JP2019193358A - Power generation facility and power supply facility - Google Patents

Power generation facility and power supply facility Download PDF

Info

Publication number
JP2019193358A
JP2019193358A JP2018080836A JP2018080836A JP2019193358A JP 2019193358 A JP2019193358 A JP 2019193358A JP 2018080836 A JP2018080836 A JP 2018080836A JP 2018080836 A JP2018080836 A JP 2018080836A JP 2019193358 A JP2019193358 A JP 2019193358A
Authority
JP
Japan
Prior art keywords
power
heat
power generation
generated
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018080836A
Other languages
Japanese (ja)
Other versions
JP7148263B2 (en
Inventor
和芳 市川
Kazuyoshi Ichikawa
和芳 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2018080836A priority Critical patent/JP7148263B2/en
Publication of JP2019193358A publication Critical patent/JP2019193358A/en
Application granted granted Critical
Publication of JP7148263B2 publication Critical patent/JP7148263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Abstract

To obtain a solid fuel by effectively utilizing surplus power.SOLUTION: When surplus power with respect to a power amount required by a power system 1 is generated from power amount generated by thermal power facilities 2, 3, solar power generation facilities 4, 5, and wind power generation facilities 6, 7, heat is generated from the surplus power by heat generation means in a carbonization facility for carbonizing biomass under the control of power control means. The generated heat is used as a part of or the whole of a heat source for carbonization means. Thus, the heat source for carbonizing the biomass is obtained from the surplus power.SELECTED DRAWING: Figure 1

Description

本発明は、発電設備、及び、電力供給設備に関し、余剰電力を有効に利用して固体燃料を得ることができる設備に関する。   The present invention relates to a power generation facility and a power supply facility, and more particularly to a facility capable of obtaining solid fuel by effectively using surplus power.

化石燃料を使用しない再生可能エネルギーを用いた発電設備(以下、再生可能エネルギー発電設備)が導入されつつある。再生可能エネルギー発電設備は、自然環境により出力が大きく変化するため、電力需給を調整するためには、火力発電設備を同時に用い、火力発電設備での出力を追従させる必要がある。   Power generation facilities using renewable energy that does not use fossil fuels (hereinafter referred to as renewable energy power generation facilities) are being introduced. Since the output of a renewable energy power generation facility varies greatly depending on the natural environment, in order to adjust the power supply and demand, it is necessary to simultaneously use the thermal power generation facility and follow the output of the thermal power generation facility.

再生可能エネルギー発電設備の増加に伴い、火力発電設備の出力を低下させることが行われるようになってきている。自然環境の変化により再生可能エネルギー発電設備の出力が低下した場合に備え、変化火力発電設備では、一定の出力で運転を継続して、短時間で出力を確保できるようにしている。しかし、火力発電設備で出力を低下させるには限度があり、再生可能エネルギー発電設備での発電電力、もしくは、火力発電設備での発電電力が余剰になる虞があった。   With the increase in renewable energy power generation facilities, the output of thermal power generation facilities has been reduced. In preparation for a case where the output of a renewable energy power generation facility decreases due to changes in the natural environment, the variable thermal power generation facility continues to operate at a constant output so that the output can be secured in a short time. However, there is a limit to reducing the output in the thermal power generation facility, and there is a possibility that the generated power in the renewable energy power generation facility or the generated power in the thermal power generation facility becomes excessive.

このため、従来から、再生可能エネルギー発電設備で余剰となった電力により熱を生成して蓄え、再生エネルギー発電設備での出力が低下した時に、蓄えた熱により発電を行う技術が提案されている(特許文献1参照)。特許文献1の技術を適用することにより、自然環境の影響を受けにくい電力供給設備とすることができる。   For this reason, conventionally, a technique has been proposed in which heat is generated and stored with the surplus power in the renewable energy power generation facility, and when the output in the renewable energy power generation facility is reduced, power is generated with the stored heat. (See Patent Document 1). By applying the technique of Patent Document 1, it is possible to provide a power supply facility that is not easily affected by the natural environment.

一方、火力発電所では、未利用な資源として扱われていたバイオマスを燃料として有効利用することが検討されている。例えば、カーボンニュートラルなバイオマス(木質バイオマス)を熱分解することにより、炭化物(固体燃料)とガスを生成し、炭化物をボイラの燃料として用いて電力を得ることが行われている。バイオマスの熱分解は、燃料、及び、炭化に伴って生じる熱分解ガスの燃焼により生成された熱が用いられている。   On the other hand, in thermal power plants, it has been studied to effectively use biomass, which has been treated as an unused resource, as fuel. For example, carbon neutral biomass (woody biomass) is pyrolyzed to generate carbide (solid fuel) and gas, and electric power is obtained using the carbide as fuel for the boiler. In the pyrolysis of biomass, heat generated by combustion of fuel and pyrolysis gas generated along with carbonization is used.

バイオマスを熱分解する場合、熱量を増加させて固定炭素の割合を増やすことで、熱分解ガスが多く得られることが知られている。燃料を増加させずに熱量を増加させることができれば、カーボンニュートラルの観点で有利となる。   When pyrolyzing biomass, it is known that a large amount of pyrolysis gas can be obtained by increasing the amount of heat and increasing the proportion of fixed carbon. If the amount of heat can be increased without increasing the fuel, it is advantageous from the viewpoint of carbon neutrality.

特開2015−35898号公報Japanese Patent Laid-Open No. 2015-35898

本発明は上記状況に鑑みてなされたもので、余剰となった電力により原料を炭化する熱源を得ることができる発電設備、及び、電力供給設備を提供することを目的とする。   This invention is made | formed in view of the said condition, and it aims at providing the power generation equipment which can obtain the heat source which carbonizes a raw material with the surplus electric power, and an electric power supply equipment.

特に、余剰となった電力により、バイオマスを炭化して炭化物(固体燃料)を得る際の熱源を得ることができる発電設備、及び、電力供給設備を提供することを目的とする。   In particular, an object of the present invention is to provide a power generation facility and a power supply facility capable of obtaining a heat source for carbonizing biomass to obtain a carbide (solid fuel) by surplus power.

上記目的を達成するための請求項1に係る本発明の発電設備は、発電電力を得る発電手段と、原料を炭化して固体燃料を得る炭化手段と、前記発電手段で発電された電力の少なくとも一部から熱を生成し、生成された熱を前記炭化手段の熱源とする熱生成手段とを備えたことを特徴とする。   In order to achieve the above object, the power generation facility of the present invention according to claim 1 comprises: a power generation means for obtaining generated power; a carbonization means for carbonizing a raw material to obtain a solid fuel; And heat generation means for generating heat from a part and using the generated heat as a heat source for the carbonization means.

請求項1に係る本発明では、熱生成手段により、発電手段で発電された電力の少なくとも一部から熱が生成され、生成された熱が炭化手段の熱源とされる。このため、余剰電力が生じた場合に、余剰電力を熱に変えて原料(石炭、バイオマス等)の炭化の熱源とすることが可能になる。   In the present invention according to claim 1, heat is generated from at least part of the electric power generated by the power generation means by the heat generation means, and the generated heat is used as a heat source for the carbonization means. For this reason, when surplus electric power arises, it becomes possible to change surplus electric power into heat and to be a heat source of carbonization of raw materials (coal, biomass, etc.).

