 0.96 g / cm 3
(Polyethylene wax B)
Polyethylene wax (waxes) having an average particle size of 12 μm, a weight average molecular weight (Mw) of 4000, a melting point of 128 ° C., and a density of 0.98 g / cm 3
(Polyethylene wax C)
Polyethylene wax (waxes) having an average particle size of 5 μm, a weight average molecular weight (Mw) of 6000, a melting point of 116 ° C., and a density of 0.95 g / cm 3
(PTFE wax D)
Polytetrafluoroethylene (PTFE) wax (waxes) having an average particle diameter of 2 μm, a weight average molecular weight (Mw) of 5000, a melting point of 320 ° C., and a density of 2.10 g / cm 3
(Low molecular weight polyethylene powder)
Low molecular weight polyethylene (PE) powder (low molecular weight polypropylene powder) having an average particle size of 20 μm, a weight average molecular weight (Mw) of 8500, a melting point of 121 ° C., and a density of 0.94 g / cm 3
Low molecular weight polypropylene (PP) powder having an average particle size of 15 μm, a weight average molecular weight (Mw) of 7000, a melting point of 145 ° C., and a density of 0.89 g / cm 3 .

<実施例1>
重量平均分子量(Mw)が9800であるポリエステルポリオール100質量部、ポリイソシアネートとしてヘキサメチレンジイソシアネートのトリメチロールプロパン付加体(HMDIのTMP付加体)15質量部、スペーサー剤として上記ポリエチレンワックスA(ワックス類)5質量部、第1マット剤として平均粒子径が2μmのアクリル樹脂ビーズ12質量部、第2マット剤として平均粒子径が0.8μmの硫酸バリウム3質量部、トルエンとメチルエチルケトンの混合溶媒(トルエン100質量部+メチルエチルケトン100質量部)200質量部を混合して保護樹脂層形成用樹脂組成物Aを得た。
<Example 1>
100 parts by mass of a polyester polyol having a weight average molecular weight (Mw) of 9800, 15 parts by mass of a trimethylolpropane adduct (HMMP TMP adduct) of hexamethylene diisocyanate as a polyisocyanate, and the above polyethylene wax A (waxes) as a spacer agent 5 parts by mass, 12 parts by mass of acrylic resin beads having an average particle diameter of 2 μm as the first matting agent, 3 parts by mass of barium sulfate having an average particle diameter of 0.8 μm as the second matting agent, a mixed solvent of toluene and methyl ethyl ketone (toluene 100 200 parts by mass) (mass part + 100 parts by mass of methyl ethyl ketone) were mixed to obtain a resin composition A for forming a protective resin layer.

この保護樹脂層形成用樹脂組成物Aにおいて、ポリエステルポリオールのOHに対するポリイソシアネートのNCOの比率(NCO/OH)は1.8であった。   In this protective resin layer forming resin composition A, the ratio of NCO of the polyisocyanate to OH of the polyester polyol (NCO / OH) was 1.8.

次に、同時2軸延伸法で延伸して得られた、厚さ15μmの二軸延伸ナイロン(6ナイロン)フィルム2の一方の面に、上記保護樹脂層形成用樹脂組成物Aをグラビアロールコート法により塗布して乾燥させた後、60℃環境下で3日放置することにより硬化反応を進行させて、形成量2.5g/m2の保護樹脂層7を形成した。 Next, the resin composition A for forming the protective resin layer is gravure roll coated on one surface of a biaxially stretched nylon (6 nylon) film 2 having a thickness of 15 μm obtained by stretching by the simultaneous biaxial stretching method. After applying and drying by the method, the curing reaction was advanced by leaving it in an environment of 60 ° C. for 3 days to form a protective resin layer 7 having a formation amount of 2.5 g / m 2 .

一方、厚さ35μmのアルミニウム箔(JIS A8021で規定されているO材)4の両面に、ポリアクリル酸、クロム酸金属塩、リン酸、水、イソプロピルアルコール(IPA)からなる化成処理液を塗布し、180℃で乾燥を行って、クロム付着量が10mg/m2となるようにした。 On the other hand, a chemical conversion treatment solution composed of polyacrylic acid, chromic acid metal salt, phosphoric acid, water, isopropyl alcohol (IPA) is applied to both surfaces of an aluminum foil (O material defined in JIS A8021) 4 having a thickness of 35 μm. And it dried at 180 degreeC so that chromium adhesion amount might be 10 mg / m < 2 >.

