JP2019191344A - Phase characteristic calibrator and phase characteristic calibration method - Google Patents

Phase characteristic calibrator and phase characteristic calibration method Download PDF

Info

Publication number
JP2019191344A
JP2019191344A JP2018083203A JP2018083203A JP2019191344A JP 2019191344 A JP2019191344 A JP 2019191344A JP 2018083203 A JP2018083203 A JP 2018083203A JP 2018083203 A JP2018083203 A JP 2018083203A JP 2019191344 A JP2019191344 A JP 2019191344A
Authority
JP
Japan
Prior art keywords
frequency
signal
light
calibration
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018083203A
Other languages
Japanese (ja)
Other versions
JP6933604B2 (en
Inventor
森 隆
Takashi Mori
隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2018083203A priority Critical patent/JP6933604B2/en
Publication of JP2019191344A publication Critical patent/JP2019191344A/en
Application granted granted Critical
Publication of JP6933604B2 publication Critical patent/JP6933604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

To provide an inexpensive phase characteristic calibrator with which it is possible to calibrate the phase characteristic of a millimeter wave band signal measuring circuit.SOLUTION: The phase characteristic calibrator comprises: a calibration signal generation unit 20 for generating a calibration signal Ecomposed of three or more continuous waves differing in frequency; a local emission light generation unit 10 for generating a local emission light Pin which first light composed of continuous light having three or more waves differing in frequency and second light which is a continuous light different from the first light in frequency are synthesized; an electrooptical frequency conversion unit 30 for frequency converting the calibration signal by an electrooptical crystal using the local emission light and outputting an intermediate frequency signal E; and a calibration processing unit 40 for calibrating the phase characteristic of the measuring circuit on the basis of a phase difference characteristic obtained by applying the calibration signal to the electrooptical frequency conversion unit and a phase difference characteristic obtained by applying the calibration signal to the millimeter wave band signal measuring circuit. The frequency interval of three or more continuous waves of the intermediate frequency signal Eis set to be narrower than the frequency interval of three or more continuous waves of the calibration signal E.SELECTED DRAWING: Figure 1

Description

本発明は、位相特性校正装置及び位相特性校正方法に関する。   The present invention relates to a phase characteristic calibration apparatus and a phase characteristic calibration method.

無線通信の伝送速度を向上させるために、従来よりもキャリア周波数が高いミリ波帯やサブミリ波帯やテラヘルツ波帯において、広帯域の変調信号を使用する通信方式が検討されている。以下の説明では、ミリ波帯やサブミリ波帯やテラヘルツ波帯などを総称してミリ波帯という。   In order to improve the transmission speed of wireless communication, a communication system that uses a broadband modulation signal in a millimeter wave band, a submillimeter wave band, or a terahertz wave band, which has a higher carrier frequency than before, has been studied. In the following description, the millimeter wave band, submillimeter wave band, terahertz wave band, and the like are collectively referred to as the millimeter wave band.

周波数利用効率の高い多値直交振幅変調方式では、小さな位相誤差が伝送特性の劣化をもたらすため、広帯域変調信号の位相誤差を精度良く測定することが求められている。一般に、ミリ波帯で使用される広帯域信号測定回路では、同測定回路内の周波数変換部の位相特性が無視できないため、広帯域信号測定回路の位相特性を校正することが重要となる。   In the multi-level quadrature amplitude modulation method with high frequency utilization efficiency, since a small phase error causes deterioration of transmission characteristics, it is required to accurately measure the phase error of a broadband modulation signal. In general, in a broadband signal measurement circuit used in the millimeter wave band, the phase characteristic of the frequency conversion unit in the measurement circuit cannot be ignored, so it is important to calibrate the phase characteristic of the broadband signal measurement circuit.

図10は、関連技術として位相特性校正システムの構成例1を示す(例えば、非特許文献1参照)。この位相特性校正システム100は、ミリ波帯信号測定部150の位相特性(位相の周波数特性)を校正するものであり、短パルス光源111と、光可変遅延器113と、同期処理部115と、校正信号生成部120と、電気光学周波数変換部130と、位相差算出部140とを備えている。   FIG. 10 shows a configuration example 1 of a phase characteristic calibration system as a related technique (see, for example, Non-Patent Document 1). This phase characteristic calibration system 100 calibrates the phase characteristics (phase frequency characteristics) of the millimeter waveband signal measurement unit 150, and includes a short pulse light source 111, an optical variable delay unit 113, a synchronization processing unit 115, A calibration signal generation unit 120, an electro-optic frequency conversion unit 130, and a phase difference calculation unit 140 are provided.

短パルス光源111により所定の繰返し周波数で出力された短パルス光P10は、光分岐器112を介して光可変遅延器113に送られ、光可変遅延器113で遅延されて電気光学周波数変換部130の偏波分離器132に送られる。光可変遅延器113は、ミラー113aの位置を機械的に移動させることにより光の遅延時間を変えるようになっている。 Pulsed light P 10 output at a predetermined repetition frequency by the short pulse light source 111 is transmitted to the optical variable delay unit 113 through the optical splitter 112, it is delayed by the optical variable delay unit 113 electrooptical frequency converter 130 polarization separators 132 are sent. The optical variable delay device 113 changes the optical delay time by mechanically moving the position of the mirror 113a.

一方、校正信号生成部120では、中間周波信号発生器121により発生された中間周波信号と、局発信号発生器122により発生されたCW(Continuous Wave)の局発信号とが、周波数変換器123に入力され、中間周波信号がミリ波帯に周波数変換(アップコンバート)されて校正信号Eとしてホーンアンテナ124から電気光学結晶131に出力される。その際、中間周波信号と局発信号は、同期処理部115により、短パルス光源111の繰返し周波数に同期され、これにより、短パルス光源111の繰返し周波数に同期したミリ波帯の校正信号Eが得られる。 On the other hand, in the calibration signal generation unit 120, the intermediate frequency signal generated by the intermediate frequency signal generator 121 and the local wave signal of CW (Continuous Wave) generated by the local wave signal generator 122 are converted into a frequency converter 123. The intermediate frequency signal is frequency-converted (up-converted) into a millimeter wave band, and is output from the horn antenna 124 to the electro-optic crystal 131 as a calibration signal Er . At this time, the intermediate frequency signal and the local oscillation signal are synchronized with the repetition frequency of the short pulse light source 111 by the synchronization processing unit 115, and thereby, the calibration signal Er in the millimeter wave band synchronized with the repetition frequency of the short pulse light source 111. Is obtained.

具体的には、位相同期ループ(PLL)回路を用いて、短パルス光源111の繰返し周波数の整数倍のサンプリングクロックを中間周波信号発生器121のD/A変換器に与えると共に、局発信号の周波数が短パルス光源111の繰返し周波数の整数倍になるように局発信号発生器122の基準周波数を制御する。中間周波信号の周波数が短パルス光源111の繰返し周波数の整数倍になるようにD/A変換器に与えるディジタルデータの周期を適切に設定することにより、校正信号の周波数が短パルス光源111の繰返し周波数の整数倍、即ち短パルス光源111の繰返し周期が校正信号の周期の整数倍となる。   Specifically, using a phase locked loop (PLL) circuit, a sampling clock that is an integral multiple of the repetition frequency of the short pulse light source 111 is supplied to the D / A converter of the intermediate frequency signal generator 121 and the local oscillation signal The reference frequency of the local signal generator 122 is controlled so that the frequency is an integral multiple of the repetition frequency of the short pulse light source 111. By appropriately setting the period of the digital data given to the D / A converter so that the frequency of the intermediate frequency signal is an integral multiple of the repetition frequency of the short pulse light source 111, the frequency of the calibration signal is the repetition of the short pulse light source 111. The integral multiple of the frequency, that is, the repetition period of the short pulse light source 111 is an integral multiple of the period of the calibration signal.

電気光学周波数変換部130では、校正信号Eの電界が電気光学結晶131に印加されると共に、光可変遅延器113からの短パルス光P11が偏波分離器132を介して電気光学結晶131に入力され、電気光学結晶131の先端で反射した短パルス光が偏波分離器132を介して受光器133に入力される(例えば、非特許文献2参照)。具体的には、電気光学結晶131に電界が印加されると電気光学効果によって電気光学結晶131からの反射光の偏波が変化し、偏波分離器132と受光器133によって反射光の偏波の変化を検出するようになっている。 In the electro-optic frequency converter 130, the electric field of the calibration signal Er is applied to the electro-optic crystal 131, and the short pulse light P 11 from the optical variable delay device 113 is passed through the polarization separator 132. And the short pulse light reflected at the tip of the electro-optic crystal 131 is input to the light receiver 133 via the polarization separator 132 (see, for example, Non-Patent Document 2). Specifically, when an electric field is applied to the electro-optic crystal 131, the polarization of the reflected light from the electro-optic crystal 131 is changed by the electro-optic effect, and the polarization of the reflected light is changed by the polarization separator 132 and the light receiver 133. Changes are detected.

受光器133から出力される電気信号は、電気光学結晶131に印加される電界に比例すると共に電気光学結晶131からの反射光の光パワーにも比例する。従って、校正信号Eの電界と短パルス光P11の光パワーの積に比例した電気信号が出力され、低速の受光器133は低周波成分のみを検出するため、電気光学周波数変換部130は、ミリ波帯の校正信号Eを低周波の電気信号E10に周波数変換(ダウンコンバート)するミキサと同様の機能を有する。 The electrical signal output from the light receiver 133 is proportional to the electric field applied to the electro-optic crystal 131 and also to the optical power of the reflected light from the electro-optic crystal 131. Therefore, calibration electrical signal proportional to the product of the optical power of the signal E r of the field and the short pulse light P 11 is output, low speed photodetector 133 for detecting only the low-frequency components, electro-optical frequency conversion unit 130 have the same functions as a mixer for frequency-converting the electric signal E 10 calibration signal E r of the low frequency in the millimeter wave band (down-conversion).

短パルス光P11のパルス幅を校正信号Eの最大周波数の逆数よりも十分短くすると、電気光学周波数変換部130から出力される電気信号E10は、校正信号Eを短パルス光P11の繰返し周期でサンプリングしたものになる。短パルス光源111の繰返し周期が校正信号Eの周期の整数倍であるため、校正信号Eの繰返し波形の特定の点を繰返しサンプリングすることになる。光可変遅延器113の遅延時間を変えることにより、校正信号Eを短パルス光P11でサンプリングする時刻が変わるので、光可変遅延器113の遅延時間を変えながら電気光学周波数変換部130から出力される電気信号E10を記録すると、低速の受光器133でミリ波帯の校正信号Eの時間波形を測定することができる。校正信号Eの時間波形に対し、位相差算出部140においてフーリエ変換等の信号処理が行われることで、周波数領域に変換され、位相特性が算出される。 When sufficiently shorter than the inverse of the maximum frequency of the short pulse light P 11 pulse width calibration signal E r of the electrical electrical signals E 10 outputted from the optical frequency conversion unit 130, calibration signal E r short optical pulses P 11 Sampled at a repetition period of For the repetition period of the short-pulse light source 111 is an integer multiple of the period of the calibration signal E r, it will sample repeatedly particular point repeating waveform of the calibration signal E r. By varying the delay time of the optical variable delay unit 113, since the time of sampling the calibration signal E r with pulsed light P 11 is changed, the output from the electro-optical frequency conversion unit 130 while changing the delay time of the optical variable delay unit 113 When the electric signal E 10 to be recorded is recorded, the time waveform of the calibration signal Er in the millimeter wave band can be measured by the low-speed light receiver 133. A signal processing such as Fourier transform is performed on the time waveform of the calibration signal Er in the phase difference calculation unit 140, whereby the signal is converted into the frequency domain and the phase characteristic is calculated.

ミリ波帯信号測定部150は、CWの局発信号を発生する局発信号発生器152と、ミキサなどの周波数変換器151と、A/D変換器などの中間周波信号測定器153と、位相補正器154とを備え、ミリ波帯の校正信号E又は被測定信号を中間周波信号に周波数変換(ダウンコンバート)してディジタル信号に変換する。このディジタル信号を解析することによりエラーベクトル振幅(Error Vector Magnitude;EVM)などの測定結果を得ることができる。 The millimeter waveband signal measurement unit 150 includes a local oscillator signal generator 152 that generates a CW local oscillator signal, a frequency converter 151 such as a mixer, an intermediate frequency signal measuring instrument 153 such as an A / D converter, and a phase A correction unit 154, which converts the millimeter wave calibration signal Er or the signal under measurement into an intermediate frequency signal (down-converted) and converts it into a digital signal. By analyzing this digital signal, a measurement result such as an error vector amplitude (EVM) can be obtained.

校正信号生成部120で生成された校正信号Eは、ミリ波帯信号測定部150に送られて周波数変換器151に入力されると共に、局発信号発生器152により生成されたCWの局発信号が周波数変換器151に入力される。校正信号Eは、周波数変換器151により中間周波信号に周波数変換(ダウンコンバート)された後、中間周波信号測定器153によりディジタル信号に変換される。このディジタル信号に対し、位相差算出部140においてフーリエ変換等の信号処理が行われることで、周波数領域に変換され、位相特性が算出される。 The calibration signal Er generated by the calibration signal generation unit 120 is sent to the millimeter waveband signal measurement unit 150 and input to the frequency converter 151, and the CW generated by the local signal generator 152 is transmitted from the local station. The signal is input to the frequency converter 151. The calibration signal Er is frequency-converted (down-converted) to an intermediate frequency signal by the frequency converter 151 and then converted to a digital signal by the intermediate frequency signal measuring device 153. The digital signal is subjected to signal processing such as Fourier transform in the phase difference calculation unit 140, so that the digital signal is converted into the frequency domain, and the phase characteristic is calculated.