熱生成手段としては、炭化手段の熱源を直接加熱する加熱手段、蓄熱媒体を加熱して蓄熱し、蓄熱された媒体の熱を炭化手段の熱源として適用する加熱・蓄熱手段等を適用することができる。例えば、炭化手段の熱源を直接加熱する電気ヒータ、ヒートポンプ加熱、誘電加熱、誘導加熱マイクロ波発生手段等の加熱手段、溶融塩を加熱して熱を蓄熱し、蓄熱された熱で炭化手段の熱源を加熱する加熱・蓄熱手段を適用することができる。   As the heat generation means, a heating means for directly heating the heat source of the carbonization means, a heating / heat storage means for heating the heat storage medium to store heat, and applying the heat of the stored medium as the heat source of the carbonization means, etc. it can. For example, heating means such as an electric heater that directly heats the heat source of the carbonization means, heat pump heating, dielectric heating, induction heating microwave generation means, etc., heat the molten salt to store the heat, and the heat source stores the heat source of the carbonization means It is possible to apply heating / heat storage means for heating

そして、請求項2に係る本発明の発電設備は、請求項1に記載の発電設備において、前記炭化手段で炭化される原料はバイオマスであることを特徴とする。   A power generation facility according to a second aspect of the present invention is the power generation facility according to the first aspect, wherein the raw material carbonized by the carbonization means is biomass.

請求項2に係る本発明では、バイオマスを炭化する炭化手段を適用することができる。バイオマスとしては、林地残材、間伐材、未利用樹、製材廃材、建設廃材等の木質バイオマスを用いることが好適である。また、バイオマスとしては、稲、麦わら、もみ殻等の未利用バイオマスや、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを用いることも可能である。   In the present invention according to claim 2, carbonization means for carbonizing biomass can be applied. As the biomass, it is preferable to use woody biomass such as forest residue, thinned wood, unused trees, sawmill waste, construction waste, and the like. Moreover, as biomass, it is also possible to use unused biomass such as rice, straw, and rice husk, and waste biomass such as waste paper, livestock manure, food residue, and sludge.

また、請求項3に係る本発明の発電設備は、請求項2に記載の発電設備において、前記発電手段は、再生可能エネルギーを用いて発電を行う再生可能エネルギー発電手段であることを特徴とする。   The power generation facility of the present invention according to claim 3 is the power generation facility according to claim 2, wherein the power generation means is a renewable energy power generation means for generating power using renewable energy. .

請求項3に係る本発明では、バイオマスを炭化する炭化手段の熱源として、再生可能エネルギー発電手段の余剰電力から生成された熱を用いることができる。再生可能エネルギー発電手段としては、風力発電、太陽光発電、地熱発電、潮流発電、バイオマス燃料による発電等、化石燃料を使用しない発電手段が適用される。   In this invention which concerns on Claim 3, the heat | fever produced | generated from the surplus electric power of a renewable energy electric power generation means can be used as a heat source of the carbonization means which carbonizes biomass. As the renewable energy power generation means, power generation means that does not use fossil fuel, such as wind power generation, solar power generation, geothermal power generation, tidal current power generation, and power generation using biomass fuel, is applied.

上記目的を達成するための請求項4に係る本発明の電力供給設備は、電力系統に接続され、回転機の駆動により電力を得る第1発電手段と、前記電力系統に接続され、再生可能エネルギーを用いて発電を行う再生可能エネルギー発電手段と、原料を炭化して固体燃料を得る炭化手段と、前記第1発電手段もしくは前記再生可能エネルギー発電手段の少なくとも一方の手段で発電された電力の少なくとも一部から熱を生成し、生成された熱を前記炭化手段の熱源とする熱生成手段と、前記電力系統の需要電力に基づいて、前記熱生成手段で熱を生成するための電力を調整する電力調整手段とを備え、前記電力調整手段は、前記電力系統の需用電力の電力量に対し、前記第1発電手段、及び、前記再生可能エネルギー発電手段での発電の電力量が余剰となった際に、余剰となった余剰電力により前記熱生成手段で熱を生成することを特徴とする。   In order to achieve the above object, a power supply facility of the present invention according to claim 4 is connected to an electric power system, and is connected to the electric power system, and is connected to the electric power system to generate renewable energy. At least one of the electric power generated by at least one of the first power generation means or the renewable energy power generation means; Heat is generated from a part of the heat generation means using the generated heat as a heat source for the carbonization means, and electric power for generating heat by the heat generation means is adjusted based on demand power of the power system. Power adjustment means, wherein the power adjustment means is configured such that the amount of electric power generated by the first power generation means and the renewable energy power generation means with respect to the amount of power demanded by the power system is When it became flax, and generating heat in the heat generating unit by the surplus power became excessive.

請求項4に係る本発明では、第1発電手段(例えば、火力発電設備)、及び、再生可能エネルギー発電手段(例えば、風力発電設備、太陽光発電設備)が電力系統に接続され、電力需要が賄われる。原料を炭化して固体燃料を得る炭化手段が、第1発電手段に、もしくは、再生可能エネルギー発電手段に、もしくは、単独で備えられる。熱生成手段により、第1発電手段もしくは再生可能エネルギー発電手段の少なくとも一方の手段で発電された電力の少なくとも一部から、熱が生成され、生成された熱が炭化手段の熱源とされる。そして、電力調整手段の調整により、電力系統の需用電力の電力量に対し、第1発電手段、及び、再生可能エネルギー発電手段での発電の電力量が余剰となった際に、余剰となった余剰電力により熱生成手段で熱が生成される。   In the present invention according to claim 4, the first power generation means (for example, thermal power generation equipment) and the renewable energy power generation means (for example, wind power generation equipment, solar power generation equipment) are connected to the power system, and the power demand is increased. Be covered. Carbonization means for carbonizing the raw material to obtain a solid fuel is provided in the first power generation means, in the renewable energy power generation means, or independently. The heat generation means generates heat from at least a part of the electric power generated by at least one of the first power generation means and the renewable energy power generation means, and the generated heat is used as a heat source for the carbonization means. Then, when the amount of power generated by the first power generation means and the renewable energy power generation means becomes surplus with respect to the amount of power required for power supply by adjusting the power adjustment means, it becomes surplus. Heat is generated by the heat generating means by the surplus power.

このため、電力系統の需用電力に対して余剰電力が生じた場合に、余剰電力を熱に変えて原料(石炭、バイオマス等)の炭化の熱源とすることが可能になる。   For this reason, when surplus electric power arises with respect to the electric power for the demand of an electric power grid | system, it becomes possible to change surplus electric power into heat and to be a heat source of carbonization of raw materials (coal, biomass, etc.).

そして、請求項5に係る本発明の電力供給設備は、請求項4に記載の電力供給設備において、前記炭化手段で炭化される原料はバイオマスであることを特徴とする。   And the power supply equipment of this invention which concerns on Claim 5 is the power supply equipment of Claim 4, The raw material carbonized by the said carbonization means is biomass, It is characterized by the above-mentioned.

