JP2019193919A - Preparation method and device of object to be processed, and processing method and device of particulate matter - Google Patents

Preparation method and device of object to be processed, and processing method and device of particulate matter Download PDF

Info

Publication number
JP2019193919A
JP2019193919A JP2018088488A JP2018088488A JP2019193919A JP 2019193919 A JP2019193919 A JP 2019193919A JP 2018088488 A JP2018088488 A JP 2018088488A JP 2018088488 A JP2018088488 A JP 2018088488A JP 2019193919 A JP2019193919 A JP 2019193919A
Authority
JP
Japan
Prior art keywords
granular material
drug
heating
preparing
magnetite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018088488A
Other languages
Japanese (ja)
Other versions
JP7116952B2 (en
Inventor
三苫 好治
Koji Mitoma
好治 三苫
石渡 寛之
Hiroyuki Ishiwatari
寛之 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Original Assignee
Nishimatsu Construction Co Ltd
Prefectural University of Hiroshima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd, Prefectural University of Hiroshima filed Critical Nishimatsu Construction Co Ltd
Priority to JP2018088488A priority Critical patent/JP7116952B2/en
Publication of JP2019193919A publication Critical patent/JP2019193919A/en
Application granted granted Critical
Publication of JP7116952B2 publication Critical patent/JP7116952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a processing method of particulate matter which can be performed at a low cost with a simple operation without producing excessive waste.SOLUTION: A processing method of particulate matters includes an agent adding process (step S1-a) of causing an agent to include an aqueous solution which contains divalent iron ions and trivalent iron ions and adding the agent to the particulate matters, a mixing process (step S1-b) of mixing the agent and the particulate matters and a heating process (step S1-c) of heating a mixture of the particulate matters and the agent, and further includes a process (step S1) of preparing/adsorbing a ferromagnetic body consisting essentially of a magnetite onto a surface of the particulate matters and a classification process (step S2) of classifying the particulate matters which prepare and adsorb the ferromagnetic body consisting essentially of the magnetite onto the surface thereof according to magnetic screening.SELECTED DRAWING: Figure 1

Description

本発明は、放射性物質に汚染された土壌など粉粒体の処理方法及び装置に関する。   The present invention relates to a method and apparatus for treating granular materials such as soil contaminated with radioactive substances.

東日本大震災に端を発する福島第一原発事故により、原発周辺地域への放射性物質(特に放射性セシウム、以降、放射性Cs)の飛散が深刻な環境問題を引き起こした。原発から放出した放射性Csは降雨により土壌に沈着し,それらは、(I)フミン物質や土壌粒子表面にイオン吸着、あるいは(II)2:1型粘土内部に捕捉された形態をとった。近年(I)の吸着形態にある放射性Csも、その多くは形態(II)として安定化され、仮置き場の汚染土壌(概算2,200万トン,うち2/3が農地土壌)を中間貯蔵施設に全て持ち込むことは非現実的と考えられ、今後、形態(II)の汚染土壌に対する小型化可能な減容化技術の開発が急務となっている。   Due to the Fukushima Daiichi nuclear power plant accident that originated in the Great East Japan Earthquake, the scattering of radioactive materials (especially radioactive cesium, hereinafter radioactive Cs) to the area around the nuclear power plant caused serious environmental problems. The radioactive Cs released from the nuclear power was deposited on the soil by rainfall, and they took the form of (I) ionic adsorption on the surface of humic substances and soil particles, or (II) trapped inside 2: 1 type clay. In recent years, most of the radioactive Cs in the adsorption form of (I) has been stabilized as form (II), and intermediate storage facilities for contaminated soil (approximately 22 million tons, of which 2/3 is farmland soil) in temporary storage It is considered to be unrealistic to bring everything into the soil, and there is an urgent need to develop a volume reduction technology that can reduce the size of the contaminated soil of form (II).

このようななか、事故後の除染技術の開発動向は3つに大別される。第1区分として「抽出/吸着法」系区分がある。最近では上記形態(II)の割合が増し,放射性Csの抽出が極めて困難となったため、亜臨界状態で土壌解砕を行い、溶存態Csを抽出分離する技術も開発された。しかしながら,亜臨界法は回分式のために十分な処理量を稼げない等課題がある。   Under these circumstances, the development trend of decontamination technology after an accident is roughly divided into three. As the first category, there is an “extraction / adsorption method” system category. Recently, the ratio of the form (II) has increased, and extraction of radioactive Cs has become extremely difficult. Therefore, a technique has been developed in which soil crushing is performed in a subcritical state, and dissolved Cs is extracted and separated. However, the subcritical method has problems such as being unable to earn a sufficient processing amount due to the batch method.

一方で、土壌粒子に吸着した放射性Csを土壌微粒子ごと取り除く技術が先行している。なかでも「マイクロバブル浮選/分級法」がその代表例である(第2区分)。最近、より高度な懸濁水処理技術として、超電導磁気分離法による廃水中の土壌微粒子の分離技術も提案されている。これらは、大掛かりな廃水処理がプロセス下流に必須であることや根毛を多く含む農地土壌の処理に不向きであり、後者はコストや処理量に課題がある。   On the other hand, the technique which removes the radioactive Cs adsorb | sucked to the soil particle | grains with the soil fine particle precedes. Among them, the “microbubble flotation / classification method” is a representative example (second category). Recently, as a more advanced suspension water treatment technique, a technique for separating soil fine particles from wastewater by a superconducting magnetic separation method has also been proposed. These are unsuitable for large-scale wastewater treatment essential downstream of the process and treatment of farmland soil containing a lot of root hairs, and the latter has problems in cost and throughput.

第3区分に「加熱分離」あるいは「熱減容」処理のような乾式処理が挙げられる。例えば、黒雲母を主成分とする汚染土に土量と1/2〜等量のCaClを加え、2時間、800℃弱の温度で加熱を行い、塩化Csとし分離する方法がある。この方法にも廃棄物量が多い等の技術課題がある。 The third category includes dry processing such as “heat separation” or “heat volume reduction” processing. For example, there is a method of adding 1/2 to an equivalent amount of CaCl 2 to contaminated soil containing biotite as a main component and heating it at a temperature of less than 800 ° C. for 2 hours to separate it as Cs chloride. This method also has technical problems such as a large amount of waste.

上記除染技術とは異なり、無廃水かつ常温で乾式土壌を分級し除染する方法がある(例えば特許文献1、2参照)。この方法は、汚染土壌と強磁性粉末とを混合し、これを磁選することで汚染土壌を分級するものである。放射性Csに汚染された土壌は、粒度の小さいものほど放射性Csの濃度が高いため、粒度の小さい汚染土壌を取り除くことで除染できる。   Unlike the above decontamination technique, there is a method of classifying and decontaminating dry soil at no waste water and at room temperature (see, for example, Patent Documents 1 and 2). In this method, contaminated soil and ferromagnetic powder are mixed and magnetically selected to classify the contaminated soil. The soil contaminated with radioactive Cs can be decontaminated by removing the contaminated soil having a small particle size because the smaller the particle size, the higher the concentration of radioactive Cs.

特開2017−39123号公報Japanese Unexamined Patent Publication No. 2017-39123 特開2017−113744号公報JP 2017-1113744 A

特許文献1あるいは特許文献2に記載された方法は、廃水等を含め余分な廃棄物が新たに発生することもなく、また簡便で優れた方法と考えられるが、この方法は乾式ゆえに粉じんを生じやすくその対策が必要となる。また汚染土壌には、木くず、根毛等が含まれているためこれらの処理も必要となる。   The method described in Patent Document 1 or Patent Document 2 is considered to be a simple and excellent method without generating extra waste including waste water and the like. However, since this method is dry, it generates dust. It is easy to take measures. Moreover, since the contaminated soil contains wood chips, root hairs, etc., these treatments are also required.

本発明の目的は、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法及び装置を提供することである。   An object of the present invention is to provide a powder processing method and apparatus that can be implemented at low cost with a simple operation without generating extra waste, and a method for preparing an object that can be used in the powder processing method. And providing an apparatus.

本発明は、被処理物を磁力選別可能に調製する方法であって、前記被処理物が粉粒体であり、薬剤が、2価の鉄イオンと3価の鉄イオンとを含有する水溶液を含み、前記粉粒体と前記薬剤とを混合する混合工程を含み、前記粉粒体の表面にマグネタイトを主成分とする強磁性体を生成・吸着させることを特徴とする被処理物の調製方法である。   The present invention is a method for preparing an object to be processed so as to be magnetically selectable, wherein the object to be processed is a granular material, and an agent contains an aqueous solution containing divalent iron ions and trivalent iron ions. Including a mixing step of mixing the powder and the drug, and generating and adsorbing a ferromagnetic material mainly composed of magnetite on the surface of the powder and granular material. It is.

本発明の被処理物の調製方法は、前記薬剤にpH調整剤を含むことを特徴とする。   The preparation method of the to-be-processed object of this invention is characterized by including a pH adjuster in the said chemical | medical agent.

また本発明の被処理物の調製方法は、前記混合工程の他に、水分を蒸発させる水分蒸発工程を含むことを特徴とする。   Moreover, the preparation method of the to-be-processed object of this invention is characterized by including the water | moisture-content evaporation process of evaporating a water | moisture content other than the said mixing process.

また本発明の被処理物の調製方法は、前記混合工程と並行して前記粉粒体と前記薬剤との混合物を加熱する加熱工程を含み、又は前記混合工程の他に、前記粉粒体と前記薬剤との混合物を加熱する加熱工程を含むことを特徴とする。   Moreover, the preparation method of the to-be-processed object of this invention includes the heating process which heats the mixture of the said granular material and the said chemical | medical agent in parallel with the said mixing process, or in addition to the said mixing process, the said granular material, It includes a heating step of heating the mixture with the drug.

また本発明の被処理物の調製方法は、前記加熱工程の温度が350℃以下、好ましくは300℃以下、より好ましくは250℃以下であることを特徴とする。   Moreover, the preparation method of the to-be-processed object of this invention is characterized by the temperature of the said heating process being 350 degrees C or less, Preferably it is 300 degrees C or less, More preferably, it is 250 degrees C or less.