上述のようにして電気光学周波数変換部130により測定した校正信号の位相特性と、校正信号をミリ波帯信号測定部150に入力して中間周波信号測定器153から出力されるディジタル信号の位相特性とに基づいて、ミリ波帯信号測定部150自体が有する位相特性が算出され、位相補正値として位相補正器154に設定される。被測定信号をミリ波帯信号測定部150で測定する場合には、位相補正器154によりミリ波帯信号測定部150の位相特性が補正されて測定結果として出力される。   The phase characteristic of the calibration signal measured by the electro-optic frequency converter 130 as described above and the phase characteristic of the digital signal output from the intermediate frequency signal measuring device 153 by inputting the calibration signal to the millimeter waveband signal measuring unit 150. Based on the above, the phase characteristic of the millimeter waveband signal measurement unit 150 itself is calculated and set in the phase corrector 154 as a phase correction value. When the signal under measurement is measured by the millimeter waveband signal measuring unit 150, the phase characteristics of the millimeter waveband signal measuring unit 150 are corrected by the phase corrector 154 and output as a measurement result.

次に、ミリ波帯信号測定部150の振幅及び位相の周波数特性を校正する方法をさらに詳しく説明する。校正信号の周波数特性(位相を含む複素数)をX(f)、ミリ波帯信号測定部150の周波数特性(位相を含む複素数)をG(f)、校正信号をミリ波帯信号測定部150に入力した時の中間周波信号測定器153からの出力信号の周波数特性(位相を含む複素数)をY(f)とする。前述のように校正信号を電気光学周波数変換部130に入力して測定した校正信号の時間波形からX(f)が求まり、校正信号をミリ波帯信号測定部150に入力して周波数変換された中間周波信号の波形からY(f)が求まり、次式(1)よりG(f)を求めることができる。 Next, a method for calibrating the frequency characteristics of the amplitude and phase of the millimeter waveband signal measurement unit 150 will be described in more detail. The frequency characteristic (complex number including phase) of the calibration signal is X c (f), the frequency characteristic (complex number including phase) of the millimeter wave band signal measurement unit 150 is G (f), and the calibration signal is the millimeter wave band signal measurement unit 150. Let Y c (f) be the frequency characteristic (complex number including phase) of the output signal from the intermediate frequency signal measuring device 153 when it is input to. As described above, X c (f) is obtained from the time waveform of the calibration signal measured by inputting the calibration signal to the electro-optic frequency conversion unit 130, and the calibration signal is input to the millimeter waveband signal measurement unit 150 to be frequency converted. Y c (f) is obtained from the waveform of the intermediate frequency signal, and G (f) can be obtained from the following equation (1).

Figure 2019191344
ここで、fLOはミリ波帯信号測定部150の局発信号の周波数である。
Figure 2019191344
Here, f LO is the frequency of the local oscillation signal of the millimeter waveband signal measurement unit 150.

被測定信号の周波数特性(位相を含む複素数)をX(f)、被測定信号をミリ波帯信号測定部150に入力した時の中間周波信号測定器153からの出力信号の周波数特性(位相を含む複素数)をY(f)とすると、次式(2)よりミリ波帯信号測定部150の周波数特性が補正されたX(f)を測定結果として求めることができる。   The frequency characteristic (complex number including phase) of the signal under measurement is X (f), and when the signal under measurement is input to the millimeter waveband signal measurement unit 150, the frequency characteristic (phase Assuming that Y (f) is a complex number (including complex number), X (f) in which the frequency characteristics of the millimeter waveband signal measuring unit 150 are corrected can be obtained as a measurement result by the following equation (2).

Figure 2019191344
Figure 2019191344

図11は、関連技術として別の位相特性校正システムの構成例2を示す(例えば、非特許文献3参照)。この位相特性校正システム200は、上記構成例1の短パルス光源111及び光可変遅延器113の代わりに2トーン光源211が使用されている点、電気光学周波数変換部230において偏波分離器132の代わりに光サーキュレータ232等が使用されている点、及び校正信号生成部220に同期処理部115が接続されていない点を除いて、前述の位相特性校正システム100の構成例1と同じである。   FIG. 11 shows a configuration example 2 of another phase characteristic calibration system as a related technique (see, for example, Non-Patent Document 3). This phase characteristic calibration system 200 uses a two-tone light source 211 instead of the short pulse light source 111 and the optical variable delay device 113 of the above configuration example 1, and the electro-optic frequency converter 230 uses the polarization separator 132. Instead, the configuration is the same as the configuration example 1 of the phase characteristic calibration system 100 described above except that the optical circulator 232 and the like are used and the synchronization processing unit 115 is not connected to the calibration signal generation unit 220.

次に、位相特性校正システム200における周波数変換の原理を説明する。
図12は、図11の位相特性校正システム200の動作をスペクトルにより示す説明図である。図12(a)は、2トーン光源211から出力される出力光(2トーン光P20)の周波数成分を示し、図12(b)は、校正信号生成部220から出力される校正信号Eの周波数成分を示し、図12(c)は、光サーキュレータ232から光バンドパスフィルタ233に入力される光信号P21の周波数成分を示し、図12(d)は、受光器234から出力される電気信号E20の周波数成分を示している。
Next, the principle of frequency conversion in the phase characteristic calibration system 200 will be described.
FIG. 12 is an explanatory diagram showing the operation of the phase characteristic calibration system 200 of FIG. 11 by spectrum. 12A shows the frequency component of the output light (two-tone light P 20 ) output from the two-tone light source 211, and FIG. 12B shows the calibration signal E r output from the calibration signal generator 220. FIG. 12C shows the frequency component of the optical signal P 21 input from the optical circulator 232 to the optical bandpass filter 233, and FIG. 12D shows the output from the light receiver 234. It shows the frequency components of the electrical signal E 20.

図12(a)に示すように、2トーン光源211は、光周波数f及びfの2つの光(2トーン光P20)を同一偏波で出力し、このとき2つの光周波数の差をf=f−fとする。2トーン光源211から出力される2トーン光P20は、光サーキュレータ232を介して電気光学結晶231に入力され、電気光学結晶231で反射した光が光サーキュレータ232を介して光バンドパスフィルタ233に入力される。一方、図12(b)に示すように、校正信号生成部220では、キャリア周波数f、周波数間隔fのマルチトーン信号である校正信号Eが生成され、ホーンアンテナ224を介して電気光学結晶231に送られる。 As shown in FIG. 12A, the two-tone light source 211 outputs two lights (two-tone lights P 20 ) having optical frequencies f 1 and f 2 with the same polarization, and at this time, the difference between the two optical frequencies. Let f L = f 2 −f 1 . The two-tone light P 20 output from the two-tone light source 211 is input to the electro-optical crystal 231 via the optical circulator 232, and the light reflected by the electro-optical crystal 231 is input to the optical bandpass filter 233 via the optical circulator 232. Entered. On the other hand, as shown in FIG. 12B, the calibration signal generation unit 220 generates a calibration signal Er that is a multitone signal having a carrier frequency f c and a frequency interval f m , and electro-optics via the horn antenna 224. Sent to the crystal 231.

校正信号生成部220からのマルチトーン信号の電界を電気光学結晶231に印加すると、電気光学結晶231で反射した光信号P21には図12(c)に示すように、側帯波が発生する。2トーン光P20の光周波数差fと校正信号Eのキャリア周波数fの関係をf=f+fIFとし、光周波数f付近の光を光バンドパスフィルタ233で抽出して受光器234に入力すると、光周波数fの光とf付近の側帯波との間のビートが発生し、図12(d)に示すように、中心周波数がfIFで周波数間隔がfの電気信号(中間周波信号E20)が得られる。 When the electric field of the multitone signal from the calibration signal generator 220 is applied to the electro-optic crystal 231, sidebands are generated in the optical signal P 21 reflected by the electro-optic crystal 231 as shown in FIG. The relationship between the optical frequency difference f L of the two-tone light P 20 and the carrier frequency f c of the calibration signal Er is f L = f c + f IF, and light near the optical frequency f 2 is extracted by the optical bandpass filter 233. If you enter the light receiver 234, and beat generated between the sideband in the vicinity of the optical and f 2 of the optical frequency f 2, FIG. 12 (d), the center frequency is the frequency interval f IF f m The electrical signal (intermediate frequency signal E 20 ) is obtained.

ここで、周波数間隔fの側帯波間のビートは無視しているが、fIFとfの関係を適切に設定すると容易にバンドパスフィルタで側帯波間のビート成分を除去することができる。以上述べたようにして、キャリア周波数fの校正信号Eが、中心周波数がfIFの中間周波信号E20に周波数変換される。 Here, although ignored beat between sideband frequency interval f m, it is possible to remove the beat component between sideband easily by the bandpass filter when properly setting the relationship between f IF and f m. As described above, the calibration signal E r of the carrier frequency f c is a center frequency is frequency-converted into an intermediate frequency signal E 20 of f IF.

上記の周波数変換ではマルチトーン間の位相関係が保たれるため、中間周波数fIFをA/D変換可能な周波数帯に設定し、位相差算出部240にて中間周波信号E20をA/D変換してマルチトーン間の位相差を算出することができる。そして、前述の関連技術の構成例1と同様に、校正信号を電気光学周波数変換部230に入力して測定した位相特性と、校正信号をミリ波帯信号測定部250に入力して測定した位相特性とから、位相補正値を求めてミリ波帯信号測定部250の位相補正器254に設定し、測定時には、被測定信号をミリ波帯信号測定部250に入力して位相特性が校正された測定結果を得ることができる。 Since the phase relationship between the multitones is maintained in the above frequency conversion, the intermediate frequency f IF is set to a frequency band in which A / D conversion is possible, and the phase difference calculation unit 240 converts the intermediate frequency signal E 20 into A / D. The phase difference between multitones can be calculated by conversion. Similarly to the configuration example 1 of the related art described above, the phase characteristic measured by inputting the calibration signal to the electro-optic frequency converter 230 and the phase measured by inputting the calibration signal to the millimeter waveband signal measuring unit 250. From the characteristics, a phase correction value is obtained and set in the phase corrector 254 of the millimeter waveband signal measuring unit 250. During measurement, the signal to be measured is input to the millimeter waveband signal measuring section 250 to calibrate the phase characteristics. Measurement results can be obtained.

木村幸泰, 布施匡章, 待鳥誠範, 森隆, "電気光学サンプリング法によるテラヘルツ波ダウンコンバータの位相校正法の検討", 2018年電子情報通信学会総合大会論文集, BCI-1-7, 2018Yukiyasu Kimura, Yasunori Fuse, Noriaki Machitori, Takashi Mori, "Examination of Phase Calibration Method for Terahertz Wave Downconverter Using Electro-Optical Sampling Method", 2018 IEICE General Conference Proceedings, BCI-1-7, 2018 A. Sasaki and T. Nagatsuma, "Millimeter-Wave Imaging Using an Electrooptic Detector as a Harmonic Mixer", IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 5, pp. 735-740, 2000A. Sasaki and T. Nagatsuma, "Millimeter-Wave Imaging Using an Electrooptic Detector as a Harmonic Mixer", IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 5, pp. 735-740, 2000 S. Hisatake, "Visualization of millimeter and terahertz waves based on photonics", 2016 IEEE International Topical Meeting on Microwave Photonics, pp. 73-74, 2016S. Hisatake, "Visualization of millimeter and terahertz waves based on photonics", 2016 IEEE International Topical Meeting on Microwave Photonics, pp. 73-74, 2016

しかしながら、図10の位相特性校正システムにあっては、校正信号の時間波形を得るために光可変遅延器113を掃引する必要がある。光可変遅延器113には機械的可動部が存在しており、機械的振動の影響を受ける、動作速度が限られる、寿命が短いといった問題があった。特に、位相校正の周波数分解能を良くするためには、時間波形の時間スパンを長くする、即ち光可変遅延器113の遅延時間を長くする必要があり、そうすると光可変遅延器113の物理的寸法が大きくなるという問題があった。また、電気光学周波数変換部130の変換効率を上げるためには短パルス光の光パワーを大きくする必要があるが、短パルスなのでピークパワーが非常に大きくなり、光ファイバ等の非線形効果によってパルス波形が変形し、電気光学周波数変換部130の変換特性が変化するという問題があった。   However, in the phase characteristic calibration system of FIG. 10, it is necessary to sweep the optical variable delay device 113 in order to obtain the time waveform of the calibration signal. The optical variable delay device 113 has a mechanical movable part, which has the problems of being affected by mechanical vibration, limited operation speed, and short life. In particular, in order to improve the frequency resolution of the phase calibration, it is necessary to increase the time span of the time waveform, that is, to increase the delay time of the optical variable delay device 113, so that the physical dimensions of the optical variable delay device 113 are increased. There was a problem of getting bigger. Further, in order to increase the conversion efficiency of the electro-optic frequency conversion unit 130, it is necessary to increase the optical power of the short pulse light, but since the pulse is short, the peak power becomes very large, and the pulse waveform is caused by a nonlinear effect such as an optical fiber. Is deformed, and there is a problem that the conversion characteristic of the electro-optic frequency converter 130 changes.