次に、前記化成処理済みアルミニウム箔4の一方の面に、ポリエステルポリオール及びトリレンジイソシアネートのトリメチロールプロパン付加体(TDIのTMP付加体)を含有する2液硬化型ポリエステル系ポリウレタン外側接着剤5を介して前記二軸延伸ナイロンフィルム2の他方の面(前記保護樹脂層7が形成された側と反対側の面)を貼り合わせ、次いでアルミニウム箔4の他方の面4aに、無水マレイン酸変性ポリプロピレン及びヘキサメチレンジイソシアネート(HMDI)を含有する2液硬化型内側接着剤6を介して厚さ30μmの未延伸ポリプロピレンフィルム(熱融着性樹脂層)3を貼り合わせた後、40℃環境下で5日間放置することによって、図1に示す蓄電デバイス用外装材1を得た。   Next, a two-component curable polyester-based polyurethane outer adhesive 5 containing a trimethylolpropane adduct of polyester polyol and tolylene diisocyanate (TMP adduct of TDI) is applied to one surface of the chemical-treated aluminum foil 4. The other surface of the biaxially stretched nylon film 2 (the surface opposite to the side on which the protective resin layer 7 is formed) is bonded, and then the other surface 4a of the aluminum foil 4 is coated with maleic anhydride-modified polypropylene. And an unstretched polypropylene film (heat-fusible resin layer) 3 having a thickness of 30 μm through a two-part curable inner adhesive 6 containing hexamethylene diisocyanate (HMDI), and 5 in an environment of 40 ° C. By leaving it for a day, the exterior | packing material 1 for electrical storage devices shown in FIG. 1 was obtained.

なお、前記未延伸ポリプロピレンフィルム3として、4μmのランダムポリプロピレン層(エルカ酸アマイド含有率1000ppm、シリカ微粒子含有率5000ppm)/22μmのブロックポリプロピレン層(エルカ酸アマイド含有率2000ppm)/4μmのランダムポリプロピレン層(エルカ酸アマイド含有率1000ppm、シリカ微粒子含有率5000ppm)の3層積層構成のフィルムを用いた。また、前記外側接着剤5の塗布量を3g/m2に設定し、前記内側接着剤6の塗布量を3g/m2に設定した。 As the unstretched polypropylene film 3, a 4 μm random polypropylene layer (erucic acid amide content 1000 ppm, silica fine particle content 5000 ppm) / 22 μm block polypropylene layer (erucic acid amide content 2000 ppm) / 4 μm random polypropylene layer ( A film having a three-layer structure having an erucic acid amide content of 1000 ppm and a silica fine particle content of 5000 ppm was used. The coating amount of the outer adhesive 5 was set to 3 g / m 2 , and the coating amount of the inner adhesive 6 was set to 3 g / m 2 .

<実施例2>
保護樹脂層形成用樹脂組成物におけるポリエチレンワックスA(ワックス類)の配合量を10質量部に変更した以外は、実施例1と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 2>
1 was obtained in the same manner as in Example 1 except that the blending amount of polyethylene wax A (waxes) in the resin composition for forming a protective resin layer was changed to 10 parts by mass. .

<実施例3>
保護樹脂層形成用樹脂組成物におけるポリエチレンワックスA(ワックス類)の配合量を15質量部に変更した以外は、実施例1と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 3>
1 was obtained in the same manner as in Example 1 except that the blending amount of polyethylene wax A (waxes) in the resin composition for forming the protective resin layer was changed to 15 parts by mass. .

<実施例4>
ポリイソシアネートとして、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体(HMDIのTMP付加体)15質量部に代えて、「ヘキサメチレンジイソシアネートのトリメチロールプロパン付加体(HMDIのTMP付加体)8質量部およびトリレンジイソシアネートのトリメチロールプロパン付加体(TDIのTMP付加体)7質量部」を用いた以外は、実施例2と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 4>
As polyisocyanate, instead of 15 parts by mass of hexamethylene diisocyanate trimethylolpropane adduct (HMDI TMP adduct), 8 parts by mass of hexamethylene diisocyanate trimethylolpropane adduct (HMDI TMP adduct) and tolylene diene 1 was obtained in the same manner as in Example 2, except that 7 parts by mass of an isocyanate trimethylolpropane adduct (TMI adduct of TDI) was used.

<実施例5>
Mwが9800であるポリエステルポリオール100質量部に代えて、重量平均分子量(Mw)が14500であるポリウレタンポリオール100質量部を用いると共に、「ポリエチレンワックスA」10質量部に代えて、上記ポリエチレンワックスB(ワックス類)10質量部を用いた以外は、実施例4と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 5>
In place of 100 parts by mass of the polyester polyol having an Mw of 9800, 100 parts by mass of the polyurethane polyol having a weight average molecular weight (Mw) of 14500 is used, and in addition to 10 parts by mass of the “polyethylene wax A”, the polyethylene wax B ( Waxes) Except that 10 parts by mass was used, the electricity storage device exterior material 1 shown in FIG. 1 was obtained in the same manner as in Example 4.