また本発明の被処理物の調製方法は、前記粉粒体が有機物を含み、前記有機物は、前記加熱工程で炭化され、炭化物の表面にマグネタイトを主成分とする強磁性体が生成・吸着することを特徴とする。   Further, in the preparation method of the object to be processed according to the present invention, the granular material contains an organic substance, and the organic substance is carbonized in the heating step, and a ferromagnetic body mainly composed of magnetite is generated and adsorbed on the surface of the carbide. It is characterized by that.

また本発明の被処理物の調製方法は、下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させるマグネタイトを主成分とする強磁性体の粒子径及び/又は凝集性を制御することを特徴とする。
(A)薬剤のpH,2価の鉄イオンに対する3価の鉄イオンの割合,2価の鉄イオン濃度,3価の鉄イオン濃度,反応時間,反応温度,反応場の雰囲気(酸化性/還元性),水溶液のアニオンの種類
Moreover, the preparation method of the to-be-processed object of this invention is the particle diameter of the ferromagnetic material which has as a main component the magnetite to produce | generate and adsorb | suck to the surface of the said granular material by controlling one or more of following (A) groups It is characterized by controlling cohesiveness.
(A) pH of drug, ratio of trivalent iron ion to divalent iron ion, divalent iron ion concentration, trivalent iron ion concentration, reaction time, reaction temperature, reaction field atmosphere (oxidation / reduction ), Types of anions in aqueous solution

また本発明は、前記被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備えることを特徴とする粉粒体の処理方法である。   Moreover, this invention is a processing method of the granular material characterized by including the classification process which classifies the to-be-processed object obtained by the preparation method of the said to-be-processed object by magnetic selection.

本発明の粉粒体の処理方法において、前記粉粒体が土壌であることを特徴とする。   In the method for processing a granular material according to the present invention, the granular material is soil.

本発明は、薬剤と被処理物である粉粒体とを混合し、前記粉粒体の表面にマグネタイトを主成分とする強磁性体を生成・吸着させる反応装置と、前記反応装置に前記薬剤を供給する薬剤供給装置と、を備え、前記薬剤が、2価の鉄イオンと3価の鉄イオンとを含有する水溶液を含むことを特徴とする被処理物の調製装置である。   The present invention includes a reaction device that mixes a drug and a granular material that is an object to be processed, and generates and adsorbs a ferromagnetic material mainly composed of magnetite on the surface of the powder particle; and the reaction device includes the drug And a chemical supply apparatus for supplying a treatment, wherein the chemical includes an aqueous solution containing divalent iron ions and trivalent iron ions.

本発明の被処理物の調製装置は、さらに前記粉粒体と前記薬剤との混合物を加熱する加熱手段及び/又は前記粉粒体と前記薬剤との混合物から水分を蒸発させる蒸発手段を備えることを特徴とする。   The apparatus for preparing an object to be processed according to the present invention further includes a heating unit for heating the mixture of the granular material and the drug and / or an evaporation unit for evaporating water from the mixture of the granular material and the drug. It is characterized by.

本発明は、前記被処理物の調製装置と、前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、を含むことを特徴とする粉粒体の処理装置である。   The present invention includes a processing apparatus for a granular material, comprising: a preparation apparatus for the object to be processed; and a magnetic separator for magnetically sorting the object to be processed obtained through the preparation apparatus for the object to be processed. is there.

本発明の粉粒体の処理装置において、前記粉粒体が土壌であることを特徴とする。   The granular material processing apparatus of the present invention is characterized in that the granular material is soil.

本発明によれば、余分な廃棄物を発生させることなく簡単な操作で安価に実施可能な粉粒体の処理方法及び装置、その粉粒体の処理方法で使用可能な被処理物の調製方法及び装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processing method and apparatus of the granular material which can be implemented at low cost by simple operation, without generating extra waste, The preparation method of the to-be-processed object which can be used with the processing method of the granular material And an apparatus can be provided.

本発明の第1実施形態の粉粒体の処理方法を説明するフロー図である。It is a flowchart explaining the processing method of the granular material of 1st Embodiment of this invention. 本発明の粉粒体の処理装置1の構成図である。It is a block diagram of the processing apparatus 1 of the granular material of this invention. 本発明の実施例で実施した磁力選別の要領を示す模式図である。It is a schematic diagram which shows the point of the magnetic force selection implemented in the Example of this invention.

図1は、本発明の第1実施形態の粉粒体の処理方法を説明するフロー図である。本発明の粉粒体の処理方法は、前段と後段との2つの工程に大別できる。前段は、被処理物である粉粒体(粉粒状物)を磁力選別可能に調製する工程(ステップS1)であり、後段は、前段で磁力選別可能に調製された粉粒体を磁力選別し磁着物と非磁着物とに選別する磁力選別工程(ステップS2)である。   FIG. 1 is a flowchart for explaining a method of processing a granular material according to the first embodiment of the present invention. The processing method of the granular material of this invention can be divided roughly into two processes, a front | former stage and a back | latter stage. The first stage is a step (step S1) of preparing a granular material (powdered granular material) that is an object to be processed so as to be magnetically separable, and the second stage is a magnetic field sorting of the granular material that has been prepared to be magnetically separable in the previous stage. This is a magnetic force sorting step (step S2) for sorting into magnetized and non-magnetized products.

粉粒体を磁力選別可能に調製する工程は、具体的には粉粒体の表面にマグネタイト(主成分:Fe=Fe・FeO)を主成分とする強磁性体を生成・吸着させる工程(以下、強磁性体生成吸着工程と記す)であり、粉粒体に薬剤を添加する薬剤添加工程(ステップS1−a)と、薬剤と粉粒体とを撹拌混合する混合工程(ステップS1−b)と、薬剤と粉粒体との混合物を加熱する加熱工程(ステップS1−c)とを含む。 Specifically, the process of preparing the powder particles so that they can be magnetically generated produces a ferromagnetic material mainly composed of magnetite (main component: Fe 3 O 4 = Fe 2 O 3 · FeO) on the surface of the powder particles. A step of adsorbing (hereinafter referred to as a ferromagnetic material generation adsorption step), a drug addition step (step S1-a) for adding a drug to the granular material, and a mixing step for stirring and mixing the drug and the granular material (Step S1-b) and a heating step (step S1-c) for heating the mixture of the drug and the granular material.

本処理方法において、被処理物である粉粒体は特に限定されるものではなく、粉粒体としては土壌、焼却灰、汚泥、これら混合物、さらにこれらに汚染物質が固着、吸着又は付着するものが挙げられる。汚染物質としては、重金属、ダイオキシン類、PCB、農薬など残留性有機汚染物質(POPs)、放射性物質等が挙げられる。放射性物質も特定の物質に限定されるものではなく、セシウムCs、プルトニウムPu、ウランU、ラジウムRaなど幅広い放射性物質を対象とすることができる。   In this treatment method, there are no particular limitations on the granular material that is the object to be treated, and as the granular material, soil, incinerated ash, sludge, a mixture thereof, and those in which contaminants adhere, adsorb, or adhere to them. Is mentioned. Examples of the pollutants include residual organic pollutants (POPs) such as heavy metals, dioxins, PCBs and agricultural chemicals, radioactive substances, and the like. The radioactive substance is not limited to a specific substance, and a wide range of radioactive substances such as cesium Cs, plutonium Pu, uranium U, and radium Ra can be targeted.

汚染物質が主として土壌の表面に固着、吸着又は付着した汚染土壌は、通常、粒径の小さい物ほど汚染物質の濃度が高くなる。これは粒径の小さい土壌ほど比表面積が大きいことによる。本処理方法は、後述のように磁力選別により汚染土壌を分級できるため、高濃度の汚染土壌を分離し、除染することができる。   In the contaminated soil in which the contaminant is mainly fixed, adsorbed or adhered to the soil surface, the smaller the particle size, the higher the concentration of the contaminant. This is because soil with a smaller particle size has a larger specific surface area. Since this treatment method can classify contaminated soil by magnetic sorting as described later, it is possible to separate and decontaminate highly contaminated soil.

粉粒体の粒径は、特に限定されるものではないが、本処理方法は、篩分けが難しい粉粒体の処理に好適に使用することができる。粉粒体の含水率も特に限定されるものではない。絶乾状態、水分を含む粉粒体であってもそのまま処理することができる。水分が多くても加熱工程で加熱され水分は蒸発するが、水分が多いほどそれを蒸発させるに必要なエネルギーが多くなるため粉粒体に含まれる水分は少ない方がよい。粉粒体に対して脱水操作が可能であれば予め脱水操作を行い、含水率を低下させておくことが好ましい。   Although the particle size of a granular material is not specifically limited, This processing method can be used conveniently for the processing of the granular material with which sieving is difficult. The moisture content of the granular material is not particularly limited. Even in an absolutely dry state, even a granular material containing moisture can be processed as it is. Even if there is a lot of moisture, it is heated in the heating process and the moisture evaporates. However, the more moisture there is, the more energy required to evaporate it, so it is better that the moisture contained in the granular material is less. If dehydration operation is possible with respect to a granular material, it is preferable to perform dehydration operation previously and to reduce a moisture content.

粉粒体の中には、塊状となったものが含まれる場合もある。このような塊状物を含む粉粒体も本処理方法で処理可能であり、混合工程で塊状物を解砕しながら薬剤と混合させることができる。また本実施形態の粉粒体の処理方法は、加熱工程を備えるので、この加熱工程で塊状物を解砕してもよい。   In some cases, the granular material includes a lump. The granular material containing such a lump can also be processed by this processing method, and can be mixed with a chemical | medical agent, crushing a lump in a mixing process. Moreover, since the processing method of the granular material of this embodiment is equipped with a heating process, you may crush a lump with this heating process.

また粉粒体には、植物、木の葉、木くず、根毛などの有機物を含むものもあるがこのような粉粒体も本処理方法で処理可能である。本実施形態の粉粒体の処理方法は、加熱工程を備えるので、この加熱工程で有機物は炭化物になる。   Some of the granular materials contain organic substances such as plants, leaves, wood chips, and root hairs, but such granular materials can also be treated by the present treatment method. Since the processing method of the granular material of this embodiment is equipped with a heating process, organic substance turns into a carbide | carbonized_material by this heating process.