図11の位相特性校正システムにあっては、光可変遅延器や短パルス光の問題は発生しないものの、電気光学周波数変換部230では校正信号がダウンコンバートされて全体的に周波数がシフトするだけなので、校正信号の3波の連続波の周波数間隔は周波数変換後も変わらず、比較的広い周波数間隔のスペクトル成分の位相差を算出する必要がある。このため、受光器234やそれ以降の電気回路の位相の周波数依存性の影響を受け、位相測定精度が悪化する問題があった。また、比較的広い帯域の受光器234や位相差算出部240内のA/D変換器が必要になり、A/D変換のサンプリング周波数が高くなりデータ量が多くなることから位相差算出の演算量も多くなり、装置が高価になるという問題があった。   In the phase characteristic calibration system of FIG. 11, the problem of the optical variable delay device and short pulse light does not occur, but the electro-optic frequency converter 230 down-converts the calibration signal and shifts the frequency as a whole. The frequency interval of the three continuous waves of the calibration signal does not change even after the frequency conversion, and it is necessary to calculate the phase difference between the spectral components having a relatively wide frequency interval. For this reason, there has been a problem that the phase measurement accuracy deteriorates due to the influence of the frequency dependence of the phase of the light receiver 234 and subsequent electrical circuits. In addition, the light receiver 234 having a relatively wide band and the A / D converter in the phase difference calculation unit 240 are required, and the sampling frequency of the A / D conversion becomes high and the amount of data increases. There is a problem that the amount is increased and the apparatus is expensive.

本発明は、上述のような課題を解決するためになされたもので、ミリ波帯信号測定回路の位相特性を精度良く校正することができる安価な位相特性校正装置及び位相特性校正方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an inexpensive phase characteristic calibration apparatus and phase characteristic calibration method capable of accurately calibrating the phase characteristics of a millimeter waveband signal measurement circuit. For the purpose.

本発明の請求項1に係る位相特性校正装置は、上記目的達成のため、測定回路(50)の位相特性を校正する位相特性校正装置(1)であって、互いに異なる周波数の3波以上の連続波が合成された校正信号(E)を生成する生成部(20)と、互いに異なる周波数の3波以上の連続光が合成された第1の光と、前記第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光とが合成された局発光(P)を発生する発生部(10)と、前記局発光を用いて電気光学効果により前記校正信号を周波数変換して中間周波数帯の3波以上の連続波が合成された中間周波信号(EIF)を出力する周波数変換部(30)と、前記校正信号の3波以上の連続波の周波数を所定の周波数帯域内で変更する周波数変更部(70)と、前記周波数変更部による周波数変更毎に、変更される周波数の値に応じて前記第1の光と前記第2の光との周波数間隔を変更させ、前記中間周波信号の3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第1の位相差特性を取得すると共に、前記周波数変更部による周波数変更毎に、前記測定回路を用いて前記校正信号を測定して前記測定回路から出力される3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第2の位相差特性を取得し、取得した前記第1及び第2の位相差特性に基づいて、前記測定回路の位相特性を校正する校正部(40)と、を備え、前記中間周波信号の3波以上の連続波のいずれの周波数も、前記校正信号の3波以上の連続波のいずれの周波数よりも低く、かつ、前記校正信号の3波以上の連続波の周波数間隔と、前記第1の光の3波以上の連続光の周波数間隔とが異なり、かつ、前記中間周波信号の3波以上の連続波の周波数間隔が、前記校正信号の3波以上の連続波の周波数間隔よりも狭くなるように、前記校正信号及び前記局発光の前記各周波数が設定されることを特徴とする。 In order to achieve the above object, a phase characteristic calibration apparatus according to claim 1 of the present invention is a phase characteristic calibration apparatus (1) for calibrating the phase characteristic of a measurement circuit (50), and has three or more waves having different frequencies. A generator (20) that generates a calibration signal (E r ) in which continuous waves are combined, a first light in which three or more continuous lights having different frequencies are combined, and three waves of the first light A generator (10) for generating local light (P L ) synthesized with second light that is continuous light having a frequency smaller than or greater than any of the above continuous light, and using the local light The frequency conversion unit (30) that outputs the intermediate frequency signal (E IF ) in which three or more continuous waves in the intermediate frequency band are synthesized by frequency conversion of the calibration signal by the electro-optic effect, and 3 of the calibration signal. Change the frequency of continuous wave above the wave within the specified frequency band And a frequency interval between the first light and the second light according to a frequency value to be changed for each frequency change by the frequency change unit (70), and the intermediate frequency The phase difference between three or more continuous waves of the signal is calculated, the first phase difference characteristic over the entire predetermined frequency band is obtained, and the measurement is performed each time the frequency is changed by the frequency changing unit. The calibration signal is measured using a circuit to calculate a phase difference between three or more continuous waves output from the measurement circuit, and a second phase difference characteristic over the predetermined frequency band is obtained. And a calibration unit (40) that calibrates the phase characteristics of the measurement circuit based on the acquired first and second phase difference characteristics, and has three or more continuous waves of the intermediate frequency signal. In any frequency, the calibration signal is continuous for 3 or more waves. And the frequency interval of three or more continuous waves of the calibration signal is different from the frequency interval of three or more continuous lights of the first light, and the intermediate frequency signal The frequency of the calibration signal and the local light is set so that the frequency interval of the continuous wave of three or more waves is narrower than the frequency interval of the three or more continuous waves of the calibration signal. And

この構成により、本発明の請求項1に係る位相特性校正装置は、図10の構成例1に記載のような機械的可動部を有する光可変遅延器を使用していないので、機械的可動部に制約されることなく高い周波数分解能で位相特性の校正を行うことができる。また、図10の構成例1のように短パルス光を用いていないので、短パルス光波形が変形して電気光学周波数変換部の変換特性が変化することもない。   With this configuration, the phase characteristic calibration apparatus according to claim 1 of the present invention does not use the optical variable delay device having the mechanical movable unit as described in Configuration Example 1 in FIG. The phase characteristic can be calibrated with high frequency resolution without being restricted by the above. In addition, since the short pulse light is not used as in the configuration example 1 of FIG. 10, the short pulse light waveform is not deformed and the conversion characteristics of the electro-optic frequency conversion unit are not changed.

しかも、本発明の請求項1に係る位相特性校正装置は、中間周波信号の3波以上の連続波の周波数間隔が校正信号の3波以上の連続波の周波数間隔よりも狭くなるように設定されているので、従来よりも電気回路が扱う帯域を狭くできるので、低速のA/D変換器を用いて少ない演算量で校正信号の位相を高精度で測定可能となる。このため、装置価格を低減することもできる。   In addition, the phase characteristic calibrating apparatus according to claim 1 of the present invention is set such that the frequency interval of three or more continuous waves of the intermediate frequency signal is narrower than the frequency interval of three or more continuous waves of the calibration signal. As a result, the band handled by the electric circuit can be narrower than in the prior art, and the phase of the calibration signal can be measured with high accuracy using a low-speed A / D converter with a small amount of calculation. For this reason, an apparatus price can also be reduced.

本発明の請求項2に係る位相特性校正装置では、前記発生部(10)は、第1の連続波信号を発生する第1のCW信号発生器(11)と、前記第1の連続波信号の周波数の間隔で複数の光スペクトル成分を有する光コムを発生する光コム発生器(12)と、前記光コム発生器からの出力光を2つに分岐する光分岐器(13)と、前記光分岐器の一方及び他方の出力光から互いに異なる光スペクトル成分をそれぞれ抽出する第1の光バンドパスフィルタ(14)及び第2の光バンドパスフィルタ(15)と、第2の連続波信号を発生する第2のCW信号発生器(16)と、前記第2の光バンドパスフィルタの出力光に対して前記第2の連続波信号で振幅変調又は位相変調をかけて前記第2の連続波信号の周波数の間隔で複数の側帯波を発生させる光変調器(17)と、前記第1の光バンドパスフィルタの出力光と前記光変調器の出力光とを合波する光合波器(18)と、を有することを特徴とする。   In the phase characteristic calibrating apparatus according to claim 2 of the present invention, the generator (10) includes a first CW signal generator (11) for generating a first continuous wave signal, and the first continuous wave signal. An optical comb generator (12) for generating an optical comb having a plurality of optical spectral components at a frequency interval of; an optical splitter (13) for splitting the output light from the optical comb generator into two; A first optical bandpass filter (14) and a second optical bandpass filter (15) for extracting different optical spectral components from one and the other output lights of the optical splitter, respectively, and a second continuous wave signal A second CW signal generator (16) that generates the second continuous wave by applying amplitude modulation or phase modulation to the output light of the second optical bandpass filter with the second continuous wave signal. Generate multiple sidebands at signal frequency intervals Optical modulator (17), and the first optical multiplexer for multiplexing the output light of the optical modulator and the output light of the optical bandpass filter (18), characterized by having a.

この構成により、本発明の請求項2に係る位相特性校正装置は、互いに異なる周波数の3波以上の連続光が合成された第1の光と、第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光とが合成された局発光を発生することができる。また、周波数変更部による周波数変更毎に、変更される周波数の値に応じて第1の光と第2の光との周波数間隔を連続的かつ広い範囲にわたって変更させることができる。   With this configuration, the phase characteristic calibrating device according to claim 2 of the present invention is configured to combine the first light obtained by combining three or more continuous lights having different frequencies and the three or more continuous lights of the first light. It is possible to generate local light in which the second light which is continuous light having a frequency lower than or higher than any frequency is combined. Further, every time the frequency changing unit changes the frequency, the frequency interval between the first light and the second light can be changed continuously and over a wide range according to the value of the changed frequency.

本発明の請求項3に係る位相特性校正装置では、前記第1のCW信号発生器、前記第2のCW信号発生器、及び前記生成部は、共通の基準周波数に同期した周波数の前記第1の連続波信号、前記第2の連続波信号、及び前記校正信号をそれぞれ生成し、前記中間周波信号の3波以上の連続波の周波数は、それぞれ前記基準周波数に同期していることを特徴とする。   In the phase characteristic calibrating device according to claim 3 of the present invention, the first CW signal generator, the second CW signal generator, and the generation unit have the first frequency synchronized with a common reference frequency. The continuous wave signal, the second continuous wave signal, and the calibration signal are respectively generated, and the frequency of the three or more continuous waves of the intermediate frequency signal is synchronized with the reference frequency, respectively. To do.

この構成により、本発明の請求項3に係る位相特性校正装置は、周波数誤差なく中間周波数帯の3波以上の連続波が得られ、校正部において中間周波数帯の3波以上の連続波の間の位相差を容易に算出することができる。   With this configuration, the phase characteristic calibrating device according to claim 3 of the present invention can obtain three or more continuous waves in the intermediate frequency band without a frequency error, and the calibration unit can obtain a continuous wave of three or more waves in the intermediate frequency band. Can be easily calculated.

本発明の請求項4に係る位相特性校正装置は、前記周波数変換部と前記校正部との間に、前記中間周波信号の3波以上の連続波を増幅して周波数変換を行ない第2中間周波数帯の3波以上の連続波が合成された第2中間周波信号(EIF2)を出力する第2周波数変換部(60)を更に有し、前記校正部は、前記中間周波信号の代わりに、前記第2周波数変換部から出力される前記第2中間周波信号の3波以上の連続波の間の位相差を算出し、前記第2中間周波信号の3波以上の連続波のいずれの周波数も、前記中間周波信号の3波以上の連続波のいずれの周波数よりも低くなるように設定されていることを特徴とする。 According to a fourth aspect of the present invention, there is provided a phase characteristic calibrating apparatus for performing a frequency conversion by amplifying three or more continuous waves of the intermediate frequency signal between the frequency converting unit and the calibrating unit. A second frequency conversion unit (60) that outputs a second intermediate frequency signal (E IF2 ) in which three or more continuous waves of the band are combined, and the calibration unit, instead of the intermediate frequency signal, A phase difference between three or more continuous waves of the second intermediate frequency signal output from the second frequency conversion unit is calculated, and any frequency of three or more continuous waves of the second intermediate frequency signal is calculated. The intermediate frequency signal is set to be lower than any frequency of three or more continuous waves of the intermediate frequency signal.

この構成により、本発明の請求項4に係る位相特性校正装置は、第2周波数変換部を設けたことにより、中間周波数帯を電気回路の1/f雑音が小さくなる周波数に設定し、第2周波数変換部の増幅器で十分に増幅した後に、十分低い第2中間周波数帯に変換するようにできる。これにより、電気回路の1/f雑音を避けて高いS/N比を保ちつつ、校正部のA/D変換器等の帯域とサンプリング速度を低くして安価な装置を実現することができる。   With this configuration, the phase characteristic calibrating device according to claim 4 of the present invention includes the second frequency conversion unit, so that the intermediate frequency band is set to a frequency at which 1 / f noise of the electric circuit is reduced, After sufficiently amplifying with the amplifier of the frequency conversion unit, it can be converted to a sufficiently low second intermediate frequency band. As a result, it is possible to realize an inexpensive apparatus by reducing the band and sampling rate of the A / D converter and the like of the calibration unit while maintaining a high S / N ratio while avoiding 1 / f noise of the electric circuit.