請求項5に係る本発明では、バイオマスを炭化する炭化手段を適用することができる。バイオマスとしては、林地残材、間伐材、未利用樹、製材廃材、建設廃材等の木質バイオマスを用いることが好適である。また、バイオマスとしては、稲、麦わら、もみ殻等の未利用バイオマスや、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを用いることも可能である。   In this invention which concerns on Claim 5, the carbonization means which carbonizes biomass is applicable. As the biomass, it is preferable to use woody biomass such as forest residue, thinned wood, unused trees, sawmill waste, construction waste, and the like. Moreover, as biomass, it is also possible to use unused biomass such as rice, straw, and rice husk, and waste biomass such as waste paper, livestock manure, food residue, and sludge.

また、請求項6に係る本発明の電力供給設備は、請求項5に記載の電力供給設備において、前記熱生成手段は、前記再生可能エネルギー発電手段で発電された電力の少なくとも一部から熱を生成する手段であり、前記バイオマスは、木質バイオマス、廃棄物バイオマス、未利用バイオマスの少なくとも一つであることを特徴とする。   The power supply facility of the present invention according to claim 6 is the power supply facility according to claim 5, wherein the heat generating means generates heat from at least part of the power generated by the renewable energy power generation means. The biomass is at least one of woody biomass, waste biomass, and unused biomass.

請求項6に係る本発明では、バイオマスを炭化する炭化手段の熱源として、再生可能エネルギー発電手段の余剰電力から生成された熱を用いることができる。再生可能エネルギー発電手段としては、風力発電、太陽光発電、地熱発電、潮流発電、バイオマス燃料による発電等、化石燃料を使用しない発電手段が適用される。   In this invention which concerns on Claim 6, the heat | fever produced | generated from the surplus electric power of a renewable energy electric power generation means can be used as a heat source of the carbonization means which carbonizes biomass. As the renewable energy power generation means, power generation means that does not use fossil fuel, such as wind power generation, solar power generation, geothermal power generation, tidal current power generation, and power generation using biomass fuel, is applied.

例えば、山間部等の地域の再生可能エネルギー発電設備として、風力発電設備が適用された際に、風力発電設備に炭化手段を並設し、林地残材、間伐材、未利用樹等の木質バイオマスを原料とすることで、原料を容易に調達することができる。炭化された固体燃料は、必要に応じて貯留・運搬され、近隣地域の発電所等の燃料として使用される。   For example, when wind power generation facilities are applied as renewable energy power generation facilities in regions such as mountainous areas, carbonization means are juxtaposed to wind power generation facilities, and woody biomass such as forest residue, thinned wood, unused trees, etc. By using as a raw material, the raw material can be easily procured. The carbonized solid fuel is stored and transported as necessary, and is used as fuel for power stations in neighboring areas.

また、例えば、都市部近郊等の地域の再生可能エネルギー発電設備として、太陽光発電設備が適用された際に、太陽光発電設備に炭化手段を並設し、製材廃材、建設廃材等の木質バイオマスや、稲、麦わら、もみ殻等の未利用バイオマス、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを原料とすることで、都市部で廃棄されるバイオマスを資源化することができる。炭化された固体燃料は、必要に応じて貯留・運搬され、近隣地域の発電所等の燃料として使用される。   In addition, for example, when solar power generation facilities are applied as renewable energy power generation facilities in areas such as suburbs of urban areas, carbonization means are juxtaposed to the solar power generation facilities, and woody biomass such as sawdust, construction waste, etc. By using waste biomass such as rice, straw, and rice husks, waste paper, livestock manure, food residues, sludge, etc., it is possible to recycle biomass discarded in urban areas. . The carbonized solid fuel is stored and transported as necessary, and is used as fuel for power stations in neighboring areas.

本発明の発電設備、及び、本発明の電力供給設備は、余剰となった電力により原料を炭化する熱源を得ることが可能になる。特に、余剰となった電力によりバイオマスを炭化する熱源を得ることが可能になる。   The power generation equipment of the present invention and the power supply equipment of the present invention can obtain a heat source that carbonizes the raw material by surplus power. In particular, it becomes possible to obtain a heat source for carbonizing biomass with surplus power.

本発明の一実施例に係る電力供給設備の概略系統図である。1 is a schematic system diagram of a power supply facility according to an embodiment of the present invention. 本発明の一実施例に係る発電設備の概略構成図である。It is a schematic block diagram of the power generation equipment which concerns on one Example of this invention. 本発明の一実施例に係る発電設備の概略構成図である。It is a schematic block diagram of the power generation equipment which concerns on one Example of this invention. 本発明の一実施例に係る発電設備の概略構成図である。It is a schematic block diagram of the power generation equipment which concerns on one Example of this invention. 炭化設備の概略構成図である。It is a schematic block diagram of carbonization equipment.

図1には本発明の一実施例に係る電力供給設備の全体を説明するための概略系統を示してある。   FIG. 1 shows a schematic system for explaining an entire power supply facility according to an embodiment of the present invention.

図に示すように、外部の負荷につながる電力系統1には、A地域に構築された第1発電手段としての火力発電設備2、B地域に構築された第1発電手段としての火力発電設備3が接続されている。また、電力系統1には、C地域、D地域(例えば、都市部近郊)に構築された再生可能エネルギー発電手段としての太陽光発電設備4、5が接続されている。更に、電力系統1には、E地域、F地域(例えば、山間部)に構築された再生可能エネルギー発電手段としての風力発電設備6、7が接続されている。   As shown in the figure, a power system 1 connected to an external load includes a thermal power generation facility 2 as a first power generation unit constructed in the A area, and a thermal power generation facility 3 as a first power generation unit constructed in the B area. Is connected. Further, the power grid 1 is connected to solar power generation facilities 4 and 5 as renewable energy power generation means constructed in the C region and the D region (for example, in the suburbs of cities). Furthermore, the power grid 1 is connected with wind power generation facilities 6 and 7 as renewable energy power generation means constructed in the E area and the F area (for example, mountainous areas).

具体的には後述するが、火力発電設備2、3、太陽光発電設備4、5、風力発電設備6、7には、原料としてのバイオマスを炭化する炭化手段が備えられている。そして、炭化手段には、発電された電力の少なくとも一部から熱を生成し、生成された熱を炭化手段の熱源とする熱生成手段が併設され、炭化設備とされている。   Although specifically described later, the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7 are provided with carbonization means for carbonizing biomass as a raw material. The carbonization means is provided with heat generation means that generates heat from at least a part of the generated electric power and uses the generated heat as a heat source of the carbonization means, thereby providing a carbonization facility.

尚、炭化手段としては、原料として石炭を炭化する手段を適用することも可能である。   In addition, as a carbonization means, it is also possible to apply the means which carbonizes coal as a raw material.