<実施例6>
「ポリエチレンワックスA」10質量部に代えて、上記PTFEワックスD(ワックス類)5質量部を用いた以外は、実施例4と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 6>
1 was obtained in the same manner as in Example 4 except that 5 parts by mass of the PTFE wax D (wax) was used instead of 10 parts by mass of “polyethylene wax A”. .

<実施例7>
「ポリエチレンワックスB」10質量部に代えて、上記PTFEワックスD(ワックス類)5質量部を用いた以外は、実施例5と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 7>
1 was obtained in the same manner as in Example 5 except that 5 parts by mass of the PTFE wax D (wax) was used instead of 10 parts by mass of “polyethylene wax B”. .

<実施例8>
第1マット剤として、平均粒子径が2μmのアクリル樹脂ビーズ12質量部に代えて、平均粒子径が3μmのウレタン樹脂ビーズ12質量部を用いた以外は、実施例7と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 8>
As the first matting agent, in the same manner as in Example 7, except that 12 parts by mass of urethane resin beads having an average particle diameter of 3 μm was used instead of 12 parts by mass of acrylic resin beads having an average particle diameter of 2 μm, FIG. The exterior | packing material 1 for electrical storage devices shown in FIG.

<実施例9>
「PTFEワックスD」5質量部に代えて、上記「ポリエチレンワックスC」5質量部を用いた以外は、実施例8と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 9>
1 was obtained in the same manner as in Example 8 except that 5 parts by mass of “polyethylene wax C” was used instead of 5 parts by mass of “PTFE wax D”.

<実施例10>
「PTFEワックスD」5質量部に代えて、上記低分子量PEパウダー3質量部を用いた以外は、実施例7と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 10>
1 was obtained in the same manner as in Example 7 except that 3 parts by mass of the low molecular weight PE powder was used instead of 5 parts by mass of “PTFE wax D”.

<実施例11>
「PTFEワックスD」5質量部に代えて、上記低分子量PEパウダー5質量部を用いた以外は、実施例7と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 11>
1 was obtained in the same manner as in Example 7 except that 5 parts by mass of the low molecular weight PE powder was used instead of 5 parts by mass of “PTFE wax D”.

<実施例12>
「PTFEワックスD」5質量部に代えて、上記低分子量PPパウダー3質量部を用いた以外は、実施例7と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 12>
1 was obtained in the same manner as in Example 7 except that 3 parts by mass of the low molecular weight PP powder was used instead of 5 parts by mass of “PTFE wax D”.

<実施例13>
「PTFEワックスD」5質量部に代えて、上記低分子量PPパウダー5質量部を用いた以外は、実施例7と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 13>
1 was obtained in the same manner as in Example 7 except that 5 parts by mass of the low molecular weight PP powder was used instead of 5 parts by mass of “PTFE wax D”.

<実施例14>
Mwが9800であるポリエステルポリオール100質量部に代えて、重量平均分子量(Mw)が14500であるポリウレタンポリオール100質量部を用いると共に、「ポリエチレンワックスA」5質量部に代えて、上記低分子量PEパウダー3質量部を用いた以外は、実施例1と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 14>
Instead of 100 parts by mass of polyester polyol with Mw of 9800, 100 parts by mass of polyurethane polyol with a weight average molecular weight (Mw) of 14500 is used, and in addition to 5 parts by mass of “polyethylene wax A”, the above low molecular weight PE powder Except having used 3 mass parts, it carried out similarly to Example 1, and obtained the exterior | packing material 1 for electrical storage devices shown in FIG.

<実施例15>
Mwが9800であるポリエステルポリオール100質量部に代えて、重量平均分子量(Mw)が14500であるポリウレタンポリオール100質量部を用いると共に、「ポリエチレンワックスA」5質量部に代えて、上記低分子量PPパウダー3質量部を用いた以外は、実施例1と同様にして、図1に示す蓄電デバイス用外装材1を得た。
<Example 15>
In place of 100 parts by mass of polyester polyol with Mw of 9800, 100 parts by mass of polyurethane polyol with weight average molecular weight (Mw) of 14500 is used, and in addition to 5 parts by mass of “polyethylene wax A”, the above low molecular weight PP powder Except having used 3 mass parts, it carried out similarly to Example 1, and obtained the exterior | packing material 1 for electrical storage devices shown in FIG.