本発明の請求項5に係る位相特性校正装置では、前記第2周波数変換部は、前記第2中間周波信号の同相成分と直交成分とを出力する直交周波数変換器(60A)であることを特徴とする。   In the phase characteristic calibrating apparatus according to claim 5 of the present invention, the second frequency converter is an orthogonal frequency converter (60A) that outputs an in-phase component and an orthogonal component of the second intermediate frequency signal. And

この構成により、本発明の請求項5に係る位相特性校正装置は、第2周波数変換部による負の周波数成分の折り返しが発生しないようにすることができる。   With this configuration, the phase characteristic calibration apparatus according to claim 5 of the present invention can prevent the negative frequency component from being folded back by the second frequency converter.

本発明の請求項6に係る位相特性校正装置は、前記周波数変換部と前記校正部との間に、前記中間周波信号の3波以上の連続波を増幅して周波数変換を行ない第2中間周波数帯の3波以上の連続波が合成された第2中間周波信号(EIF2)を出力する第2周波数変換部(60)を更に有し、前記校正部は、前記中間周波信号の代わりに、前記第2周波数変換部から出力される前記第2中間周波信号の3波以上の連続波の間の位相差を算出し、前記第2中間周波信号の3波以上の連続波のいずれの周波数も、前記中間周波信号の3波以上の連続波のいずれの周波数よりも低くなるように設定されていることを特徴とする。 The phase characteristic calibrating apparatus according to claim 6 of the present invention performs frequency conversion by amplifying three or more continuous waves of the intermediate frequency signal between the frequency conversion unit and the calibration unit to perform frequency conversion. A second frequency conversion unit (60) that outputs a second intermediate frequency signal (E IF2 ) in which three or more continuous waves of the band are combined, and the calibration unit, instead of the intermediate frequency signal, A phase difference between three or more continuous waves of the second intermediate frequency signal output from the second frequency conversion unit is calculated, and any frequency of three or more continuous waves of the second intermediate frequency signal is calculated. The intermediate frequency signal is set to be lower than any frequency of three or more continuous waves of the intermediate frequency signal.

この構成により、本発明の請求項6に係る位相特性校正装置は、第2周波数変換部を設けたことにより、中間周波数帯を電気回路の1/f雑音が小さくなる周波数に設定し、第2周波数変換部の増幅器で十分に増幅した後に、十分低い第2中間周波数帯に変換するようにできる。これにより、電気回路の1/f雑音を避けて高いS/N比を保ちつつ、校正部のA/D変換器等の帯域とサンプリング速度を低くして安価な装置を実現することができる。   With this configuration, the phase characteristic calibrating device according to claim 6 of the present invention is provided with the second frequency converter, so that the intermediate frequency band is set to a frequency at which 1 / f noise of the electric circuit is reduced, After sufficiently amplifying with the amplifier of the frequency conversion unit, it can be converted to a sufficiently low second intermediate frequency band. As a result, it is possible to realize an inexpensive apparatus by reducing the band and sampling rate of the A / D converter and the like of the calibration unit while maintaining a high S / N ratio while avoiding 1 / f noise of the electric circuit.

本発明の請求項7に係る位相特性校正装置では、前記第2周波数変換部は、前記第2中間周波信号の同相成分と直交成分とを出力する直交周波数変換器(60A)であることを特徴とする。   In the phase characteristic calibrating apparatus according to claim 7 of the present invention, the second frequency converter is an orthogonal frequency converter (60A) that outputs an in-phase component and an orthogonal component of the second intermediate frequency signal. And

この構成により、本発明の請求項7に係る位相特性校正装置は、第2周波数変換部による負の周波数成分の折り返しが発生しないようにすることができる。   With this configuration, the phase characteristic calibration apparatus according to claim 7 of the present invention can prevent the negative frequency component from being folded back by the second frequency converter.

本発明の請求項8に係る位相特性校正装置では、前記第1のCW信号発生器、前記第2のCW信号発生器、及び前記生成部は、共通の基準周波数に同期した周波数の前記第1の連続波信号、前記第2の連続波信号、及び前記校正信号をそれぞれ生成し、前記第2周波数変換部は、前記基準周波数に同期した局発信号に基づいて周波数変換を行ない、前記第2中間周波信号の3波以上の連続波の周波数は、それぞれ前記基準周波数に同期していることを特徴とする。   In the phase characteristic calibrating apparatus according to claim 8 of the present invention, the first CW signal generator, the second CW signal generator, and the generation unit have the first frequency synchronized with a common reference frequency. The second continuous wave signal, the second continuous wave signal, and the calibration signal are respectively generated, and the second frequency converter performs frequency conversion based on a local oscillation signal synchronized with the reference frequency, and the second frequency converter The frequency of three or more continuous waves of the intermediate frequency signal is respectively synchronized with the reference frequency.

この構成により、本発明の請求項8に係る位相特性校正装置は、周波数誤差なく中間周波数帯の3波以上の連続波が得られ、校正部において中間周波数帯の3波以上の連続波の間の位相差を容易に算出することができる。   With this configuration, the phase characteristic calibrating device according to claim 8 of the present invention can obtain three or more continuous waves in the intermediate frequency band without frequency error, and the calibration unit can obtain a continuous wave of three or more waves in the intermediate frequency band. Can be easily calculated.

本発明の請求項9に係る位相特性校正方法は、測定回路(50)の位相特性を校正する位相特性校正方法であって、互いに異なる周波数の3波以上の連続波が合成された校正信号(E)を生成する生成ステップと、互いに異なる周波数の3波以上の連続光が合成された第1の光と、前記第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光とが合成された局発光(P)を発生する発生ステップと、前記局発光を用いて電気光学効果により前記校正信号を周波数変換して中間周波数帯の3波以上の連続波が合成された中間周波信号(EIF)を出力する周波数変換ステップと、前記校正信号の3波以上の連続波の周波数を所定の周波数帯域内で変更する周波数変更ステップと、前記周波数変更ステップによる周波数変更毎に、変更される周波数の値に応じて前記第1の光と前記第2の光との周波数間隔を変更させ、前記中間周波信号の3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第1の位相差特性を取得すると共に、前記周波数変更ステップによる周波数変更毎に、前記測定回路を用いて前記校正信号を測定して前記測定回路から出力される3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第2の位相差特性を取得し、取得した前記第1及び第2の位相差特性に基づいて、前記測定回路の位相特性を校正する校正ステップと、を備え、前記中間周波信号の3波以上の連続波のいずれの周波数も、前記校正信号の3波以上の連続波のいずれの周波数よりも低く、かつ、前記校正信号の3波以上の連続波の周波数間隔と、前記第1の光の3波以上の連続光の周波数間隔とが異なり、かつ、前記中間周波信号の3波以上の連続波の周波数間隔が、前記校正信号の3波以上の連続波の周波数間隔よりも狭くなるように、前記校正信号及び前記局発光の前記各周波数が設定されることを特徴とする。 A phase characteristic calibration method according to a ninth aspect of the present invention is a phase characteristic calibration method for calibrating the phase characteristic of the measurement circuit (50), wherein a calibration signal (three or more continuous waves having different frequencies are synthesized) The generation step of generating E r ), the first light obtained by synthesizing the continuous light of three or more waves having different frequencies, and the frequency of the continuous light of three or more waves of the first light is smaller than Or a generation step of generating local light (P L ) synthesized with the second light which is continuous light having a large frequency, and an intermediate frequency by frequency-converting the calibration signal by the electro-optic effect using the local light. A frequency conversion step for outputting an intermediate frequency signal (E IF ) in which three or more continuous waves of the band are synthesized, and a frequency change for changing the frequency of the three or more continuous waves of the calibration signal within a predetermined frequency band Steps and said lap Each time the frequency is changed by the number changing step, the frequency interval between the first light and the second light is changed according to the value of the changed frequency, and between the three or more continuous waves of the intermediate frequency signal The first phase difference characteristic over the entire predetermined frequency band is acquired, and the calibration signal is measured using the measurement circuit for each frequency change in the frequency changing step. Calculating a phase difference between three or more continuous waves output from the measurement circuit, obtaining a second phase difference characteristic over the entire predetermined frequency band, and obtaining the obtained first and second A calibration step for calibrating the phase characteristic of the measurement circuit based on the phase difference characteristic of 2, and any frequency of three or more continuous waves of the intermediate frequency signal is equal to or greater than three waves of the calibration signal. Than any frequency of continuous wave And the frequency interval of three or more continuous waves of the calibration signal is different from the frequency interval of three or more continuous lights of the first light, and the intermediate frequency signal of three or more continuous waves is continuous. Each frequency of the calibration signal and the local light is set so that a frequency interval of the waves is narrower than a frequency interval of continuous waves of three or more waves of the calibration signal.

この構成により、本発明の請求項9に係る位相特性校正方法は、図10の構成例1に記載のような機械的可動部を有する光可変遅延器を使用していないので、機械的可動部に制約されることなく高い周波数分解能で位相特性の校正を行うことができる。また、図10の構成例1のように短パルス光を用いていないので、短パルス光波形が変形して電気光学周波数変換部の変換特性が変化することもない。   With this configuration, the phase characteristic calibration method according to claim 9 of the present invention does not use the optical variable delay device having the mechanical movable portion as described in Configuration Example 1 in FIG. The phase characteristic can be calibrated with high frequency resolution without being restricted by the above. In addition, since the short pulse light is not used as in the configuration example 1 of FIG. 10, the short pulse light waveform is not deformed and the conversion characteristics of the electro-optic frequency conversion unit are not changed.

しかも、本発明の請求項9に係る位相特性校正方法は、中間周波信号の3波以上の連続波の周波数間隔が校正信号の3波以上の連続波の周波数間隔よりも狭くなるように設定されているので、従来よりも電気回路が扱う帯域を狭くでき、低速のA/D変換器を用いて少ない演算量で校正信号の位相を高精度で測定可能となる。このため、装置価格を低減することもできる。   In addition, the phase characteristic calibration method according to claim 9 of the present invention is set such that the frequency interval of three or more continuous waves of the intermediate frequency signal is narrower than the frequency interval of three or more continuous waves of the calibration signal. Therefore, the band handled by the electric circuit can be made narrower than in the prior art, and the phase of the calibration signal can be measured with high accuracy using a low-speed A / D converter with a small amount of calculation. For this reason, an apparatus price can also be reduced.

本発明によれば、ミリ波帯信号測定回路の位相特性を精度良く校正することができる安価な位相特性校正装置及び位相特性校正方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inexpensive phase characteristic calibration apparatus and phase characteristic calibration method which can calibrate the phase characteristic of a millimeter wave band signal measuring circuit with sufficient precision can be provided.

本発明の第1の実施形態に係る位相特性校正装置の構成図である。It is a block diagram of the phase characteristic calibration apparatus which concerns on the 1st Embodiment of this invention. 図1の位相特性校正装置の各信号のスペクトルを示す説明図である。It is explanatory drawing which shows the spectrum of each signal of the phase characteristic calibration apparatus of FIG. 図1の位相特性校正装置の各信号のスペクトルを示す説明図である。It is explanatory drawing which shows the spectrum of each signal of the phase characteristic calibration apparatus of FIG. 電気光学周波数変換部の構成図である。It is a block diagram of an electro-optic frequency converter. 電気光学周波数変換部の別の構成図である。It is another block diagram of an electro-optic frequency conversion part. 本発明の第2の実施形態に係る位相特性校正装置の構成図である。It is a block diagram of the phase characteristic calibration apparatus which concerns on the 2nd Embodiment of this invention. 図6の位相特性校正装置の各信号のスペクトルを示す説明図である。It is explanatory drawing which shows the spectrum of each signal of the phase characteristic calibration apparatus of FIG. 本発明の第3の実施形態に係る位相特性校正装置の構成図である。It is a block diagram of the phase characteristic calibration apparatus which concerns on the 3rd Embodiment of this invention. 図8の位相特性校正装置の各信号のスペクトルを示す説明図である。It is explanatory drawing which shows the spectrum of each signal of the phase characteristic calibration apparatus of FIG. 関連技術に係る位相特性校正システムの構成図である。It is a block diagram of the phase characteristic calibration system which concerns on related technology. 関連技術に係る別の位相特性校正システムの構成図である。It is a block diagram of another phase characteristic calibration system which concerns on related technology. 図11の位相特性校正システムの各信号のスペクトルを示す説明図である。It is explanatory drawing which shows the spectrum of each signal of the phase characteristic calibration system of FIG.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る位相特性校正装置1の構成図である。
位相特性校正装置1は、校正対象の測定回路であるミリ波帯信号測定部50の所定の周波数帯域における位相特性を校正するものである。位相特性校正装置1は、局発光発生部10と、校正信号生成部20と、電気光学周波数変換部30と、校正処理部40と、周波数変更部70とを備えている。
(First embodiment)
FIG. 1 is a configuration diagram of a phase characteristic calibration apparatus 1 according to the first embodiment of the present invention.
The phase characteristic calibration apparatus 1 calibrates the phase characteristic in a predetermined frequency band of the millimeter waveband signal measurement unit 50 which is a measurement circuit to be calibrated. The phase characteristic calibration apparatus 1 includes a local light generation unit 10, a calibration signal generation unit 20, an electro-optic frequency conversion unit 30, a calibration processing unit 40, and a frequency change unit 70.