熱生成手段は、火力発電設備2、3、太陽光発電設備4、5、風力発電設備6、7の余剰電力を熱に変えて、余剰電力で熱を生成する手段であり、生成された熱によりバイオマスを炭化する炭化設備の炭化の熱源の一部(全部)とされる。   The heat generation means is means for generating heat with surplus power by changing surplus power of the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7 into heat, and the generated heat Is used as a part (all) of the carbonization heat source of the carbonization facility that carbonizes the biomass.

即ち、電力系統1の需用電力の電力量に対し、火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7での発電の電力量が余剰となった際に、余剰となった電力により熱生成手段で熱が生成される(電力調整手段)。   That is, when the amount of power generated by the thermal power generation facilities 2, 3, the solar power generation facilities 4, 5, and the wind power generation facilities 6, 7 becomes excessive with respect to the amount of power required for the power grid 1 In addition, heat is generated by the heat generating means by the surplus electric power (power adjusting means).

熱生成手段としては、炭化手段の熱源を直接加熱する加熱手段、蓄熱媒体を加熱して蓄熱し、蓄熱された媒体の熱を炭化手段の熱源として適用する加熱・蓄熱手段等を適用することができる。例えば、炭化手段の熱源を直接加熱する電気ヒータ、ヒートポンプ加熱、誘電加熱、誘導加熱、マイクロ波発生手段等の加熱手段、溶融塩を加熱して熱を蓄熱し、蓄熱された熱で炭化手段の熱源を加熱する加熱・蓄熱手段を適用することができる。   As the heat generation means, a heating means for directly heating the heat source of the carbonization means, a heating / heat storage means for heating the heat storage medium to store heat, and applying the heat of the stored medium as the heat source of the carbonization means, etc. it can. For example, an electric heater that directly heats the heat source of the carbonization means, a heat pump heating, dielectric heating, induction heating, a heating means such as a microwave generation means, etc., a molten salt is heated to store heat, and the stored heat is used for the carbonization means. A heating / heat storage means for heating the heat source can be applied.

尚、炭化設備は、火力発電設備2、3、太陽光発電設備4、5、風力発電設備6、7の少なくともいずれかに備えられる場合もある。また、単独で備えられる場合もある。   The carbonization facility may be provided in at least one of the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7. Moreover, it may be provided independently.

太陽光発電設備4、5の炭化設備としては、例えば、製材廃材、建設廃材等の木質バイオマスや、稲、麦わら、もみ殻等の未利用バイオマス、古紙、家畜の糞尿、食品残渣、汚泥等の廃棄物バイオマスを原料とすることで、都市部で廃棄されるバイオマスを資源化することができる。炭化された固体燃料は、必要に応じて貯留・運搬され、近隣地域の発電所等(火力発電設備2、3)の燃料として使用される。   Examples of the carbonization facilities for the photovoltaic power generation facilities 4 and 5 include woody biomass such as sawn timber and construction waste, unused biomass such as rice, straw, and rice husks, waste paper, livestock manure, food residues, and sludge. By using waste biomass as a raw material, biomass discarded in urban areas can be turned into resources. The carbonized solid fuel is stored and transported as necessary, and is used as fuel for a power plant or the like in the vicinity (thermal power generation facilities 2 and 3).

風力発電設備6、7の炭化設備としては、例えば、林地残材、間伐材、未利用樹等の木質バイオマスを原料とすることで、原料を容易に調達することができる。炭化された固体燃料は、必要に応じて貯留・運搬され、近隣地域の発電所等(火力発電設備2、3)の燃料として使用される。   As the carbonization facilities of the wind power generation facilities 6 and 7, the raw material can be easily procured by using, as a raw material, woody biomass such as remaining forest land, thinned wood, and unused trees. The carbonized solid fuel is stored and transported as necessary, and is used as fuel for a power plant or the like in the vicinity (thermal power generation facilities 2 and 3).

上述した電力供給設備では、火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7が電力系統1に接続されて電力需要が賄われる。熱生成手段により、火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7で熱が生成され、生成された熱が炭化手段の熱源(一部もしくは全部)とされるようになっている。   In the above-described power supply facility, the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7 are connected to the power system 1 to cover power demand. The heat generating means generates heat in the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7, and the generated heat is used as a heat source (part or all) of the carbonization means. It has come to be.

電力調整手段の調整により、電力系統1の需用電力の電力量に対し、火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7での発電の電力量が余剰となった際に、余剰となった電力により熱生成手段で熱が生成される。   By adjusting the power adjustment means, the amount of power generated by the thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7 with respect to the amount of power required for the power grid 1 is When it becomes surplus, heat is generated by the heat generating means by the surplus power.

従って、上述した発電設備では、電力系統1の需用電力に対して余剰電力が生じた場合に、余剰電力を熱に変えて原料(バイオマス等)の炭化の熱源とすることが可能になる。   Therefore, in the above-described power generation facility, when surplus power is generated with respect to the demand power of the power system 1, it is possible to change the surplus power into heat and use it as a heat source for carbonization of the raw material (biomass or the like).

図2、図3、図4に基づいて火力発電設備、再生可能エネルギー発電手段の具体的な構成を説明する。   A specific configuration of the thermal power generation facility and the renewable energy power generation means will be described with reference to FIGS.

図2には火力発電設備2、3の構成を説明する概略系統の状況、図3には太陽光発電設備4、5の構成を説明する概略構成の状況、図4には風力発電設備6、7の構成を説明する概略構成の状況を示してある。   FIG. 2 shows the status of a schematic system for explaining the configuration of the thermal power generation facilities 2 and 3, FIG. 3 shows the status of the schematic configuration for explaining the configurations of the solar power generation facilities 4 and 5, and FIG. 7 shows a situation of a schematic configuration for explaining the configuration of FIG.

図2に基づいて火力発電設備2、3を説明する。   The thermal power generation facilities 2 and 3 will be described with reference to FIG.

図に示すように、火力発電設備2、3として、燃料として石炭と炭化燃料が供給されて燃焼されることで蒸気が生成されるボイラ11が備えられ、ボイラ11で生成された高温・高圧の蒸気は蒸気タービン12に送られる。高温・高圧の蒸気により蒸気タービン12が駆動されることで、発電機13により電力が得られる。得られた電力は電力系統1に送られる。蒸気タービン12の排気蒸気は復水器14で復水され、給水ポンプ15によりボイラ11に給水される。   As shown in the figure, as a thermal power generation facility 2, 3, a boiler 11 that generates steam by supplying coal and carbonized fuel as fuel and burning is provided, and the high-temperature and high-pressure generated in the boiler 11 is provided. The steam is sent to the steam turbine 12. Electric power is obtained by the generator 13 by driving the steam turbine 12 with high-temperature and high-pressure steam. The obtained electric power is sent to the electric power system 1. The exhaust steam from the steam turbine 12 is condensed by a condenser 14 and supplied to a boiler 11 by a water supply pump 15.