薬剤には、二価の鉄イオンFe2+及び三価の鉄イオンFe3+を含むアルカリ性の水溶液を使用する。この薬剤は、二価の鉄イオンFe2+を含む水溶液と、三価の鉄イオンFe3+を含む水溶液と、アルカリ溶液とを準備し、これらを粉粒体に供給する直前に混合し調製するのがよい。 As the drug, an alkaline aqueous solution containing divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ is used. This medicine is prepared by preparing an aqueous solution containing divalent iron ions Fe 2+ , an aqueous solution containing trivalent iron ions Fe 3+ , and an alkaline solution, and mixing them immediately before supplying them to the powder particles. Is good.

二価の鉄イオンFe2+を含む水溶液のアニオン及び三価の鉄イオンFe3+を含む水溶液のアニオンは特に限定されるものではない。二価の鉄イオンFe2+を含む水溶液としては、二塩化鉄(塩化第一鉄)が、三価の鉄イオンFe3+を含む水溶液としては三塩化鉄(塩化第二鉄)が挙げられる。水溶液中の二価の鉄イオンFe2+の濃度、水溶液中の三価の鉄イオンFe3+の濃度は特に限定されるものではない。 The anion of the aqueous solution containing the divalent iron ion Fe 2+ and the anion of the aqueous solution containing the trivalent iron ion Fe 3+ are not particularly limited. Examples of the aqueous solution containing divalent iron ion Fe 2+ include iron dichloride (ferrous chloride), and examples of the aqueous solution containing trivalent iron ion Fe 3+ include iron trichloride (ferric chloride). The concentration of the divalent iron ion Fe 2+ in the aqueous solution and the concentration of the trivalent iron ion Fe 3+ in the aqueous solution are not particularly limited.

アルカリ溶液も特に限定されるものではない。アルカリ溶液としては、水酸化ナトリウムNaOH,水酸化カルシウムCa(OH)が挙げられる。 The alkaline solution is not particularly limited. Examples of the alkaline solution include sodium hydroxide NaOH and calcium hydroxide Ca (OH) 2 .

薬剤中の二価の鉄イオンFe2+と三価の鉄イオンFe3+との割合は、1:1を基本とするが、二価の鉄イオンFe2+は不安定であり三価の鉄イオンFe3+に変化し易いので、二価の鉄イオンFe2+を三価の鉄イオンFe3+に比較して高めにしておくのが好ましい。 The ratio of the divalent iron ion Fe 2+ and the trivalent iron ion Fe 3+ in the drug is basically 1: 1, but the divalent iron ion Fe 2+ is unstable and the trivalent iron ion Fe Since it is easy to change to 3+ , it is preferable to keep the divalent iron ion Fe 2+ higher than the trivalent iron ion Fe 3+ .

薬剤のpHは、9〜12が好ましく、pH≒11がより好ましい。   The pH of the drug is preferably 9-12, more preferably pH≈11.

粉粒体に対する薬剤の添加量は、汚染土壌10gに対して1〜5mL程度でよい。   About 1-5 mL may be sufficient as the addition amount of the chemical | medical agent with respect to a granular material with respect to 10 g of contaminated soil.

薬剤添加工程(ステップS1−a)における、粉粒体に対する薬剤の添加要領は特に限定されるものではないが、後工程である薬剤と粉粒体との混合工程(ステップS1−b)を考えれば、薬剤を噴霧するなど粉粒体に対してできるだけ均一に添加するのがよい。   In the drug addition step (step S1-a), the method for adding the drug to the granular material is not particularly limited, but a post-process mixing step (step S1-b) of the drug and the granular material can be considered. For example, it is preferable to add it as uniformly as possible to the granular material by spraying the medicine.

混合工程(ステップS1−b)は、薬剤と粉粒体とを十分に撹拌混合できればよく撹拌装置、撹拌要領も特に限定されるものではない。混合工程は、薬剤添加工程後に独立して実施してもよいが、薬剤添加工程と一体化し、薬剤を添加しつつ撹拌混合するのが効率的かつ実用的である。混合工程と薬剤供給工程とを一体化すれば、粉塵も発生し難い。被処理物が放射性物質汚染土壌の場合、発塵防止対策は重要であるから、この点からも混合工程と薬剤供給工程とを一体化することは好ましい。   The mixing step (step S1-b) is not particularly limited as long as the drug and the granular material can be sufficiently stirred and mixed, and the stirring device and the stirring procedure are not particularly limited. The mixing step may be carried out independently after the drug addition step, but it is efficient and practical to integrate with the drug addition step and to stir and mix while adding the drug. If the mixing step and the chemical supply step are integrated, dust is hardly generated. In the case where the object to be treated is soil contaminated with radioactive substances, dust generation prevention measures are important. From this point of view, it is preferable to integrate the mixing step and the chemical supply step.

混合工程における混合時間は、特に限定されるものではない。本実施形態のように後に加熱工程を備える場合には短時間でよく、混合操作は、常温(大気温)、大気圧下で行えばよい。   The mixing time in the mixing step is not particularly limited. When a heating step is provided later as in the present embodiment, a short time may be required, and the mixing operation may be performed at normal temperature (atmospheric temperature) and atmospheric pressure.

加熱工程(ステップS1−c)は、混合工程を経て得られる薬剤と粉粒体との混合物を加熱する。加熱温度は350℃以下がよく、好ましくは300℃以下、より好ましくは250℃以下である。加熱温度が350℃を超えるとダイオキシンの再合成が懸念される。加熱温度が350℃以下であれば、マグネタイトの磁性喪失の心配はない(キュリー点:858K)。   A heating process (step S1-c) heats the mixture of the chemical | medical agent and powder which are obtained through a mixing process. The heating temperature is preferably 350 ° C. or lower, preferably 300 ° C. or lower, more preferably 250 ° C. or lower. If the heating temperature exceeds 350 ° C., there is a concern about the resynthesis of dioxins. If the heating temperature is 350 ° C. or lower, there is no concern about magnetism loss of magnetite (Curie point: 858K).

加熱工程における加熱操作は特に限定されるものではないが、温度の均一化、水分の除去、さらには粉粒体の凝集を防ぐ観点から撹拌混合操作を併用するのが好ましい。加熱時間は、粉粒体の表面にマグネタイトを主成分とする強磁性体を生成・吸着させるに必要な時間(反応時間)から決められる。マグネタイトを主成分とする強磁性体の生成速度は、加熱温度(反応温度)により異なるため、加熱時間は反応温度に応じて適宜決定すればよい。   The heating operation in the heating step is not particularly limited, but it is preferable to use a stirring and mixing operation in combination from the viewpoint of uniform temperature, removal of moisture, and prevention of aggregation of the granular material. The heating time is determined from the time (reaction time) necessary for generating and adsorbing a ferromagnetic material mainly composed of magnetite on the surface of the granular material. Since the production rate of the ferromagnetic material mainly composed of magnetite differs depending on the heating temperature (reaction temperature), the heating time may be appropriately determined according to the reaction temperature.

また加熱工程は、マグネタイトを主成分とする強磁性体が生成・吸着した粉粒体を乾燥させる乾燥工程も兼ねている。強磁性体生成吸着工程に供される粉粒体及び薬剤は、水分を含むため、強磁性体生成吸着工程において全く乾燥を行わないとマグネタイトを主成分とする強磁性体が生成・吸着した粉粒体は、水分の影響で粒子同士が凝集する。強磁性体生成吸着工程を経て得られる粉粒体は、後工程で磁力選別されるため、これに先立ち加熱工程で水分を蒸発させ、マグネタイトを主成分とする強磁性体が生成・吸着した粉粒体を十分に分散させる。   The heating step also serves as a drying step for drying the granular material on which the ferromagnetic material mainly composed of magnetite is generated and adsorbed. Powders and chemicals used in the ferromagnetic material generation and adsorption process contain moisture, so that a powder containing a ferromagnetic material mainly composed of magnetite is generated and adsorbed unless it is completely dried in the ferromagnetic material generation and adsorption process. In the granule, particles aggregate due to the influence of moisture. Since the granular material obtained through the ferromagnetic material generation and adsorption process is magnetically selected in the subsequent process, the moisture is evaporated in the heating process prior to this, and the powder in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed Disperse the granules sufficiently.

加熱工程における加熱温度・加熱時間は、基本的にマグネタイトを主成分とする強磁性体の生成・吸着に基づき決定されるが、粉粒体に有機物が含まれる場合、この有機物が炭化され、この炭化物の表面にマグネタイトを主成分とする強磁性体が生成・吸着するように加熱温度・加熱時間を決定するのが好ましい。   The heating temperature and heating time in the heating process are basically determined based on the generation / adsorption of a ferromagnetic material mainly composed of magnetite. However, when the granular material contains an organic substance, the organic substance is carbonized, and this It is preferable to determine the heating temperature and the heating time so that a ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface of the carbide.

粉粒体の表面に生成・吸着するマグネタイトを主成分とする強磁性体の粒径・分散性は、加熱工程における温度、時間のみならず反応場の雰囲気、具体的には反応場が酸化性雰囲気か還元性雰囲気かに影響を受けるため、マグネタイトを主成分とする強磁性体の粒径が小さくかつ分散性に優れるように反応場を決定するのがよい。   The particle size and dispersibility of the ferromagnetic material mainly composed of magnetite that is generated and adsorbed on the surface of the granular material is not only the temperature and time in the heating process, but also the reaction field atmosphere, specifically the reaction field is oxidizing. Since it is influenced by the atmosphere or the reducing atmosphere, it is preferable to determine the reaction field so that the ferromagnetic material mainly composed of magnetite has a small particle size and excellent dispersibility.

以上の構成からなる強磁性体生成吸着工程における、粉粒体の表面にマグネタイトを主成分とする強磁性体が生成・吸着するメカニズムは以下のように考えられる。以下、粉粒体を土壌として説明する。   The mechanism by which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface of the granular material in the ferromagnetic material generation and adsorption process having the above-described configuration is considered as follows. Hereinafter, a granular material is demonstrated as soil.