[局発光発生部]
まず、局発光発生部10について説明する。
局発光発生部10は、第1のCW信号発生器11と、光コム発生器12と、光分岐器13と、第1光バンドパスフィルタ(BPF)14と、第2光バンドパスフィルタ(BPF)15と、第2のCW信号発生器16と、光位相変調器17と、光合波器18とを備えている。局発光発生部10は、互いに異なる周波数の3波以上の連続光が合成された第1の光Pと、第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光Pとが合成された局発光Pを発生するようになっている。なお、局発光発生部10は、本発明の発生部に対応する。
[Local light generator]
First, the local light generation unit 10 will be described.
The local light generator 10 includes a first CW signal generator 11, an optical comb generator 12, an optical splitter 13, a first optical bandpass filter (BPF) 14, and a second optical bandpass filter (BPF). ) 15, a second CW signal generator 16, an optical phase modulator 17, and an optical multiplexer 18. The local light generation unit 10 is smaller or larger than any frequency of the first light P 4 in which continuous light of three or more waves having different frequencies is combined and the continuous light of three or more waves of the first light. the second and the light P 2 is a continuous light of frequency is adapted to generate a synthesized local light P L. The local light generating unit 10 corresponds to the generating unit of the present invention.

第1のCW信号発生器11は、周波数fL1のCW信号(電気信号)Eを出力するようになっている。 The first CW signal generator 11 outputs a CW signal (electric signal) E 1 having a frequency f L1 .

光コム発生器12は、周波数fL1のCW信号Eを受け、図2(a)に示すように光周波数fを中心として周波数間隔fL1の多数の光スペクトル成分を有する光コムPを発生するようになっている。具体的には、光コム発生器12は、光周波数fのCW光源と、周波数fL1のCW信号が入力される光位相変調器と、fL1の整数分の1のフリースペクトルレンジのファブリペロー共振器と、を組み合わせたものでもよく、或いは、繰返し周波数fL1の短パルス光を出力する中心光周波数fのモード同期レーザであってもよい。前者の場合には、ファブリペロー共振器のフィネスを高くすることにより、後者の場合には、短パルス光のパルス幅を狭くすることにより、光コムPのスペクトル幅を広くすることができる。 The optical comb generator 12 receives the CW signal E 1 having the frequency f L1 and, as shown in FIG. 2A, the optical comb P 1 having a large number of optical spectrum components with the frequency interval f L1 centered on the optical frequency f 0. Is supposed to occur. Specifically, the optical comb generator 12 includes a CW light source having an optical frequency f 0 , an optical phase modulator to which a CW signal having a frequency f L1 is input, and a Fabry having a free spectral range that is an integer of f L1. A combination with a Perot resonator may be used, or a mode-locked laser with a center optical frequency f 0 that outputs a short pulse light with a repetition frequency f L1 may be used. In the former case, the spectral width of the optical comb P 1 can be widened by increasing the finesse of the Fabry-Perot resonator, and in the latter case, by narrowing the pulse width of the short pulse light.

光コム発生器12の出力側に、図示しない高非線形光ファイバなどの光パルス圧縮器を追加することにより、光コムPのスペクトル幅を更に広くすることも可能である。例えば、数10GHz間隔で数100GHz〜数THz幅の光コムPを発生することができる。 The output side of the optical comb generator 12, by adding an optical pulse compressor, such as a highly nonlinear optical fiber (not shown), it is possible to further widen the spectral width of the optical comb P 1. For example, the optical comb P 1 having a width of several hundreds GHz to several THz can be generated at intervals of several tens of GHz.

光分岐器13は、光コム発生器12から出力される光コムPを2つに分岐し、第1光バンドパスフィルタ14及び第2光バンドパスフィルタ15にそれぞれ送られるようになっている。 The optical branching device 13 branches the optical comb P 1 output from the optical comb generator 12 into two and sends them to the first optical bandpass filter 14 and the second optical bandpass filter 15, respectively. .

第1光バンドパスフィルタ14及び第2光バンドパスフィルタ15は、互いに異なる所定の光スペクトル成分をそれぞれ抽出するようになっている。抽出した光スペクトル成分の光周波数をそれぞれf,fとすると、周波数間隔は次式(3)により表される。

Figure 2019191344
上記式(3)において、光周波数が高い方をfとしている(f>f)。nは整数である。 The first optical bandpass filter 14 and the second optical bandpass filter 15 each extract predetermined optical spectrum components different from each other. Assuming that the optical frequencies of the extracted optical spectrum components are f 1 and f 2 , the frequency interval is expressed by the following equation (3).
Figure 2019191344
In the above formula (3), the higher optical frequency is defined as f 2 (f 2 > f 1 ). n is an integer.

後で詳述するように、所定の周波数帯域における校正信号の位相特性を求める際には、校正信号の周波数に応じて、2つの光スペクトル成分の周波数間隔f−fを変更するようにする。具体的には、第1のCW信号発生器11により発生されるCW信号Eの周波数fL1を変える、或いは第1光バンドパスフィルタ14又は第2光バンドパスフィルタ15で選択する光スペクトル成分を変えることでnを変えることにより、周波数間隔f−fを変えることができる。CW信号Eの周波数fL1は連続的に変えることができるが、広い周波数範囲を可変にすることは困難である。第1光バンドパスフィルタ14又は第2光バンドパスフィルタ15により選択する光スペクトル成分を変えてnを変えるようにすると、周波数間隔f−fを大きく変えることができるが、連続的に可変にすることはできない。よって、両者を組み合わせることにより、連続的かつ広い範囲にわたって周波数間隔f−fを変えることができる。 As will be described in detail later, when obtaining the phase characteristics of the calibration signal in a predetermined frequency band, the frequency interval f 2 -f 1 between the two optical spectrum components is changed according to the frequency of the calibration signal. To do. Specifically, an optical spectral component that changes the frequency f L1 of the CW signal E 1 generated by the first CW signal generator 11 or is selected by the first optical bandpass filter 14 or the second optical bandpass filter 15. By changing n by changing, the frequency interval f 2 −f 1 can be changed. Although the frequency f L1 of the CW signal E 1 can be continuously changed, it is difficult to make the wide frequency range variable. If you alter the n by changing the optical spectral components selected by the first optical band-pass filter 14 or the second optical bandpass filter 15 can be varied greatly frequency interval f 2 -f 1, continuously variable Can not be. Therefore, by combining both, the frequency interval f 2 −f 1 can be changed continuously and over a wide range.

ここで、第1及び第2光バンドパスフィルタ14及び15により抽出する光スペクトル成分は、光コムPの中心光周波数fから等間隔(f−f=f−f)、即ち振幅がほぼ等しい2つの光スペクトル成分となるようにしてもよい。或いは、後述の光位相変調器17の損失を考慮して、図2(a)に示すように第2光バンドパスフィルタ15側の振幅が大きくなるように、中心光周波数fから近い光スペクトルを抽出する(f−f<f−f)ようにしてもよい。また、光分岐器13、第1及び第2光バンドパスフィルタ14及び15の代わりにアレイ導波路格子(Arrayed Waveguide Grating;AWG)を用いて、1つのデバイスで分岐と光スペクトル抽出を行なうようにしてもよい。第1及び第2光バンドパスフィルタ14、15からの出力光P、Pの光スペクトルは図2(b)に示すようになる。 Here, the optical spectrum components extracted by the first and second optical bandpass filters 14 and 15 are equally spaced from the center optical frequency f 0 of the optical comb P 1 (f 2 −f 0 = f 0 −f 1 ), That is, two optical spectrum components having substantially the same amplitude may be used. Alternatively, in consideration of the loss of the optical phase modulator 17 described later, an optical spectrum close to the center optical frequency f 0 so that the amplitude on the second optical bandpass filter 15 side becomes large as shown in FIG. May be extracted (f 2 −f 0 <f 0 −f 1 ). Further, instead of the optical splitter 13 and the first and second optical bandpass filters 14 and 15, an arrayed waveguide grating (AWG) is used to perform branching and optical spectrum extraction with one device. May be. The optical spectra of the output lights P 2 and P 3 from the first and second optical bandpass filters 14 and 15 are as shown in FIG.

第2のCW信号発生器16は、周波数fL2のCW信号(電気信号)Eを光位相変調器17に出力する。 The second CW signal generator 16 outputs a CW signal (electric signal) E 2 having a frequency f L2 to the optical phase modulator 17.

光位相変調器17は、例えば、LiNbO結晶の電気光学効果を用いて、該結晶に電圧を印加することにより該結晶に入力される光の位相を変化させるものである。周波数fL2のCW信号Eを光位相変調器17に入力することにより、光周波数fの光スペクトル成分に位相変調をかけ、図2(c)に示すように光周波数fを中心として周波数間隔fL2の側帯波を発生させる。なお、光位相変調器17は本発明の光変調器に対応する。 The optical phase modulator 17 changes the phase of light input to the crystal by applying a voltage to the crystal using, for example, the electro-optic effect of the LiNbO 3 crystal. By inputting the CW signal E 2 of the frequency f L2 to the optical phase modulator 17 applies a phase modulation to the optical spectrum component of the optical frequency f 2, around the optical frequency f 2 as shown in FIG. 2 (c) generating a sideband of the frequency interval f L2. The optical phase modulator 17 corresponds to the optical modulator of the present invention.

ここで、位相変調の変調度によって側帯波の振幅が変わり、例えば、光位相変調器17の入力電圧を0.913Vπ(peak-to-peak)の正弦波とすると、光周波数f−fL2,f,f+fL2の3つの光スペクトル成分がほぼ同振幅となる。ここで、Vπは光位相変調器17において光の位相をπだけ変化させるのに必要な電圧値である。 Here, the amplitude of the sideband wave changes depending on the degree of modulation of phase modulation. For example, when the input voltage of the optical phase modulator 17 is a sine wave of 0.913 V π (peak-to-peak), the optical frequency f 2 −f L2, 3 one light spectral component of f 2, f 2 + f L2 is substantially the same amplitude. Here, V π is a voltage value necessary for changing the phase of light by π in the optical phase modulator 17.

さらに、周波数fL2の正弦波に加えて周波数2fL2の正弦波を重畳して光位相変調器17に入力することにより、光周波数f−2fL2,f−fL2,f,f+fL2,f+2fL2の5つの光スペクトル成分をほぼ同振幅にすることもできる。 Further, by inputting to the optical phase modulator 17 by superimposing a sine wave of frequency 2f L2 in addition to the sine wave of the frequency f L2, the optical frequency f 2 -2f L2, f 2 -f L2, f 2, f The five optical spectrum components of 2 + f L2 and f 2 + 2f L2 can have substantially the same amplitude.

また、光位相変調器17の代わりに、光強度変調器を用いて同様に周波数間隔fL2の側帯波を発生させるようにしてもよい。例えば、マッハツェンダ型光強度変調器の入力電圧と出力光電界振幅がほぼ比例する領域を使用する、或いは入力電圧と出力光電界振幅の関係の非線形特性を補正することにより、線形の光変調を行なうことができる。 Further, instead of the optical phase modulator 17, a side band wave having a frequency interval f L2 may be generated similarly using an optical intensity modulator. For example, linear light modulation is performed by using a region where the input voltage of the Mach-Zehnder light intensity modulator is approximately proportional to the output optical electric field amplitude, or by correcting the nonlinear characteristic of the relationship between the input voltage and the output optical electric field amplitude. be able to.

例えば、直流成分と周波数fL2の正弦波を光強度変調器に入力して光周波数f−fL2,f,f+fL2の3つの光スペクトル成分を生成したり、或いは直流成分と周波数fL2及び周波数2fL2の正弦波を光強度変調器に入力して光周波数f−2fL2,f−fL2,f,f+fL2,f+2fL2の5つの光スペクトル成分を生成するなど、様々な光スペクトル成分を生成することが可能である。光コムPの周波数間隔よりも光位相変調器17又はそれに代わる光強度変調器による光スペクトルの広がりの方が小さい場合は、第2光バンドパスフィルタ15と光位相変調器17又は光強度変調器の順序を逆にしてもよい。 For example, a DC component and a sine wave of frequency f L2 are input to the light intensity modulator to generate three optical spectrum components of optical frequencies f 2 −f L2 , f 2 , f 2 + f L2 , or A sine wave having a frequency f L2 and a frequency 2f L2 is input to the optical intensity modulator, and five optical spectra of optical frequencies f 2 −2f L 2 , f 2 −f L 2 , f 2 , f 2 + f L 2 , and f 2 + 2f L 2 are input. Various optical spectral components can be generated, such as generating components. When the optical spectrum spread by the optical phase modulator 17 or the optical intensity modulator instead thereof is smaller than the frequency interval of the optical comb P 1 , the second optical bandpass filter 15 and the optical phase modulator 17 or the optical intensity modulation are used. The order of the vessels may be reversed.