<比較例1>
保護樹脂層形成用樹脂組成物においてポリエチレンワックスA(スペーサー剤)を配合しない(含有しない)組成とした以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
<Comparative Example 1>
An exterior material for an electricity storage device was obtained in the same manner as in Example 1 except that the protective resin layer-forming resin composition was a composition not containing (not containing) polyethylene wax A (spacer agent).

Figure 2019194952
Figure 2019194952

Figure 2019194952
Figure 2019194952

なお、表1、2中において、第1マット剤および第2マット剤の内容(種類、平均粒子径、配合量)の記載は省略した(上記実施例欄に記載している)。   In Tables 1 and 2, the contents (type, average particle diameter, blending amount) of the first matting agent and the second matting agent are omitted (described in the above Example column).

上記のようにして得られた各蓄電デバイス用外装材について下記評価法に基づいて評価を行った。その結果を表1、2に示す。   Each power storage device exterior material obtained as described above was evaluated based on the following evaluation method. The results are shown in Tables 1 and 2.

なお、表1における「突出高さH(μm)」は、蓄電デバイス用外装材の断面(図2参照)をSEM(走査電子顕微鏡)により観察することにより、スペーサー剤凝集物が保護樹脂層の表面から外方に突出している突出高さを10点のスペーサー剤凝集物について求め、これら10点の突出高さを平均した平均値(突出高さH)である。   The “projection height H (μm)” in Table 1 is determined by observing a cross-section (see FIG. 2) of the exterior member for an electricity storage device with a SEM (scanning electron microscope). The protrusion height protruding outward from the surface is determined for 10 spacer agent aggregates, and is an average value (protrusion height H) obtained by averaging these 10 protrusion heights.

また、表1における「突出高さが1μm以上である突出部分の平面視での面積割合(%)」は、蓄電デバイス用外装材の保護樹脂層側の表面をSEM(走査電子顕微鏡)によって縦50μm×横50μmの正方形の領域(2500μm2)を平面視観察し、次式で求めた面積割合を意味する。即ち、上記SEMでの平面視観察により求めた「保護樹脂層の表面からスペーサー剤凝集物が外方に突出している突出高さが1μm以上である突出部分の平面視面積」を「S(μm2)」としたとき、次式で求めた面積割合である。 Further, “area ratio (%) in plan view of the protruding portion having a protruding height of 1 μm or more” in Table 1 indicates that the surface on the protective resin layer side of the exterior member for the electricity storage device is vertically aligned with an SEM (scanning electron microscope). A square area (2500 μm 2 ) of 50 μm × width 50 μm is observed in a plan view and means an area ratio obtained by the following equation. That is, the “plan view area of the protruding portion where the protrusion height from which the spacer agent aggregate protrudes outward from the surface of the protective resin layer is 1 μm or more” obtained by the planar view observation with the SEM is “S (μm 2 ) ”is the area ratio obtained by the following equation.

面積割合(%)=(S/2500)×100
また、表1における「凝集物の長径」は、蓄電デバイス用外装材の保護樹脂層側の表面をSEM(走査電子顕微鏡)を用いて平面視観察し、このSEMでの平面視観察により任意の10個のスペーサー剤凝集物の平面視での長径(W)を求め、これらを平均した平均値(スペーサー剤凝集物の平均長径)である(図2参照)。
Area ratio (%) = (S / 2500) × 100
In addition, the “major axis of the aggregate” in Table 1 is obtained by observing a surface of the protective resin layer side of the exterior member for an electricity storage device in a plan view using a SEM (scanning electron microscope), and by using the SEM in a plan view. The major axis (W) in plan view of the ten spacer agent aggregates was obtained and averaged (average major axis of spacer agent aggregates) (see FIG. 2).

<耐擦過性評価法>
テスター産業社製の学振法摩擦堅牢度試験機機(荷重200gのアルミニウム治具付き)を用いて前記アルミニウム治具を蓄電デバイス用外装材の表面(保護樹脂層7の表面)において10回往復させて接触させた後、表面での傷の有無や程度を目視で調べて、下記判定基準に基づいて耐擦過性を評価した。
(判定基準)
「○」…保護樹脂層の表面に傷が全く無い
「△」…保護樹脂層の表面に傷が僅かに認められるが、殆ど目立たない
「×」…保護樹脂層の表面に明瞭に傷が観察された。
<Abrasion resistance evaluation method>
The aluminum jig is reciprocated 10 times on the surface of the exterior material for the electricity storage device (the surface of the protective resin layer 7) using a Gakushin method friction fastness tester (with an aluminum jig with a load of 200 g) manufactured by Tester Sangyo. After contact, the presence or degree of scratches on the surface was visually examined, and scratch resistance was evaluated based on the following criteria.
(Criteria)
“◯”: no scratches on the surface of the protective resin layer “Δ”: slight scratches are observed on the surface of the protective resin layer, but almost inconspicuous “×”: scratches clearly observed on the surface of the protective resin layer It was done.