土壌に薬剤を添加すると、土壌中の1価のイオン種と二価の鉄イオンFe2+や三価の鉄イオンFe3+とのイオン交換が行われる。次いで土壌表面で化学反応が起こり、土壌の表面にマグネタイトを主成分とする強磁性体を生成し、当該強磁性体は、土壌の表面に吸着する。 When a chemical | medical agent is added to soil, ion exchange with the monovalent | monohydric ion species in soil and the bivalent iron ion Fe2 + or the trivalent iron ion Fe3 + will be performed. Next, a chemical reaction occurs on the soil surface, and a ferromagnetic material mainly composed of magnetite is generated on the soil surface, and the ferromagnetic material is adsorbed on the soil surface.

2:1型粘土鉱物と1:1型粘土鉱物との陽イオン交換容量(CEO)は、前者の方が最大で約80倍以上大きいことが知られている。このため二価の鉄イオンFe2+や三価の鉄イオンFe3+は、2:1型粘土鉱物に優先的に吸着され、マグネタイトを主成分とする強磁性体も2:1型粘土鉱物の表面に優先的に生成・吸着する。 It is known that the cation exchange capacity (CEO) between the 2: 1 type clay mineral and the 1: 1 type clay mineral is about 80 times larger at the former. For this reason, the divalent iron ion Fe 2+ and the trivalent iron ion Fe 3+ are preferentially adsorbed by the 2: 1 type clay mineral, and the ferromagnetic material mainly composed of magnetite is also the surface of the 2: 1 type clay mineral. Is preferentially generated and adsorbed.

背景技術の欄にも記したように、原発事故により放出された放射性Csは、降雨により土壌に沈着し,最終的には2:1型粘土内部に捕捉される。このことから本実施形態に示す強磁性体生成吸着工程、さらには本実施形態に示す粉粒体の処理方法は、放射性Csに汚染された土壌の処理に好適に使用できることが分かる。   As described in the Background Art section, radioactive Cs released by the nuclear accident is deposited in the soil by rainfall, and is finally captured inside the 2: 1 type clay. From this, it can be seen that the ferromagnetic material generation adsorption step shown in the present embodiment, and further, the treatment method of the granular material shown in the present embodiment can be suitably used for the treatment of soil contaminated with radioactive Cs.

本粉粒体の処理方法において、強磁性体生成吸着工程を経て得られる粉粒体は、次工程で磁力選別に供されるため、強磁性体生成吸着工程では磁力選別に適した被磁選物を得ることができ、それを効率的に生成できる方法が好ましい。この点においてマグネタイトを主成分とする強磁性体は、好ましい磁性材料といえ、強磁性体生成吸着工程も簡便であり、好ましい方法といえる。   In the present processing method of granular material, since the granular material obtained through the ferromagnetic material generation adsorption step is subjected to magnetic selection in the next step, the magnetic selection material suitable for magnetic selection in the ferromagnetic material generation adsorption step. Is preferred, and a method that can efficiently generate it is preferred. In this respect, a ferromagnetic material containing magnetite as a main component can be said to be a preferable magnetic material, and a ferromagnetic material generation and adsorption step is also simple and a preferable method.

磁力選別の点から粉粒体の表面に生成・吸着するマグネタイトを主成分とする強磁性体は、粒径が小さく表面に均一に分散するものがよい。またマグネタイトを主成分とする強磁性体を生成・吸着させるに使用する薬剤の使用量が少ないものが好ましい。   A ferromagnetic material mainly composed of magnetite that is generated and adsorbed on the surface of the granular material from the viewpoint of magnetic selection preferably has a small particle size and is uniformly dispersed on the surface. Moreover, the thing with little usage-amount of the chemical | medical agent used for producing | generating and adsorbing the ferromagnetic material which has magnetite as a main component is preferable.

粉粒体の表面に生成・吸着させるマグネタイトを主成分とする強磁性体は、以下(A)群のいずれか1つを制御することで粒子径及び/又は凝集性を制御することができる。以下の制御項目(パラメータ)は、粉粒体の性状等により適宜選択すればよい。
(A)薬剤のpH,2価の鉄イオンに対する3価の鉄イオンの割合,2価の鉄イオン濃度,3価の鉄イオン濃度,反応時間,反応温度,反応場の雰囲気(酸化性/還元性),水溶液のアニオンの種類
The ferromagnetic material mainly composed of magnetite that is generated and adsorbed on the surface of the granular material can control the particle size and / or cohesiveness by controlling any one of the groups (A) below. The following control items (parameters) may be appropriately selected depending on the properties of the granular material.
(A) pH of drug, ratio of trivalent iron ion to divalent iron ion, divalent iron ion concentration, trivalent iron ion concentration, reaction time, reaction temperature, reaction field atmosphere (oxidation / reduction ), Types of anions in aqueous solution

磁力選別工程(ステップS2)は、前工程(ステップS1)を経て得られる表面にマグネタイトを主成分とする強磁性体が生成・吸着した粉粒体を磁力選別する。磁力選別工程で使用される磁選機、磁選方法は特に限定されるものではなく、公知の磁選機、磁選方法を使用することができる。なお磁選機、磁選方法によっては、高温の被磁選物を処理できない場合もある。このような場合には、強磁性体生成吸着工程と磁力選別工程との間に粉粒体を冷却する冷却工程を設ける。   In the magnetic force sorting step (step S2), the powder particles in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface obtained through the previous step (step S1) are magnetically sorted. The magnetic separator and magnetic separation method used in the magnetic separation process are not particularly limited, and known magnetic separators and magnetic separation methods can be used. Depending on the magnetic separator and magnetic separation method, it may be impossible to process a high-temperature magnetic selection material. In such a case, a cooling step for cooling the granular material is provided between the ferromagnetic material generation adsorption step and the magnetic force selection step.

以上の構成からなる本処理方法の処理メカニズムの概要は、次の通りである。強磁性体生成吸着工程において、マグネタイトを主成分とする強磁性体が粉粒体に生成・吸着する量(汚染土壌単位質量当たり)は、比表面積の関係から粒径の小さい粉粒体ほど多くなる。磁力選別工程において、粒径の小さい粉粒体は自重が小さく、さらにマグネタイトを主成分とする強磁性体の吸着量が多いため磁着物となる。一方、粒径の大きい粉粒体は自重が大きく、さらにマグネタイトを主成分とする強磁性体の吸着量が少ないため非磁着物となる。   The outline of the processing mechanism of the present processing method having the above configuration is as follows. In the ferromagnetic material production and adsorption process, the amount of magnetite-based ferromagnetic material produced and adsorbed on the granular material (per unit mass of contaminated soil) is larger for smaller granular materials due to the specific surface area. Become. In the magnetic force sorting step, the granular material having a small particle size has a small weight and becomes a magnetized product because of the large amount of adsorption of the ferromagnetic material mainly composed of magnetite. On the other hand, a granular material having a large particle size has a large weight and becomes a non-magnetized substance because the adsorption amount of a ferromagnetic material mainly composed of magnetite is small.

以上のように粉粒体に対して強磁性体生成吸着工程において、表面にマグネタイトを主成分とする強磁性体を生成・吸着させ、これを磁力選別することで粉粒体を分級することができる。放射性物質汚染土壌は、粒径の小さい物ほど汚染物質の濃度が高いため、本処理方法を用いて放射性物質汚染土壌を処理することで放射性物質汚染物の濃縮、除染等を行うことができる。   As described above, in the process of generating and adsorbing a ferromagnetic material on a granular material, a ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface, and the granular material can be classified by magnetically selecting it. it can. As radioactive material-contaminated soil has a smaller particle size, the concentration of the contaminant is higher. Therefore, the radioactive material-contaminated soil can be concentrated and decontaminated by treating the radioactive material-contaminated soil using this treatment method. .

本処理方法において、粉粒体に含まれる有機物は、加熱工程(ステップS1−c)で炭化物となるため被処理物が減容化される。また強磁性体生成吸着工程の段階で炭化物の表面にもマグネタイトを主成分とする強磁性体が生成・吸着する。炭化物は、汚染土壌に比較して密度が小さいため磁力選別工程では磁着物となる。   In the present processing method, the organic matter contained in the granular material becomes a carbide in the heating step (step S1-c), so that the volume of the object to be processed is reduced. In addition, a ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface of the carbide during the ferromagnetic material generation and adsorption process. Since carbide has a lower density than contaminated soil, it becomes a magnetic deposit in the magnetic separation process.

本発明の粉粒体の処理方法は、第1実施形態の粉粒体の処理方法を基本に種々変更することができる。以下、第1実施形態の粉粒体の変形例について説明する。   The processing method of the granular material of this invention can be variously changed based on the processing method of the granular material of 1st Embodiment. Hereinafter, the modification of the granular material of 1st Embodiment is demonstrated.

第1実施形態の粉粒体の処理方法では、被処理物として粉粒体をそのまま使用するが、本処理方法に先立ち、粉粒体を篩などを用いて分級し、粒径の大きいものを取り除いてもよい。放射性物質汚染土壌は、粒度の小さい物ほど放射性物質の濃度が高く、逆に粗粒物の放射性物質の濃度は比較的低いことが知られている(例えば、特開2013−242210号公報の表1)。このため予め粗粒物を取り除き、残りの汚染土壌を磁力選別すれば効率的に放射性物質汚染物の濃縮、除染が行える。   In the processing method of the granular material of the first embodiment, the granular material is used as it is as an object to be processed. However, prior to this processing method, the granular material is classified using a sieve or the like, May be removed. It is known that radioactive material-contaminated soil has a higher concentration of radioactive material as the particle size is smaller, and conversely, the concentration of radioactive material in coarse particles is relatively lower (for example, the table of JP2013-242210A). 1). Therefore, if the coarse particles are removed in advance and the remaining contaminated soil is magnetically sorted, the radioactive material contaminants can be efficiently concentrated and decontaminated.