火力発電設備2、3には、原料としてのバイオマスを炭化する炭化手段17(具体的な構成は後述する)が備えられている。そして、炭化手段17には、発電機13で発電された電力の少なくとも一部から熱を生成し、生成された熱を炭化手段17の熱源とする熱生成手段18が併設され、炭化設備19とされている。   The thermal power generation facilities 2 and 3 are provided with carbonization means 17 (specific configuration will be described later) for carbonizing biomass as a raw material. Further, the carbonization means 17 is provided with heat generation means 18 that generates heat from at least a part of the electric power generated by the generator 13 and uses the generated heat as a heat source of the carbonization means 17. Has been.

熱生成手段18では、炭化手段17に供給されたバイオマスを、例えば、250℃から450℃の温度になるように温風で加熱して、熱分解により炭化して固体燃料(炭化燃料)とする。炭化設備19で炭化された炭化燃料は、燃料としてボイラ11に供給される。   In the heat generation means 18, the biomass supplied to the carbonization means 17 is heated with warm air so as to have a temperature of 250 ° C. to 450 ° C., for example, and carbonized by pyrolysis to obtain a solid fuel (carbonized fuel). . The carbonized fuel carbonized in the carbonization facility 19 is supplied to the boiler 11 as fuel.

バイオマス(木質バイオマス等種々のバイオマス)は、例えば、200℃程度で熱分解が開始され、400℃程度で重量変化(減少)がなくなり、400℃以上では一定の重量が維持されることが確認されている。このため、250℃から450℃の温度に維持することで、十分に炭化され実用的な炭化燃料が得られる。   Biomass (a variety of biomass such as woody biomass) has been confirmed to start pyrolysis at, for example, about 200 ° C., lose weight change (decrease) at about 400 ° C., and maintain a constant weight above 400 ° C. ing. For this reason, by maintaining the temperature at 250 ° C. to 450 ° C., a carbonized fuel that is sufficiently carbonized and practical can be obtained.

上述した火力発電設備2、3では、発電機13で発電された電力の少なくとも一部から熱生成手段18で熱が生成され、熱生成手段18で生成された熱が炭化手段17の熱源とされる。このため、電力系統1の電力が余って電力系統1への電力の供給が減少される場合に、余剰電力を熱に変えてバイオマスの炭化の熱源とすることが可能になる。そして、炭化された炭化燃料をボイラ11の燃料として系内で使用することができる。   In the thermal power generation facilities 2 and 3 described above, heat is generated by the heat generation means 18 from at least a part of the electric power generated by the generator 13, and the heat generated by the heat generation means 18 is used as a heat source for the carbonization means 17. The For this reason, when the electric power of the electric power grid | system 1 is surplus and supply of the electric power to the electric power grid | system 1 is reduced, it becomes possible to change surplus electric power into a heat | fever and to use as a heat source of carbonization of biomass. The carbonized carbonized fuel can be used in the system as the fuel for the boiler 11.

図3に基づいて太陽光発電設備4、5を説明する。   The solar power generation facilities 4 and 5 will be described based on FIG.

例えば、都市部近郊に構築された太陽光発電設備4、5は多数の太陽電池パネル21を備え、太陽光が電力に変換される。変換された電力は、必要な電圧や周波数に変換されて電力系統1に送られる。   For example, the photovoltaic power generation facilities 4 and 5 constructed near urban areas include a large number of solar cell panels 21 and sunlight is converted into electric power. The converted power is converted into necessary voltage and frequency and sent to the power system 1.

太陽光発電設備4、5には、原料としての廃棄バイオマスを炭化する炭化手段17(具体的な構成は後述する)が備えられている。そして、炭化手段17には、太陽電池パネル21で変換された電力の少なくとも一部から熱を生成し、生成された熱を炭化手段17の熱源とする熱生成手段18が併設され、炭化設備19とされている。   The solar power generation facilities 4 and 5 are provided with carbonization means 17 (specific configuration will be described later) for carbonizing waste biomass as a raw material. The carbonization means 17 is also provided with a heat generation means 18 that generates heat from at least a part of the electric power converted by the solar cell panel 21 and uses the generated heat as a heat source of the carbonization means 17. It is said that.

熱生成手段18では、炭化手段17に供給された廃棄バイオマスを、例えば、250℃から450℃の温度になるように温風で加熱して、熱分解により炭化して固体燃料(炭化燃料)とする。炭化設備19で炭化された炭化燃料は、車両20により、近隣地域の火力発電所に運搬され、発電所等の燃料として使用される。また、炭化された炭化燃料は、一時的に貯留されることもある。   In the heat generation means 18, the waste biomass supplied to the carbonization means 17 is heated with warm air so as to have a temperature of, for example, 250 ° C. to 450 ° C., and carbonized by pyrolysis to produce solid fuel (carbonized fuel). To do. The carbonized fuel carbonized in the carbonization facility 19 is transported by a vehicle 20 to a thermal power plant in the vicinity and used as fuel for the power plant or the like. Further, the carbonized carbonized fuel may be temporarily stored.

上述した太陽光発電設備4、5では、太陽電池パネル21で得られた電力の少なくとも一部から熱生成手段18で熱が生成され、熱生成手段18で生成された熱が炭化手段17の熱源とされる。このため、電力系統1の電力が余って電力系統1への電力の供給が減少される場合に、余剰電力を熱に変えてバイオマスの炭化の熱源とすることが可能になる。そして、炭化された炭化燃料は、近隣地域の火力発電所に運搬されて燃料として使用されたり、貯留されたりする。   In the solar power generation facilities 4 and 5 described above, heat is generated by the heat generation means 18 from at least a part of the electric power obtained by the solar cell panel 21, and the heat generated by the heat generation means 18 is a heat source of the carbonization means 17. It is said. For this reason, when the electric power of the electric power grid | system 1 is surplus and supply of the electric power to the electric power grid | system 1 is reduced, it becomes possible to change surplus electric power into a heat | fever and to use as a heat source of carbonization of biomass. The carbonized carbonized fuel is transported to a thermal power plant in a neighboring area and used as fuel or stored.

図4に基づいて風力発電設備6、7を説明する。   The wind power generation facilities 6 and 7 will be described with reference to FIG.

例えば、山間部に構築された風力発電設備6、7は、塔体25の上部に風力原動機26が備えられている。即ち、塔体25の上部には発電機27に連結されるブレード28が設けられ、風によりブレード28が回転することで、回転力が増速されて発電機27のロータを回転させて発電が実施される。発電機27された電力は電力系統1に送られる。   For example, in the wind power generation facilities 6 and 7 constructed in a mountainous area, a wind power generator 26 is provided on the upper portion of the tower body 25. That is, a blade 28 connected to the generator 27 is provided on the upper portion of the tower body 25, and the blade 28 is rotated by the wind, whereby the rotational force is increased and the rotor of the generator 27 is rotated to generate power. To be implemented. The electric power generated by the generator 27 is sent to the electric power system 1.

風力発電設備6、7は、原料としての木質バイオマスを炭化する炭化手段17(具体的な構成は後述する)が備えられている。そして、炭化手段17には、発電機27で発電された電力の少なくとも一部から熱を生成し、生成された熱を炭化手段17の熱源とする熱生成手段18が併設され、炭化設備19とされている。   The wind power generation facilities 6 and 7 are provided with carbonization means 17 (specific configuration will be described later) for carbonizing woody biomass as a raw material. Further, the carbonization means 17 is provided with heat generation means 18 that generates heat from at least a part of the electric power generated by the generator 27 and uses the generated heat as a heat source of the carbonization means 17. Has been.