光合波器18は、第1光バンドパスフィルタ14の出力光Pと、光位相変調器17の出力光Pとを偏波を合わせて合波し、局発光Pとして出力するようになっている。局発光Pの光スペクトルは図2(d)に示すようになる。なお、光位相変調器17の出力光Pは、本発明の第1の光に対応し、第1光バンドパスフィルタ14の出力光Pは、本発明の第2の光に対応する。 Optical multiplexer 18, the output light P 2 of the first optical band-pass filter 14, and an output light P 4 optical phase modulator 17 combined polarization multiplexes, so as to output as a local light P L It has become. Bureau optical spectrum of the light-emitting P L is as shown in Figure 2 (d). The output light P 4 optical phase modulator 17 corresponds to the first light of the present invention, the output light P 2 of the first optical band-pass filter 14 corresponds to the second light of the present invention.

局発光発生部10には、必要に応じて光パワーを調整する光減衰器や光増幅器を挿入してもよい。例えば、光周波数fと光周波数fの光スペクトル成分の強度比を調整するために、第1光バンドパスフィルタ14の光路又は第2光バンドパスフィルタ15の光路の少なくとも一方に可変光減衰器を挿入してもよい。また、局発光Pの光パワーを大きくするために、光合波器18の後に光ファイバ増幅器を挿入してもよい。 The local light generator 10 may be inserted with an optical attenuator or an optical amplifier for adjusting the optical power as required. For example, in order to adjust the intensity ratio of the optical spectral components of the optical frequency f 1 and the optical frequency f 2 , the variable optical attenuation is applied to at least one of the optical path of the first optical bandpass filter 14 or the optical path of the second optical bandpass filter 15. A vessel may be inserted. Further, in order to increase the optical power of the local light P L, it may be inserted an optical fiber amplifier after the optical coupler 18.

[校正信号生成部]
次に、校正信号生成部20について説明する。
図1に示すように、校正信号生成部20は、中間周波信号発生器21と、局発信号発生器22と、周波数変換器23とを備えている。校正信号生成部20は、所定の周波数帯域内で互いに異なる周波数の3波以上の連続波が合成された校正信号Eを生成するようになっている。具体的には、校正信号生成部20は、図2(e)に示すように、周波数f−f,f,f+fの少なくとも3つのスペクトル成分を含むミリ波帯の電気信号(校正信号E)を出力する。なお、校正信号生成部20は本発明の生成部に対応する。
[Calibration signal generator]
Next, the calibration signal generation unit 20 will be described.
As shown in FIG. 1, the calibration signal generator 20 includes an intermediate frequency signal generator 21, a local oscillator signal generator 22, and a frequency converter 23. The calibration signal generation unit 20 is configured to generate a calibration signal Er in which three or more continuous waves having different frequencies within a predetermined frequency band are synthesized. Specifically, the calibration signal generating unit 20, as shown in FIG. 2 (e), the frequency f c -f m, f c, the electrical signal of a millimeter wave band, including at least three spectral components of f c + f m (Calibration signal E r ) is output. The calibration signal generation unit 20 corresponds to the generation unit of the present invention.

中間周波信号発生器21は、D/A変換器を備え、周波数間隔fの少なくとも3つのスペクトル成分を含む中間周波信号EをD/A変換器で直接出力するようになっている。D/A変換器の代わりに、中間周波数のCW信号を発生する発振器と、周波数fのCW信号を発生する発振器と、ミキサとを用いて中間周波信号Eを生成するようにしてもよい。 Intermediate frequency signal generator 21, a D / A converter, which is an intermediate frequency signal E 3 comprising at least three spectral components of the frequency interval f m such that the output directly by the D / A converter. Instead of the D / A converter, an oscillator for generating a CW signal at an intermediate frequency, an oscillator for generating a CW signal of a frequency f m, may generate an intermediate frequency signal E 3 with a mixer .

局発信号発生器22は、CWの局発信号Eを発生するようになっている。局発信号発生器22は、ミリ波帯の局発信号Eを発生するために、周波数を整数倍に変換する周波数逓倍器を含んでいてもよい。 Local oscillation signal generator 22 is adapted to generate a local oscillation signal E 4 of CW. Local oscillation signal generator 22 for generating a local oscillation signal E 4 in the millimeter wave band may include a frequency multiplier for converting a frequency an integer multiple.

周波数変換器23は、例えば、ミキサを備えており、局発信号発生器22が発生した局発信号Eを用いて、中間周波信号Eを周波数変換(アップコンバート)して、例えば、ホーンアンテナ24より校正信号Eとして放射するようになっている。ホーンアンテナ24の代わりに導波管や同軸ケーブル・同軸コネクタを用いて電気光学周波数変換部30またはミリ波帯信号測定部50と接続するようにしてもよい。図1の校正信号生成部20は、1回の周波数変換を行なう構成であるが、複数回の周波数変換を行なう構成であってもよい。 The frequency converter 23 includes a mixer, for example, and uses the local signal E 4 generated by the local signal generator 22 to frequency-convert (up-convert) the intermediate frequency signal E 3 , for example, a horn The antenna 24 radiates as a calibration signal Er . Instead of the horn antenna 24, a waveguide, a coaxial cable, or a coaxial connector may be used to connect to the electro-optic frequency converter 30 or the millimeter waveband signal measuring unit 50. The calibration signal generation unit 20 in FIG. 1 is configured to perform frequency conversion once, but may be configured to perform frequency conversion multiple times.

中間周波信号発生器21及び局発信号発生器22は、例えば、10MHzの基準信号などを用いて、局発光発生部10の第1のCW信号発生器11及び第2のCW信号発生器16と周波数を同期させるようにしているが、必ずしも周波数を同期させる必要は無い。   The intermediate frequency signal generator 21 and the local signal generator 22 are connected to the first CW signal generator 11 and the second CW signal generator 16 of the local light generation unit 10 using, for example, a reference signal of 10 MHz. Although the frequency is synchronized, it is not always necessary to synchronize the frequency.

一般に、位相特性の測定では、校正信号として、位相特性校正が必要な周波数帯域をカバーする広帯域信号を用いて、1回で測定する方法や、位相特性校正が必要な周波数帯域を複数に分割し、それぞれ狭帯域信号を校正信号として用いて複数回の測定を行なって、必要な帯域の位相特性を得る方法がある。本実施形態は、後者の方法を用いるものであり、3波以上のマルチトーン信号(即ち、互いに異なる周波数の3波以上の連続波)を校正信号として用い、所定の周波数帯域内でマルチトーン信号の周波数を変えつつ、マルチトーン間の位相差を検出することにより該周波数帯域の位相特性を得るようにしたものである。但し、本発明は後者の方法に限られるものではなく、校正信号の連続波の波数および第1の光の連続光の波数を増やすことにより位相特性校正が必要な周波数帯域をカバーして前者の1回で測定する方法に適用することも可能である。   In general, in the measurement of phase characteristics, a wideband signal that covers the frequency band that requires phase characteristic calibration is used as the calibration signal, and the frequency band that requires phase characteristic calibration is divided into a plurality of methods. There is a method in which a narrow band signal is used as a calibration signal and a plurality of measurements are performed to obtain a phase characteristic of a necessary band. In the present embodiment, the latter method is used, and a multitone signal having three or more waves (that is, three or more continuous waves having different frequencies) is used as a calibration signal, and a multitone signal within a predetermined frequency band. The phase characteristic of the frequency band is obtained by detecting the phase difference between the multitones while changing the frequency. However, the present invention is not limited to the latter method, and covers the frequency band that requires phase characteristic calibration by increasing the wave number of the continuous wave of the calibration signal and the wave number of the continuous light of the first light. It is also possible to apply to a method of measuring at a time.

一般に、比較的高速のD/A変換器やA/D変換器の時間原点を固定して動作させることは容易ではないが、後で詳述するように、3波以上のマルチトーン信号を用いて第1及び第2位相差算出器41、43において位相の2階差分を求めることにより、時間原点が不定、即ち絶対時間が不明の場合でも位相特性を得ることができる。   In general, it is not easy to operate with a relatively high-speed D / A converter or a time origin of an A / D converter fixed, but as will be described in detail later, a multitone signal of three or more waves is used. Thus, the phase characteristics can be obtained even when the time origin is indefinite, that is, the absolute time is unknown, by obtaining the second-order phase difference in the first and second phase difference calculators 41 and 43.

[電気光学周波数変換部]
次に、電気光学周波数変換部30について説明する。
図1に示すように、電気光学周波数変換部30は、電気光学結晶31と、光分岐部32と、受光器33とを備えている。この電気光学周波数変換部30は、局発光発生部10からの局発光Pのビートをローカル信号として、校正信号生成部20からの校正信号Eを電気光学効果により周波数変換(ダウンコンバート)して中間周波数帯の3波以上の連続波が合成された中間周波信号EIFを出力するようになっている。なお、電気光学周波数変換部30は、本発明の周波数変換部に対応する。
[Electro-optic frequency converter]
Next, the electro-optic frequency converter 30 will be described.
As shown in FIG. 1, the electro-optic frequency converter 30 includes an electro-optic crystal 31, an optical branching unit 32, and a light receiver 33. The electro-optical frequency converter 30, the beat of the local light P L from the local light generator 10 as a local signal, frequency converted by electro-optical effect calibration signal E r from the calibration signal generator 20 (down-conversion) 3 or more waves continuous wave intermediate frequency band and outputs the combined intermediate frequency signal E IF Te. The electro-optic frequency converter 30 corresponds to the frequency converter of the present invention.

電気光学周波数変換部30は、校正信号Eの電界を電気光学結晶31の所定の方位に印加すると共に、局発光Pを光分岐部32を介して電気光学結晶31に入力し、電気光学結晶31の先端で反射した局発光を光分岐部32を介して受光器33に入力する構成となっている。 Electro-optical frequency conversion unit 30 receives the electric field of the calibration signal E r is applied with a predetermined orientation of the electro-optic crystal 31, a local light P L to the electro-optical crystal 31 via the optical branching unit 32, an electro-optical The local light reflected from the tip of the crystal 31 is input to the light receiver 33 via the optical branching section 32.

図4は、電気光学周波数変換部30の構成例を示す構成図である。この電気光学周波数変換部30'は、電気光学結晶31からの反射光の偏波の変化を検出する方式である。具体的には、電気光学周波数変換部30は、偏光ビームスプリッタ(PBS)32'と、1/2波長板(HWP)35と、1/4波長板(QWP)36と、電気光学結晶31と、受光器33と、を備えている。   FIG. 4 is a configuration diagram illustrating a configuration example of the electro-optic frequency conversion unit 30. The electro-optic frequency converter 30 ′ is a method for detecting a change in the polarization of the reflected light from the electro-optic crystal 31. Specifically, the electro-optic frequency converter 30 includes a polarizing beam splitter (PBS) 32 ′, a half-wave plate (HWP) 35, a quarter-wave plate (QWP) 36, and the electro-optic crystal 31. And a light receiver 33.

偏光ビームスプリッタ32'は、入力された直線偏波の局発光Pが透過するように、偏光ビームスプリッタ32'の方向が設定されている。1/2波長板35と1/4波長板36は、電気光学結晶31に電界を印加しない場合に電気光学結晶31からの反射光の光パワーの1/2が偏光ビームスプリッタ32'で反射して受光器33に入力され、かつ、電気光学結晶31に電界を印加した場合に受光器33に入力される光パワーの変化が最大となるように、1/2波長板35及び1/4波長板36の方向を調整することが望ましい。また、局発光の反射率を高くするために、電気光学結晶31の先端に誘電体反射膜34を付けることが望ましい。この構成により、電気光学結晶31からの反射光の光パワーの1/2に相当するオフセットに電気光学結晶31に印加された電界に比例する振幅成分が重畳した電気信号が出力される。 Polarization beam splitter 32 ', a local light P L of the input linearly polarized waves to transmit, the polarization beam splitter 32' is the direction of being set. The half-wave plate 35 and the quarter-wave plate 36 reflect half of the optical power of the reflected light from the electro-optic crystal 31 by the polarization beam splitter 32 ′ when no electric field is applied to the electro-optic crystal 31. The ½ wavelength plate 35 and the ¼ wavelength so that the change in the optical power input to the photoreceiver 33 when the electric field is applied to the electrooptic crystal 31 and the electrooptic crystal 31 is maximized. It is desirable to adjust the direction of the plate 36. In order to increase the reflectance of local light, it is desirable to attach a dielectric reflection film 34 to the tip of the electro-optic crystal 31. With this configuration, an electrical signal in which an amplitude component proportional to the electric field applied to the electro-optic crystal 31 is superimposed on an offset corresponding to ½ of the optical power of the reflected light from the electro-optic crystal 31 is output.

図5は、電気光学周波数変換部の別の構成例を示す。この電気光学周波数変換部30Aは、電気光学結晶31からの反射光の偏波の変化を差動で検出する方式となっている。具体的には、電気光学周波数変換部30Aは、図4の構成の電気光学周波数変換部30'と同様の偏光ビームスプリッタ(PBS)32aと、1/2波長板(HWP)35aと、1/4波長板(QWP)36と、電気光学結晶31と、受光器33aとに加えて、偏光ビームスプリッタ(PBS')32bと、1/2波長板(HWP')35bと、ファラデーローテータ(FR)37と、受光器33bと、差動増幅器38とを備えている。   FIG. 5 shows another configuration example of the electro-optic frequency converter. The electro-optic frequency converter 30A is a system that detects a change in the polarization of reflected light from the electro-optic crystal 31 in a differential manner. Specifically, the electro-optic frequency conversion unit 30A includes a polarization beam splitter (PBS) 32a, a half-wave plate (HWP) 35a, the same as the electro-optic frequency conversion unit 30 ′ configured as shown in FIG. In addition to the four-wave plate (QWP) 36, the electro-optic crystal 31, and the light receiver 33a, a polarizing beam splitter (PBS ') 32b, a half-wave plate (HWP') 35b, and a Faraday rotator (FR) 37, a light receiver 33b, and a differential amplifier 38.