第1実施形態の粉粒体の処理方法では、粉粒体を磁力選別可能に調製する工程(ステップS1)に加熱工程(ステップS1−c)を備えるが、加熱工程を省略してもよい。粉粒体の表面に生成・吸着するマグネタイトを主成分とする強磁性体は、薬剤に含まれる二価の鉄イオンFe2+と三価の鉄イオンFe3+とが反応することで生成する。この反応は、温度が高い方が迅速に進行するが室温下でも進行する。 In the processing method of the granular material of 1st Embodiment, although a heating process (step S1-c) is provided in the process (step S1) which prepares a granular material so that magnetic force selection is possible, you may abbreviate | omit a heating process. A ferromagnetic material mainly composed of magnetite that is generated and adsorbed on the surface of the granular material is generated by a reaction between divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ contained in the drug. This reaction proceeds more rapidly at higher temperatures but also at room temperature.

粉粒体を磁力選別可能に調製する工程(ステップS1)において加熱工程を省略した場合、撹拌工程の時間を長くし、さらに水分を蒸発させる工程が必要となる。水分を蒸発させる工程には、減圧乾燥等を利用すればよい。   When the heating step is omitted in the step of preparing the powder particles so as to be magnetically selectable (step S1), a step of elongating the stirring step and further evaporating moisture is required. For the step of evaporating moisture, vacuum drying or the like may be used.

粉粒体を磁力選別可能に調製する工程(ステップS1)において加熱工程を省略すると処理速度が低下するものの、加熱装置が不要となり、エネルギー消費量も少なくなる。さらに磁力選別可能に調製する工程(ステップS1)と磁力選別工程(ステップS2)との間に粉粒体を冷却する操作、その装置が不要となるメリットがある。   If the heating step is omitted in the step of preparing the particles so as to be magnetically selectable (step S1), the processing speed is reduced, but the heating device is not required and the energy consumption is reduced. Furthermore, there is a merit that the operation and the apparatus for cooling the granular material are unnecessary between the step of preparing to be magnetically selectable (step S1) and the magnetic force selecting step (step S2).

第1実施形態の粉粒体の処理方法では、薬剤として二価の鉄イオンFe2+及び三価の鉄イオンFe3+を含むアルカリ性の水溶液を使用するが、二価の鉄イオンFe2+を含む水溶液、三価の鉄イオンFe3+を含む水溶液、アルカリ溶液を別々に準備し、薬剤添加工程(ステップS1−a)において、各薬剤を別々に添加してもよい。また二価の鉄イオンFe2+を含む水溶液及び三価の鉄イオンFe3+を含む水溶液とアルカリ溶液とを添加するタイミングを変えてもよい。 In the method for treating a granular material according to the first embodiment, an alkaline aqueous solution containing divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ is used as a chemical, but an aqueous solution containing divalent iron ions Fe 2+ is used. An aqueous solution containing trivalent iron ions Fe 3+ and an alkaline solution may be prepared separately, and each drug may be added separately in the drug addition step (step S1-a). Or may be changed timing of an aqueous solution with an alkali solution containing iron ions Fe 3+ in solution and trivalent containing divalent iron ions Fe 2+.

次に本発明の粉粒体の処理装置1について説明する。図2は、本発明の粉粒体の処理装置1の構成図である。以下、粉粒体が放射性物質汚染土壌(以下、汚染土壌と記す)であるとし、粉粒体の処理装置の構成について説明する。   Next, the processing apparatus 1 of the granular material of this invention is demonstrated. FIG. 2 is a configuration diagram of the powder particle processing apparatus 1 according to the present invention. Hereinafter, assuming that the granular material is radioactive material contaminated soil (hereinafter referred to as contaminated soil), the configuration of the granular material processing apparatus will be described.

本発明の粉粒体の処理装置1は、汚染土壌を連続的に処理する連続処理装置であり、汚染土壌と薬剤とを撹拌混合する混合装置11、混合装置11に薬剤を供給する薬剤供給装置21、混合装置11に汚染土壌を供給する汚染土壌供給装置26、汚染土壌の表面にマグネタイトを主成分とする強磁性体を生成・吸着させる反応装置31、反応後の汚染土壌を冷却する冷却装置41、冷却後の汚染土壌を磁力選別する磁力選別装置51を含む。   The processing apparatus 1 of the granular material of this invention is a continuous processing apparatus which processes contaminated soil continuously, the mixing apparatus 11 which stirs and mixes contaminated soil and a chemical | medical agent, and the chemical | medical agent supply apparatus which supplies a chemical | medical agent to the mixing apparatus 11 21, a contaminated soil supply device 26 that supplies contaminated soil to the mixing device 11, a reaction device 31 that generates and adsorbs a ferromagnetic material mainly composed of magnetite on the surface of the contaminated soil, and a cooling device that cools the contaminated soil after the reaction 41. A magnetic separator 51 that magnetically sorts contaminated soil after cooling is included.

混合装置11は、槽内12に横型2軸の撹拌翼13を備える公知の混合装置であり、撹拌機能及び搬送機能を備える。混合装置11は、薬剤供給装置21及び汚染土壌供給装置26から連続的に定量供給される薬剤及び汚染土壌を、大気圧・大気温下で撹拌混合し、汚染土壌と薬剤の混合物を連続的に排出する。   The mixing device 11 is a known mixing device including a horizontal biaxial stirring blade 13 in the tank 12 and has a stirring function and a transport function. The mixing device 11 stirs and mixes the chemical and the contaminated soil continuously supplied from the chemical supply device 21 and the contaminated soil supply device 26 under atmospheric pressure and atmospheric temperature, and continuously mixes the contaminated soil and the chemical mixture. Discharge.

混合装置11は、閉じられた空間内で汚染土壌及び薬剤を撹拌混合できればよく、型式等は特に限定されるものではない。汚染土壌の粒度、含水率、塊状物の有無など汚染土壌の性状に適したものを使用すればよい。汚染土壌の含水率が高い場合、汚染土壌と薬剤との混合操作は、混練操作とも言えるが、そのような場合には、混練に適した装置を使用すればよい。また混合装置11において、混合性能を高めるために槽内12に薬剤を噴霧するためのスプレーノズルを設けてもよい。   The mixing device 11 is not particularly limited as long as it can stir and mix contaminated soil and chemicals in a closed space. What is necessary is just to use the thing suitable for the property of contaminated soil, such as the particle size of a contaminated soil, a moisture content, and the presence or absence of a lump. When the moisture content of the contaminated soil is high, the mixing operation of the contaminated soil and the drug can be said to be a kneading operation. In such a case, an apparatus suitable for kneading may be used. Moreover, in the mixing apparatus 11, you may provide the spray nozzle for spraying a chemical | medical agent in the tank 12 in order to improve mixing performance.

薬剤供給装置21は、混合装置11に薬剤を定量供給する装置であり、撹拌機23を備える薬剤供給タンク22と、定量供給ポンプ24とを含む。薬剤供給タンク22には、二価の鉄イオンFe2+及び三価の鉄イオンFe3+を含むアルカリ性の水溶液が充填されている。 The drug supply device 21 is a device that supplies a fixed amount of drug to the mixing device 11, and includes a drug supply tank 22 including a stirrer 23 and a fixed amount supply pump 24. The chemical supply tank 22 is filled with an alkaline aqueous solution containing divalent iron ions Fe 2+ and trivalent iron ions Fe 3+ .

汚染土壌供給装置26は、混合装置11に汚染土壌を定量供給する装置であり、ホッパー27付きのスクリューフィーダ28である。粉粒体の定量供給装置としては、スクリューフィーダの他にテーブルフィーダ等が公知であるが、ここでは汚染土壌を定量供給可能であれば特に装置の型式等は問われない。   The contaminated soil supply device 26 is a device that quantitatively supplies contaminated soil to the mixing device 11, and is a screw feeder 28 with a hopper 27. As a powder and powder quantitative supply device, a table feeder and the like are known in addition to a screw feeder. However, the type of the device is not particularly limited as long as the contaminated soil can be quantitatively supplied.

反応装置31は、汚染染土壌と薬剤との混合物を加熱し、薬剤を反応させ汚染土壌の表面にマグネタイトを主成分とする強磁性体を生成・吸着させる装置である。反応装置31は、駆動装置(図示省略)と連結し回転する内筒32と、内筒32を覆うように固定された外筒37とを備える間接加熱方式のロータリーキルンである。   The reaction device 31 is a device that heats a mixture of contaminated soil and a chemical, reacts the chemical, and generates and adsorbs a ferromagnetic material mainly composed of magnetite on the surface of the contaminated soil. The reaction device 31 is an indirect heating type rotary kiln that includes an inner cylinder 32 that rotates in connection with a driving device (not shown) and an outer cylinder 37 that is fixed so as to cover the inner cylinder 32.

内筒32は、一端に混合装置11から排出される汚染土壌と薬剤との混合物を受け入れるための入口部33を備え、他端部に加熱した混合物を排出するための出口フード34を備える。内筒32は、入口部33が出口フード34側に比較して僅かに高く、入口部33から出口フード34側に向って僅かに傾斜している。   The inner cylinder 32 includes an inlet 33 for receiving a mixture of contaminated soil and medicine discharged from the mixing device 11 at one end, and an outlet hood 34 for discharging the heated mixture at the other end. The inner cylinder 32 has a slightly higher inlet portion 33 than the outlet hood 34 side, and is slightly inclined from the inlet portion 33 toward the outlet hood 34 side.

入口部33及び出口フード34は、内筒32内で発生するガスの漏洩を防ぐように内筒32と連結する。出口フード34の上部には、混合物の加熱に伴い発生する水蒸気等のガスを排出するための排気口35が、出口フード34の下部には、加熱された混合物を排出する排出口36が設けられている。   The inlet 33 and the outlet hood 34 are connected to the inner cylinder 32 so as to prevent leakage of gas generated in the inner cylinder 32. An exhaust port 35 for discharging a gas such as water vapor generated when the mixture is heated is provided at the upper part of the outlet hood 34, and an exhaust port 36 for discharging the heated mixture is provided at the lower part of the outlet hood 34. ing.

