JP2019194142A - Chemically reinforced glass sheet, portable information terminal, and manufacturing method of chemically reinforced glass sheet - Google Patents

Chemically reinforced glass sheet, portable information terminal, and manufacturing method of chemically reinforced glass sheet Download PDF

Info

Publication number
JP2019194142A
JP2019194142A JP2018150379A JP2018150379A JP2019194142A JP 2019194142 A JP2019194142 A JP 2019194142A JP 2018150379 A JP2018150379 A JP 2018150379A JP 2018150379 A JP2018150379 A JP 2018150379A JP 2019194142 A JP2019194142 A JP 2019194142A
Authority
JP
Japan
Prior art keywords
region
thickness
glass plate
glass
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018150379A
Other languages
Japanese (ja)
Other versions
JP7006534B2 (en
Inventor
尾関 正雄
Masao Ozeki
正雄 尾関
聡司 大神
Soji Ogami
聡司 大神
恭基 福士
Takanori Fukushi
恭基 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to US16/394,031 priority Critical patent/US11203550B2/en
Priority to CN202010572418.5A priority patent/CN111777325B/en
Priority to CN201910344097.0A priority patent/CN110407460B/en
Publication of JP2019194142A publication Critical patent/JP2019194142A/en
Application granted granted Critical
Publication of JP7006534B2 publication Critical patent/JP7006534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

To provide a chemically reinforced glass sheet of which whole is chemically reinforced and strength is improved, and a manufacturing method therefor.SOLUTION: There is provided a glass sheet 1 having a first surface 2, a second surface 3 facing the first surface 2, a first region 10 having prescribed thickness in a normal direction of the first surface 2, and a second region 20 containing a thick region which is thicker than the first region 10, in which the first region 10 is a continuous thickness from thickness W, which is the thickness of the thickest part, to thickness 1.1×W, the second region 20 is a region having thickness of over 1.1×W, and has a part where depth of a compressive stress layer in the second region 20 is formed at more depth than thickness of the compressive stress layer of the first region 10, in which Wis the thickness of the thickest part in the region having thickness of the 1.1×W, depth of the compressive stress layer is 80 μm in the first region 10 and the second region 20, and Land Lsatisfy a relational expression of L/W≥1.2, in which Lis depth of the compressive stress layer at the thickness Wand Lis depth of the compressive stress layer at the thickness W.SELECTED DRAWING: Figure 3

Description

本発明は、化学強化ガラス板、携帯情報端末および化学強化ガラス板の製造方法に関する。   The present invention relates to a chemically strengthened glass plate, a portable information terminal, and a method for manufacturing a chemically strengthened glass plate.

近年、スマートフォンなどの携帯電子機器等の携帯情報端末のカバー部材として、合成樹脂に代えて化学強化したガラス板を使用する技術が知られている(特許文献1及び2)。また、ガラス板を化学強化する技術が知られている。   In recent years, as a cover member of a portable information terminal such as a mobile electronic device such as a smartphone, a technique using a chemically strengthened glass plate instead of a synthetic resin is known (Patent Documents 1 and 2). Moreover, the technique of chemically strengthening a glass plate is known.

特許文献1には、中央側領域と湾曲するように形成された曲面領域とを備え、裏面側において、曲面領域に形成された圧縮応力層の厚さは、中央側領域に形成された圧縮応力層の厚さよりも厚い、ディスプレイ用カバーガラスであり、曲面状に形成された部分の湾曲の内側領域について所定の強度を保つことが開示されている。   Patent Document 1 includes a central region and a curved region formed to be curved. On the back side, the thickness of the compressive stress layer formed in the curved region is the compressive stress formed in the central region. It is disclosed that it is a display cover glass that is thicker than the thickness of the layer, and maintains a predetermined strength with respect to the curved inner region of the curved portion.

特許文献2には、特許文献1と同様であり、曲面領域の板厚は、中央側領域の板厚よりも0.5mm以上2.5mm以下の範囲で厚く、前記曲面領域は、前記曲面領域の湾曲の内側に位置する凹側領域のうちの近似R(曲率半径)が最も小さい領域の近似Rが2.5mm以上となるように形成されていることを開示している。   Patent Document 2 is similar to Patent Document 1, and the thickness of the curved region is larger than the thickness of the central region in the range of 0.5 mm to 2.5 mm, and the curved region is the curved region. It is disclosed that the approximate R of the region having the smallest approximate R (curvature radius) among the concave regions located inside the curve is formed so as to be 2.5 mm or more.

特開2013−121897号公報JP 2013-121897 A 特開2013−125118号公報JP2013-125118A

特許文献1及び2には、携帯電話等の電子機器にガラス板を使用する場合、ガラス板の曲部が衝撃に弱く割れやすいことに注目して、圧縮応力層を厚くすることが開示されている。しかしながら、これらの特許文献に開示される範囲でガラス板の化学強化を行ったとしても、ガラス板全体の化学強化が不完全であり、特に端部及び端面における耐衝撃性等の強度が不十分であるという課題があった。   Patent Documents 1 and 2 disclose that when a glass plate is used for an electronic device such as a mobile phone, the thickness of the compressive stress layer is increased by paying attention to the fact that the curved portion of the glass plate is vulnerable to impact and easily cracked. Yes. However, even if the glass plate is chemically strengthened within the range disclosed in these patent documents, the entire glass plate is not fully chemically strengthened, and particularly the strength such as impact resistance at the end and end face is insufficient. There was a problem of being.

そこで本発明は、全体が化学強化され、強度が向上した化学強化ガラス板、携帯情報端末および化学強化ガラス板の製造方法の提供を目的とする。   Then, this invention aims at provision of the manufacturing method of the chemically strengthened glass plate, the portable information terminal, and the chemically strengthened glass plate by which the whole was chemically strengthened and the intensity | strength improved.

本発明の化学強化ガラス板は、第1面と、前記第1面と対向する第2面と、前記第1面の接線の法線方向に厚さを有し、所定の前記厚さからなる第1の領域と、前記第1の領域の前記厚さよりも厚い領域を含む第2の領域とを備え、前記第1の領域は、最も薄い部分の前記厚さを厚さWとしたとき、前記厚さWから厚さ1.1×Wに至るまでの連続した領域であり、前記第2の領域は、1.1×W超の厚さを有する領域で、最も厚い部分の前記厚さをWとし、前記第2の領域における圧縮応力層の深さが、前記第1の領域の圧縮応力層の深さよりも深く形成される部分を有し、前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、前記厚さWの位置の圧縮応力層の深さをLとし、前記厚さWの位置の圧縮応力層の深さをLとし、L及びLが、L/L≧1.2の関係式を満たす。 The chemically strengthened glass plate of the present invention has a thickness in a normal direction of a first surface, a second surface opposite to the first surface, and a tangent to the first surface, and is made of the predetermined thickness. a first region, a second region including a thicker region than the thickness of the first region, said first region, when the thickness W a the thickness of the thinnest portion , A continuous region from the thickness WA to a thickness of 1.1 × W A , and the second region is a region having a thickness of more than 1.1 × W A and the thickest portion of the thickness and W B, the depth of the compressive stress layer in the second region has a portion that is deeper than the depth of the compression stress layer of the first region, said first region in the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compressive stress layer position of the thickness W a and L a, the thickness W The depth of the compressive stress layer in position B and L B, L A and L B may satisfy the relationship of L B / L A ≧ 1.2.

本発明の化学強化ガラス板によれば、前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、前記第1の領域の圧縮応力層の深さLと、前記第2の領域の圧縮応力層の深さLとが、L/L≧1.2の関係式を満たすため、ガラス板全体の強度が増すと共に、第1の領域よりも厚く形成された第2の領域の圧縮応力層の深さがより深くなる。これにより、例えば、端部や端面近傍を含む第2の領域の強度が増すことで、端部及び端面を起点とする割れの発生を抑制でき、使用上の利便性、安全性を向上できる。 According to chemically strengthened glass plate of the present invention, the in the first region and the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compressive stress layer in the first region L A And the depth L B of the compressive stress layer in the second region satisfies the relational expression of L B / L A ≧ 1.2, so that the strength of the entire glass plate is increased and more than in the first region. The depth of the compressive stress layer in the second region formed thicker becomes deeper. Thereby, for example, by increasing the strength of the second region including the end portion and the vicinity of the end surface, occurrence of cracks starting from the end portion and the end surface can be suppressed, and the convenience and safety in use can be improved.

図1(a)および(b)は、本発明に係る化学強化ガラス板を示し、図1(a)は第1の実施形態の断面図、図1(b)は携帯情報端末との関係を示す斜視図である。1 (a) and 1 (b) show a chemically strengthened glass plate according to the present invention, FIG. 1 (a) is a sectional view of the first embodiment, and FIG. 1 (b) shows the relationship with a portable information terminal. It is a perspective view shown. 図2(a)〜(c)は、本発明に係る化学強化ガラス板を示し、図2(a)は第2の実施形態の断面図、図2(b)は、第1の実施形態に基づく携帯情報端末との関係を示す断面図、図2(c)は第2の実施形態に基づく携帯情報端末との関係を示す断面図である。2 (a) to 2 (c) show a chemically strengthened glass plate according to the present invention, FIG. 2 (a) is a sectional view of the second embodiment, and FIG. 2 (b) is the first embodiment. Sectional drawing which shows the relationship with the portable information terminal based on FIG. 2, FIG.2 (c) is sectional drawing which shows the relationship with the portable information terminal based on 2nd Embodiment. 図3(a)〜(e)は、本発明に係る化学強化ガラス板を示し、第2の実施形態の他の断面図である。FIGS. 3A to 3E show other chemically tempered glass sheets according to the present invention and are other cross-sectional views of the second embodiment. 図4は、本発明に係る化学強化ガラス板の第3の実施形態の断面図である。FIG. 4 is a sectional view of a third embodiment of the chemically strengthened glass sheet according to the present invention. 図5(a)および(b)は、化学強化ガラス板の断面における圧縮応力層の深さ、圧縮応力および引張応力の関係を示すグラフである。FIGS. 5A and 5B are graphs showing the relationship between the depth of the compressive stress layer, the compressive stress, and the tensile stress in the cross section of the chemically strengthened glass plate. 図6(a)〜(c)は、圧縮応力と圧縮応力層の深さを測定する応力測定装置の一例を示し、図6(a)は模式図、図6(b)は演算手段のブロック図、図6(c)は測定手順を示すフローチャート図である。6A to 6C show an example of a stress measuring device that measures the compressive stress and the depth of the compressive stress layer, FIG. 6A is a schematic diagram, and FIG. 6B is a block of an arithmetic means. FIG. 6 and FIG. 6C are flowcharts showing the measurement procedure. 図7は、圧縮応力層の深さとガラスの厚さとの関係を示すグラフである。FIG. 7 is a graph showing the relationship between the depth of the compressive stress layer and the thickness of the glass. 図8は本発明に係る化学強化ガラス板の第1の領域と第2の領域の深さ方向と圧縮応力CSの関係を示すグラフである。FIG. 8 is a graph showing the relationship between the compressive stress CS and the depth direction of the first region and the second region of the chemically strengthened glass sheet according to the present invention. 図9(a)〜(c)は、本発明に係る三次元形状の化学強化ガラス板の製造方法を説明する図である。FIGS. 9A to 9C are diagrams for explaining a method for producing a three-dimensionally shaped chemically strengthened glass plate according to the present invention. 図10(a)〜(c)は、本発明に係る三次元形状の化学強化ガラス板の、他の製造方法を説明する図である。10 (a) to 10 (c) are diagrams for explaining another manufacturing method of the chemically strengthened glass plate having a three-dimensional shape according to the present invention. 図11(a)および(b)は、本発明に係る三次元形状の化学強化ガラス板の、他の製造方法を説明する図である。11 (a) and 11 (b) are diagrams for explaining another method for producing a three-dimensionally shaped chemically strengthened glass plate according to the present invention.

以下、発明を実施するための形態に基づいて、本発明の詳細およびその他の特徴について説明する。なお、以下の図面において、同一又は対応する部材又は部品には、同一又は対応する符号を付すことにより、重複する説明を省略する。また、図面は、特に指定しない限り、部材又は部品間の相対比を示すことを目的としない。よって、具体的な寸法は、以下の限定的でない実施形態に照らし、適宜選択可能である。   Hereinafter, the details and other features of the present invention will be described based on embodiments for carrying out the invention. In the following drawings, the same or corresponding members or parts are denoted by the same or corresponding reference numerals, and redundant description is omitted. Also, the drawings are not intended to show relative ratios between members or parts unless otherwise specified. Thus, specific dimensions can be selected as appropriate in light of the following non-limiting embodiments.

本発明の実施形態にかかる化学強化ガラス板は、例えば、携帯型電子機器等の携帯情報端末に好適に使用できる。例えば、携帯電話、スマートフォン、タブレットPC、等のカバーガラスである。これらの用途以外にも、高強度が要求される用途、例えば、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、等もあるが、これらの例示に限定されない。   The chemically strengthened glass plate according to the embodiment of the present invention can be suitably used for a portable information terminal such as a portable electronic device. For example, a cover glass of a mobile phone, a smartphone, a tablet PC, or the like. In addition to these uses, there are uses that require high strength, such as magnetic disk substrates, flat panel display substrates, solar cell cover glasses, and the like, but are not limited to these examples.

図1(a)はガラス板1の第1の実施形態の断面図である。本実施形態のガラス板1は、第1面2と、第2面3とを有する。第1面2は、ガラス板1をスマートフォン等のカバーガラスとして使用した場合、ユーザの手が触れる表面であり、第2面3は第1面2に対向して、裏面である。ガラス板1は、第1面2から第2面3に至る厚さWを有し、第1面2の正面方向からの視点にて略四角形状をなし、平面状からなる第1の領域10と、第1の領域10の形成方向(画定方向)に対して異なる方向に延在する第2の領域20を備えている。第2の領域20は、第1の領域10の周辺を取り囲むように設けられ、第2面3からの視点、つまり、裏面視すると、ガラス板1は、器形の三次元形状をなしている。なお、図1(a)に示す断面図は、平面視において略四角形状の一辺に平行な方向で切断したときの断面であり、本明細書でとくにことわりがない場合「断面」とは、このような取り扱いとする。また、以下、本明細書において「ガラス板1」は、とくにことわりがない場合、化学強化処理が施された「化学強化ガラス」を意味する。   FIG. 1A is a cross-sectional view of the first embodiment of the glass plate 1. The glass plate 1 of the present embodiment has a first surface 2 and a second surface 3. The 1st surface 2 is a surface which a user's hand touches, when the glass plate 1 is used as cover glasses, such as a smart phone, and the 2nd surface 3 opposes the 1st surface 2, and is a back surface. The glass plate 1 has a thickness W extending from the first surface 2 to the second surface 3, has a substantially quadrangular shape from the front surface direction of the first surface 2, and is a first region 10 having a planar shape. And a second region 20 extending in a direction different from the forming direction (defining direction) of the first region 10. The second region 20 is provided so as to surround the periphery of the first region 10, and when viewed from the viewpoint of the second surface 3, that is, the back surface, the glass plate 1 has a three-dimensional shape of a vessel shape. . The cross-sectional view shown in FIG. 1 (a) is a cross-section when cut in a direction parallel to one side of a substantially square shape in plan view. The handling is as follows. In the present specification, “glass plate 1” means “chemically tempered glass” that has been subjected to chemical tempering treatment unless otherwise specified.