電気光学周波数変換部30Aは、入力された直線偏波の局発光Pが透過するように、偏光ビームスプリッタ32bの方向が設定されている。また、1/2波長板35bは、入射光のファラデーローテータ37による45度の偏波回転を戻すように、その方向が設定されている。そして、電気光学結晶31からの反射光のうち偏光ビームスプリッタ32aを透過した光は、90度偏波が回転し偏光ビームスプリッタ32bで反射して受光器33bに入力されるようになっている。 Electro-optical frequency conversion unit 30A is a local light P L of the input linearly polarized waves to transmit, the direction of the polarization beam splitter 32b is set. The direction of the half-wave plate 35 b is set so as to return the polarization rotation of 45 degrees by the Faraday rotator 37 of the incident light. Of the reflected light from the electro-optic crystal 31, the light transmitted through the polarization beam splitter 32a is rotated by 90 degrees, reflected by the polarization beam splitter 32b, and input to the light receiver 33b.

この構成により、受光器33a及び受光器33bの出力は、電気光学結晶31からの反射光の光パワーの1/2に相当するオフセットに電気光学結晶31に印加された電界に比例する振幅成分が互いに逆方向に重畳するため、差動増幅器38からの出力はオフセットが相殺してゼロとなり、電界に比例する振幅成分が2倍となる。差動構成によって信号の振幅が2倍になるのに対して雑音は2倍にならないので、信号対雑音比が改善される。   With this configuration, the outputs of the light receiver 33a and the light receiver 33b have an amplitude component proportional to the electric field applied to the electro-optic crystal 31 at an offset corresponding to ½ of the optical power of the reflected light from the electro-optic crystal 31. Since they are superimposed in opposite directions, the output from the differential amplifier 38 cancels the offset and becomes zero, and the amplitude component proportional to the electric field is doubled. The differential configuration doubles the signal amplitude while the noise does not double, thus improving the signal-to-noise ratio.

また、電気光学周波数変換部30は、図11の電気光学周波数変換部230として記載のように、光分岐部32として光サーキュレータ及び光バンドパスフィルタを用いて電気光学結晶31からの反射光の側帯波を検出する方式としてもよい。   Further, the electro-optic frequency conversion unit 30 uses the optical circulator and the optical bandpass filter as the light branching unit 32 as described as the electro-optic frequency conversion unit 230 in FIG. A method of detecting waves may be used.

次に、電気光学周波数変換部30における周波数変換動作を説明する。
図3(a)は、光合波器18から出力された局発光Pの光スペクトルであり、図2(d)の横軸を拡大したものである。図3(b)は、校正信号生成部20から出力された校正信号Eのスペクトルであり、図2(e)の横軸を拡大したものである。f−fとfは異なる周波数に設定されており、ここではf>f−fの例を示すが、大小関係を逆にしてもよい。通常はf−fをfに近い値に設定することが望ましく、次式(4)が成り立つようにする。
Next, the frequency conversion operation in the electro-optic frequency conversion unit 30 will be described.
3 (a) is an optical spectrum of the optical multiplexer 18 the local light P L output from is an enlarged view of the horizontal axis in FIG. 2 (d). FIG. 3B is a spectrum of the calibration signal Er output from the calibration signal generation unit 20, and is an enlarged view of the horizontal axis of FIG. f 2 −f 1 and f c are set to different frequencies. Here, an example of f c > f 2 −f 1 is shown, but the magnitude relationship may be reversed. Usually it is desirable to set the f 2 -f 1 to a value close to f c, so that the following equation (4) holds.

Figure 2019191344
Figure 2019191344

さらに、第1の光の3波以上の連続光の周波数間隔fL2と、校正信号Eの3波以上の連続波の周波数間隔fとは、異なる周波数に設定されており、ここではf>fL2の例を示すが、大小関係を逆にしてもよい。通常はfL2をfに近い値に設定することが望ましく、次式(5)が成り立つようにする。 Furthermore, the frequency interval f L2 of the continuous light of three or more waves of the first light and the frequency interval f m of the continuous wave of three or more waves of the calibration signal Er are set to different frequencies. Here, f Although an example of m > f L2 is shown, the magnitude relationship may be reversed. Usually, it is desirable to set f L2 to a value close to f m so that the following equation (5) is satisfied.

Figure 2019191344
Figure 2019191344

局発光Pの周波数fの光スペクトル成分と、周波数fの光スペクトル成分とによって、f−f=nfL1の周波数のビートが発生し、電気光学周波数変換部30により校正信号Eの周波数fのスペクトル成分が、周波数fIF1=f−nfL1に周波数変換される。 A beat having a frequency of f 2 −f 1 = nf L1 is generated by the optical spectrum component of the local light P L at the frequency f 1 and the optical spectrum component of the frequency f 2 , and the electro-optic frequency converter 30 generates the calibration signal E. spectral components r of frequency f c is frequency-converted to a frequency f IF1 = f c -nf L1.

同様に、局発光Pの周波数fの光スペクトル成分と、周波数f−fL2の光スペクトル成分とによって、f−fL2−f=nfL1−fL2の周波数のビートが発生し、電気光学周波数変換部30により校正信号Eの周波数f−fのスペクトル成分が、周波数fIF1−fm1=f−f−(nfL1−fL2)に周波数変換される。ここで、周波数変換後の周波数間隔はfm1=f−fL2となる。 Similarly, a beat having a frequency of f 2 −f L2 −f 1 = nf L1 −f L2 is generated by the optical spectral component of the frequency f 1 of the local light P L and the optical spectral component of the frequency f 2 −f L2. and spectral component of the frequency f c -f m calibration signal E r by an electro-optical frequency conversion unit 30, the frequency f IF1 -f m1 = f c -f m - is frequency-converted into (nf L1 -f L2) . Here, the frequency interval after the frequency conversion becomes f m1 = f m -f L2.

同様に、局発光Pの周波数fの光スペクトル成分と、周波数f+fL2の光スペクトル成分とによって、f+fL2−f=nfL1+fL2の周波数のビートが発生し、電気光学周波数変換部30により校正信号Eの周波数f+fのスペクトル成分が、周波数fIF1+fm1=f+f−(nfL1+fL2)に周波数変換される。(4)式及び(5)式の関係より次式(6)及び(7)が成り立つ。 Similarly, a beat with a frequency of f 2 + f L2 −f 1 = nf L1 + f L2 is generated by the optical spectral component of the frequency f 1 of the local light P L and the optical spectral component of the frequency f 2 + f L2. spectral component of the frequency f c + f m of the calibration signal E r by the optical frequency conversion unit 30, the frequency f IF1 + f m1 = f c + f m - is frequency-converted into (nf L1 + f L2). The following expressions (6) and (7) hold from the relationship between the expressions (4) and (5).

Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344

すなわち、高周波(ミリ波帯)の校正信号Eのキャリア周波数fが、低周波の中間周波数fIF1に変換されると同時に、校正信号Eにおける広い周波数間隔fが、中間周波信号EIFにおける狭い周波数間隔fm1に変換される。別言すれば、中間周波信号EIFの3波以上の連続波のいずれの周波数も、校正信号Eの3波以上の連続波のいずれの周波数よりも低くなるように設定され、かつ、中間周波信号EIFの3波以上の連続波の周波数間隔が、校正信号Eの3波以上の連続波の周波数間隔よりも狭くなるように設定される。 That is, the carrier frequency f c of the calibration signal E r of the high frequency (millimeter wave band), and at the same time is converted to an intermediate frequency f IF1 of the low frequency, wide frequency interval f m in the calibration signal E r is an intermediate frequency signal E It is converted into a narrow frequency interval f m1 in IF . In other words, any frequency of the three or more continuous waves of the intermediate frequency signal E IF is set to be lower than any frequency of the three or more continuous waves of the calibration signal Er , The frequency interval of three or more continuous waves of the frequency signal E IF is set to be narrower than the frequency interval of three or more continuous waves of the calibration signal Er .

このようにして、ミリ波帯の校正信号EをA/D変換可能な中間周波数に変換すると共に、中間周波信号EIFにおける周波数間隔fm1を十分狭く設定することにより、電気光学周波数変換部30の受光器33以降の電気回路の周波数特性によるfIF1−fm1,fIF1,fIF1+fm1の3つのスペクトル成分の位相差の変化を十分小さくすることができる。 In this way, by converting the calibration signal Er in the millimeter wave band to an intermediate frequency capable of A / D conversion, and setting the frequency interval f m1 in the intermediate frequency signal E IF sufficiently narrow, an electro-optic frequency converter The change in the phase difference of the three spectral components f IF1 −f m1 , f IF1 , f IF1 + f m1 due to the frequency characteristics of the electric circuit after 30 light receivers 33 can be made sufficiently small.

中間周波数fIF1は、低過ぎると電気回路の1/f雑音により信号対雑音比が悪化し、高過ぎると高速な受光器やA/D変換器等が必要になるため、適切な周波数を選択することが望ましい。 If the intermediate frequency f IF1 is too low, the signal-to-noise ratio deteriorates due to the 1 / f noise of the electric circuit, and if it is too high, a high-speed photoreceiver or A / D converter is required, so select an appropriate frequency. It is desirable to do.

前述の周波数変換以外にも、例えば、局発光Pの周波数fの光スペクトル成分と周波数f+fL2の光スペクトル成分との間のf+fL2−f=nfL1+fL2の周波数のビートにより、校正信号Eの周波数fのスペクトル成分が周波数|f−(nfL1+fL2)|に周波数変換されるなどの様々な組み合わせが存在し、電気光学周波数変換部30からの出力信号のスペクトルは図3(c)に示すようになる。これらのスペクトルから、図示しないローパスフィルタ又はバンドパスフィルタ、或いは帯域の狭い受光器などを用いて、fIF1−fm1,fIF1,fIF1+fm1を含むfIF1付近のスペクトル成分を抽出するようにしてもよい。図3(c)のうち周波数fIF1付近を拡大したものが図3(d)である。電気光学周波数変換部30は、少なくともfIF1−fm1,fIF1,fIF1+fm1の3つのスペクトル成分を含む中間周波信号EIFを出力する。 In addition to the above-described frequency conversion, for example, the frequency of f 2 + f L2 −f 1 = nf L1 + f L2 between the optical spectrum component of the frequency f 1 of the local light P L and the optical spectrum component of the frequency f 2 + f L2 There are various combinations in which the spectral component of the frequency f c of the calibration signal Er is frequency-converted to a frequency | f c − (nf L1 + f L2 ) | The spectrum of the output signal is as shown in FIG. From these spectra, the low-pass filter or a band-pass filter (not shown), or by using a narrow photodetector of bands, so as to extract the spectral components in the vicinity of f IF1 including f IF1 -f m1, f IF1, f IF1 + f m1 It may be. FIG. 3D is an enlarged view of the vicinity of the frequency f IF1 in FIG. The electro-optic frequency converter 30 outputs an intermediate frequency signal E IF including at least three spectral components of f IF1 −f m1 , f IF1 , and f IF1 + fm 1 .

[周波数変更部]
周波数変更部70は、校正処理部40から指示信号を受け、校正信号Eの3波以上の連続波の周波数を所定の周波数帯域内で変更するようになっている。また、周波数変更部70は、変更する校正信号Eの3波以上の連続波の周波数の値に応じて、第1の光(3波以上の連続光)と第2の光との周波数間隔を変更するようになっている。
[Frequency changing section]
The frequency changing unit 70 receives an instruction signal from the calibration processing unit 40 and changes the frequency of three or more continuous waves of the calibration signal Er within a predetermined frequency band. Further, the frequency changing unit 70 determines the frequency interval between the first light (three or more continuous lights) and the second light according to the frequency value of three or more continuous waves of the calibration signal Er to be changed. Is supposed to change.

[校正処理部]
次に、校正処理部40について説明する。
図1に示すように、校正処理部40は、第1位相差算出器41と、第2位相差算出器43と、加算器42と、位相補正値算出器44とを備えている。校正処理部40は、電気光学周波数変換部30を用いて取得した校正信号Erの位相差特性と、校正信号Erをミリ波帯信号測定部50に入力した時に該ミリ波帯信号測定部50から出力される信号Eの位相差特性とに基づいて、ミリ波帯信号測定部50の位相特性を校正するための位相補正値を算出し、位相補正器55が保持している位相補正値のデータを更新するようになっている。なお、校正処理部40は、本発明の校正部に対応する。
[Proofreading section]
Next, the calibration processing unit 40 will be described.
As shown in FIG. 1, the calibration processing unit 40 includes a first phase difference calculator 41, a second phase difference calculator 43, an adder 42, and a phase correction value calculator 44. The calibration processing unit 40 receives the phase difference characteristics of the calibration signal Er acquired by using the electro-optic frequency conversion unit 30 and the calibration signal Er from the millimeter wave band signal measurement unit 50 when the calibration signal Er is input to the millimeter wave band signal measurement unit 50. A phase correction value for calibrating the phase characteristic of the millimeter waveband signal measuring unit 50 is calculated based on the phase difference characteristic of the output signal E 8 , and the phase correction value held by the phase corrector 55 is calculated. The data is updated. The calibration processing unit 40 corresponds to the calibration unit of the present invention.