外筒37は、加熱ガスの供給口と排出口とを備え、加熱ガス供給装置(図示省略)から送られる加熱ガスを受け入れ、これを加熱媒体として内筒32内の混合物を加熱する。加熱ガスの供給口は出口フード34側に、加熱ガスの排出口は入口部33側に設けられている。   The outer cylinder 37 includes a heating gas supply port and a discharge port, receives the heating gas sent from a heating gas supply device (not shown), and heats the mixture in the inner cylinder 32 using this as a heating medium. A heating gas supply port is provided on the outlet hood 34 side, and a heating gas discharge port is provided on the inlet portion 33 side.

反応装置31から排出される汚染土壌と薬剤との混合物は、内筒32の入口部33から排出口36に移動する過程で、所定時間・所定温度まで加熱され、汚染土壌の表面にマグネタイトを主成分とする強磁性体を生成・吸着させる。表面にマグネタイトを主成分とする強磁性体が生成・吸着した汚染土壌は、排出口36から排出される。一方、汚染土壌と薬剤との混合物の加熱操作に伴い発生する水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。   The mixture of the contaminated soil and the chemical discharged from the reactor 31 is heated to a predetermined temperature and a predetermined temperature in the process of moving from the inlet portion 33 of the inner cylinder 32 to the discharge port 36, and magnetite is mainly used on the surface of the contaminated soil. Generates and adsorbs ferromagnetic materials as components. The contaminated soil in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface is discharged from the discharge port 36. On the other hand, a gas such as water vapor generated by the heating operation of the mixture of contaminated soil and chemicals is led from the exhaust port 35 to an exhaust gas processing device (not shown).

反応装置31は、汚染土壌と薬剤との混合物を所定時間・所定温度まで加熱し、汚染土壌の表面にマグネタイトを主成分とする強磁性体を生成・吸着させることができればよく、装置の型式も特に限定されるものではない。撹拌混合性に優れる反応装置31は、一般的に伝熱性に優れるため反応性・熱効率の点からも好ましい。一方で、撹拌混合性に優れる反応装置31は、粉塵も発生し易いためこの対策が必要である。   The reactor 31 only needs to be able to heat a mixture of contaminated soil and chemicals to a predetermined time and a predetermined temperature to generate and adsorb a ferromagnetic material mainly composed of magnetite on the surface of the contaminated soil. It is not particularly limited. The reactor 31 having excellent stirring and mixing properties is preferable from the viewpoint of reactivity and thermal efficiency because it generally has excellent heat transfer properties. On the other hand, since the reaction device 31 having excellent stirring and mixing properties easily generates dust, this countermeasure is necessary.

冷却装置41は、反応装置31から排出される表面にマグネタイトを主成分とする強磁性体が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却する。冷却装置41は、ジャケット付きの横型1軸の撹拌装置であり、撹拌槽42内に横型1軸のスクリュー43を備え、撹拌槽42を覆うようにジャケット44が取付けられている。ジャケット44に供給される冷却媒体は水である。   The cooling device 41 cools the contaminated soil in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface discharged from the reaction device 31 to a temperature at which it can be supplied to the subsequent magnetic separator 51. The cooling device 41 is a horizontal uniaxial stirring device with a jacket, and includes a horizontal uniaxial screw 43 in a stirring tank 42, and a jacket 44 is attached so as to cover the stirring tank 42. The cooling medium supplied to the jacket 44 is water.

撹拌槽内42の出口部には、冷却された汚染土壌を後段の磁力選別装置51に定量供給する装置としてロータリーフィーダ46が設けられている。   A rotary feeder 46 is provided at the outlet of the agitation tank 42 as a device for supplying a fixed amount of cooled contaminated soil to the subsequent magnetic separator 51.

冷却装置41は、反応装置31から排出される表面にマグネタイトを主成分とする強磁性体が生成・吸着した汚染土壌を、後段の磁力選別装置51に供給可能な温度まで冷却することができれば型式等は特に限定されるものではない。冷却した汚染土壌を磁力選別装置51に定量供給する定量供給装置もロータリーフィーダ46に限定されるものではない。   The cooling device 41 may be of a type that can cool the contaminated soil in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface discharged from the reaction device 31 to a temperature that can be supplied to the subsequent magnetic force sorting device 51. Etc. are not particularly limited. The fixed amount supply device that supplies the cooled contaminated soil in a fixed amount to the magnetic separator 51 is not limited to the rotary feeder 46.

磁力選別装置51は、ロータリーフィーダ46を介して定量供給される汚染土壌を磁力選別する。ここに示す磁力選別装置51は、公知のコンベアタイプの磁選機であり、汚染土壌を磁着物と非磁着物とに分類する。ここでは特定の磁力選別装置51に限定されることなく、ドラム式の磁力機、汚染土壌を3つ以上に分別できる磁力機など種々の磁力選別装置を使用することができる。   The magnetic separator 51 magnetically sorts contaminated soil that is supplied in a fixed amount via the rotary feeder 46. The magnetic separator 51 shown here is a known conveyor-type magnetic separator, and classifies contaminated soil into magnetic and non-magnetic substances. Here, without being limited to the specific magnetic separator 51, various magnetic separators such as a drum type magnetic machine and a magnetic machine capable of separating contaminated soil into three or more can be used.

次に図2に示す粉粒体の処理装置1による汚染土壌の処理要領について説明する。   Next, the procedure for processing contaminated soil by the powder processing apparatus 1 shown in FIG. 2 will be described.

汚染土壌は汚染土壌供給装置26を介して混合装置11に、薬剤は薬剤供給装置21を介して混合装置11に定量供給され、ここで汚染土壌と薬剤とが十分に撹拌混合される。混合物は、排出口から排出され、反応装置31の入口部33を経由して内筒32に送られる。   The contaminated soil is supplied to the mixing device 11 via the contaminated soil supply device 26, and the drug is supplied to the mixing device 11 via the drug supply device 21. Here, the contaminated soil and the drug are sufficiently mixed with stirring. The mixture is discharged from the discharge port and sent to the inner cylinder 32 via the inlet 33 of the reaction device 31.

混合物は、内筒32を入口部33から排出口36に向って移動しつつ加熱される。この過程で薬剤が反応し、汚染土壌の表面にマグネタイトを主成分とする強磁性体が生成・吸着する。汚染土壌に根毛などの植物を含む場合、これらは反応装置31内で炭化物となり、汚染土壌と同様に表面にマグネタイトを主成分とする強磁性体が生成・吸着する。表面にマグネタイトを主成分とする強磁性体が生成・吸着した汚染土壌は、排出口36と繋がる冷却装置41に送られる。混合物を加熱する過程で発生した水蒸気等のガスは、排気口35から排気ガス処理装置(図示省略)に導かれる。   The mixture is heated while moving the inner cylinder 32 from the inlet 33 toward the outlet 36. In this process, the drug reacts and a ferromagnetic material composed mainly of magnetite is generated and adsorbed on the surface of the contaminated soil. When the contaminated soil contains plants such as root hairs, they become carbide in the reactor 31 and a ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface in the same manner as the contaminated soil. The contaminated soil on which the ferromagnetic material mainly composed of magnetite is generated and adsorbed is sent to the cooling device 41 connected to the discharge port 36. A gas such as water vapor generated in the course of heating the mixture is led from the exhaust port 35 to an exhaust gas processing device (not shown).

反応装置31から排出される表面にマグネタイトを主成分とする強磁性体が生成・吸着した汚染土壌は、冷却装置41により磁力選別装置51に供給可能な温度まで冷却された後、ロータリーフィーダ46を介して磁力選別装置51に定量供給され、ここで磁着物と非磁着物とに分別される。   The contaminated soil in which the ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface discharged from the reaction device 31 is cooled to a temperature that can be supplied to the magnetic force sorting device 51 by the cooling device 41, and then the rotary feeder 46 is used. The magnetic flux is supplied to the magnetic separator 51 through a fixed amount, and is separated into a magnetized product and a non-magnetized product.

マグネタイトを主成分とする強磁性体は、比表面積の関係から粒径の小さい汚染土壌ほど生成・吸着量(汚染土壌単位質量当たり)が多くなる。また粒径の小さい汚染土壌は自重が小さく、さらにマグネタイトを主成分とする強磁性体の吸着量が多いため磁着物となる。一方、粒径の大きい汚染土壌は自重が大きく、さらにマグネタイトを主成分とする強磁性体の吸着量が少ないため非磁着物となる。   A ferromagnetic material mainly composed of magnetite has a larger amount of generation / adsorption (per unit mass of contaminated soil) as the contaminated soil has a smaller particle size because of the specific surface area. In addition, contaminated soil with a small particle size has a small weight and becomes a magnetized material because of a large amount of adsorption of a ferromagnetic material mainly composed of magnetite. On the other hand, contaminated soil with a large particle size has a high weight and is non-magnetized due to a small amount of adsorption of a ferromagnetic material mainly composed of magnetite.

以上のように粉粒体の処理装置1を使用することで汚染土壌を粒径により選別する、つまり分級が可能となる。放射性物質汚染土壌は、粒径の小さい土壌ほど放射性物質が高いため本処理装置1を使用することで除染することができる。   As described above, by using the powder processing apparatus 1, the contaminated soil is sorted by the particle size, that is, classification is possible. Radioactive material-contaminated soil can be decontaminated by using the present treatment apparatus 1 because soil with a smaller particle size has higher radioactive material.

本発明の粉粒体の処理装置は、図2に示す処理装置に限定されるものではない。図2に示す粉粒体の処理装置1では、混合装置11と反応装置31とが分離しているが、混合装置と反応装置とを一体化させてもよい。このような処理装置は、反応温度が低く設定されているような場合には好適に適用できる。   The processing apparatus of the granular material of this invention is not limited to the processing apparatus shown in FIG. In the granular material processing apparatus 1 shown in FIG. 2, the mixing apparatus 11 and the reaction apparatus 31 are separated, but the mixing apparatus and the reaction apparatus may be integrated. Such a processing apparatus can be suitably applied when the reaction temperature is set low.