第1の領域10は、ガラス板1の最小厚さ(最小板厚)となる部分を含み、かつ最小厚さをWとするとき、厚さがWから1.1×Wに至るまで連続した領域とする。とくに、最小厚さWとなる部分は、ガラス板1の断面において幅方向(図面でいう略水平方向)の中心付近に位置し、最小厚さWとなる位置から端部に向かうにつれて厚さが厚くなる。そして、厚さがWから1.1×Wに至るまで連続した領域を第1の領域とし、厚さ1.1×W超からガラス板1の端部までが第2の領域である。第2の領域は、端部に向かう途中で厚さが1.1×W以下となる部分を有する場合も含むものとする。すなわち、第1の領域は、ガラス板1において、厚さWから最初に厚さ1.1×Wに至るまでの領域であり、第2の領域は、第1の領域以外の領域をいう。 The first region 10 includes a portion having the minimum thickness of the glass plate 1 (minimum thickness), and when the minimum thickness of the W A, leading to 1.1 × W A thickness from W A It is a continuous area. In particular, the portion having the minimum thickness W A is thick as situated near the center of the width in the cross section of the glass plate 1 direction (substantially horizontal direction referred to in the drawings), towards the end from the minimum to have a thickness W A position Becomes thicker. Then, the thickness was continuously up to the W A 1.1 × from W A region as a first region, is a thickness of 1.1 × W A greater to the end of the glass plate 1 in the second region is there. The second region is, the case where the thickness of the way to the end portion has a portion to be less than 1.1 × W A. That is, the first region, the glass plate 1, a region ranging from a thickness W A first to a thickness 1.1 × W A, the second region, a region other than the first region Say.

なお、ガラス1の厚さ(板厚)は、第1面2の接線に対して垂直方向の(ガラスの)厚さに相当する。図1(a)に示すガラス板1の場合、第1面2が平坦で厚さが一定な(中心)部分を含む領域が第1の領域10であり、第1の領域10の周辺に位置する厚さ1.1×W超となる第2の領域20を有する。なお、第1の領域10は、第1面2が平面状のものに限らず、上記条件を満たせば、第1面2が湾曲した面を有してもよい。なお、このように厚さが異なるガラス板1は、「偏肉化したガラス板」ともいう。 In addition, the thickness (plate thickness) of the glass 1 corresponds to the thickness (of the glass) perpendicular to the tangent to the first surface 2. In the case of the glass plate 1 shown in FIG. 1A, a region including the (center) portion where the first surface 2 is flat and has a constant thickness is the first region 10, and is positioned around the first region 10. And a second region 20 having a thickness exceeding 1.1 × W A. In addition, the 1st area | region 10 may have the surface where the 1st surface 2 curved as long as the 1st surface 2 is not restricted to a planar shape, and the said conditions are satisfy | filled. The glass plates 1 having different thicknesses are also referred to as “uneven glass plates”.

本実施形態のガラス板1は、第1面2および第2面3の中心部分から端面21に向かって曲率半径が小さくなる部分を有し、該曲率半径が最も小さくなる部分に相当する湾曲部30を有する。湾曲部30は、第1面2と第2面3のうち少なくとも一方の面に有すればよく、図1(a)に示すガラス板1は、両面に湾曲部30を有する。このように湾曲部30を有することで、厚さが異なるガラス板1の形状をなす。   The glass plate 1 of the present embodiment has a portion where the radius of curvature decreases from the central portion of the first surface 2 and the second surface 3 toward the end surface 21, and the curved portion corresponding to the portion where the radius of curvature is the smallest. 30. The bending part 30 should just exist in at least one surface among the 1st surface 2 and the 2nd surface 3, and the glass plate 1 shown to Fig.1 (a) has the bending part 30 on both surfaces. Thus, by having the curved part 30, the shape of the glass plate 1 from which thickness differs is made.

また、第2の領域20は、例えば携帯情報端末50の筐体51と当接する平坦状の端面21を有している。そして、ガラス1は、図1(a)について、第1面2、(図面左側の)端面21、第2面3、(図面右側の)端面21をこの順に繋いだときの線が、ガラス1の断面図における外縁をなす。ガラス板1の第2の領域20は、最大厚さ(最大板厚)Wを有する。ここで、最大厚さWは、第1面2の接線に対する法線方向の厚さの最大値をいう。なお、ガラス板1において、端面21は、第1面2と第2面3とを繋ぐ(断面において)直線状の部分(面)に相当するが、後述する実施形態においては、所定の形状に加工したとき、端面が無い実施形態もある。また、ガラス板1における端面21とは、ガラス板1を加工する前の平板状のガラスにおいて両主面を繋ぐ端面が存在する場合、ガラス板1においても該(平板状のガラスの)端面に相当する部分があれば、それを端面21としてもよい。 The second region 20 has a flat end surface 21 that comes into contact with the housing 51 of the portable information terminal 50, for example. The glass 1 is formed by connecting the first surface 2, the end surface 21 (on the left side of the drawing), the second surface 3, and the end surface 21 (on the right side of the drawing) in this order with respect to FIG. The outer edge in the sectional view of FIG. A second region of the glass plate 1 20 has a maximum thickness (maximum thickness) W B. The maximum thickness W B refers to the maximum value of the normal direction thickness to a tangent of the first side 2. In the glass plate 1, the end surface 21 corresponds to a linear portion (surface) that connects the first surface 2 and the second surface 3 (in the cross section), but in a later-described embodiment, the end surface 21 has a predetermined shape. Some embodiments have no end face when processed. Moreover, the end surface 21 in the glass plate 1 is the end surface (of flat glass) in the glass plate 1 when the end surface which connects both main surfaces in the flat glass before processing the glass plate 1 exists. If there is a corresponding part, it may be used as the end face 21.

第1の領域10の厚さWと第2の領域20の厚さWは、Wが0.3mm以上であり、W/W≧1.5の関係式を満たすことが好ましく、より好ましくはW/W≧1.7であり、さらに好ましくはW/W≧1.9である。また、W/W≦4が好ましく、より好ましくはW/W≦3.5であり、さらに好ましくはW/W≦3である。W/Wが1.5以上であると、第2の領域20の強度が保たれ、4以下であると成形しやすくなり、取り扱いも容易となる。また、図1(a)に示すガラス1は、第2の領域20の厚さが、第2の領域全てにおいて、第1の領域10の厚さ(厚さ1.1×W)よりも厚いが、この形状に限らない。例えば、ガラス1は、後述するように、第2の領域20のうち中央付近が最も厚く(厚さ:W)、端面に向かって厚さが漸減する形状でもよい。 The thickness W B of the thickness W A of the first region 10 second region 20, W A is not less 0.3mm or more, it is preferable to satisfy the relation of W B / W A ≧ 1.5 More preferably, W B / W A ≧ 1.7, and even more preferably W B / W A ≧ 1.9. Further, W B / W A ≦ 4 is preferable, W B / W A ≦ 3.5 is more preferable, and W B / W A ≦ 3 is more preferable. When W B / W A is 1.5 or more, the strength of the second region 20 is maintained, and when it is 4 or less, molding becomes easy and handling becomes easy. Further, in the glass 1 shown in FIG. 1A, the thickness of the second region 20 is larger than the thickness of the first region 10 (thickness 1.1 × W A ) in all the second regions. Thick, but not limited to this shape. For example, the glass 1 may have a shape in which the vicinity of the center of the second region 20 is the thickest (thickness: W B ) and the thickness gradually decreases toward the end surface, as will be described later.

ガラス板1は、第1面2において、厚さWの方向から見たときの総投影面積に対する前記第1の領域10の投影面積比率が、0.5以上が好ましく、より好ましくは0.6以上、さらに好ましくは0.7以上である。また、該投影面積比率は、0.98以下が好ましく、より好ましくは0.95以下、さらに好ましくは0.9以下である。 The glass plate 1, the first surface 2, the projected area ratio of the first region 10 to the total projected area when viewed from the direction of the thickness W A is preferably 0.5 or more, more preferably 0. 6 or more, more preferably 0.7 or more. The projected area ratio is preferably 0.98 or less, more preferably 0.95 or less, and still more preferably 0.9 or less.

本実施形態のガラス板1は、化学強化処理がされているが、以後、化学強化処理によってガラス板に形成される圧縮応力層の深さとして「L」、圧縮応力として「CS」、引張応力として「CT」等を用いる。また、圧縮応力および引張応力は、第1の領域10側ではWの「A」、第2の領域20側ではWの「B」を付加して説明する。 The glass plate 1 of the present embodiment has been subjected to chemical strengthening treatment. Thereafter, “L” as the depth of the compressive stress layer formed on the glass plate by the chemical strengthening treatment, “CS” as the compressive stress, and tensile stress. “CT” or the like is used. The compressive stress and tensile stress, "A" of W A in the first area 10 side, the second region 20 side will be described by adding "B" of W B.

図1(b)は、ガラス板1の使用例を示し、ガラス板1は、携帯情報端末50の筐体51に接着材などを介して接合される。ガラス板1の第2面3には、他の部分よりも肉厚の薄い凹部4が形成されてもよい。携帯情報端末50には、指紋センサー52などが設けられ、例えば、凹部4は、指紋センサー52の上部から覆うように配置され、指紋センサー52の認証を容易にしている。   FIG. 1B shows an example of use of the glass plate 1, and the glass plate 1 is joined to the casing 51 of the portable information terminal 50 via an adhesive or the like. The second surface 3 of the glass plate 1 may be formed with a recessed portion 4 that is thinner than the other portions. The portable information terminal 50 is provided with a fingerprint sensor 52 and the like. For example, the concave portion 4 is disposed so as to cover from the upper part of the fingerprint sensor 52, thereby facilitating authentication of the fingerprint sensor 52.

図2(a)〜(c)は、ガラス板1の幾つかの実施形態を示す断面模式図である。図2(a)は、ガラス板1の第2の実施形態を示す断面模式図であり、平面視において略四角形状の一辺に平行な方向で切断したときの断面である。第2の実施形態では、第1の実施形態に比べて、第1面2における湾曲部30の曲率半径が大きく形成され、第1面2において、第1の領域10の平面に対する第2の領域20の傾きが緩やかである。即ち、第1の実施形態では、第1の領域10の形成方向(例えば水平方向)に対して、垂直方向に延在する第2の領域20を示しているが、第2の実施形態では、所定の角度を有して傾斜する方向に延在している。なお、湾曲部30の曲率や第2の領域20の傾きは、限定されない。   2A to 2C are schematic cross-sectional views showing some embodiments of the glass plate 1. FIG. 2A is a schematic cross-sectional view showing a second embodiment of the glass plate 1, and is a cross-section when cut in a direction parallel to one side of a substantially rectangular shape in plan view. In the second embodiment, the radius of curvature of the curved portion 30 in the first surface 2 is formed larger than that in the first embodiment, and the second region of the first surface 2 relative to the plane of the first region 10 is formed. The inclination of 20 is gentle. That is, in the first embodiment, the second region 20 extending in the vertical direction with respect to the formation direction (for example, the horizontal direction) of the first region 10 is shown, but in the second embodiment, It extends in a tilting direction with a predetermined angle. Note that the curvature of the bending portion 30 and the inclination of the second region 20 are not limited.

図2(b)及び図2(c)は、携帯情報端末50の両側から2枚のガラス板1で挟持する状態を示した断面模式図であり、図2(b)は、第1の実施形態を採用した場合で、図2(c)は、第2の実施形態を採用した場合である。2枚のガラス板1の端面21を互いに当接させる場合、例えば当接面にメタルフレームなどを介してもよい。   2B and 2C are schematic cross-sectional views showing a state where the portable information terminal 50 is sandwiched between two glass plates 1 from both sides, and FIG. 2B is a diagram illustrating the first embodiment. FIG. 2 (c) shows a case where the second embodiment is adopted. When the end surfaces 21 of the two glass plates 1 are brought into contact with each other, for example, a metal frame or the like may be interposed between the contact surfaces.

また、図3(a)〜(e)は、ガラス板1の実施形態のうち、図2(a)のガラス板1とは異なる第2の実施形態の他の例を示す断面模式図である。図3(a)に示すガラス板1は、第1の領域について、第1面2および第2面3がいずれも曲面形状をなしている。そして、第2の領域20は、ガラス板1の端部に向かって徐々に厚さが厚くなる部分を有し、図3(a)に示す位置が厚さWとなる。また、図3(a)に示すガラス板1は、第1面2と第2面3とを繋ぐ、(断面において)直線状の端面21を有する。なお、図3(a)に示すガラス板1において、端面21付近の厚さは、Wよりも小さい値である。 FIGS. 3A to 3E are schematic cross-sectional views showing another example of the second embodiment different from the glass plate 1 of FIG. 2A among the embodiments of the glass plate 1. . As for the glass plate 1 shown to Fig.3 (a), both the 1st surface 2 and the 2nd surface 3 have comprised the curved surface shape about the 1st area | region. The second region 20 has a portion gradually thick toward the end of the glass plate 1 is increased, the position shown in FIG. 3 (a) to have a thickness W B. Moreover, the glass plate 1 shown to Fig.3 (a) has the linear end surface 21 which connects the 1st surface 2 and the 2nd surface 3 (in a cross section). Incidentally, the glass plate 1 shown in FIG. 3 (a), the thickness near the end face 21 is smaller than W B.