熱生成手段18では、炭化手段17に供給された木質バイオマスを、例えば、250℃から450℃の温度になるように温風で加熱して、熱分解により炭化して固体燃料(炭化燃料)とする。炭化設備19で炭化された炭化燃料は、車両20により、近隣地域の火力発電所に運搬され、発電所等の燃料として使用される。また、炭化された炭化燃料は、一時的に貯留されることもある。   In the heat generation means 18, the woody biomass supplied to the carbonization means 17 is heated with warm air so as to have a temperature of, for example, 250 ° C. to 450 ° C., and carbonized by pyrolysis to produce a solid fuel (carbonized fuel). To do. The carbonized fuel carbonized in the carbonization facility 19 is transported by a vehicle 20 to a thermal power plant in the vicinity and used as fuel for the power plant or the like. Further, the carbonized carbonized fuel may be temporarily stored.

上述した風力発電設備6、7では、発電機27で発電された電力の少なくとも一部から熱生成手段18で熱が生成され、熱生成手段18で生成された熱が炭化手段17の熱源とされる。このため、電力系統1の電力が余って電力系統1への電力の供給が減少される場合に、余剰電力を熱に変えてバイオマスの炭化の熱源とすることが可能になる。そして、炭化された炭化燃料は、近隣地域の火力発電所に運搬されて燃料として使用されたり、貯留されたりする。   In the wind power generation facilities 6 and 7 described above, heat is generated by the heat generation means 18 from at least a part of the electric power generated by the generator 27, and the heat generated by the heat generation means 18 is used as a heat source for the carbonization means 17. The For this reason, when the electric power of the electric power grid | system 1 is surplus and supply of the electric power to the electric power grid | system 1 is reduced, it becomes possible to change surplus electric power into a heat | fever and to use as a heat source of carbonization of biomass. The carbonized carbonized fuel is transported to a thermal power plant in a neighboring area and used as fuel or stored.

従って、上述した火力発電設備2、3、太陽光発電設備4、5、風力発電設備6、7では、電力系統1の需用電力に対して余剰電力が生じた場合に、余剰電力を熱に変えて原料(バイオマス等)の炭化の熱源とすることが可能になる。   Therefore, in the above-described thermal power generation facilities 2 and 3, the solar power generation facilities 4 and 5, and the wind power generation facilities 6 and 7, when surplus power is generated with respect to the demand power of the power system 1, the surplus power is converted into heat. It can be used as a heat source for carbonization of raw materials (biomass, etc.).

図5に基づいて炭化設備19を具体的に説明する。
図5には炭化設備19の全体の構成を説明する概略系統を示してある。
The carbonization equipment 19 will be specifically described based on FIG.
FIG. 5 shows a schematic system for explaining the overall configuration of the carbonization equipment 19.

図に示すように、原料であるバイオマス(廃棄バイオマス、木質バイオマス)を炭化して炭化燃料(固体燃料)とする炭化手段17は、入口部31から出口部32に向けてバイオマスが軸方向に順次搬送される加熱本体30を備えている。加熱本体30はモータにより回転される回転体で構成され、加熱本体30の回転によりバイオマスが出口部32に向けて搬送される。   As shown in the figure, the carbonization means 17 that carbonizes raw material biomass (waste biomass, woody biomass) into carbonized fuel (solid fuel), the biomass sequentially in the axial direction from the inlet portion 31 toward the outlet portion 32. A heating body 30 to be conveyed is provided. The heating body 30 is composed of a rotating body that is rotated by a motor, and the biomass is conveyed toward the outlet portion 32 by the rotation of the heating body 30.

加熱本体30には、モータにより駆動されるコンベア33(スクリューコンベア)からバイオマスが供給される。コンベア33によるバイオマスの供給速度、加熱本体30の回転によるバイオマスの搬送速度が制御されることで、バイオマスの炭化時間が調整される。炭化手段17の加熱本体30は加熱ドラム34に覆われ、加熱本体30と加熱ドラム34の間(加熱ドラム34の内側)に熱風が供給されることで、加熱本体30の内部のバイオマスが炭化される。   Biomass is supplied to the heating body 30 from a conveyor 33 (screw conveyor) driven by a motor. The biomass carbonization time is adjusted by controlling the biomass supply speed by the conveyor 33 and the biomass conveyance speed by the rotation of the heating body 30. The heating body 30 of the carbonization means 17 is covered with the heating drum 34, and hot air is supplied between the heating body 30 and the heating drum 34 (inside the heating drum 34), so that the biomass inside the heating body 30 is carbonized. The

尚、炭化手段17として、加熱本体30を回転させて原料を搬送する回転ドラム型の反応設備を適用した例を挙げて説明したが、多段の燃焼炉を備えた反応設備、流動層型の反応設備、移動層型の反応設備等、他の形式で原料を加熱(直接、間接)する設備を適用することが可能である。   In addition, although the example which applied the rotating drum type reaction equipment which rotates the heating main body 30 and conveys a raw material as the carbonization means 17 was given and demonstrated, the reaction equipment provided with the multistage combustion furnace, the fluidized bed type reaction It is possible to apply a facility for heating (directly or indirectly) the raw material in another form, such as a facility or a moving bed type reaction facility.

炭化されたバイオマスである炭化燃料35が出口部32から排出される。また、炭化に伴って生じる熱分解ガスが出口部32から排出されて処理設備に送られて清浄化される。熱分解ガスは燃料としても利用され、熱分解ガスの全部もしくは一部は、後述する燃料供給路36に投入される。加熱ドラム34の内側に熱風を供給する熱風炉37が備えられ、熱風炉37には燃料供給路36から燃料が供給され、空気供給路38から燃焼用の空気が供給される。   Carbonized fuel 35 that is carbonized biomass is discharged from the outlet portion 32. In addition, the pyrolysis gas generated along with the carbonization is discharged from the outlet portion 32 and sent to the processing facility for purification. The pyrolysis gas is also used as fuel, and all or a part of the pyrolysis gas is introduced into a fuel supply path 36 described later. A hot stove 37 for supplying hot air is provided inside the heating drum 34, fuel is supplied from the fuel supply path 36 to the hot stove 37, and combustion air is supplied from the air supply path 38.

加熱本体30と加熱ドラム34の間(加熱ドラム34の内側)に熱風を供給する熱風供給路39には、熱生成手段18で生成された熱媒体(例えば、熱風)が供給され、熱余剰電力で生成された熱媒体が熱風供給路39に供給されて加熱本体30と加熱ドラム34の間に送られる。このため、熱風炉37からの熱風の熱に対して余剰電力で生成された熱媒体で熱を補うことができる。また、熱風炉37からの熱風の熱に代えて余剰電力で生成された熱媒体の熱で炭化の熱源を賄うことができる。   A hot air supply path 39 for supplying hot air between the heating main body 30 and the heating drum 34 (inside the heating drum 34) is supplied with a heat medium (for example, hot air) generated by the heat generation means 18, and heat surplus power. The heat medium generated in step (1) is supplied to the hot air supply path 39 and sent between the heating body 30 and the heating drum 34. For this reason, heat can be supplemented with a heat medium generated with surplus power with respect to the heat of the hot air from the hot air furnace 37. Moreover, it can replace with the heat | fever of the hot air from the hot air furnace 37, and can provide the heat source of carbonization with the heat | fever of the heat medium produced | generated with the surplus electric power.