反応温度が比較的高い場合であっても、反応装置のみ使用し、前段を混合ゾーン、後段を反応ゾーンとすることで混合装置を省略してもよい。このような反応装置に図2に示す間接加熱式ロータリーキルンを使用する場合、外筒37を中央から排出口側にのみ設ければよい。   Even when the reaction temperature is relatively high, only the reaction apparatus may be used, and the mixing apparatus may be omitted by using the former stage as the mixing zone and the latter stage as the reaction zone. When the indirectly heated rotary kiln shown in FIG. 2 is used in such a reaction apparatus, the outer cylinder 37 may be provided only from the center to the discharge port side.

図2に示す粉粒体の処理装置1は、冷却装置41を備え、反応装置31から排出される汚染土壌を冷却するが、反応装置31から排出される汚染土壌の温度が磁力選別装置51の仕様を満足するものであれば冷却装置41は不要である。このような場合には反応装置31の排出口36にロータリーフィーダなどの定量供給装置を設置すればよい。   The powder processing apparatus 1 shown in FIG. 2 includes a cooling device 41 and cools the contaminated soil discharged from the reaction device 31, but the temperature of the contaminated soil discharged from the reaction device 31 is If the specification is satisfied, the cooling device 41 is unnecessary. In such a case, a quantitative supply device such as a rotary feeder may be installed at the discharge port 36 of the reaction device 31.

反応場の雰囲気を制御することにより汚染土壌の表面に生成・吸着させるマグネタイトを主成分とする強磁性体の粒子径及び/又は凝集性を制御する場合には、反応装置内にガスを供給するための雰囲気ガス供給管を設け、ここから空気、窒素ガス、燃焼排ガス、炭酸ガス、あるいはこれらガスの混合物を供給すればよい。   When controlling the particle size and / or cohesiveness of a ferromagnetic material mainly composed of magnetite that is generated and adsorbed on the surface of contaminated soil by controlling the atmosphere in the reaction field, gas is supplied into the reactor. An atmosphere gas supply pipe is provided for supplying air, nitrogen gas, combustion exhaust gas, carbon dioxide gas, or a mixture of these gases.

本発明の粉粒体の処理装置は、連続式の処理装置に限定されるものではなく、半回分式、回分式の処理装置であってもよい。   The processing apparatus of the granular material of this invention is not limited to a continuous processing apparatus, A semi-batch type and a batch type processing apparatus may be sufficient.

上記実施形態に示すように本発明の粉粒体の処理方法及び処理装置を使用することで余分な廃棄物を発生させることなく簡単な操作で安価に汚染土壌等を処理することができる。また本発明の被処理物の調製方法及び装置を本発明の粉粒体の処理方法及び処理装置の前処理及び前処理装置として好適に使用することができる。   As shown in the above-described embodiment, by using the method and apparatus for treating granular material of the present invention, it is possible to treat contaminated soil and the like with a simple operation without generating extra waste. Moreover, the preparation method and apparatus of the to-be-processed object of this invention can be used suitably as a pre-processing and pre-processing apparatus of the processing method and processing apparatus of the granular material of this invention.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、汚染土壌等の粉粒体に液状の薬剤を添加し、これを反応させて粉粒体の表面にマグネタイトを主成分とする強磁性体が生成・吸着させるため、強磁性体を均一に生成・吸着させ易く、さらに粉じんの発生が抑えられる。また汚染土壌等に木くず、根毛等が含まれていてもそのまま処理できるなど実用的な方法、装置と言える。   Moreover, the preparation method of the to-be-processed object of this invention and the processing method of a granular material add a liquid chemical | medical agent to granular materials, such as contaminated soil, and make this react and make magnetite the main component on the surface of a granular material. Since the ferromagnetic material is generated and adsorbed, the ferromagnetic material is easily generated and adsorbed uniformly, and the generation of dust is further suppressed. In addition, it can be said that it is a practical method and apparatus such that it can be treated as it is even if wood chips, root hairs, etc. are contained in the contaminated soil.

また本発明の被処理物の調製方法及び粉粒体の処理方法は、粉粒体の表面に生成・吸着させるマグネタイトを主成分とする強磁性体の粒子径及び/又は凝集性を制御することができるため少ない薬剤の量で効率的に粉粒体を処理可能である。さらに本処理方法を種々の粉粒体の処理、幅広い用途に使用することができる。   In addition, the method for preparing an object to be processed and the method for treating a granular material according to the present invention control the particle size and / or cohesiveness of a ferromagnetic material mainly composed of magnetite to be generated and adsorbed on the surface of the granular material. Therefore, it is possible to efficiently process the granular material with a small amount of drug. Furthermore, the present treatment method can be used for various kinds of powders and a wide range of applications.

図面を参照しながら好適な実施形態を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更及び修正を容易に想定するであろう。従って、そのような変更及び修正は、請求の範囲から定まる発明の範囲内のものと解釈される。   While the preferred embodiment has been described with reference to the drawings, those skilled in the art will readily appreciate various changes and modifications within the scope of this specification after reviewing this specification. Therefore, such changes and modifications are interpreted as being within the scope of the invention defined by the claims.

実施例1〜3
真砂土10gに10ppmの二塩化鉄水溶液1mLと10ppmの三塩化鉄水溶液1mLと水酸化ナトリウム水溶液1mLとを添加し、これらを撹拌混合した後に大気雰囲気(空気雰囲気)、室温下で2〜3日間自然乾燥させ被選別物用の試料を得た。実施例1〜3はpHが異なる。
Examples 1-3
Add 10mL of 10ppm iron dichloride aqueous solution, 1ppm 10ppm iron trichloride aqueous solution 1mL and sodium hydroxide aqueous solution 1mL to 10g of pure sand and mix them with stirring, then air atmosphere (air atmosphere) at room temperature for 2-3 days The sample was dried naturally to obtain a sample for sorting. Examples 1-3 differ in pH.

実施例4〜6
同様に、真砂土10gに10ppmの二塩化鉄水溶液1mLと10ppmの三塩化鉄水溶液1mLと水酸化ナトリウム水溶液1mLとを添加し、これらを撹拌混合した後、電気炉を用いて、大気雰囲気(空気雰囲気)下、250℃で2時間加熱し被選別物用の試料を得た。実施例4〜6はpHが異なる。
Examples 4-6
Similarly, 1 mL of a 10 ppm iron dichloride aqueous solution, 1 mL of 10 ppm iron trichloride aqueous solution and 1 mL of sodium hydroxide aqueous solution are added to 10 g of pure sand, and these are stirred and mixed. Then, using an electric furnace, the atmosphere (air Atmosphere) and heated at 250 ° C. for 2 hours to obtain a sample for an object to be selected. Examples 4-6 differ in pH.

磁着選別試験
各試料の含水率を1%以下にした後、試料を図3に示す専用の混合瓶101に入れ、混合瓶101の上部に鉄心102を挿入し、さらにネオジム磁石103を付けて(図3(A)参照)、手で30秒程度混合瓶101を振った(図3(B)参照)。その後、瓶上部のプラスチックカバー104を外し、受け皿の上でネオジム磁石103と鉄心102を引き抜き、磁着物を回収した(図3(C)参照)。その後、プラスチックカバー104、ネオジム磁石103及び鉄心102を取付け、残渣(非磁着物)を先と同じ要領で磁選を行った。この磁選操作は、各試料に対して5回実施した。
Magnetic Adhesion Sorting Test After setting each sample to a moisture content of 1% or less, put the sample in a special mixing bottle 101 shown in FIG. 3, insert an iron core 102 at the top of the mixing bottle 101, and attach a neodymium magnet 103. (See FIG. 3A), the mixing bottle 101 was shaken by hand for about 30 seconds (see FIG. 3B). Thereafter, the plastic cover 104 at the upper part of the bottle was removed, the neodymium magnet 103 and the iron core 102 were pulled out on the tray, and the magnetic deposits were collected (see FIG. 3C). Thereafter, the plastic cover 104, the neodymium magnet 103, and the iron core 102 were attached, and the residue (non-magnetized material) was magnetically selected in the same manner as before. This magnetic separation operation was performed five times for each sample.

比較例1
真砂土10gのみを図3に示す専用の混合瓶101に入れ、試料と同じ要領で磁着選別試験を実施した。
Comparative Example 1
Only 10 g of pure sand soil was put into a dedicated mixing bottle 101 shown in FIG. 3, and a magnetic adhesion sorting test was performed in the same manner as the sample.

磁着選別試験の結果
磁着率を式(1)から算出し、真砂土のみの磁着率(比較例1)を1とした場合の各試料の磁着倍率を表1に表した。
Results of Magnetic Adhesion Sorting Test The magnetic adhesion ratio was calculated from the formula (1), and the magnetic adhesion magnification of each sample when the magnetic adhesion ratio of only pure sand soil (Comparative Example 1) is 1 is shown in Table 1.

Figure 2019193919
Figure 2019193919

Figure 2019193919
Figure 2019193919

表1に示すように実施例1〜6の試料は、いずれも比較例1に比較して磁着率が増加した。試料調製時の加熱の有無と磁着率との関係では、加熱操作を行うことで非加熱時と比較して磁着率が、1.6〜2.1倍増加した。また試料調整時のpHと磁着率との関係では、pH≒11に磁着率のピークが表れた。   As shown in Table 1, all of the samples of Examples 1 to 6 had an increased magnetic adhesion rate as compared with Comparative Example 1. Regarding the relationship between the presence / absence of heating at the time of sample preparation and the magnetic adhesion rate, the magnetic adhesion rate increased 1.6 to 2.1 times by performing the heating operation as compared with the case of non-heating. Further, regarding the relationship between the pH and the magnetic adhesion rate at the time of sample preparation, a peak of the magnetic adhesion rate appeared at pH≈11.