図3(b)に示すガラス板1は、第1の領域の大部分が一定の厚さWを有する。そして、第2の領域20は、ガラス板1の第1面2の端部に向かって徐々に厚さが厚くなる部分を有し、図3(b)に示す所定の位置で厚さWとなり、該位置から第1面2の端部に向かって厚さがWよりも小さくなる。なお、図3(b)に示すガラス板1は、第1面2と第2面3が繋がっており、端面を有しない実施形態である。 Glass plate 1 shown in FIG. 3 (b), most part of the first region has a constant thickness W A. The second region 20 has a portion gradually thick toward the end of the first surface 2 of the glass plate 1 is increased, the thickness W B at a predetermined position shown in FIG. 3 (b) next, the thickness from the position toward the end portion of the first surface 2 is smaller than W B. In addition, the glass plate 1 shown in FIG.3 (b) is embodiment which the 1st surface 2 and the 2nd surface 3 are connected, and does not have an end surface.

図3(c)に示すガラス板1は、図3(b)に示すガラス板1を変形した実施形態である。具体的に、図3(c)に示すガラス板1は、第1の領域の大部分が一定の厚さWを有する。そして、第2の領域20は、ガラス板1の第1面2の端部に向かって徐々に厚さが厚くなる部分を有し、図3(c)に示す所定の位置で厚さWとなり、該位置から第1面2の端部に向かって厚さがWよりも小さくなる。なお、図3(c)に示すガラス板1は、第1面2と第2面3とを繋ぐ、(断面において)直線状の端面21を有する。 The glass plate 1 shown in FIG.3 (c) is embodiment which deform | transformed the glass plate 1 shown in FIG.3 (b). Specifically, the glass plate 1 shown in FIG. 3 (c), most of the first region has a constant thickness W A. The second region 20 has a portion gradually thick toward the end of the first surface 2 of the glass plate 1 is increased, the thickness W B at a predetermined position shown in FIG. 3 (c) next, the thickness from the position toward the end portion of the first surface 2 is smaller than W B. In addition, the glass plate 1 shown in FIG.3 (c) has the linear end surface 21 which connects the 1st surface 2 and the 2nd surface 3 (in a cross section).

図3(d)に示すガラス板1は、第1の領域の大部分が一定の厚さWを有する。そして、第2の領域20は、ガラス板1の第1面2の端部に向かって徐々に厚さが厚くなる部分を有し、図3(d)に示す所定の位置で厚さWとなり、該位置から第1面2の端部に向かって厚さがWよりも小さくなる。図3(d)に示すガラス板1は、とくにその断面において、第1面2が「J」字状の曲線を有するとともに、第2面3も「J」字状の曲線を有する。また、図3(d)に示すガラス板1は、第1面2と第2面3とを繋ぐ、(断面において)直線状の端面21を有する。 Glass plate 1 shown in FIG. 3 (d), the majority of the first region has a constant thickness W A. Then, the second region 20, toward the end of the first surface 2 of the glass plate 1 has a portion gradually thickness becomes thicker, the thickness W B at a predetermined position shown in FIG. 3 (d) next, the thickness from the position toward the end portion of the first surface 2 is smaller than W B. In the cross section of the glass plate 1 shown in FIG. 3D, the first surface 2 has a “J” -shaped curve, and the second surface 3 also has a “J” -shaped curve. Moreover, the glass plate 1 shown in FIG.3 (d) has the linear end surface 21 which connects the 1st surface 2 and the 2nd surface 3 (in a cross section).

図3(e)に示すガラス板1は、図3(d)に示すガラス板1を変形した実施形態である。具体的に、図3(e)に示すガラス板1は、第1の領域の大部分が一定の厚さWを有する。そして、第2の領域20は、ガラス板1の第1面2の端部に向かって徐々に厚さが厚くなる部分を有するが、図3(e)に示す所定の位置から厚さWとなるとともに、第1面2の端部まで一定の厚さWを維持する形状である。なお、図3(e)に示すガラス板1も、第1面2と第2面3とを繋ぐ、(断面において)直線状の端面21を有する。 The glass plate 1 shown in FIG.3 (e) is embodiment which deform | transformed the glass plate 1 shown in FIG.3 (d). Specifically, the glass plate 1 shown in FIG. 3 (e), most of the first region has a constant thickness W A. The second region 20 has a first side second end gradually portion thickness is increased toward the of the glass plate 1, the thickness W B from the predetermined position shown in FIG. 3 (e) it becomes a shape to maintain a constant thickness W B to the end portion of the first surface 2. In addition, the glass plate 1 shown in FIG.3 (e) also has the linear end surface 21 which connects the 1st surface 2 and the 2nd surface 3 (in a cross section).

図4は、ガラス板1の第3の実施形態を示す。第3の実施形態のガラス板1は、第1の面2において第1の領域10及び第2の領域20が平坦状である。また、本実施形態のガラス板1は、第2の面3において第2の領域20全ての領域の厚さが第1の領域10の厚さに比べて厚く形成されている。なお、第3の実施形態のガラス1は、湾曲部30が第2面3側にある。また、図4に示すガラス板1も、第1面2と第2面3とを繋ぐ、(断面において)直線状の端面21を有する。   FIG. 4 shows a third embodiment of the glass plate 1. In the glass plate 1 of the third embodiment, the first region 10 and the second region 20 are flat on the first surface 2. Further, the glass plate 1 of the present embodiment is formed such that the thickness of the entire second region 20 on the second surface 3 is larger than the thickness of the first region 10. In addition, as for the glass 1 of 3rd Embodiment, the curved part 30 exists in the 2nd surface 3 side. The glass plate 1 shown in FIG. 4 also has a linear end surface 21 (in the cross section) that connects the first surface 2 and the second surface 3.

本実施形態のガラス板1は、成形および、化学強化処理による強化が可能な組成を有する限り、種々の組成のガラスを使用できる。具体的には、アルミノシリケートガラス、ソーダライムガラス、ホウ珪酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウ珪酸ガラス等が挙げられる。   As long as the glass plate 1 of this embodiment has a composition which can be shape | molded and strengthened by a chemical strengthening process, the glass of various compositions can be used. Specific examples include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.

ガラス板1の組成は特に制限されないが、例えば、以下のガラス組成が挙げられる。
酸化物基準のモル百分率表示で、SiOを50〜80%、Alを2〜25%、LiOを0〜20%、NaOを0.1〜18%、KOを0〜10%、MgOを0〜15%、CaOを0〜5%、Pを0〜5%、Bを0〜5%、Yを0〜5%およびZrOを0〜5%を含む。
なお、本実施形態のガラス板1は、生産効率の点から、リチウムが含有されていることが好ましい。
Although the composition in particular of the glass plate 1 is not restrict | limited, For example, the following glass compositions are mentioned.
Oxide-based molar percentage display, SiO 2 50-50%, Al 2 O 3 2-25%, Li 2 O 0-20%, Na 2 O 0.1-18%, K 2 O 0-10% of MgO 0 to 15% 0 to 5% of CaO, P 2 O 5 0-5% B 2 O 3 0-5% 0-5% a Y 2 O 3 and the ZrO 2 containing 0-5%.
In addition, it is preferable that the glass plate 1 of this embodiment contains lithium from the point of production efficiency.

ガラス板1の製造方法は特に制限されない。ガラス板1の加工前の状態、即ち、略均一な厚さの平板状のガラス板は、例えば、所望のガラス原料を連続溶融炉に投入し、ガラス原料を好ましくは1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを成形し、徐冷することにより製造できる。   The manufacturing method of the glass plate 1 is not particularly limited. The state of the glass plate 1 before processing, that is, a flat glass plate having a substantially uniform thickness, for example, is charged with a desired glass raw material in a continuous melting furnace, and the glass raw material is preferably heated and melted at 1500 to 1600 ° C. And after refine | purifying, after supplying a shaping | molding apparatus, a molten glass is shape | molded and it can manufacture by annealing.

本実施形態のガラス板1は、例えば、ダウンドロー法(例えば、オーバーフローダウンドロー法、スロットダウン法およびリドロー法等)、フロート法、ロールアウト法およびプレス法等の様々な方法で製造した平板状のガラス板を加工して実現できる。フロート法では、溶かしたガラス素地を錫等の溶融金属上に浮かべ、厳密な温度操作で厚さ、板幅が略均一な平板状のガラス板を成形できる。本実施形態では、三次元形状のガラス板1の形状に成形するため、平板状のガラス板を加熱し、金型に接触させた状態で圧力差を用いて曲げる、曲げ成形法を適用できる。   The glass plate 1 of the present embodiment is, for example, a flat plate manufactured by various methods such as a down draw method (for example, an overflow down draw method, a slot down method, a redraw method, etc.), a float method, a roll out method, and a press method. This can be realized by processing a glass plate. In the float process, a molten glass substrate is floated on a molten metal such as tin, and a flat glass plate having a substantially uniform thickness and width can be formed by a strict temperature operation. In this embodiment, since it shape | molds in the shape of the three-dimensional-shaped glass plate 1, the bending method which heats a flat glass plate and bends using a pressure difference in the state which contacted the metal mold | die can be applied.

なお、本実施形態のガラス板1は、平板状のガラス板ではなく塊状のガラスを加熱し、凹凸形状を有する一組の金型でプレス加工する方法も適用できるが、成形方法はこれに限定されない。また、ガラス板1は、曲げ加工、削り加工、金型成形等により成形され、成形後に化学強化されるが、成形方法、工程順序に特に制限されない。次に、本実施形態のガラス板を得るための具体的な製造方法の例(製造方法1〜3)について、図面を用いて説明する。   In addition, although the glass plate 1 of this embodiment can also apply the method of heating a lump-like glass instead of a flat glass plate, and pressing it with a set of uneven | corrugated metal mold | dies, a shaping | molding method is limited to this Not. Further, the glass plate 1 is formed by bending, cutting, mold forming, and the like, and is chemically strengthened after forming, but is not particularly limited by the forming method and the process sequence. Next, specific examples of manufacturing methods (manufacturing methods 1 to 3) for obtaining the glass plate of the present embodiment will be described with reference to the drawings.

<製造方法1>
図9(a)〜(c)は、本実施形態に係る三次元形状のガラス板を得る、製造方法の一例(以下「製造方法1」という。)を説明するための模式図であり、図9(a)、図9(b)そして、図9(c)の流れにしたがって製造する。
<Manufacturing method 1>
9A to 9C are schematic diagrams for explaining an example of a manufacturing method (hereinafter referred to as “manufacturing method 1”) for obtaining a three-dimensional glass plate according to the present embodiment. 9 (a), FIG. 9 (b) and FIG. 9 (c).

図9(a)は、厚さが一定の平板ガラスの断面模式図であり「平板ガラスを準備する工程」を説明する図でもある。該工程では、最終的に本実施形態の三次元形状のガラス板を得るため、所定の平面形状(例えば長方形)や寸法を有する平板ガラスを準備する。一定の厚さを有する平板ガラスの厚さはとくに制限はないが、例えば、携帯情報端末のカバーガラス用であれば、該厚さは、1.0〜2.5mmの範囲であればよく、1.3〜2.0mmの範囲が好ましい。   FIG. 9A is a schematic cross-sectional view of a flat glass having a constant thickness, and is also a diagram for explaining “a step of preparing a flat glass”. In this step, in order to finally obtain the three-dimensional glass plate of the present embodiment, a flat glass having a predetermined planar shape (for example, a rectangle) and dimensions is prepared. The thickness of the flat glass having a certain thickness is not particularly limited. For example, for a cover glass of a portable information terminal, the thickness may be in the range of 1.0 to 2.5 mm. A range of 1.3 to 2.0 mm is preferable.

図9(b)は、偏肉化したガラス板の断面模式図であり、準備した平板ガラスについて、平面視において第1の領域と、その周辺(外側)に第1の領域の厚さよりも厚い、厚さWを有する第2の領域を与える「ガラス板偏肉化工程」を説明する図でもある。該工程は、第1の領域を研削する方法、第1の領域を研磨する方法のうち、少なくとも1つの方法を用いて、第1の領域を周辺(第2の領域)より薄くする例が挙げられる。 FIG. 9B is a schematic cross-sectional view of a non-thickened glass plate, and the prepared flat glass is thicker than the thickness of the first region in the first region and its periphery (outside) in plan view. is also a diagram explaining the "glass plate uneven thickness step" providing a second region having a thickness W B. The step includes an example in which the first region is made thinner than the periphery (second region) by using at least one of the method of grinding the first region and the method of polishing the first region. It is done.

また、該工程はこの他に、凸型と凹型を有する(不図示の)成形金型を用いて、偏肉化したガラス板を成形する例も挙げられる。この例では、平板ガラスを凸型と凹型との間に挟持した状態で、成形金型をガラス材料の軟化点以上(例えば、900〜950℃)まで加熱して成形する「加熱成形工程」を含む。なお、平板ガラス板は、凸型と凹型との間に挟持する前にガラス転移温度より低い温度、例えば500℃程度に予熱させると、その後の加熱による温度差を小さくでき、割れ等の損傷を低減できるので好ましい。該加熱成形工程は、第1の領域の厚さが第2の領域の厚さよりも薄くなるように、ガラス材料が軟化した状態で成形金型を加圧してガラス板を偏肉化させる。さらに、この例では、加熱成形工程後、成形した状態を保持して、成形金型およびガラス材料をガラス転移温度よりも低い温度に冷却する「冷却工程」を含み、所定の偏肉化したガラス板を得る。   In addition to this, there is an example in which an uneven-thickened glass plate is molded using a molding die (not shown) having a convex mold and a concave mold. In this example, a “heating molding process” is performed in which the molding die is heated to a temperature equal to or higher than the softening point of the glass material (for example, 900 to 950 ° C.) with the flat glass sandwiched between the convex mold and the concave mold. Including. In addition, if the flat glass plate is preheated to a temperature lower than the glass transition temperature, for example, about 500 ° C. before being sandwiched between the convex mold and the concave mold, the temperature difference due to the subsequent heating can be reduced and damage such as cracking can be caused. Since it can reduce, it is preferable. In the heat forming step, the glass plate is unevenly pressed by pressing the molding die in a state where the glass material is softened so that the thickness of the first region is thinner than the thickness of the second region. Furthermore, this example includes a “cooling step” in which the molded state and the glass material are cooled to a temperature lower than the glass transition temperature after the heat forming step, and a predetermined uneven-thickened glass Get a board.