尚、熱生成手段18で熱媒体(例えば、熱風、高温蒸気、溶融塩、マグネシア、液体金属、有機油、ブライン、煉瓦等の顕熱型蓄熱材等)を生成して熱風供給路39に供給する例を挙げて説明したが、熱生成手段18で生成される熱としては、余剰電力を用いたヒータ等で加熱本体30を直接加熱する手段の熱や、加熱本体30の周囲に加熱材(例えば、溶融塩)を配し、加熱材を加熱することで加熱本体30を加熱する手段の熱を適用することができる。   A heat medium (for example, hot air, high temperature steam, molten salt, magnesia, liquid metal, organic oil, brine, sensible heat storage material such as brick) is generated by the heat generating means 18 and supplied to the hot air supply path 39. However, as the heat generated by the heat generating means 18, the heat of the means for directly heating the heating main body 30 with a heater using surplus power or the heating material ( For example, the heat of the means for heating the heating main body 30 can be applied by arranging a molten salt) and heating the heating material.

上述した炭化設備19では、熱風炉37からの熱風、及び、余剰電力で生成された熱媒体が、加熱本体30と加熱ドラム34の間(加熱ドラム34の内側)に供給され、加熱本体30の内部のバイオマスが、例えば、250℃から450℃の温度になるようにされて出口部32に送られる。加熱本体30の内部では、熱分解によりバイオマスが炭化され(例えば、固定炭素が25%以上)、炭化燃料35とされる。   In the carbonization equipment 19 described above, the hot air from the hot stove 37 and the heat medium generated by surplus power are supplied between the heating main body 30 and the heating drum 34 (inside the heating drum 34). The internal biomass is sent to the outlet portion 32 at a temperature of 250 ° C. to 450 ° C., for example. Inside the heating main body 30, biomass is carbonized by pyrolysis (for example, fixed carbon is 25% or more), and the carbonized fuel 35 is obtained.

固定炭素が25%以上の炭化燃料35とすることで、熱分解ガスの熱量を増加させることができる。余剰電力で生成された熱を補って熱分解ガスの熱量を増加させることで、燃料供給路36からの燃料を減少させても、バイオマスを十分に熱分解する熱量を得ることができ、固定炭素が25%以上の炭化燃料35が安定して得られる。これにより、炭素成分を含む燃料を用いることなく熱的に自立する条件が成立し、バイオマスの炭化のためのCOの排出を減らすこと(無くすこと)ができる。 By making the carbonized fuel 35 with 25% or more of fixed carbon, the amount of heat of the pyrolysis gas can be increased. By supplementing the heat generated by the surplus power and increasing the amount of heat of the pyrolysis gas, even if the fuel from the fuel supply path 36 is decreased, the amount of heat for sufficiently pyrolyzing the biomass can be obtained, and the fixed carbon Can be obtained stably. As a result, the condition of being thermally independent without using a fuel containing a carbon component is established, and the emission of CO 2 for carbonization of biomass can be reduced (eliminated).

上述した炭化設備19を用いることにより、電力系統1の需用電力の電力量に対し、火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7での発電の電力量が余剰となった際に、余剰となった電力により熱生成手段18で熱が生成され、生成された熱を熱風炉37からの熱風に供給することができる。   By using the carbonization equipment 19 described above, the power generation by the thermal power generation equipment 2, 3, the solar power generation equipment 4, 5, and the wind power generation equipment 6, 7 is performed with respect to the amount of electric power required for the power system 1. When the amount of electric power becomes surplus, heat is generated by the heat generating means 18 by the surplus electric power, and the generated heat can be supplied to the hot air from the hot stove 37.

上述した火力発電設備2、3、及び、太陽光発電設備4、5、風力発電設備6、7を備えた電力供給設備では、余剰となった電力によりバイオマスを炭化する熱源を得ることが可能になる。   In the power supply facility including the thermal power generation facilities 2 and 3 and the solar power generation facilities 4 and 5 and the wind power generation facilities 6 and 7 described above, it is possible to obtain a heat source that carbonizes biomass with surplus power. Become.

本発明は、余剰電力を有効に利用して固体燃料を得ることができる発電設備、及び、電力供給設備の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of power generation equipment and power supply equipment that can effectively use surplus power to obtain solid fuel.

1 電力系統
2、3 火力発電設備
4、5 太陽光発電設備
6、7 風力発電設備
11 ボイラ
12 蒸気タービン
13 発電機
14 復水器
15 給水ポンプ
17 炭化手段
18 熱生成手段
19 炭化設備
21 太陽電池パネル
25 塔体
26 風力原動機
27 発電機
28 ブレード
30 加熱本体
31 入口部
32 出口部
33 コンベア
34 加熱ドラム
35 炭化燃料
36 燃料供給路
37 熱風炉
38 空気供給路
DESCRIPTION OF SYMBOLS 1 Electric power system 2, 3 Thermal power generation facility 4, 5 Solar power generation facility 6, 7 Wind power generation facility 11 Boiler 12 Steam turbine 13 Generator 14 Condenser 15 Water supply pump 17 Carbonization means 18 Heat generation means 19 Carbonization equipment 21 Solar cell Panel 25 Tower 26 Wind power generator 27 Generator 28 Blade 30 Heating body 31 Inlet part 32 Outlet part 33 Conveyor 34 Heating drum 35 Carbonized fuel 36 Fuel supply path 37 Hot stove 38 Air supply path

Claims (6)