1 粉粒体の処理装置
11 混合装置
21 薬剤供給装置
26 汚染土壌供給装置
31 反応装置
41 冷却装置
46 ロータリーフィーダ
51 磁力選別装置
DESCRIPTION OF SYMBOLS 1 Processing apparatus 11 of granular material 21 Mixing apparatus 21 Drug supply apparatus 26 Contaminated soil supply apparatus 31 Reactor 41 Cooling apparatus 46 Rotary feeder 51 Magnetic separator

Claims (13)

被処理物を磁力選別可能に調製する方法であって、
前記被処理物が粉粒体であり、
薬剤が、2価の鉄イオンと3価の鉄イオンとを含有する水溶液を含み、
前記粉粒体と前記薬剤とを混合する混合工程を含み、前記粉粒体の表面にマグネタイトを主成分とする強磁性体を生成・吸着させることを特徴とする被処理物の調製方法。
A method of preparing a workpiece to be magnetically selectable,
The object to be treated is a granular material,
The drug comprises an aqueous solution containing divalent iron ions and trivalent iron ions,
A method for preparing an object to be processed, comprising a mixing step of mixing the powder and the drug, and generating and adsorbing a ferromagnetic material mainly composed of magnetite on the surface of the powder and particle.
前記薬剤にpH調整剤を含むことを特徴とする請求項1に記載の被処理物の調製方法。   The method for preparing an object to be treated according to claim 1, wherein the drug contains a pH adjuster. 前記混合工程の他に、水分を蒸発させる水分蒸発工程を含むことを特徴とする請求項1又は請求項2に記載の被処理物の調製方法。   The method for preparing an object to be processed according to claim 1 or 2, further comprising a water evaporation step of evaporating water in addition to the mixing step. 前記混合工程と並行して前記粉粒体と前記薬剤との混合物を加熱する加熱工程を含み、
又は前記混合工程の他に、前記粉粒体と前記薬剤との混合物を加熱する加熱工程を含むことを特徴とする請求項1から3のいずれか1項に記載の被処理物の調製方法。
Including a heating step of heating the mixture of the powder and the drug in parallel with the mixing step,
Alternatively, the method for preparing an object to be processed according to any one of claims 1 to 3, further comprising a heating step of heating the mixture of the powder and the drug in addition to the mixing step.
前記加熱工程の温度が350℃以下、好ましくは300℃以下、より好ましくは250℃以下であることを特徴とする請求項4に記載の被処理物の調製方法。   The method for preparing an object to be processed according to claim 4, wherein the temperature in the heating step is 350 ° C or lower, preferably 300 ° C or lower, more preferably 250 ° C or lower. 前記粉粒体が有機物を含み、
前記有機物は、前記加熱工程で炭化され、炭化物の表面にマグネタイトを主成分とする強磁性体が生成・吸着することを特徴とする請求項4又は請求項5に記載の被処理物の調製方法。
The granular material contains organic matter,
The method for preparing an object to be processed according to claim 4 or 5, wherein the organic matter is carbonized in the heating step, and a ferromagnetic material mainly composed of magnetite is generated and adsorbed on the surface of the carbide. .
下記(A)群の1つ以上を制御することにより前記粉粒体の表面に生成・吸着させるマグネタイトを主成分とする強磁性体の粒子径及び/又は凝集性を制御することを特徴とする請求項1から6のいずれか1項に記載の被処理物の調製方法。
(A)薬剤のpH,2価の鉄イオンに対する3価の鉄イオンの割合,2価の鉄イオン濃度,3価の鉄イオン濃度,反応時間,反応温度,反応場の雰囲気(酸化性/還元性),水溶液のアニオンの種類
By controlling one or more of the following group (A), the particle size and / or cohesion of a ferromagnetic material mainly composed of magnetite to be generated and adsorbed on the surface of the granular material is controlled. The preparation method of the to-be-processed object of any one of Claim 1 to 6.
(A) pH of drug, ratio of trivalent iron ion to divalent iron ion, divalent iron ion concentration, trivalent iron ion concentration, reaction time, reaction temperature, reaction field atmosphere (oxidation / reduction ), Types of anions in aqueous solution
請求項1から7のいずれか1項の被処理物の調製方法により得られる被処理物を磁力選別により分級する分級工程を備えることを特徴とする粉粒体の処理方法。   A method for treating a granular material, comprising a classification step of classifying a workpiece obtained by the method for preparing a workpiece according to any one of claims 1 to 7 by magnetic separation. 前記粉粒体が土壌であることを特徴とする請求項8に記載の粉粒体の処理方法。   The said granular material is soil, The processing method of the granular material of Claim 8 characterized by the above-mentioned. 薬剤と被処理物である粉粒体とを混合し、前記粉粒体の表面にマグネタイトを主成分とする強磁性体を生成・吸着させる反応装置と、
前記反応装置に前記薬剤を供給する薬剤供給装置と、
を備え、
前記薬剤が、2価の鉄イオンと3価の鉄イオンとを含有する水溶液を含むことを特徴とする被処理物の調製装置。
A reaction apparatus for mixing a drug and a granular material to be treated, and generating and adsorbing a ferromagnetic material mainly composed of magnetite on the surface of the granular material;
A drug supply device for supplying the drug to the reaction device;
With
An apparatus for preparing an object to be processed, characterized in that the chemical contains an aqueous solution containing divalent iron ions and trivalent iron ions.
さらに前記粉粒体と前記薬剤との混合物を加熱する加熱手段及び/又は前記粉粒体と前記薬剤との混合物から水分を蒸発させる蒸発手段を備えることを特徴とする請求項10に記載の被処理物の調製装置。   The object according to claim 10, further comprising heating means for heating the mixture of the granular material and the drug and / or evaporation means for evaporating water from the mixture of the granular material and the drug. Processed product preparation equipment. 請求項10又は請求項11に記載の被処理物の調製装置と、
前記被処理物の調製装置を介して得られる被処理物を磁力選別する磁選機と、
を含むことを特徴とする粉粒体の処理装置。
An apparatus for preparing an object to be processed according to claim 10 or 11,
A magnetic separator for magnetically sorting the workpiece to be obtained via the preparation device of the workpiece;
The processing apparatus of the granular material characterized by including.
前記粉粒体が土壌であることを特徴とする請求項12に記載の粉粒体の処理装置。   The apparatus for treating granular material according to claim 12, wherein the granular material is soil.
JP2018088488A 2018-05-02 2018-05-02 Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed Active JP7116952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018088488A JP7116952B2 (en) 2018-05-02 2018-05-02 Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088488A JP7116952B2 (en) 2018-05-02 2018-05-02 Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed

Publications (2)

Publication Number Publication Date
JP2019193919A true JP2019193919A (en) 2019-11-07
JP7116952B2 JP7116952B2 (en) 2022-08-12

Family

ID=68469145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088488A Active JP7116952B2 (en) 2018-05-02 2018-05-02 Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed

Country Status (1)

Country Link
JP (1) JP7116952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007305A (en) * 2022-05-25 2022-09-06 有研资源环境技术研究院(北京)有限公司 Method for stepwise recycling pollucite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098032A (en) * 2002-09-13 2004-04-02 Ataka Construction & Engineering Co Ltd Method for purifying heavy metal contaminated soil
JP2004121890A (en) * 2002-09-30 2004-04-22 Futaba Shoji Kk Magnetic attractant, its manufacturing method and water treatment method
US20040147397A1 (en) * 2002-02-26 2004-07-29 Miller Jan D. Magnetic activated carbon particles for adsorption of solutes from solution
JP2005137973A (en) * 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP2017039123A (en) * 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147397A1 (en) * 2002-02-26 2004-07-29 Miller Jan D. Magnetic activated carbon particles for adsorption of solutes from solution
JP2004098032A (en) * 2002-09-13 2004-04-02 Ataka Construction & Engineering Co Ltd Method for purifying heavy metal contaminated soil
JP2004121890A (en) * 2002-09-30 2004-04-22 Futaba Shoji Kk Magnetic attractant, its manufacturing method and water treatment method
JP2005137973A (en) * 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP2017039123A (en) * 2015-08-17 2017-02-23 公立大学法人県立広島大学 Treatment method of contaminant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007305A (en) * 2022-05-25 2022-09-06 有研资源环境技术研究院(北京)有限公司 Method for stepwise recycling pollucite

Also Published As

Publication number Publication date
JP7116952B2 (en) 2022-08-12

Similar Documents

Publication Publication Date Title
US9653190B2 (en) Removal device for radioactive cesium
EP3514219B1 (en) Coal ash treatment system and method
JP2003523281A (en) Adsorbed powder for removing mercury from hot and humid gas streams
JPH04502727A (en) Method for the chemical combination of heavy metals from sludge in gypsum and sier silicate structures and the production of building and construction materials thereby
JP2010036128A (en) Device for pretreating contaminated soil, heat treating system and heat treating method
JPH1071387A (en) Remediation of soil
KR101608020B1 (en) Heat-desorption system of oil-contaminated soil by direct irradiation of microwave and heat-desorption method using the same
JP5755377B2 (en) Method for producing radioactive cesium decontaminant and method for removing radioactive cesium
JP7116952B2 (en) Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed
JP5683633B2 (en) Method and apparatus for treating radioactive material contaminants
CN112322301A (en) Composite soil conditioner and application thereof
JP7390652B2 (en) Method for preparing objects to be processed, method and apparatus for processing powder and granular materials
Wang et al. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching
KR102175248B1 (en) System for producing granular adsorbent for removing ionic pollutants using alum sludge
CN105854812A (en) Liquid-phase mercury adsorbent and preparation method and application thereof
JP2002355552A (en) Material and method for treating nitrogen oxide, and method of treating flue gas
JP3507326B2 (en) Processing equipment for plating sludge
AU2021205880B2 (en) Spent activated carbon and industrial byproduct treatment system and method
Wei Leaching study of thermally treated cadmium-doped soils
JP2001047027A (en) Method for detoxifying substance contaminated with dioxins
Wang et al. Stabilization of Heavy Metal Containing Smelting Ash through Mechano-chemical Reaction
JP6629095B2 (en) Treatment of solids containing pollutants
JP2019191177A (en) Method for cleaning radiation-contaminated soil and method for reducing volume
JP2004057923A (en) Method of making harmless and recycling contaminated soil and plant therefor
JP2013242210A (en) Method for treating radioactive substance contaminant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7116952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150