図9(c)は、本実施形態の三次元形状のガラス板の断面模式図であり、偏肉化したガラス板を、該三次元形状のガラス板の形状に合わせた凸型と凹型を有する(不図示の)成形金型を用いて、曲げ加工する「曲げ加工工程」を説明する図でもある。該工程では、偏肉したガラス板を凸型と凹型との間に挟持した状態で、成形金型をガラス材料のガラス転移温度以上まで加熱して成形する「加熱成形工程」を含む。該加熱成形工程は、ガラス材料が軟化した状態で成形金型を加圧して三次元形状のガラス板となるように成形する。さらに、この例では、加熱成形工程後、成形した状態を保持して、成形金型およびガラス材料をガラス転移温度よりも低い温度に冷却する「冷却工程」を含み、本実施形態の三次元形状のガラス板を得る。この三次元形状のガラス板は、第1の領域の延伸方向と第2の領域の延伸方向とが異なる形状となる。   FIG. 9C is a schematic cross-sectional view of the three-dimensional glass plate of the present embodiment. The uneven glass plate has a convex shape and a concave shape that match the shape of the three-dimensional glass plate. It is also a figure explaining the "bending process" of bending using a shaping die (not shown). This process includes a “heating molding process” in which the molding die is heated to a temperature equal to or higher than the glass transition temperature of the glass material in a state where the unevenly thick glass plate is sandwiched between the convex mold and the concave mold. In the heat molding step, the molding die is pressed in a state where the glass material is softened so as to form a three-dimensional glass plate. Further, in this example, after the heat forming step, the three-dimensional shape of the present embodiment includes a “cooling step” for holding the molded state and cooling the molding die and the glass material to a temperature lower than the glass transition temperature. Get a glass plate. This three-dimensional glass plate has a shape in which the extending direction of the first region and the extending direction of the second region are different.

この曲げ加工工程は、上記の冷却工程で得られた三次元形状のガラス板について、さらに表面形状を所望の形状にする「表面加工工程」を含んでもよい。表面加工工程は、曲面をなす部分について、砥石による「機械加工」(CNC加工)を施す例が挙げられ、所望の曲率半径が得られるように精密加工を実施してもよい。また、表面加工工程には、表面を研磨する「研磨加工」を含んでもよく、上記の「機械加工」と「研磨加工」の順番や回数は任意に実施できる。   This bending process may further include a “surface processing process” in which the surface shape of the three-dimensional glass plate obtained in the cooling process is changed to a desired shape. The surface processing step includes an example in which “curing” (CNC processing) with a grindstone is performed on a curved surface, and precision processing may be performed so that a desired curvature radius is obtained. Further, the surface processing step may include “polishing” for polishing the surface, and the order and number of times of the above “machining” and “polishing” can be arbitrarily implemented.

上記の研磨加工は、例えば、第1の領域に対して所定の厚さに調整するように、ラッピング、ポリッシング、エッチングのうち少なくとも1つの研磨方法を使用できる。さらに、研磨加工は、第1の領域において、第1面2、第2面3のうち少なくとも一方に対して実施してもよく、研磨加工の容易性から、第1面2に対してのみ実施してもよい。また、製造方法1は、その後、後述する化学強化処理工程を含む。   In the above polishing process, for example, at least one of lapping, polishing, and etching can be used so that the first region is adjusted to a predetermined thickness. Further, the polishing process may be performed on at least one of the first surface 2 and the second surface 3 in the first region, and is performed only on the first surface 2 for ease of the polishing process. May be. Moreover, the manufacturing method 1 contains the chemical strengthening process process mentioned later after that.

<製造方法2>
図10(a)〜(c)は、本実施形態に係る三次元形状のガラス板を得る、製造方法の他の一例(以下「製造方法2」という。)を説明するための模式図であり、図10(a)、図10(b)そして、図10(c)の流れにしたがって製造する。
<Manufacturing method 2>
10A to 10C are schematic views for explaining another example of the manufacturing method (hereinafter referred to as “manufacturing method 2”) for obtaining the three-dimensional glass plate according to the present embodiment. 10 (a), 10 (b), and FIG. 10 (c).

図10(a)は、厚さが一定の平板ガラスの断面模式図であり「平板ガラスを準備する工程」を説明する図でもある。該工程は、製造方法1における「平板ガラスを準備する工程」と同じであり、詳細の説明を省略する。   FIG. 10A is a schematic cross-sectional view of a flat glass having a constant thickness, and is also a diagram for explaining “a step of preparing a flat glass”. This step is the same as the “step of preparing flat glass” in the production method 1, and detailed description thereof is omitted.

図10(b)は、一定厚の三次元形状のガラス板の断面模式図であり、平板ガラス板を、凸型と凹型を有する(不図示の)成形金型を用いて、該一定厚の三次元形状のガラス板の形状に曲げる「曲げ工程」を説明する図でもある。該工程は、平板ガラス板を凸型と凹型との間に挟持した状態で、成形金型をガラス材料のガラス転移温度以上の温度(例えば、ガラス転移温度+100℃)まで加熱して成形する「加熱成形工程」を含む。なお、平板ガラス板は、製造方法1と同様、凸型と凹型との間に挟持する前にガラス転移温度より低い温度となるように予熱させてもよい。該加熱成形工程は、ガラス材料が軟化した状態で成形金型を加圧して一定厚の三次元形状のガラス板となるように成形する。さらに、該工程は、加熱成形工程後、成形した状態を保持して、成形金型およびガラス材料をガラス転移温度よりも低い温度に冷却する「冷却工程」を含み、一定厚の三次元形状のガラス板を得る。該一定厚の三次元形状のガラス板は、後述する「ガラス板偏肉化工程」を経たときにできる、(仮想の)第1の領域とその外側にある(仮想の)第2の領域を有し、曲げ工程により、(仮想の)第1の領域の延伸方向と(仮想の)第2の領域の延伸方向とが異なる形状を得る。なお、図10(b)に示す破線は、次の「ガラス板偏肉化工程」で削除するガラスの境界線である。   FIG. 10B is a schematic sectional view of a three-dimensional glass plate having a constant thickness. A flat glass plate is formed using a molding die (not shown) having a convex mold and a concave mold. It is also a figure explaining the "bending process" bent to the shape of a three-dimensional glass plate. The process is performed by heating the molding die to a temperature equal to or higher than the glass transition temperature of the glass material (for example, glass transition temperature + 100 ° C.) with the flat glass plate sandwiched between the convex mold and the concave mold. Including a heat forming step. Note that the flat glass plate may be preheated so as to have a temperature lower than the glass transition temperature before being sandwiched between the convex mold and the concave mold as in the manufacturing method 1. In the heat molding step, the molding die is pressed in a state where the glass material is softened so as to form a three-dimensional glass plate having a constant thickness. Further, the process includes a “cooling process” in which the molded state and the glass material are cooled to a temperature lower than the glass transition temperature after the thermoforming process, and a three-dimensional shape having a constant thickness is formed. Get a glass plate. The three-dimensional glass plate having a certain thickness has a (virtual) first region and a (virtual) second region that are formed when a “glass plate thickness-reducing step” described later is performed. And obtaining a shape in which the extending direction of the (virtual) first region and the extending direction of the (virtual) second region are different by the bending step. In addition, the broken line shown in FIG.10 (b) is a glass boundary line deleted at the next "glass plate thickness-reduction process."

図10(c)は、偏肉化した三次元形状のガラス板の断面模式図であり、一定厚の三次元形状のガラス板の第1の領域を含む部分を薄くする「ガラス板偏肉化工程」を説明する図でもある。該工程は、得られた一定厚の三次元形状のガラス板について、(仮想の)第1の領域を含む部分を薄型化するように、砥石による「機械加工」(CNC加工)を施す例が挙げられる。また、該工程は、表面を研磨する「研磨加工」を含んでもよく、上記の「機械加工」と「研磨加工」の順番や回数は任意に実施できる。   FIG. 10C is a schematic cross-sectional view of a three-dimensional glass plate having an uneven thickness, in which a portion including the first region of the three-dimensional glass plate having a certain thickness is thinned. It is also a figure explaining a process. In this process, an example of performing “machining” (CNC processing) with a grindstone so as to thin the portion including the (virtual) first region on the obtained three-dimensional glass plate having a constant thickness. Can be mentioned. Further, the step may include “polishing” for polishing the surface, and the order and number of times of the above “machining” and “polishing” can be arbitrarily performed.

研磨加工は、例えば、第1の領域を含む部分に対して所定の厚さに調整するように、ラッピング、ポリッシング、エッチングのうち少なくとも1つの研磨方法を使用できる。さらに、研磨加工は、第1の領域を含む部分において、第1面2、第2面3のうち少なくとも一方に対して実施してもよく、研磨加工の容易性から、第1面2に対してのみ実施してもよい。また、製造方法2は、その後、後述する化学強化処理工程を含む。   For the polishing process, for example, at least one of a lapping method, a polishing method, and an etching method can be used so as to adjust a predetermined thickness with respect to a portion including the first region. Further, the polishing process may be performed on at least one of the first surface 2 and the second surface 3 in the portion including the first region. From the ease of polishing process, the polishing process may be performed on the first surface 2. May be implemented only. Moreover, the manufacturing method 2 contains the chemical strengthening process process mentioned later after that.

<製造方法3>
図11(a)および(b)は、本実施形態に係る三次元形状のガラス板を得る、製造方法の他の一例(以下「製造方法3」という。)を説明するための模式図であり、図11(a)そして、図11(b)の流れにしたがって製造する。
<Manufacturing method 3>
FIGS. 11A and 11B are schematic views for explaining another example of the manufacturing method (hereinafter referred to as “manufacturing method 3”) for obtaining the three-dimensional glass plate according to the present embodiment. 11 (a) and FIG. 11 (b).

図11(a)は、厚さが一定の平板ガラスの断面模式図であり「平板ガラスを準備する工程」を説明する図でもある。該工程は、製造方法1における「平板ガラスを準備する工程」と同じであり、詳細の説明を省略する。   FIG. 11A is a schematic cross-sectional view of a flat glass having a constant thickness, and is also a diagram for explaining “a step of preparing a flat glass”. This step is the same as the “step of preparing flat glass” in the production method 1, and detailed description thereof is omitted.

図11(b)は、偏肉化した三次元形状のガラス板の断面模式図であり、平板ガラス板を、凸型と凹型を有する(不図示の)成形金型を用いて、該偏肉化した三次元形状のガラス板の形状に曲げる「ガラス板曲げ偏肉化工程」を説明する図でもある。該工程は、平板ガラス板を凸型と凹型との間に挟持した状態で、成形金型をガラス材料の軟化点以上まで加熱して成形する「加熱成形工程」を含む。該加熱成形工程は、ガラス材料が軟化した状態で成形金型を加圧して偏肉化した三次元形状のガラス板となるように成形する。さらに、該工程は、加熱成形工程後、成形した状態を保持して、成形金型およびガラス材料をガラス転移温度よりも低い温度に冷却する「冷却工程」を含み、偏肉化した三次元形状のガラス板を得る。偏肉化した三次元形状のガラス板は、第1の領域とその外側にある第2の領域を有し、曲げ工程により、第1の領域の延伸方向と第2の領域の延伸方向とが異なる形状を得る。   FIG. 11B is a schematic cross-sectional view of a three-dimensional glass plate that is unevenly thickened, and the flat glass plate is formed by using a molding die (not shown) having a convex mold and a concave mold. It is also a figure explaining the "glass plate bending thickness increasing process" bent to the shape of the three-dimensional shape glass plate which became. The step includes a “heating molding step” in which a molding die is heated to a temperature equal to or higher than the softening point of the glass material while the flat glass plate is sandwiched between the convex mold and the concave mold. In the heat forming step, the glass material is formed into a three-dimensional glass plate that has been unevenly pressed by pressurizing the molding die in a softened state. Further, the process includes a “cooling process” in which the molded state and the glass material are cooled to a temperature lower than the glass transition temperature after the thermoforming process, and the three-dimensional shape is unevenly thickened. Get a glass plate. The uneven-thickened three-dimensional glass plate has a first region and a second region outside the first region, and the stretching direction of the first region and the stretching direction of the second region are determined by a bending process. Get different shapes.

なお、ガラス板曲げ偏肉化工程は、冷却工程後、さらに、上述の製造方法1のように、偏肉化した三次元形状のガラス板表面形状を所望の形状に精密加工する「表面加工工程」を含んでもよい。表面加工工程は、上述の「機械加工」と「研磨加工」の少なくともいずれか一方を含み、これらの順番や回数は任意に実施できる。また、製造方法3は、その後、後述する化学強化処理工程を含む。   In addition, the glass plate bending uneven thickness process is a “surface processing process” in which, after the cooling process, the surface profile of the three-dimensional glass sheet having an uneven thickness is precisely processed into a desired shape as in manufacturing method 1 described above. May be included. The surface processing step includes at least one of the above-described “machining” and “polishing”, and the order and the number of times can be arbitrarily performed. Moreover, the manufacturing method 3 contains the chemical strengthening process process mentioned later after that.

<化学強化処理工程>
ガラス板1は、化学強化ガラスである。化学強化ガラスは、ガラス表面にイオン交換により形成された圧縮応力層を有するガラスである。例えば、大きなイオン半径の金属イオン(例えば、Kイオン)を含む金属塩(例えば硝酸カリウム)の溶液に、ガラス板をガラス転移温度以下の温度で接触させる化学強化処理を適用する。化学強化処理により、三次元形状のガラス板の表面において、イオン交換が行われ、化学強化が進行する。例えば、ガラス板中のイオン半径が小さなアルカリ金属イオン(例えば、Liイオン及び/またはNaイオン)をイオン半径のより大きい他のアルカリイオン(例えば、Naイオン及び/またはKイオン)に置換することにより、ガラスの表面に圧縮応力層が形成される。
<Chemical strengthening process>
The glass plate 1 is chemically strengthened glass. Chemically tempered glass is glass having a compressive stress layer formed on the glass surface by ion exchange. For example, a chemical strengthening treatment in which a glass plate is brought into contact with a solution of a metal salt (for example, potassium nitrate) containing metal ions (for example, K ions) having a large ion radius at a temperature lower than the glass transition temperature is applied. By chemical strengthening treatment, ion exchange is performed on the surface of the three-dimensional glass plate, and chemical strengthening proceeds. For example, by replacing alkali metal ions (for example, Li ions and / or Na ions) having a small ionic radius in a glass plate with other alkali ions (for example, Na ions and / or K ions) having a larger ionic radius. A compressive stress layer is formed on the surface of the glass.