<変色防止性評価法>
株式会社アマダ製の張り出し成形機(品番:TP−25C−X2)を用いて蓄電デバイス用外装材に対して押さえ圧力0.3MPaで張り出し成形を行うことによって、縦55mm×横35mm×深さ4mmの直方体形状の第1蓄電デバイス用外装ケース(上面が開放された直方体形状の成形体)1Aを得る(図3参照)。得られた前記第1外装ケースの両面について目視により変色の有無やその程度を調べて、下記判定基準に基づいて変色防止性を評価した。その評価結果を表2に示す。
<Discoloration prevention evaluation method>
By using an overhang molding machine (product number: TP-25C-X2) manufactured by Amada Co., Ltd. and performing an overhang molding with a holding pressure of 0.3 MPa on the exterior material for the electricity storage device, the length 55 mm × width 35 mm × depth 4 mm A rectangular parallelepiped first case for a power storage device (a rectangular parallelepiped shaped body having an open upper surface) 1A is obtained (see FIG. 3). The both sides of the obtained first exterior case were visually examined for the presence or absence of discoloration and the degree thereof, and the discoloration prevention property was evaluated based on the following criteria. The evaluation results are shown in Table 2.

また、蓄電デバイス用外装材に対して押さえ圧力0.25MPaで上記同様に張り出し成形を行うことによって、縦55mm×横35mm×深さ6mmの直方体形状の第2蓄電デバイス用外装ケース(上面が開放された直方体形状の成形体)1Aを得る(図3参照)。得られた第2外装ケースの両面について目視により変色の有無やその程度を調べて、下記判定基準に基づいて変色防止性を評価した。その評価結果を表2に示す。   In addition, by carrying out overmolding in the same manner as described above with a pressing pressure of 0.25 MPa on the electricity storage device exterior material, a second electricity storage device exterior case with a rectangular parallelepiped shape having a length of 55 mm × width of 35 mm × depth of 6 mm (the upper surface is open) A rectangular parallelepiped shaped product) 1A is obtained (see FIG. 3). The presence or absence of discoloration and the degree thereof were visually examined on both surfaces of the obtained second exterior case, and the discoloration prevention property was evaluated based on the following criteria. The evaluation results are shown in Table 2.

(判定基準)
「◎」…外装ケースの両面ともに成形前後で変色は全く認められなかった
「○」…外装ケースの保護樹脂層側の表面に成形前後で極めて僅かな変色が認められたが、製品として全く問題のないレベルである
「△」…外装ケースの保護樹脂層側の表面に成形前後で少しの変色が認められた程度であり、製品として使用できるレベルである
「×」…外装ケースの保護樹脂層側の表面に成形前後で明瞭な変色が認められた。
(Criteria)
“◎”: No discoloration was observed on both sides of the exterior case before and after molding. “○”: Extremely slight discoloration was observed on the protective resin layer side surface of the exterior case before and after molding. “△”, which is a level without any defects, is a level in which slight discoloration is recognized before and after molding on the surface on the protective resin layer side of the outer case, and “×” is a level that can be used as a product. Clear discoloration was observed on the side surface before and after molding.

表から明らかなように、本発明に係る実施例1〜15の蓄電デバイス用外装材は、耐擦過性に優れていると共に、成形による変色が生じ難くて変色防止性に優れていた。   As is apparent from the table, the power storage device exterior materials of Examples 1 to 15 according to the present invention were excellent in scratch resistance and hardly discolored by molding, and were excellent in discoloration prevention.

これに対し、保護樹脂層においてスペーサー剤を非添加とした比較例1では、耐擦過性が不十分であるし、成形による変色の変色防止性に劣っていた。   On the other hand, in Comparative Example 1 in which the spacer agent was not added in the protective resin layer, the scratch resistance was insufficient and the discoloration prevention property of discoloration due to molding was inferior.

本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)などの蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。また、本発明に係る蓄電デバイスは、上記例示した蓄電デバイスの他、全固体電池も含む。
As a specific example, an exterior material for an electricity storage device according to the present invention is, for example,
-Electric storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.)-Used as exterior materials for various electric storage devices such as lithium ion capacitors and electric double layer capacitors. The power storage device according to the present invention includes an all-solid battery in addition to the power storage device exemplified above.