発電電力を得る発電手段と、
原料を炭化して固体燃料を得る炭化手段と、
前記発電手段で発電された電力の少なくとも一部から熱を生成し、生成された熱を前記炭化手段の熱源とする熱生成手段とを備えた
ことを特徴とする発電設備。
Power generation means for obtaining generated power;
Carbonizing means for carbonizing the raw material to obtain a solid fuel;
Heat generation means comprising heat generation means for generating heat from at least part of the electric power generated by the power generation means, and using the generated heat as a heat source for the carbonization means.
請求項1に記載の発電設備において、
前記炭化手段で炭化される原料はバイオマスである
ことを特徴とする発電設備。
The power generation facility according to claim 1,
The power generation facility characterized in that the raw material carbonized by the carbonization means is biomass.
請求項2に記載の発電設備において、
前記発電手段は、再生可能エネルギーを用いて発電を行う再生可能エネルギー発電手段である
ことを特徴とする発電設備。
The power generation facility according to claim 2,
The power generation facility is a renewable energy power generation unit that generates power using renewable energy.
電力系統に接続され、回転機の駆動により電力を得る第1発電手段と、
前記電力系統に接続され、再生可能エネルギーを用いて発電を行う再生可能エネルギー発電手段と、
原料を炭化して固体燃料を得る炭化手段と、
前記第1発電手段もしくは前記再生可能エネルギー発電手段の少なくとも一方の手段で発電された電力の少なくとも一部から熱を生成し、生成された熱を前記炭化手段の熱源とする熱生成手段と、
前記電力系統の需要電力に基づいて、前記熱生成手段で熱を生成するための電力を調整する電力調整手段とを備え、
前記電力調整手段は、
前記電力系統の需用電力の電力量に対し、前記第1発電手段、及び、前記再生可能エネルギー発電手段での発電の電力量が余剰となった際に、余剰となった余剰電力により前記熱生成手段で熱を生成する
ことを特徴とする電力供給設備。
A first power generation means connected to the power system and obtaining power by driving a rotating machine;
Renewable energy power generation means connected to the power system and generating power using renewable energy;
Carbonizing means for carbonizing the raw material to obtain a solid fuel;
Heat generation means for generating heat from at least part of the electric power generated by at least one of the first power generation means or the renewable energy power generation means, and using the generated heat as a heat source for the carbonization means;
Power adjustment means for adjusting the power for generating heat by the heat generation means based on the demand power of the power system;
The power adjusting means includes
When the amount of power generated by the first power generation means and the renewable energy power generation means becomes surplus with respect to the amount of power required for power in the power system, the heat is generated by surplus power that becomes surplus. A power supply facility characterized in that heat is generated by the generating means.
請求項4に記載の電力供給設備において、
前記炭化手段で炭化される原料はバイオマスである
ことを特徴とする電力供給設備。
In the electric power supply equipment according to claim 4,
The power supply facility, wherein the raw material carbonized by the carbonization means is biomass.
請求項5に記載の電力供給設備において、
前記熱生成手段は、前記再生可能エネルギー発電手段で発電された電力の少なくとも一部から熱を生成する手段であり、
前記バイオマスは、木質バイオマス、廃棄物バイオマス、未利用バイオマスの少なくとも一つである
ことを特徴とする電力供給設備。
In the electric power supply equipment according to claim 5,
The heat generation means is means for generating heat from at least a part of the electric power generated by the renewable energy power generation means,
The biomass is at least one of woody biomass, waste biomass, and unused biomass.
JP2018080836A 2018-04-19 2018-04-19 Power supply equipment Active JP7148263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018080836A JP7148263B2 (en) 2018-04-19 2018-04-19 Power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080836A JP7148263B2 (en) 2018-04-19 2018-04-19 Power supply equipment

Publications (2)

Publication Number Publication Date
JP2019193358A true JP2019193358A (en) 2019-10-31
JP7148263B2 JP7148263B2 (en) 2022-10-05

Family

ID=68390200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080836A Active JP7148263B2 (en) 2018-04-19 2018-04-19 Power supply equipment

Country Status (1)

Country Link
JP (1) JP7148263B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057173A (en) * 2020-10-29 2022-05-09 강원대학교산학협력단 Torrefaction device for biomass
KR20220057679A (en) * 2020-10-29 2022-05-09 강원대학교산학협력단 Torrefaction device for biomass
CN114989840A (en) * 2022-05-26 2022-09-02 东南大学 Biomass cascade pyrolysis energy storage method and device for coupling new energy power generation
JP7351793B2 (en) 2020-05-08 2023-09-27 一般財団法人電力中央研究所 Coal-fired power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230231A (en) * 2003-01-28 2004-08-19 Mitsubishi Heavy Ind Ltd Comprehensive system for preserving water source environment of water source and its surrounding area
JP2004283754A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd System for calculation of decrease amount of environmental load
JP2015035898A (en) * 2013-08-09 2015-02-19 千代田化工建設株式会社 Equipment and method for power supply

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230231A (en) * 2003-01-28 2004-08-19 Mitsubishi Heavy Ind Ltd Comprehensive system for preserving water source environment of water source and its surrounding area
JP2004283754A (en) * 2003-03-24 2004-10-14 Kurita Water Ind Ltd System for calculation of decrease amount of environmental load
JP2015035898A (en) * 2013-08-09 2015-02-19 千代田化工建設株式会社 Equipment and method for power supply

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351793B2 (en) 2020-05-08 2023-09-27 一般財団法人電力中央研究所 Coal-fired power generation system
KR20220057173A (en) * 2020-10-29 2022-05-09 강원대학교산학협력단 Torrefaction device for biomass
KR20220057679A (en) * 2020-10-29 2022-05-09 강원대학교산학협력단 Torrefaction device for biomass
KR102489230B1 (en) 2020-10-29 2023-01-16 강원대학교산학협력단 Torrefaction device for biomass
KR102489227B1 (en) 2020-10-29 2023-01-16 강원대학교산학협력단 Torrefaction device for biomass
CN114989840A (en) * 2022-05-26 2022-09-02 东南大学 Biomass cascade pyrolysis energy storage method and device for coupling new energy power generation
WO2023226334A1 (en) * 2022-05-26 2023-11-30 东南大学 Cascade biomass pyrolysis-based energy storage method and apparatus using new energy power generation

Also Published As

Publication number Publication date
JP7148263B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP7148263B2 (en) Power supply equipment
CN105026836A (en) Biomass pyrolysis apparatus, and power generation system
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
GB2449181A (en) Solar hybrid combined cycle power plant
WO2019198794A1 (en) Waste treatment system and waste treatment method
Amoresano et al. Optimization of solar integration in biomass fuelled steam plants
JP5432302B2 (en) Biomass fuel production machine
RU2017136582A (en) TWO-TANK GAS TURBINE DEVICE
Murad et al. Heat generators with TLUD gasifier for generating energy from biomass with a negative balance of CO2
JP2001214177A (en) Carbonization and recycling system for organic waste and the like in which superheated steam is used
CN107975787A (en) A kind of multiple coupled electricity generation system and electricity-generating method
JP2011236260A (en) Garbage biomass power generator
CN105499259A (en) Solid waste handling combined power generation method and system based on organic Rankine cycle
US20120152184A1 (en) Engine with combined combustion and steam operation for current generation
CN210765154U (en) System for coal pyrolysis gas power generation of thermal power plant
KR20220034224A (en) Gas turbine with thermal energy storage, method of operation and method of transformation
RU112535U1 (en) UNIT FOR PRODUCING ELECTRICITY IN THE FIELD CONDITIONS
CN109517638A (en) A kind of baking process converting agriculture and forestry organic waste material to clean fuel
JP2004143253A (en) Vegetable organic waste-carbonizing system
WO2014064673A2 (en) Hybrid combined cycle system for generating electical power
RU2812312C1 (en) Method for processing solid fuel using solar energy
JP6718565B1 (en) Biomass power generation system
CN108661869A (en) A kind of solar energy-natural gas fuel cell multi-mode combined cycle generating unit
CN214468643U (en) Biomass carbonization utilization system coupled with coal-fired generator set
RU124080U1 (en) ELECTRICITY GENERATION DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150