本実施形態のガラス板1は、例えば、リチウムを含有する三次元形状のガラス板を硝酸塩および硫酸塩の少なくとも一方を含有する無機塩組成物と接触させる。このように、三次元形状のガラス板に含まれるリチウムイオンと、無機塩組成物に含まれるリチウムイオンよりイオン半径の大きいイオンと、をイオン交換させる工程を含めることで、圧縮応力層を深く形成できる。なお、本明細書において、無機塩組成物は溶解した状態で用いるので、単に「溶融塩」ともいい、同義として扱う。   In the glass plate 1 of the present embodiment, for example, a three-dimensional glass plate containing lithium is brought into contact with an inorganic salt composition containing at least one of nitrate and sulfate. In this way, a compression stress layer is formed deeply by including a step of ion exchange between lithium ions contained in the three-dimensional glass plate and ions having a larger ion radius than lithium ions contained in the inorganic salt composition. it can. In this specification, since the inorganic salt composition is used in a dissolved state, it is also simply referred to as “molten salt” and is treated as synonymous.

無機塩組成物は、硝酸塩および硫酸塩の少なくとも一方を含有する。硝酸塩としては、例えば、硝酸ナトリウム、硝酸カリウムが挙げられる。硫酸塩としては、例えば、硫酸ナトリウム、硫酸カリウム、ナトリウム硫酸塩が挙げられる。   The inorganic salt composition contains at least one of nitrate and sulfate. Examples of the nitrate include sodium nitrate and potassium nitrate. Examples of the sulfate include sodium sulfate, potassium sulfate, and sodium sulfate.

また、無機塩組成物は、本発明の効果を阻害しない範囲で、その他の成分を含有してもよい。その他の成分としては、例えば、塩化ナトリウム、ホウ酸ナトリウム、ナトリウム塩化塩、ナトリウムホウ酸塩、塩化カリウム、ホウ酸カリウム、炭酸カリウム、炭酸ナトリウム、重炭酸ナトリウム等が挙げられる。これらは単独で添加しても、複数種を組み合わせて添加してもよい。   The inorganic salt composition may contain other components as long as the effects of the present invention are not impaired. Examples of other components include sodium chloride, sodium borate, sodium chloride, sodium borate, potassium chloride, potassium borate, potassium carbonate, sodium carbonate, sodium bicarbonate and the like. These may be added alone or in combination of two or more.

無機塩組成物にガラスを接触させる方法としては、ペースト状の無機塩組成物をガラスに塗布する方法、無機塩組成物の水溶液をガラスに噴射する方法、融点以上に加熱した無機塩組成物の溶融塩の塩浴にガラスを浸漬させる方法などが挙げられるが、これらの中では無機塩組成物の溶融塩にガラスを浸漬させる方法が好ましい。   As a method of bringing glass into contact with the inorganic salt composition, a method of applying a paste-like inorganic salt composition to glass, a method of spraying an aqueous solution of an inorganic salt composition onto glass, an inorganic salt composition heated above its melting point Although the method of immersing glass in the salt bath of molten salt is mentioned, Among these, the method of immersing glass in the molten salt of an inorganic salt composition is preferable.

無機塩組成物の溶融塩にガラスを浸漬させる化学強化処理は、例えば、次の手順で行う。まず、ガラスを予熱し、前記溶融塩を、化学強化処理を行う温度に調整する。次いで、予熱したガラスを溶融塩中に所定の時間浸漬した後、ガラスを溶融塩中から引き上げ、放冷する。ガラスの予熱温度は、化学強化処理温度に依存するが、一般に100℃以上が好ましい。化学強化処理は1回以上であればよく、異なる条件で2回以上実施してもよい。   The chemical strengthening treatment for immersing the glass in the molten salt of the inorganic salt composition is performed, for example, by the following procedure. First, glass is preheated and the molten salt is adjusted to a temperature at which chemical strengthening treatment is performed. Next, the preheated glass is immersed in the molten salt for a predetermined time, and then the glass is pulled up from the molten salt and allowed to cool. The preheating temperature of the glass depends on the chemical strengthening treatment temperature, but is generally preferably 100 ° C. or higher. The chemical strengthening treatment may be performed once or more, and may be performed twice or more under different conditions.

化学強化処理を行う温度は、被強化ガラスの歪点(通常500〜600℃)以下が好ましく、より高い圧縮応力層の深さ(DOL;Depth of Layer)を得るためには特に350℃以上が好ましく、380℃以上がより好ましく、400℃以上がさらに好ましい。また、化学強化処理を行う温度は、溶融塩の劣化・分解を抑制する点から、500℃以下が好ましく、480℃以下がより好ましく、450℃以下がさらに好ましい。なお、化学強化処理を行う時間として、ガラスの無機塩組成物への接触時間は1〜24時間が好ましく、2〜20時間がより好ましい。   The temperature at which the chemical strengthening treatment is carried out is preferably not more than the strain point (usually 500 to 600 ° C.) of the glass to be tempered. It is preferably 380 ° C. or higher, more preferably 400 ° C. or higher. In addition, the temperature at which the chemical strengthening treatment is performed is preferably 500 ° C. or less, more preferably 480 ° C. or less, and even more preferably 450 ° C. or less from the viewpoint of suppressing deterioration / decomposition of the molten salt. In addition, as time to perform a chemical strengthening process, 1 to 24 hours are preferable and, as for the contact time to the inorganic salt composition of glass, 2 to 20 hours are more preferable.

本実施形態のガラス板1の圧縮応力層の深さ、圧縮応力および引張応力の関係は、横軸にガラスの厚さ、縦軸に圧縮応力/引張応力とした、図5(a)および(b)に示されるグラフにより説明できる。図5(a)は1回の化学強化処理により得られるガラス板の厚さに対する応力分布を示すグラフである。また、図5(b)は1段階目と2段階目とで化学強化処理の条件を変えた、2回の化学強化処理により得られるガラス板の厚さに対する応力分布を示すグラフである。   The relationship between the depth of the compressive stress layer, the compressive stress, and the tensile stress of the glass plate 1 of the present embodiment is shown in FIGS. This can be explained by the graph shown in b). Fig.5 (a) is a graph which shows the stress distribution with respect to the thickness of the glass plate obtained by one chemical strengthening process. FIG. 5B is a graph showing the stress distribution with respect to the thickness of the glass plate obtained by two chemical strengthening treatments in which the conditions of the chemical strengthening treatment are changed in the first and second stages.

図5(a)、図5(b)に示されるように、ガラス板1は、少なくともユーザの手が触れる側の表面である第1面2に圧縮応力層ができ、ガラス内部には引張応力が形成される。ここで、ガラス表面(第1面2)からの深さ方向をx(単位[μm])とし、xに対応する圧縮応力をσとする。圧縮応力σがゼロになるガラス表面からの距離を圧縮応力深さL(単位[μm])とし、内部の引張応力をCT(Center Tension:単位[MPa])とし、表面の圧縮応力σをCS(Compressive Stress:単位[MPa])とする。   As shown in FIGS. 5 (a) and 5 (b), the glass plate 1 has a compressive stress layer on at least the first surface 2, which is the surface on the side touched by the user's hand, and a tensile stress is formed inside the glass. Is formed. Here, the depth direction from the glass surface (first surface 2) is x (unit [μm]), and the compressive stress corresponding to x is σ. The distance from the glass surface at which the compressive stress σ becomes zero is the compressive stress depth L (unit [μm]), the internal tensile stress is CT (Center Tension: unit [MPa]), and the surface compressive stress σ is CS. (Compressive Stress: unit [MPa]).

本実施形態のガラス板1は、第1面2から深さ方向に圧縮応力層を備え、第1の領域10の圧縮応力層の深さLよりも第2の領域20の圧縮応力層の深さLの方が深い部分を有することで第2の領域20での強度が増す。なお、第2の領域20の圧縮応力層は、第1面2に加え、第2面3や端面21から深さ方向に備えられてもよいが、とくにことわりがない場合、第2の領域の圧縮応力層の深さLは、第1面2からの圧縮応力層の深さとする。本明細書において、[dσ/dx]x=L(単位[MPa/μm])は、圧縮応力層の深さLにおける圧縮応力値σのカーブ曲線の傾きを示す。この傾きが小さいことでガラスの厚さの違いによる圧縮応力層の深さの違いが大きくなる。 The glass plate 1 of this embodiment includes a compressive stress layer in the depth direction from the first surface 2, than the depth L A compressive stress layer in the first region 10 of the compression stress layer of the second region 20 intensity at the second region 20 by direction of depth L B having a deep portion increases. The compressive stress layer in the second region 20 may be provided in the depth direction from the second surface 3 or the end surface 21 in addition to the first surface 2, but unless otherwise specified, the depth L B of the compressive stress layer, the depth of the compressive stress layer from the first surface 2. In this specification, [dσ / dx] x = L (unit [MPa / μm]) indicates the slope of the curve of the compressive stress value σ at the depth L of the compressive stress layer. When this inclination is small, the difference in the depth of the compressive stress layer due to the difference in the thickness of the glass becomes large.

本実施形態のガラス板1は、表面から深さ方向における圧縮応力値σのカーブ曲線の傾き[dσ/dx]x=Lが好ましくは−2以上([dσ/dx]x=L≧−2)であれば圧縮応力層が深くなり、ガラス板1の耐衝撃性が強固になる。また、[dσ/dx]x=Lはより好ましくは−1以上であり、さらに好ましくは−0.5以上である。なお、[dσ/dx]x=Lは負の値である。 In the glass plate 1 of this embodiment, the slope [dσ / dx] x = L of the compressive stress value σ in the depth direction from the surface is preferably −2 or more ([dσ / dx] x = L ≧ −2). ), The compressive stress layer becomes deep, and the impact resistance of the glass plate 1 becomes strong. [Dσ / dx] x = L is more preferably −1 or more, and further preferably −0.5 or more. [Dσ / dx] x = L is a negative value.

ガラス板1が、例えば携帯情報端末50のカバーガラスとして用いられる場合、携帯情報端末50の落下、外部からの衝撃等によりガラス板1が破損することがある。その際、ガラス板1は、第1の領域10に比べると第2の領域20の方が強い衝撃を受けやすいため、第2の領域20を起点として破損する現象が生じやすい。そのため、本実施形態のガラス板は、第2の領域の化学強化の強度レベルが高いことで破損を低減できる。   When the glass plate 1 is used as, for example, a cover glass of the portable information terminal 50, the glass plate 1 may be damaged due to dropping of the portable information terminal 50, impact from the outside, or the like. At this time, the glass plate 1 is more susceptible to a strong impact in the second region 20 than in the first region 10, and therefore, a phenomenon that the glass plate 1 is damaged starting from the second region 20 is likely to occur. Therefore, the glass plate of this embodiment can reduce breakage because the strength level of chemical strengthening in the second region is high.

本実施形態のガラス板1は、第2の領域20が、第1の領域10に比較して厚く形成されている場合(W>W)においても、圧縮応力層の深さを深く(L>L)形成できる。本実施形態のガラス板1は、ガラス板全体が強化され、特に、第2の領域20で圧縮応力層の深さLを深くでき、ガラス板1の周辺での耐衝撃性の向上も図れる。そのため、ガラス板1は、落下や衝撃に強くなり、例えば携帯情報端末50用のカバーガラス板として好適である。 In the glass plate 1 of the present embodiment, even when the second region 20 is formed thicker than the first region 10 (W B > W A ), the depth of the compressive stress layer is increased ( L B > L A ) can be formed. The glass plate 1 of this embodiment, the entire glass plate is reinforced, in particular, can increase the depth L B of the compressive stress layer in the second region 20, thereby also improving the impact resistance at the periphery of the glass plate 1 . Therefore, the glass plate 1 is resistant to dropping and impact, and is suitable as a cover glass plate for the portable information terminal 50, for example.

本実施形態のガラス板1は、第1の領域10の厚さWの位置における第1面2からの圧縮応力層の深さをLとし、第2の領域20の厚さWの位置における第1面2からの圧縮応力層の深さをLとすると、L及びLは80μm以上であり、L/L≧1.2の関係式を満たすことが好ましい。L及びLはより好ましくは90μm以上であり更に好ましくは100μm以上である。L/L≧1.2の関係式を満たすことにより、第2の領域20の圧縮応力層の深さが第1の領域10の深さよりも深くなり、第2の領域20の強度がより向上して割れにくくなる。L/Lはより好ましくは1.3以上、さらに好ましくは1.4以上である。L/Lの上限は特に制限されないが典型的に3以下が好ましく、更に好ましくは2以下である。 The glass plate 1 of this embodiment, the depth of the compressive stress layer from the first surface 2 at the position of the thickness W A of the first region 10 and L A, the thickness W B of the second region 20 When the depth of the compressive stress layer from the first surface 2 at the position is L B , L A and L B are 80 μm or more, and it is preferable that the relational expression L B / L A ≧ 1.2 is satisfied. L A and L B are more preferably 90 μm or more, and still more preferably 100 μm or more. By satisfying the relational expression of L B / L A ≧ 1.2, the depth of the compressive stress layer in the second region 20 becomes deeper than the depth of the first region 10, and the strength of the second region 20 is increased. It improves and becomes hard to break. L B / L A is more preferably 1.3 or more, and still more preferably 1.4 or more. The upper limit of L B / L A is not particularly limited, but is typically preferably 3 or less, and more preferably 2 or less.

本実施形態のガラス板1は、第1の領域10の厚さWの位置における引張応力をCTとし、第2の領域20の厚さWの位置における引張応力をCTとしたときに、CT及びCTは、|CT|>|CT|の関係式を満たすことが好ましい。|CT|>|CT|の関係式を満たすことにより、第2の領域20が第1の領域10に比べ割れの原因となる引張応力が低くなり、衝撃等での破損が軽減できる。 The glass plate 1 of this embodiment, the tensile stress at the position of the thickness W A of the first region 10 and CT A, when the tensile stress at the position of the thickness W B of the second region 20 was set to CT B In addition, it is preferable that CT A and CT B satisfy the relational expression of | CT A |> | CT B |. When the relational expression | CT A |> | CT B | is satisfied, the tensile stress that causes cracking in the second region 20 is lower than that in the first region 10, and damage due to impact or the like can be reduced.