1…蓄電デバイス用外装材
2…耐熱性樹脂層(外側層)
3…熱融着性樹脂層(内側層)
4…金属箔層
7…保護樹脂層
8…スペーサー剤(スペーサー剤凝集物)
H…突出高さ(保護樹脂層の表面からのスペーサー剤の一部の突出高さ)
W…スペーサー剤凝集物の平面視での長径
DESCRIPTION OF SYMBOLS 1 ... Exterior material for electrical storage devices 2 ... Heat-resistant resin layer (outer layer)
3 ... Heat-fusible resin layer (inner layer)
4 ... Metal foil layer 7 ... Protective resin layer 8 ... Spacer agent (spacer agent aggregate)
H: Projection height (partial projection height of the spacer agent from the surface of the protective resin layer)
W: Major axis of spacer agent aggregate in plan view

Claims (14)

外側層としての耐熱性樹脂層と、内側層としての熱融着性樹脂層と、これら両層間に配置された金属箔層と、を含む蓄電デバイス用外装材であって、
前記耐熱性樹脂層のさらに外側に保護樹脂層が積層され、
前記保護樹脂層は、樹脂と、該樹脂に対して相溶性を有しないスペーサー剤と、を含有し、
前記スペーサー剤の一部が前記保護樹脂層の表面から外方に突出していることを特徴とする蓄電デバイス用外装材。
A heat storage resin layer as an outer layer, a heat-fusible resin layer as an inner layer, and a metal foil layer disposed between these two layers, an exterior material for an electricity storage device,
A protective resin layer is laminated on the outer side of the heat resistant resin layer,
The protective resin layer contains a resin and a spacer agent that is not compatible with the resin,
A part of the spacer agent protrudes outward from the surface of the protective resin layer.
前記スペーサー剤は、複数個のスペーサー剤の凝集物の形態で前記保護樹脂層中に含有されている請求項1に記載の蓄電デバイス用外装材。   The said spacer agent is the exterior | packing material for electrical storage devices of Claim 1 contained in the said protective resin layer in the form of the aggregate of several spacer agent. 前記凝集物を構成する各スペーサー剤の平均粒子径が1μm〜20μmである請求項2に記載の蓄電デバイス用外装材。   The exterior material for an electricity storage device according to claim 2, wherein an average particle diameter of each spacer agent constituting the aggregate is 1 μm to 20 μm. 前記保護樹脂層中における前記スペーサー剤凝集物の平面視での平均長径が10μm〜120μmの範囲である請求項2または3に記載の蓄電デバイス用外装材。   The power storage device exterior material according to claim 2 or 3, wherein an average major axis in a plan view of the spacer agent aggregate in the protective resin layer is in the range of 10 µm to 120 µm. 前記スペーサー剤凝集物が、前記保護樹脂層の表面から外方に突出している突出高さが1μm以上である請求項2〜4のいずれか1項に記載の蓄電デバイス用外装材。   5. The external packaging material for an electricity storage device according to claim 2, wherein the spacer agent aggregate has a protruding height of 1 μm or more protruding outward from the surface of the protective resin layer. 前記保護樹脂層の表面から前記スペーサー剤凝集物が外方に突出している突出高さが1μm以上である突出部分の平面視面積は、前記保護樹脂層の全体の平面視面積の4%〜20%である請求項2〜5のいずれか1項に記載の蓄電デバイス用外装材。   The planar area of the projecting portion where the spacer agent aggregate projects outward from the surface of the protective resin layer is 1 μm or more is 4% to 20% of the entire planar area of the protective resin layer. It is%, The exterior material for electrical storage devices of any one of Claims 2-5. 前記保護樹脂層の表面から前記スペーサー剤凝集物が外方に突出している突出高さが0.5μm〜10μmであり、前記保護樹脂層中の前記スペーサー剤凝集物の平面視での平均長径が10μm〜120μmの範囲である請求項2〜4のいずれか1項に記載の蓄電デバイス用外装材。   The protruding height at which the spacer agent aggregate protrudes outward from the surface of the protective resin layer is 0.5 μm to 10 μm, and the average major axis in plan view of the spacer agent aggregate in the protective resin layer is It is the range of 10 micrometers-120 micrometers, The exterior material for electrical storage devices of any one of Claims 2-4. 前記スペーサー剤は、ワックス類およびポリマーパウダーからなる群より選ばれる1種または2種以上のスペーサー剤である請求項1〜7のいずれか1項に記載の蓄電デバイス用外装材。   