本実施形態のガラス板1は、第1の領域10における圧縮応力層の深さLと、第1の領域10の厚さWとが、L/W≧0.15の関係式を満たすことが好ましく、より好ましくはL/W≧0.17であり、さらに好ましくはL/W≧0.19である。L/W≧0.15であることにより、耐衝撃性の向上が図れる。L/Wの上限は特に制限されないが、典型的には0.25以下である。 The glass plate 1 of this embodiment, the depth L A compressive stress layer in the first region 10, the thickness W A of the first region 10, L A / W A ≧ 0.15 relation It is preferable that L A / W A ≧ 0.17, and more preferably L A / W A ≧ 0.19. When L A / W A ≧ 0.15, the impact resistance can be improved. The upper limit of L A / W A is not particularly limited, but is typically 0.25 or less.

ガラス表面の圧縮応力(CS)と圧縮応力層の深さ(DOL)は散乱光光弾性応力計等の応力測定装置により測定できる。後述する実施例で用いた散乱光光弾性応力計(型式SLP−1000:折原製作所)の原理について、図6に基づいて説明する。   The compressive stress (CS) on the glass surface and the depth (DOL) of the compressive stress layer can be measured by a stress measuring device such as a scattered light photoelastic stress meter. The principle of the scattered light photoelastic stress meter (model SLP-1000: Orihara Seisakusho) used in Examples described later will be described with reference to FIG.

応力測定装置100は、レーザ光源101と、偏光部材102と、偏光位相差可変部材103と、光供給部材104と、光変換部材105と、撮像素子106と、演算部107と、光波長選択部材108とを備える。測定するガラス板である被測定体120は、光供給部材104の上部に設置され、レーザ光源101から出射するレーザ光110が被測定体120に入射して測定が行われる。偏光位相差可変部材103は、レーザ光110の偏光位相差を、当該前記レーザ光110の波長に対して1波長以上可変する。   The stress measurement apparatus 100 includes a laser light source 101, a polarizing member 102, a polarization phase difference variable member 103, a light supply member 104, a light conversion member 105, an image sensor 106, an arithmetic unit 107, and an optical wavelength selection member. 108. A measured object 120, which is a glass plate to be measured, is installed on the light supply member 104, and laser light 110 emitted from the laser light source 101 is incident on the measured object 120 and measurement is performed. The polarization phase difference variable member 103 changes the polarization phase difference of the laser light 110 by one or more wavelengths with respect to the wavelength of the laser light 110.

撮像素子106は、偏光位相差を可変されたレーザ光110が被測定体120に入射されたことにより発する散乱光を、所定の時間間隔で複数回撮像し、複数の画像を取得する。また、応力測定装置100は、図示しない演算部を備え、演算部は、複数の画像を用いて散乱光の周期的な輝度変化を測定し、輝度変化の位相変化を算出し、位相変化に基づき被測定体120の表面からの深さ方向の応力分布を算出する。   The image sensor 106 captures a plurality of images of the scattered light emitted when the laser beam 110 whose polarization phase difference is changed is incident on the measurement object 120 at predetermined time intervals, and acquires a plurality of images. The stress measurement apparatus 100 includes a calculation unit (not shown). The calculation unit measures a periodic luminance change of scattered light using a plurality of images, calculates a phase change of the luminance change, and based on the phase change. The stress distribution in the depth direction from the surface of the measurement object 120 is calculated.

また、応力測定装置100の、演算手段140は、図6(b)に示すとおり、輝度変化測定手段141と、位相変化算出手段142と、応力分布算出手段143とを有する。   Further, the calculation means 140 of the stress measurement apparatus 100 includes a luminance change measurement means 141, a phase change calculation means 142, and a stress distribution calculation means 143, as shown in FIG. 6B.

応力測定装置100は、以下の工程順で測定する。
(1)レーザ光110を偏光位相差可変部材103で偏光位相差する偏光位相差工程(ステップS201)。
(2)光供給部材104で被測定体120にレーザ光110を供給する光供給工程(ステップS202)。
(3)被測定体120からの散乱光を撮像素子106で撮像する撮像工程(ステップS203)。
(4)演算部107で撮像された散乱光からの周期的な輝度変化を測定する輝度変化測定工程(ステップS204)。
(5)演算部107で位相変化を算出する位相変化算出工程(ステップS205)。
(6)演算部107で応力分布を算出する応力分布算出工程(ステップS206)。
The stress measuring apparatus 100 measures in the following process order.
(1) A polarization phase difference process (step S201) in which the laser beam 110 is polarized and phase-differed by the polarization phase difference variable member 103.
(2) A light supply step of supplying the laser beam 110 to the measurement object 120 by the light supply member 104 (step S202).
(3) An imaging step of imaging the scattered light from the measurement object 120 with the imaging device 106 (step S203).
(4) A luminance change measurement step for measuring a periodic luminance change from the scattered light imaged by the computing unit 107 (step S204).
(5) A phase change calculation step (step S205) in which the calculation unit 107 calculates the phase change.
(6) A stress distribution calculation step (step S206) in which the calculation unit 107 calculates the stress distribution.

ここで実施例と比較例の試作条件(表1)、測定結果(表2)及び圧縮応力層の深さと板厚との関係を示す図(図7)に基づいて、本実施形態のガラス板1の優位性を説明する。なお、表1において、「−」とは、2段階目の化学強化処理を実施していないことを示す。また、実施例4について第1の領域10と第2の領域20についてCS値とDOL値を比較したグラフを作成した。   Here, based on the experimental conditions (Table 1) of the examples and comparative examples, the measurement results (Table 2), and the diagram showing the relationship between the depth of the compressive stress layer and the plate thickness (FIG. 7), the glass plate of the present embodiment The advantage of 1 will be described. In Table 1, “-” indicates that the second-stage chemical strengthening treatment is not performed. Moreover, the graph which compared the CS value and DOL value about the 1st area | region 10 and the 2nd area | region 20 about Example 4 was created.

(実施例1〜8)
実施例1〜8は、LiO、Al、SiOを含有するガラス板(表2において、LiAlSiと示す。)を、表1に示す条件により化学強化処理して試料を作製した。具体的に実施例1〜8および後述する比較例1〜3は、図1(a)に示すように第1の領域10の延伸方向に対する第2の領域20の延伸方向が、略直交するように曲げ加工されており、第2面3と略平行な端面21を有するガラス板の形状とした。なお、図1(a)のガラス板1の第2の領域20のうち、垂直方向に延伸する部分の水平方向の幅(厚さ)は略一定の形状とした。表2に示す通り、実施例1〜実施例3は、第1の領域10の厚さWが0.6mm、第2の領域20の厚さWが1.2〜1.6mmであり、実施例4〜実施例8は、第1の領域10の厚さWが0.8mm、第2の領域20の厚さWが1.2〜2.0mmである。なお、表2において、圧縮応力層の深さL、傾き、(第1の領域の)CS、CTおよびDOLは、いずれも、第1面2における値を示す。
(Examples 1-8)
In Examples 1 to 8, a glass plate containing Li 2 O, Al 2 O 3 , and SiO 2 (shown as LiAlSi in Table 2) was subjected to chemical strengthening treatment under the conditions shown in Table 1 to prepare a sample. . Specifically, in Examples 1 to 8 and Comparative Examples 1 to 3 to be described later, the extending direction of the second region 20 with respect to the extending direction of the first region 10 is substantially orthogonal as shown in FIG. And a glass plate having an end surface 21 substantially parallel to the second surface 3. In addition, the horizontal width (thickness) of the portion extending in the vertical direction in the second region 20 of the glass plate 1 in FIG. As shown in Table 2, Examples 1 to 3, the thickness W A of the first region 10 is 0.6 mm, the thickness W B of the second region 20 is located at 1.2~1.6mm , examples 4 8, the thickness W a of the first region 10 is 0.8 mm, the thickness W B of the second region 20 is 1.2 to 2.0 mm. In Table 2, the depth L, the inclination, the CS, CT, and DOL (in the first region) of the compressive stress layer all indicate values on the first surface 2.

実施例1〜8および、後述する比較例1〜3は、「製造方法2」に基づき、化学強化ガラス板を作製した。化学強化処理前の偏肉化した三次元形状ガラス板の形状は、下記の方法を用いた。
(1)平板ガラスを準備する工程
まず、フロート法を用いて、板厚が0.7mm、1.2mm、1.4mm、1.6mm、2.0mm一定の平板ガラスを準備した。ガラス材料は、AGC株式会社製のDT−STAR(転移温度:549℃、歪点:508℃)を用いた。
(2)ガラス板曲げ偏肉化工程
次に、外形寸法が180mm×120mm×30mmの金型として、凸型と凹型との体積が略同一のものを用いて、凸型と凹型との間に、準備した平板ガラスを挟持させた状態で、ガラスの粘性係数が109.5[Pa・s]となるまで金型を昇温させた。次いで、その温度を維持した状態で、プレス圧の最大値が0.55MPaとなるようにガラスを加圧して成形した。その後、プレス圧の最大値が0.5MPaでガラスを加圧した状態でガラスの歪点まで冷却し、常温まで放冷した。このとき得られた三次元形状のガラス板は、(第1の領域表面の法線方向からの)平面視で、150mm×80mmの略長方形であり、第1の領域の全周にわたって表面(第1面2)の湾曲部の曲率半径が5mmであった。なお、三次元形状のガラス板は、表面(第1面2)の中心部は曲率半径100mm超の平坦部を有し、曲げ深さ(第1面2から端面21までの長さ)は約3.2mmとした。
(3)表面加工工程
最後に、常温まで放冷した後の三次元形状のガラス板は、上記の平坦部について、所定の厚さだけCNC加工により研削し、曲面状をなす第2の領域が所定の形状になるように研磨加工した。その後、三次元形状のガラス板を、酸化セリウム研磨剤を用いて、第1面2、第2面3、端面21と全ての表面を研磨して平滑化させた表面形状を得た。作製した、実施例1〜8、比較例1〜3の三次元形状のガラス板の各領域における厚さは、表2に示す通りである。
In Examples 1 to 8 and Comparative Examples 1 to 3 to be described later, chemically strengthened glass plates were produced based on “Production Method 2”. The following method was used for the shape of the unevenly three-dimensional glass plate before chemical strengthening treatment.
(1) Step of preparing flat glass First, flat glass having a plate thickness of 0.7 mm, 1.2 mm, 1.4 mm, 1.6 mm, and 2.0 mm was prepared using the float method. As the glass material, DT-STAR (transition temperature: 549 ° C., strain point: 508 ° C.) manufactured by AGC Corporation was used.
(2) Glass plate bending uneven thickness step Next, as a mold having an outer dimension of 180 mm x 120 mm x 30 mm, a convex mold and a concave mold having substantially the same volume are used. In the state where the prepared flat glass was sandwiched, the mold was heated until the viscosity coefficient of the glass reached 10 9.5 [Pa · s]. Next, while maintaining the temperature, the glass was pressed and molded so that the maximum value of the press pressure was 0.55 MPa. Then, in the state which pressed the glass with the maximum value of 0.5 MPa of press pressure, it cooled to the strain point of glass, and stood to cool to normal temperature. The three-dimensional glass plate obtained at this time has a substantially rectangular shape of 150 mm × 80 mm in plan view (from the normal direction of the surface of the first region), and has a surface (first surface) over the entire circumference of the first region. The curvature radius of the curved portion of the first surface 2) was 5 mm. The three-dimensional glass plate has a flat portion with a radius of curvature of more than 100 mm at the center of the surface (first surface 2), and the bending depth (the length from the first surface 2 to the end surface 21) is approximately. The thickness was 3.2 mm.
(3) Surface processing step Finally, the three-dimensional glass plate after being allowed to cool to room temperature is ground by CNC processing for a predetermined thickness with respect to the flat portion, and a second region having a curved surface is formed. Polishing was performed so as to obtain a predetermined shape. Thereafter, a three-dimensional glass plate was polished and smoothed by using a cerium oxide abrasive to polish the first surface 2, the second surface 3, the end surface 21 and all the surfaces. The thickness in each area | region of the produced three-dimensional glass plate of Examples 1-8 and Comparative Examples 1-3 is as showing in Table 2.

表1に示す通り、化学強化処理の条件として、実施例1は、1段階目において、NaNO 100%の溶融塩に450℃にて2.5時間浸漬させた後、2段階目において、KNO 100%の溶融塩に415℃にて2時間浸漬させた。実施例2及び実施例3は、実施例1と同じ条件とした。実施例4は、1段階目は実施例1と同じあるが、2段階目は、KNO 100%の溶融塩に425℃にて1.5時間浸漬させた。実施例5、実施例6及び実施例8は実施例4と同じ条件とした。実施例7は、1段階目の浸漬時間を20時間とした以外は実施例4と同じ条件とした。 As shown in Table 1, as the conditions for the chemical strengthening treatment, Example 1 was obtained by immersing in NaNO 3 100% molten salt at 450 ° C. for 2.5 hours in the first stage, and then in the second stage, KNO. 3 Dipped in 100% molten salt at 415 ° C. for 2 hours. The conditions in Example 2 and Example 3 were the same as in Example 1. Example 4 is the same as Example 1 in the first step, but in the second step, it was immersed in molten salt of 100% KNO 3 at 425 ° C. for 1.5 hours. Example 5, Example 6 and Example 8 were made the same conditions as Example 4. Example 7 was the same as Example 4 except that the first stage immersion time was 20 hours.

(比較例1)
比較例1は、Al、SiOを含有するガラス板(表2においてAlSiと示す。)を表1に示す条件により化学強化処理をして試料を作製した。表2に示す通り、比較例1の第1の領域10の厚さWは0.6mmであり、第2の領域20の厚さWは、1.2mmである。表1に示す通り、化学強化処理の条件として、比較例1は、KNO 97質量%およびNaNO 3質量%の混合溶融塩に435℃にて4.5時間浸漬し、2段階目は実施しなかった。
(Comparative Example 1)
In Comparative Example 1, a glass plate containing Al 2 O 3 and SiO 2 (shown as AlSi in Table 2) was subjected to chemical strengthening treatment under the conditions shown in Table 1 to prepare a sample. As shown in Table 2, the thickness W A of the first region 10 of Comparative Example 1 is 0.6 mm, the thickness W B of the second region 20 is 1.2 mm. As shown in Table 1, as a condition for chemical strengthening treatment, Comparative Example 1 was immersed in a mixed molten salt of 97% by mass of KNO 3 and 3 % by mass of NaNO 3 at 435 ° C. for 4.5 hours, and the second stage was performed. I did not.

(比較例2)
比較例2は、LiO、Al、SiOを含有するガラス板を表1に示す条件により化学強化処理をして試料を作製した。表2に示す通り、比較例2の第1の領域10の厚さWは0.6mmであり、第2の領域20の厚さWは1.2mmである。表1に示す通り、比較例2は、KNO 100%の溶融塩に410℃にて73時間浸漬し、2段階目は実施しなかった。
(Comparative Example 2)
In Comparative Example 2, a glass plate containing Li 2 O, Al 2 O 3 , and SiO 2 was subjected to chemical strengthening treatment under the conditions shown in Table 1 to prepare a sample. As shown in Table 2, the thickness W A of the first region 10 of Comparative Example 2 is 0.6 mm, the thickness W B of the second region 20 is 1.2 mm. As shown in Table 1, Comparative Example 2 was immersed in a molten salt of 100% KNO 3 at 410 ° C. for 73 hours, and the second step was not performed.

(比較例3)
比較例3は、LiO、Al、SiOを含有するガラス板を表1に示す条件により化学強化処理をして試料を作製した。表2に示す通り、比較例3の第1の領域10の厚さWは0.6mmであり、第2の領域20の厚さWは、0.7mmである。表1に示す通り、化学強化処理の条件として、比較例3は、1段階目において、NaNO 100%の溶融塩に450℃にて2.5時間浸漬させた後、2段階目において、KNO 100%の溶融塩に415℃にて2時間浸漬させた。
(Comparative Example 3)
In Comparative Example 3, a sample was prepared by subjecting a glass plate containing Li 2 O, Al 2 O 3 , and SiO 2 to chemical strengthening treatment under the conditions shown in Table 1. As shown in Table 2, the thickness W A of the first region 10 of Comparative Example 3 is 0.6 mm, the thickness W B of the second region 20 is 0.7 mm. As shown in Table 1, as a condition for the chemical strengthening treatment, Comparative Example 3 was immersed in a molten salt of NaNO 3 100% at 450 ° C. for 2.5 hours in the first stage and then KNO in the second stage. 3 Dipped in 100% molten salt at 415 ° C. for 2 hours.

以上の条件で作製した実施例及び比較例の試料について、散乱光光弾性応力計(折原製作所社製SLP−1000)、表面応力計(折原製作所社製FSM−6000)、または、複屈折イメージングシステム(株式会社東京インスツルメンツ製Abrio−IM)を用いてそれぞれ、圧縮応力CS、引張応力CT、圧縮応力層の深さL、圧縮応力値σを測定し、傾き[dσ/dx]x=Lを算出した。結果を表2、図7および図8に示す。なお、図7は、横軸をガラスの厚さ、縦軸を圧縮応力層の深さとし、ガラスが所定の厚さのときに最適な化学強化処理条件と同じ条件で、ガラスの厚さを変化させたときの、ガラスの厚さと圧縮応力層の深さとの関係を示したグラフである。図7において、実線は、ガラス板の厚さが0.6mmのときの最適な化学強化処理条件における関係、破線は、ガラス板の厚さが0.8mmのときの最適な化学強化処理条件における関係を示した。 About the sample of the Example and comparative example produced on the above conditions, a scattered light photoelastic stress meter (SLP-1000 by Orihara Manufacturing Co., Ltd.), a surface stress meter (FSM-6000 by Orihara Manufacturing Co., Ltd.), or a birefringence imaging system Compressive stress CS, tensile stress CT, compressive stress layer depth L, and compressive stress value σ are measured using (Abrio-IM manufactured by Tokyo Instruments Co., Ltd.), and the slope [dσ / dx] x = L is calculated. did. The results are shown in Table 2, FIG. 7 and FIG. In FIG. 7, the horizontal axis represents the glass thickness, the vertical axis represents the compression stress layer depth, and the glass thickness is changed under the same conditions as the optimum chemical strengthening treatment conditions when the glass has a predetermined thickness. It is the graph which showed the relationship between the thickness of glass, and the depth of a compressive-stress layer when it was made to do. In FIG. 7, the solid line represents the relationship in the optimum chemical strengthening treatment condition when the glass plate thickness is 0.6 mm, and the broken line represents the optimum chemical strengthening treatment condition when the glass plate thickness is 0.8 mm. The relationship was shown.

Figure 2019194142
Figure 2019194142

Figure 2019194142
Figure 2019194142

表2の実施例4における第2の領域20のCSは980(MPa)であり、CTは40(MPa)であり、DOLは190(μm)であった。なお、第2の領域20のCS、CTおよびDOLは、いずれも第1面2における値である。図7は、圧縮応力層の深さと第2の領域20の厚さとの関係を示すグラフである。また、図8は実施例4について、第1の領域10と第2の領域20の深さ方向と圧縮応力CSの関係を示すグラフである。   The CS of the second region 20 in Example 4 of Table 2 was 980 (MPa), CT was 40 (MPa), and DOL was 190 (μm). Note that CS, CT, and DOL of the second region 20 are all values on the first surface 2. FIG. 7 is a graph showing the relationship between the depth of the compressive stress layer and the thickness of the second region 20. FIG. 8 is a graph showing the relationship between the depth direction of the first region 10 and the second region 20 and the compressive stress CS in Example 4.

表2および図8に示すように、実施例4では圧縮応力層の深さLが深くなり、厚さWを厚くしても確実に圧縮応力層の深さLが深くなった。また、第2の領域20が第1の領域10に比較して厚く形成されている場合においても、第2の領域20の圧縮応力層の深さを深くできた。これは第1の領域と第2の領域を同時に同条件で化学強化処理した結果を示している。また、第1の領域10の圧縮応力層の深さLと、第2の領域20の圧縮応力層の深さLとが、L/L≧1.2の関係式を満たすことがわかる。 As shown in Table 2 and FIG. 8, in Example 4, the depth L of the compressive stress layer was increased, and the depth L of the compressive stress layer was reliably increased even when the thickness W was increased. Even when the second region 20 is formed thicker than the first region 10, the depth of the compressive stress layer in the second region 20 can be increased. This shows the result of chemically strengthening the first region and the second region simultaneously under the same conditions. Further, the depth L A compressive stress layer in the first region 10, the depth L B of the compressive stress layer in the second region 20, to satisfy the relationship of L B / L A ≧ 1.2 I understand.

第2の領域20の圧縮応力層の深さが第1の領域10の深さよりも深く、LおよびLがL/L≧1.2の関係式を満たすため、第2の領域20がより高強度になり割れにくくなる。ガラス板の強度を評価した結果、実施例は比較例と比較して、高い強度を示し、特に端部及び端面を起点とする割れの発生が抑制された。 Since the depth of the compressive stress layer in the second region 20 is deeper than the depth of the first region 10 and L A and L B satisfy the relational expression L B / L A ≧ 1.2, the second region 20 becomes stronger and is hard to break. As a result of evaluating the strength of the glass plate, the example showed higher strength than the comparative example, and in particular, the generation of cracks starting from the end portion and the end surface was suppressed.

また、図7に示すように、実施例4において、第1の領域10では、厚さWが増すと圧縮応力層が深くなることがわかる。第1の領域10の厚さWと第2の領域20の厚さWとの関係が、比較例3のようにあまり変わらない(比率1=1.17)と、圧縮応力層の深さの変化も少ない(比率2=1.11)。しかし、実施例1〜8のように比率1(W/W)が1.5以上であると、圧縮応力層の深さの比率2(L/L)が大きくなり、ガラス板1の強度がより向上する。 Further, as shown in FIG. 7, it can be seen that in Example 4, the compressive stress layer becomes deeper in the first region 10 as the thickness W increases. Relationship between the thickness W B of the thickness W A and the second region 20 of the first region 10 is not much different as in Comparative Example 3 (Ratio 1 = 1.17), the depth of the compressive stress layer There is also little change in the ratio (ratio 2 = 1.11). However, when the ratio 1 (W B / W A ) is 1.5 or more as in Examples 1 to 8, the depth ratio 2 (L B / L A ) of the compressive stress layer increases, and the glass plate The strength of 1 is further improved.

また、表2から、実施例1〜8のように圧縮応力の傾き[dσ/dL]x=Lが緩やかであり、[dσ/dL]x=L≧−2を満たすことにより、圧縮応力層の深さLがより深くなり、ガラス板1の耐衝撃性がより向上し、より強固になることがわかる。 Further, from Table 2, the compression stress layer [dσ / dL] x = L is gentle as in Examples 1 to 8 and satisfies [dσ / dL] x = L ≧ −2. It can be seen that the depth L of the glass becomes deeper, and the impact resistance of the glass plate 1 is further improved and becomes stronger.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

本発明の化学強化ガラス板及びその製造方法は、耐衝撃性が強いガラス板が求められる携帯情報端末や基板等の分野に最適である。   The chemically strengthened glass plate and the method for producing the same according to the present invention are optimal for the field of portable information terminals, substrates and the like where a glass plate having high impact resistance is required.

1 ガラス板
2 第1面
3 第2面
10 第1の領域
20 第2の領域
21 端面
30 湾曲部
CT 引張応力
CS 圧縮応力
L 圧縮応力層の深さ
W 厚さ
σ 圧縮応力値
DESCRIPTION OF SYMBOLS 1 Glass plate 2 1st surface 3 2nd surface 10 1st area | region 20 2nd area | region 21 End surface 30 Curved part CT Tensile stress CS Compressive stress L Compressive stress layer depth W Thickness σ Compressive stress value

Claims (16)