The electricity storage device exterior material according to any one of claims 1 to 7, wherein the spacer agent is one or more spacer agents selected from the group consisting of waxes and polymer powders. 前記スペーサー剤の融点が90℃〜350℃である請求項1〜8のいずれか1項に記載の蓄電デバイス用外装材。   The melting | fusing point of the said spacer agent is 90 to 350 degreeC, The exterior material for electrical storage devices of any one of Claims 1-8. 前記保護樹脂層における前記スペーサー剤の含有率が2質量%〜20質量%である請求項1〜9のいずれか1項に記載の蓄電デバイス用外装材。   The content rate of the said spacer agent in the said protective resin layer is 2 mass%-20 mass%, The exterior material for electrical storage devices of any one of Claims 1-9. 前記樹脂が、ポリオールとポリイソシアネートとの反応生成樹脂である請求項1〜10のいずれか1項に記載の蓄電デバイス用外装材。   The power storage device exterior material according to any one of claims 1 to 10, wherein the resin is a reaction product resin of a polyol and a polyisocyanate. 前記保護樹脂層は、さらに微粒子からなるマット剤を含有し、前記保護樹脂層の平面視において該保護樹脂層中の前記マット剤の平均長径が0.3μm〜7μmの範囲である請求項1〜11のいずれか1項に記載の蓄電デバイス用外装材。   The protective resin layer further contains a matting agent composed of fine particles, and the average major axis of the matting agent in the protective resin layer in a plan view of the protective resin layer is in the range of 0.3 μm to 7 μm. The exterior material for an electrical storage device according to any one of 11. 請求項1〜12のいずれか1項に記載の蓄電デバイス用外装材の成形体からなる蓄電デバイス用外装ケース。   The exterior case for electrical storage devices which consists of a molded object of the exterior material for electrical storage devices of any one of Claims 1-12. 蓄電デバイス本体部と、
請求項1〜12のいずれか1項に記載の蓄電デバイス用外装材及び/又は請求項13に記載の蓄電デバイス用外装ケースからなる外装部材とを備え、
前記蓄電デバイス本体部が、前記外装部材で外装されていることを特徴とする蓄電デバイス。
An electricity storage device body,
The exterior member for an electrical storage device according to any one of claims 1 to 12 and / or the exterior member comprising the exterior case for an electrical storage device according to claim 13,
The electricity storage device, wherein the electricity storage device body is covered with the exterior member.
JP2018088642A 2018-05-02 2018-05-02 Exterior material for power storage device and power storage device Active JP7226922B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018088642A JP7226922B2 (en) 2018-05-02 2018-05-02 Exterior material for power storage device and power storage device
CN202311710542.3A CN117507508A (en) 2018-05-02 2019-04-19 Outer packaging material for power storage device, and power storage device
CN201910322424.2A CN110459702B (en) 2018-05-02 2019-04-19 Outer packaging material for power storage device, and power storage device
CN201920547748.1U CN210325862U (en) 2018-05-02 2019-04-19 Outer packaging material for electricity storage device, outer packaging case for electricity storage device, and electricity storage device
KR1020190046547A KR20190126710A (en) 2018-05-02 2019-04-22 Outer casing material for electricity storage device, and electricity storage device
JP2023018468A JP2023058621A (en) 2018-05-02 2023-02-09 Power storage device exterior material and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088642A JP7226922B2 (en) 2018-05-02 2018-05-02 Exterior material for power storage device and power storage device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023018468A Division JP2023058621A (en) 2018-05-02 2023-02-09 Power storage device exterior material and power storage device

Publications (3)

Publication Number Publication Date
JP2019194952A true JP2019194952A (en) 2019-11-07
JP2019194952A5 JP2019194952A5 (en) 2021-05-13
JP7226922B2 JP7226922B2 (en) 2023-02-21

Family

ID=68469064

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018088642A Active JP7226922B2 (en) 2018-05-02 2018-05-02 Exterior material for power storage device and power storage device
JP2023018468A Pending JP2023058621A (en) 2018-05-02 2023-02-09 Power storage device exterior material and power storage device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023018468A Pending JP2023058621A (en) 2018-05-02 2023-02-09 Power storage device exterior material and power storage device

Country Status (3)

Country Link
JP (2) JP7226922B2 (en)
KR (1) KR20190126710A (en)
CN (3) CN110459702B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226922B2 (en) * 2018-05-02 2023-02-21 株式会社レゾナック・パッケージング Exterior material for power storage device and power storage device
KR20230129921A (en) * 2022-03-02 2023-09-11 가부시키가이샤 레조낙·패키징 Packaging material for battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133663A1 (en) * 2011-03-29 2012-10-04 昭和電工パッケージング株式会社 Molding packaging material and battery case
JP2014044806A (en) * 2012-08-24 2014-03-13 Sun A Kaken Co Ltd Wrapping material for battery case
WO2015045887A1 (en) * 2013-09-24 2015-04-02 凸版印刷株式会社 Outer package for power storage device
JP2015077978A (en) * 2013-10-15 2015-04-23 昭和電工パッケージング株式会社 Packaging material for molding
JP2016195084A (en) * 2015-04-01 2016-11-17 凸版印刷株式会社 Outer packaging material for electricity storage device
WO2018008767A1 (en) * 2016-07-08 2018-01-11 大日本印刷株式会社 Battery exterior material and battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3774163B2 (en) 2002-03-28 2006-05-10 東洋アルミニウム株式会社 Laminated material for secondary battery container and secondary battery container
KR100887616B1 (en) * 2007-02-22 2009-03-11 율촌화학 주식회사 Pouch for packing cell and method for preparing the same
JP5110132B2 (en) 2009-08-07 2012-12-26 大日本印刷株式会社 Packaging materials for electrochemical cells
JP5561775B2 (en) * 2010-08-23 2014-07-30 Necエナジーデバイス株式会社 Film-clad battery and manufacturing method thereof
CN104059272A (en) * 2014-06-11 2014-09-24 蓝星(成都)新材料有限公司 High-density polyethylene modified material and preparation method thereof
CN106450046B (en) * 2016-08-30 2022-12-06 江苏华谷新材料有限公司 Water-resistant anti-flatulence aluminum plastic film for lithium battery packaging and preparation method thereof
JP7226922B2 (en) * 2018-05-02 2023-02-21 株式会社レゾナック・パッケージング Exterior material for power storage device and power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133663A1 (en) * 2011-03-29 2012-10-04 昭和電工パッケージング株式会社 Molding packaging material and battery case
JP2014044806A (en) * 2012-08-24 2014-03-13 Sun A Kaken Co Ltd Wrapping material for battery case
WO2015045887A1 (en) * 2013-09-24 2015-04-02 凸版印刷株式会社 Outer package for power storage device
JP2015077978A (en) * 2013-10-15 2015-04-23 昭和電工パッケージング株式会社 Packaging material for molding
JP2016195084A (en) * 2015-04-01 2016-11-17 凸版印刷株式会社 Outer packaging material for electricity storage device
WO2018008767A1 (en) * 2016-07-08 2018-01-11 大日本印刷株式会社 Battery exterior material and battery

Also Published As

Publication number Publication date
KR20190126710A (en) 2019-11-12
JP7226922B2 (en) 2023-02-21
CN117507508A (en) 2024-02-06
CN210325862U (en) 2020-04-14
JP2023058621A (en) 2023-04-25
CN110459702A (en) 2019-11-15
CN110459702B (en) 2024-01-02

Similar Documents

Publication Publication Date Title
JP5385484B2 (en) Molding packaging material and battery case
TWI742176B (en) Exterior material for power storage device, exterior case for power storage device, and power storage device
JP6465261B1 (en) Battery packaging material, manufacturing method thereof, and battery
JP6936093B2 (en) Exterior material for power storage device, exterior case for power storage device and power storage device
KR20010052645A (en) Material for packaging cell, bag for packaging cell, and its production method
JP2023058621A (en) Power storage device exterior material and power storage device
JP2023075074A (en) Packaging material for molding and molding case
JP2018127264A (en) Packaging material for molding and manufacturing method of power storage device having surface printing
JP2021177488A (en) Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
JP6943547B2 (en) Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
US20200243810A1 (en) Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
TWI752039B (en) Sealing film for exterior material of electric storage device, exterior material for electric storage device, and manufacturing method thereof
KR20210094157A (en) Packaging material for molding, exterior case for electricity storage device and electricity storage device
JP6767795B2 (en) Exterior materials for power storage devices and their manufacturing methods
US20230282912A1 (en) Battery packaging material
EP4173819A1 (en) Battery packaging material
JP7182587B2 (en) Exterior material for power storage device, exterior case for power storage device, and power storage device
CN117013160A (en) Packaging material for battery
CN116613435A (en) Packaging material for battery
KR20230073987A (en) Outer material for power storage device
KR20230076763A (en) Outer material for power storage device
JP2019055496A (en) Packaging material for molding, exterior case for power storage device, and power storage device
JP2018006280A (en) Battery-packaging material, method for manufacturing the same, and battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230209

R150 Certificate of patent or registration of utility model

Ref document number: 7226922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02