第1面と、
前記第1面と対向する第2面と、
前記第1面の接線の法線方向に厚さを有し、所定の前記厚さからなる第1の領域と、前記第1の領域の前記厚さよりも厚い領域を含む第2の領域とを備え、
前記第1の領域は、最も薄い部分の前記厚さを厚さWとしたとき、前記厚さWから厚さ1.1×Wに至るまでの連続した領域であり、
前記第2の領域は、1.1×W超の厚さを有する領域で、最も厚い部分の前記厚さをWとし、
前記第2の領域における圧縮応力層の深さが、前記第1の領域の圧縮応力層の深さよりも深く形成される部分を有し、
前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、 前記厚さWの位置の圧縮応力層の深さをLとし、前記厚さWの位置の圧縮応力層の深さをLとし、L及びLが、L/L≧1.2の関係式を満たす化学強化ガラス板。
The first side,
A second surface facing the first surface;
A first region having a thickness in a normal direction of a tangent to the first surface and having a predetermined thickness; and a second region including a region thicker than the thickness of the first region. Prepared,
Said first region, when the thinnest part thickness W A of the thickness of a continuous region up to a thickness of 1.1 × W A from the thickness W A,
It said second region is a region having a thickness of 1.1 × W A greater than the thickness of the thickest portion and W B,
The depth of the compressive stress layer in the second region has a portion formed deeper than the depth of the compressive stress layer in the first region;
In the first region and the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compressive stress layer position of the thickness W A and L A, the thickness W B A chemically strengthened glass plate in which the depth of the compressive stress layer at the position is L B and L A and L B satisfy the relational expression L B / L A ≧ 1.2.
前記Wが0.3mm以上であり、W/W≧1.5の関係式を満たす請求項1に記載の化学強化ガラス板。 Wherein W A is not less 0.3mm or more, W B / W A ≧ 1.5 chemically strengthened glass plate according to claim 1, satisfying the relational expression. 前記第1面において、総投影面積に対する前記第1の領域の投影面積比率が0.5以上である請求項1または2に記載の化学強化ガラス板。   3. The chemically strengthened glass sheet according to claim 1, wherein a projected area ratio of the first region to a total projected area on the first surface is 0.5 or more. 前記第1の領域と前記第2の領域において、
第1面からの深さ方向をxとし、
第1面からの深さ方向に対応する圧縮応力値をσとし、
圧縮応力値σがゼロとなる深さを圧縮応力の深さLとしたときの、
圧縮応力の傾きを表す関係式が[dσ/dx]x=L≧−2を満たす請求項1〜3のいずれか1項に記載の化学強化ガラス板。
In the first region and the second region,
The depth direction from the first surface is x,
The compressive stress value corresponding to the depth direction from the first surface is σ,
When the depth at which the compressive stress value σ becomes zero is the depth L of the compressive stress,
The chemical tempered glass sheet according to any one of claims 1 to 3, wherein a relational expression representing an inclination of the compressive stress satisfies [dσ / dx] x = L ≧ -2.
前記Lと、前記Wとが、L/W≧0.15の関係式を満たす請求項1〜4のいずれか1項に記載の化学強化ガラス板。 Said L A, the W A and is chemically strengthened glass sheet according to claim 1, satisfying the relationship of L A / W A ≧ 0.15. 前記第2の領域は、前記第1の領域の形成方向に対して異なる方向に延在する請求項1〜5のいずれか1項に記載の化学強化ガラス板。   The chemically strengthened glass sheet according to any one of claims 1 to 5, wherein the second region extends in a direction different from a forming direction of the first region. 前記第1面と前記第2面のうち少なくとも一方は、最小の曲率半径を有する湾曲部を有している請求項1〜6のいずれか1項に記載の化学強化ガラス板。   7. The chemically strengthened glass plate according to claim 1, wherein at least one of the first surface and the second surface has a curved portion having a minimum radius of curvature. 少なくともリチウムが含有されている請求項1〜7のいずれか1項に記載の化学強化ガラス板。   The chemically strengthened glass plate according to claim 1, wherein at least lithium is contained. 請求項1〜8のいずれか1項に記載の化学強化ガラス板を有する携帯情報端末。   The portable information terminal which has a chemically strengthened glass plate of any one of Claims 1-8. 厚さが一定の平板ガラスを準備する工程と、
前記平板ガラスの平面視における、第1の領域と前記第1の領域の外側にある第2の領域について、前記第1の領域の厚さを前記第2の領域の厚さより薄くなる部分を有するようにして、偏肉化したガラス板を形成するガラス板偏肉化工程と、
前記偏肉化したガラス板において、前記第1の領域における延伸方向と前記第2の領域における延伸方向とを異ならせて三次元形状ガラスを形成する曲げ工程と、
前記三次元形状ガラスの、前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、前記第1の領域の圧縮応力層の深さをLとし、前記第2の領域の圧縮応力層の深さをLとし、L及びLが、L/L≧1.2の関係式を満たす化学強化をする、化学強化処理工程を含む、化学強化ガラス板の製造方法。
Preparing a flat glass having a constant thickness;
In the planar view of the flat glass, the first region and the second region outside the first region have a portion where the thickness of the first region is thinner than the thickness of the second region. In this way, a glass plate uneven thickness forming step for forming the uneven thickness glass plate,
In the uneven-thickened glass plate, a bending step of forming a three-dimensional glass by changing the stretching direction in the first region and the stretching direction in the second region;
The three-dimensional shape glass in the first region and the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compression stress layer of the first region and L A, the A chemical strengthening process including a chemical strengthening treatment step in which the depth of the compressive stress layer in the second region is L B and L A and L B perform chemical strengthening satisfying a relational expression of L B / L A ≧ 1.2. A method for producing a tempered glass sheet.
前記曲げ工程と、前記化学強化処理工程との間に、前記三次元形状ガラスの表面を研磨する研磨工程を含む、請求項10に記載の化学強化ガラス板の製造方法。   The manufacturing method of the chemically strengthened glass plate of Claim 10 including the grinding | polishing process of grind | polishing the surface of the said three-dimensional shape glass between the said bending process and the said chemical strengthening process process. 前記ガラス板偏肉化工程は、前記平板ガラス板をガラス材料の転移点以上に加熱して金型により成形する、加熱成形工程と、前記加熱成形工程後、前記ガラス材料の転移点より低い温度に冷却する冷却工程を含む、請求項10または11に記載の化学強化ガラス板の製造方法。   In the glass plate uneven thicknessing step, the flat glass plate is heated to a temperature equal to or higher than the transition point of the glass material and molded by a mold, and after the thermoforming step, the temperature is lower than the transition point of the glass material. The manufacturing method of the chemically tempered glass board of Claim 10 or 11 including the cooling process cooled to 2nd. 前記ガラス板偏肉化工程は、前記平板ガラスの前記第1の領域を研磨する工程および前記平板ガラスの前記第1の領域を研削する工程のうち、少なくとも一方を含む、請求項10または11に記載の化学強化ガラス板の製造方法。   The glass plate uneven thicknessing step includes at least one of a step of polishing the first region of the flat glass and a step of grinding the first region of the flat glass. The manufacturing method of the chemically strengthened glass plate of description. 厚さが一定の平板ガラスを準備する工程と、
前記平板ガラスの平面視における、第1の領域と前記第1の領域の外側にある第2の領域について、前記第1の領域における延伸方向と前記第2の領域における延伸方向とを異ならせて三次元形状ガラスを形成する曲げ工程と、
前記三次元形状ガラスの前記第1の領域の厚さを前記第2の領域の厚さより薄くなる部分を有するようにして、偏肉化した三次元形状ガラスを形成するガラス板偏肉化工程と、
前記三次元形状ガラスの、前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、前記第1の領域の圧縮応力層の深さをLとし、前記第2の領域の圧縮応力層の深さをLとし、L及びLが、L/L≧1.2の関係式を満たす化学強化をする、化学強化処理工程を含む、化学強化ガラス板の製造方法。
Preparing a flat glass having a constant thickness;
Regarding the first region and the second region outside the first region in plan view of the flat glass, the stretching direction in the first region is different from the stretching direction in the second region. Bending process to form a three-dimensional glass;
A glass plate thickness-increasing step for forming the unevenly-thickened three-dimensional shape glass so as to have a portion where the thickness of the first region of the three-dimensional shape glass is thinner than the thickness of the second region; ,
The three-dimensional shape glass in the first region and the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compression stress layer of the first region and L A, the A chemical strengthening process including a chemical strengthening treatment step in which the depth of the compressive stress layer in the second region is L B and L A and L B perform chemical strengthening satisfying a relational expression of L B / L A ≧ 1.2. A method for producing a tempered glass sheet.
厚さが一定の平板ガラスを準備する工程と、
前記平板ガラスの平面視における、第1の領域と前記第1の領域の外側にある第2の領域について、前記第1の領域における延伸方向と前記第2の領域における延伸方向とを異ならせるとともに、前記第1の領域の厚さを前記第2の領域の厚さより薄くなる部分を有するようにして、偏肉化した三次元形状ガラスを形成するガラス板曲げ偏肉化工程と、
前記三次元形状ガラスの、前記第1の領域と前記第2の領域において、圧縮応力層の深さが80μm以上であり、前記第1の領域の圧縮応力層の深さをLとし、前記第2の領域の圧縮応力層の深さをLとし、L及びLが、L/L≧1.2の関係式を満たす化学強化をする、化学強化処理工程を含み、
前記ガラス板曲げ偏肉化工程は、前記平板ガラス板をガラス材料の転移点以上に加熱して金型により成形する、加熱成形工程と、前記加熱成形工程後、前記ガラス材料の転移点より低い温度に冷却する冷却工程を含む、化学強化ガラス板の製造方法。
Preparing a flat glass having a constant thickness;
For the first region and the second region outside the first region in plan view of the flat glass, the stretching direction in the first region is different from the stretching direction in the second region. The thickness of the first region has a portion that is thinner than the thickness of the second region, and a glass plate bending uneven thickness forming step for forming the uneven three-dimensional glass,
The three-dimensional shape glass in the first region and the second region, the depth of the compressive stress layer is not less 80μm or more, the depth of the compression stress layer of the first region and L A, the Including a chemical strengthening treatment step in which the depth of the compressive stress layer in the second region is L B and L A and L B perform chemical strengthening satisfying a relational expression of L B / L A ≧ 1.2,
The glass plate bending uneven thickness step is lower than the glass material transition point after the heat molding step and the thermoforming step, in which the flat glass plate is heated to a temperature above the glass material transition point and molded by a mold. The manufacturing method of a chemically strengthened glass plate including the cooling process cooled to temperature.
前記ガラス板曲げ偏肉化工程と、前記化学強化工程との間に、前記三次元形状ガラスの表面を研磨する研磨工程を含む、請求項15に記載の化学強化ガラス板の製造方法。   The manufacturing method of the chemically strengthened glass plate of Claim 15 including the grinding | polishing process which grind | polishes the surface of the said three-dimensionally shaped glass between the said glass plate bending uneven thickness process and the said chemical strengthening process.
JP2018150379A 2018-04-27 2018-08-09 Manufacturing method of chemically strengthened glass plate, mobile information terminal and chemically strengthened glass plate Active JP7006534B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/394,031 US11203550B2 (en) 2018-04-27 2019-04-25 Chemically strengthened glass plate, portable information terminal, and manufacturing method of chemically strengthened glass plate
CN202010572418.5A CN111777325B (en) 2018-04-27 2019-04-26 Chemically strengthened glass plate, method for producing same, and portable information terminal
CN201910344097.0A CN110407460B (en) 2018-04-27 2019-04-26 Chemically strengthened glass plate, method for producing same, and portable information terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087712 2018-04-27
JP2018087712 2018-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020019642A Division JP6729826B2 (en) 2018-04-27 2020-02-07 Chemically strengthened glass plate, mobile information terminal, and method for manufacturing chemically strengthened glass plate

Publications (2)

Publication Number Publication Date
JP2019194142A true JP2019194142A (en) 2019-11-07
JP7006534B2 JP7006534B2 (en) 2022-02-10

Family

ID=68469251

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018150379A Active JP7006534B2 (en) 2018-04-27 2018-08-09 Manufacturing method of chemically strengthened glass plate, mobile information terminal and chemically strengthened glass plate
JP2020019642A Active JP6729826B2 (en) 2018-04-27 2020-02-07 Chemically strengthened glass plate, mobile information terminal, and method for manufacturing chemically strengthened glass plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020019642A Active JP6729826B2 (en) 2018-04-27 2020-02-07 Chemically strengthened glass plate, mobile information terminal, and method for manufacturing chemically strengthened glass plate

Country Status (1)

Country Link
JP (2) JP7006534B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002161A1 (en) * 2019-07-04 2021-01-07 ミネベアミツミ株式会社 Glass member and method for manufacturing same
CN112592056A (en) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 Safety reinforced glass with low-variation-amplitude tensile stress area, and preparation method and application thereof
CN113248122A (en) * 2021-06-30 2021-08-13 Oppo广东移动通信有限公司 Manufacturing method of unequal-thickness shell, unequal-thickness shell and electronic device
WO2021256089A1 (en) * 2020-06-19 2021-12-23 Agc株式会社 Glass structure and cover glass
US11626572B2 (en) 2020-06-03 2023-04-11 Samsung Display Co., Ltd. Method of fabricating cover window, cover window and display device including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121897A (en) * 2011-12-12 2013-06-20 Konica Minolta Advanced Layers Inc Cover glass for display
JP2013125118A (en) * 2011-12-14 2013-06-24 Konica Minolta Advanced Layers Inc Cover glass for display
JP2014234320A (en) * 2013-05-31 2014-12-15 コニカミノルタ株式会社 Manufacturing method of glass molded article, and manufacturing apparatus of glass molded article
JP2016524582A (en) * 2013-05-07 2016-08-18 コーニング インコーポレイテッド Compensation mold for making ion exchange reinforced 3D glass cover
JP2017001902A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Cover glass and portable information terminal having the same, and method for producing cover glass
JP2017001940A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Glass substrate and method for producing the same, cover glass and method for producing the same, portable information terminal, and display device
JP2017506207A (en) * 2014-02-24 2017-03-02 コーニング インコーポレイテッド Tempered glass article with improved survivability
JP2017048090A (en) * 2015-09-03 2017-03-09 旭硝子株式会社 Cover glass, method for producing the same and portable information terminal
WO2018116981A1 (en) * 2016-12-19 2018-06-28 旭硝子株式会社 Cover member, manufacturing method therefor, and mobile information terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099171A (en) * 2012-02-29 2015-05-28 旭硝子株式会社 Glass for electronic apparatus
JP2014094885A (en) * 2012-10-10 2014-05-22 Nippon Electric Glass Co Ltd Manufacturing method of cover glass for mobile display
JP5510693B1 (en) * 2012-12-07 2014-06-04 日本電気硝子株式会社 Method for producing tempered glass plate having bent portion and tempered glass plate having bent portion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121897A (en) * 2011-12-12 2013-06-20 Konica Minolta Advanced Layers Inc Cover glass for display
JP2013125118A (en) * 2011-12-14 2013-06-24 Konica Minolta Advanced Layers Inc Cover glass for display
JP2016524582A (en) * 2013-05-07 2016-08-18 コーニング インコーポレイテッド Compensation mold for making ion exchange reinforced 3D glass cover
JP2014234320A (en) * 2013-05-31 2014-12-15 コニカミノルタ株式会社 Manufacturing method of glass molded article, and manufacturing apparatus of glass molded article
JP2017506207A (en) * 2014-02-24 2017-03-02 コーニング インコーポレイテッド Tempered glass article with improved survivability
JP2017001902A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Cover glass and portable information terminal having the same, and method for producing cover glass
JP2017001940A (en) * 2015-06-05 2017-01-05 旭硝子株式会社 Glass substrate and method for producing the same, cover glass and method for producing the same, portable information terminal, and display device
JP2017048090A (en) * 2015-09-03 2017-03-09 旭硝子株式会社 Cover glass, method for producing the same and portable information terminal
WO2018116981A1 (en) * 2016-12-19 2018-06-28 旭硝子株式会社 Cover member, manufacturing method therefor, and mobile information terminal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002161A1 (en) * 2019-07-04 2021-01-07 ミネベアミツミ株式会社 Glass member and method for manufacturing same
JP2021011400A (en) * 2019-07-04 2021-02-04 ミネベアミツミ株式会社 Glass member and method for manufacturing the same
US11626572B2 (en) 2020-06-03 2023-04-11 Samsung Display Co., Ltd. Method of fabricating cover window, cover window and display device including the same
WO2021256089A1 (en) * 2020-06-19 2021-12-23 Agc株式会社 Glass structure and cover glass
CN112592056A (en) * 2020-10-30 2021-04-02 重庆鑫景特种玻璃有限公司 Safety reinforced glass with low-variation-amplitude tensile stress area, and preparation method and application thereof
CN113248122A (en) * 2021-06-30 2021-08-13 Oppo广东移动通信有限公司 Manufacturing method of unequal-thickness shell, unequal-thickness shell and electronic device
CN113248122B (en) * 2021-06-30 2023-01-13 Oppo广东移动通信有限公司 Manufacturing method of shell with different thicknesses, shell with different thicknesses and electronic device

Also Published As

Publication number Publication date
JP7006534B2 (en) 2022-02-10
JP6729826B2 (en) 2020-07-22
JP2020073455A (en) 2020-05-14

Similar Documents

Publication Publication Date Title
CN111777325B (en) Chemically strengthened glass plate, method for producing same, and portable information terminal
JP6729826B2 (en) Chemically strengthened glass plate, mobile information terminal, and method for manufacturing chemically strengthened glass plate
JP6654224B2 (en) Asymmetric chemical strengthening
CN103391903B (en) Ion-exchange is utilized to carry out local strengthening to glass
US8607590B2 (en) Methods for separating glass articles from strengthened glass substrate sheets
KR102006509B1 (en) Chemically strengthened glass plate and method for manufacturing same
US20110281072A1 (en) Laminable shaped glass article and method of making the same
TW201919883A (en) Composite laminate with high depth of compression
CN105050975A (en) Tempered glass and glass for tempering
CN112996759A (en) Glass-based articles with improved resistance to cracking
CN107814478B (en) Method for manufacturing bent glass article and bent glass article
US20230303435A1 (en) Glass article and method for producing the same
CN111601780A (en) Ultra-thin glass with specific chamfer shape and high strength
TWI525056B (en) Chemically strengthened glass plate
JP2019085318A (en) Molding die, molding apparatus, method for manufacturing molding, and molding
KR20130061145A (en) Method for making a 3d glass article
CN107922258A (en) Chemically reinforced glass
CN112939452B (en) Ultrathin flexible glass cover plate with high surface compressive stress, preparation method of ultrathin flexible glass cover plate and plate glass
US20190161401A1 (en) Method of increasing iox processability on glass articles with multiple thicknesses
CN109803938B (en) Method for producing chemically strengthened glass
JP2023078387A (en) Method of manufacturing glass-based articles with sections of different thicknesses
TW201933475A (en) Vacuum mold apparatus, systems, and methods for forming curved mirrors
KR20170033208A (en) Curved Tempered Glass And Method For Manufacturing The Same
CN105579409A (en) Extrusion molding device and method for manufacturing green honeycomb molded body
CN110627377A (en) Curved surface strengthened glass and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7006534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150