第1位相差算出器41は、周波数変更部70による周波数変更毎に、変更される周波数の値に応じて第1の光と第2の光との周波数間隔を変更させ、中間周波信号EIFの3波以上の連続波の間の位相差を算出していき、所定の周波数帯域全体に渡る第1の位相差特性を取得するようになっている。 The first phase difference calculator 41 changes the frequency interval between the first light and the second light in accordance with the value of the changed frequency every time the frequency changing unit 70 changes the frequency, and the intermediate frequency signal E IF The phase difference between the three or more continuous waves is calculated, and the first phase difference characteristic over the entire predetermined frequency band is acquired.

具体的には、第1位相差算出器41は、校正信号Eを電気光学周波数変換部30に入力した場合に、電気光学周波数変換部30から出力される中間周波信号EIFの周波数fIF1−fm1,fIF1,fIF1+fm1のスペクトル成分の位相差を算出する。例えば、所定のサンプリング周波数で中間周波信号EIFをA/D変換し、得られたディジタル信号において各周波数fIF1−fm1,fIF1,fIF1+fm1の正弦関数及び余弦関数を乗算して所定のサンプル数の間積算し、逆正接関数により各スペクトル成分の位相を算出し、後述のように位相の2階差分を算出するようにしてもよい。 Specifically, the first phase difference calculator 41 receives the frequency f IF1 of the intermediate frequency signal E IF output from the electro-optic frequency converter 30 when the calibration signal Er is input to the electro-optic frequency converter 30. Calculate the phase difference between the spectral components of −f m1 , f IF1 , f IF1 + f m1 . For example, the intermediate frequency signal E IF is A / D converted at a predetermined sampling frequency, and the obtained digital signal is multiplied by the sine function and cosine function of each frequency f IF1 −f m1 , f IF1 , f IF1 + f m1. Integration may be performed for a predetermined number of samples, the phase of each spectral component may be calculated using an arctangent function, and a second-order phase difference may be calculated as described later.

第2位相差算出器43は、校正信号Eをミリ波帯信号測定部50に入力した場合に、周波数変更部70による周波数変更毎に、ミリ波帯信号測定部50の中間周波信号測定器53から出力される信号Eの3波以上の連続波の間の位相差を算出していき、所定の周波数帯域全体に渡る第2の位相差特性を取得するようになっている。第2位相差算出器43の処理内容は、第1位相差算出器41と同様であるが、第2位相差算出器43では、ミリ波帯信号測定部50の中間周波信号測定器53のA/D変換器によりA/D変換されて得られたディジタル信号を使用するようにしてもよい。 When the calibration signal Er is input to the millimeter wave band signal measurement unit 50, the second phase difference calculator 43 receives the intermediate frequency signal measurement device of the millimeter wave band signal measurement unit 50 every time the frequency change unit 70 changes the frequency. 53 will calculate the phase difference between the three waves or more continuous wave signal E 8 output from, so as to obtain a second phase difference characteristics throughout a predetermined frequency band. The processing content of the second phase difference calculator 43 is the same as that of the first phase difference calculator 41, but the second phase difference calculator 43 has an A of the intermediate frequency signal measuring unit 53 of the millimeter waveband signal measuring unit 50. A digital signal obtained by A / D conversion by the / D converter may be used.

第1位相差算出器41から出力された位相差(2階差分値)は、必要に応じて加算器42を介して局発光Pの位相差(2階差分値)が加算された後、位相補正値算出器44に入力される。局発光発生部10の光位相変調器17の代わりに光振幅変調器が用いられ、それが理想的な振幅変調の場合は、局発光Pの位相差はゼロとなるため、加算器42による局発光Pの位相差の加算は不要である。 Phase difference output from the first phase difference calculator 41 (second difference value), after the phase difference between the local light P L via the adder 42 as required (second difference value) is added, This is input to the phase correction value calculator 44. Station optical amplitude modulator in place of the optical phase modulator 17 of the light emitting generation portion 10 is used, if it is an ideal amplitude modulation, the phase difference between a local light P L to become zero, by the adder 42 addition of the phase difference between the local light P L is not required.

位相補正値算出器44は、第1位相差算出器41により算出された位相差に対し必要に応じて局発光Pの位相差を加算して得られた位相差の特性と、第2位相差算出器43により算出された位相差の特性とに基づいて、ミリ波帯信号測定部50の位相補正値を算出するようになっている。算出した位相補正値は、位相補正値算出器44からミリ波帯信号測定部50の位相補正器55に送られ、被測定信号をミリ波帯信号測定部50で測定する際の位相補正に用いられる。 Phase correction value calculator 44, the characteristics of the phase difference obtained by adding the phase difference between the local light P L as needed to the phase difference calculated by the first phase difference calculator 41, # 2 Based on the phase difference characteristic calculated by the phase difference calculator 43, the phase correction value of the millimeter waveband signal measuring unit 50 is calculated. The calculated phase correction value is sent from the phase correction value calculator 44 to the phase corrector 55 of the millimeter waveband signal measuring unit 50, and is used for phase correction when the measured signal is measured by the millimeter waveband signal measuring unit 50. It is done.

なお、校正処理部40および周波数変更部70は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力インタフェース、外部記憶装置等を有するコンピュータを用いる構成であってもよく、その機能の一部または全部(A/D変換を除く)は、ROM等に記憶された各種プログラムをCPUで実行することにより実現することができる。   The calibration processing unit 40 and the frequency changing unit 70 are configured using, for example, a computer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input / output interface, an external storage device, and the like. Some or all of the functions (excluding A / D conversion) can be realized by executing various programs stored in the ROM or the like by the CPU.

[ミリ波帯信号測定部]
次に、校正対象であるミリ波帯信号測定部50について説明する。
[Millimeter wave signal measurement unit]
Next, the millimeter wave band signal measuring unit 50 that is the calibration target will be described.

ミリ波帯信号測定部50は、ミリ波帯の高周波信号を周波数変換(ダウンコンバート)し、その信号特性を測定するシグナルアナライザであり、例えば、変調信号を解析してエラーベクトル振幅(EVM)などを表示する機能を有していてもよい。具体的には、ミリ波帯信号測定部50は、局発信号発生器52と、周波数変換器51と、中間周波信号測定器53と、位相補正器55とを備えている。なお、校正対象はこの構成に限定されるものではなく、ミリ波帯の高周波信号を扱う任意の回路を校正対象とすることができる。   The millimeter wave band signal measurement unit 50 is a signal analyzer that frequency-converts (down-converts) a high frequency signal in the millimeter wave band and measures its signal characteristics. For example, an error vector amplitude (EVM) is obtained by analyzing a modulation signal. May be displayed. Specifically, the millimeter waveband signal measuring unit 50 includes a local oscillator signal generator 52, a frequency converter 51, an intermediate frequency signal measuring device 53, and a phase corrector 55. The calibration target is not limited to this configuration, and any circuit that handles millimeter-wave band high-frequency signals can be the calibration target.

局発信号発生器52は、CWの局発信号を生成する。周波数変換器51は、局発信号を用いて、例えばホーンアンテナ56により受信した校正信号Eまたは被測定信号の周波数変換(ダウンコンバート)を行ない中間周波信号に変換する。ホーンアンテナ56の代わりに導波管や同軸ケーブル・同軸コネクタを用いて校正信号生成部20または被測定信号と接続するようにしてもよい。中間周波信号測定器53は、A/D変換器を含んでおり、中間周波信号をディジタル信号に変換する。中間周波信号測定器53から出力されるディジタル信号は、切替スイッチ54により第2位相差算出器43又は位相補正器55に選択的に送られる。位相補正器55は、中間周波信号測定器53からのディジタル信号に対して、位相補正値算出器44により更新された情報を用いて位相補正を行ない、測定結果として出力する。変調信号を解析してエラーベクトル振幅(EVM)などを表示する場合は、位相補正器55の出力を用いて変調解析を行う。 The local oscillation signal generator 52 generates a local oscillation signal of CW. The frequency converter 51 performs frequency conversion (down-conversion) of the calibration signal Er received by the horn antenna 56 or the signal under measurement using the local signal and converts it to an intermediate frequency signal. Instead of the horn antenna 56, a calibration signal generator 20 or a signal under measurement may be connected using a waveguide, a coaxial cable, or a coaxial connector. The intermediate frequency signal measuring device 53 includes an A / D converter, and converts the intermediate frequency signal into a digital signal. The digital signal output from the intermediate frequency signal measuring device 53 is selectively sent to the second phase difference calculator 43 or the phase corrector 55 by the changeover switch 54. The phase corrector 55 performs phase correction on the digital signal from the intermediate frequency signal measuring device 53 using the information updated by the phase correction value calculator 44, and outputs the result as a measurement result. When the error signal amplitude (EVM) or the like is displayed by analyzing the modulation signal, the modulation analysis is performed using the output of the phase corrector 55.

局発信号発生器52は、周波数を整数倍に変換する周波数逓倍器を含んでいてもよい。また、ここでは1回の周波数変換を行なう構成を示したが、複数回の周波数変換を行なう構成でもよく、不要な周波数成分を除去するフィルタが含まれていてもよい。   The local oscillation signal generator 52 may include a frequency multiplier that converts the frequency to an integral multiple. In addition, although a configuration in which frequency conversion is performed once is shown here, a configuration in which frequency conversion is performed a plurality of times may be used, and a filter that removes unnecessary frequency components may be included.

[校正方法]
次に、ミリ波帯信号測定部50の周波数特性を校正する方法を説明する。
[Calibration method]
Next, a method for calibrating the frequency characteristics of the millimeter waveband signal measuring unit 50 will be described.

校正信号の周波数特性(位相を含む複素数)をX(f)とし、ミリ波帯信号測定部50の周波数特性(位相を含む複素数)をG(f)とし、校正信号をミリ波帯信号測定部50に入力した時の中間周波信号測定器53からの出力信号の周波数特性(位相を含む複素数)をY(f)とする。X(f)は、校正信号を電気光学周波数変換部30に入力して3波以上のスペクトル成分を含む中間周波信号の位相差を測定することを、所定周波数帯域内でキャリア周波数fを変えて繰り返すことにより求めることができる。Y(f)は、校正信号をミリ波帯信号測定部50に入力し、該ミリ波帯信号測定部50から出力される3波以上のスペクトル成分を含む中間周波信号の位相差を測定することを、所定周波数帯域内でキャリア周波数fを変えて繰り返すことにより求めることができる。G(f)は、次式(8)より求めることができる。 The frequency characteristic (complex number including phase) of the calibration signal is X c (f), the frequency characteristic (complex number including phase) of the millimeter wave band signal measurement unit 50 is G (f), and the calibration signal is measured as a millimeter wave band signal. Let Y c (f) be the frequency characteristic (complex number including phase) of the output signal from the intermediate frequency signal measuring device 53 when it is input to the unit 50. X c (f) is the measurement of the phase difference of an intermediate frequency signal including spectral components of three or more waves by inputting the calibration signal to the electro-optic frequency converter 30 and the carrier frequency f c within a predetermined frequency band. It can be obtained by changing and repeating. Y c (f) inputs a calibration signal to the millimeter waveband signal measurement unit 50 and measures the phase difference of an intermediate frequency signal including three or more spectrum components output from the millimeter waveband signal measurement unit 50. it can be obtained by the repeated while changing the carrier frequency f c within a predetermined frequency band. G (f) can be obtained from the following equation (8).

Figure 2019191344
ここで、fLOはミリ波帯信号測定部50の局発信号の周波数である。
Figure 2019191344
Here, f LO is the frequency of the local oscillation signal of the millimeter waveband signal measurement unit 50.

そして、被測定信号の周波数特性(位相を含む複素数)をX(f)、被測定信号をミリ波帯信号測定部50に入力した時の中間周波信号測定器53からの出力信号の周波数特性(位相を含む複素数)をY(f)とすると、次式(9)よりミリ波帯信号測定部50の周波数特性が補正されたX(f)を測定結果として求めることができる。   Then, the frequency characteristic (complex number including phase) of the signal under measurement is X (f), and the frequency characteristic of the output signal from the intermediate frequency signal measuring device 53 when the signal under measurement is input to the millimeter waveband signal measuring unit 50 ( Assuming that Y (f) is a complex number including a phase, X (f) in which the frequency characteristic of the millimeter waveband signal measuring unit 50 is corrected can be obtained as a measurement result from the following equation (9).

Figure 2019191344
Figure 2019191344

以上のように、振幅と位相を含む複素数の周波数特性を求めることにより、振幅特性と位相特性を同時に校正することも可能である。
以下では、位相特性を校正する方法を詳細に説明する。
As described above, it is also possible to simultaneously calibrate the amplitude characteristic and the phase characteristic by obtaining the complex frequency characteristic including the amplitude and the phase.
Hereinafter, a method for calibrating the phase characteristic will be described in detail.

上述のように、第1位相差算出器41は、fIF1−fm1,fIF1,fIF1+fm1のスペクトル成分の各位相を算出する。fIF1−fm1のスペクトル成分の位相をφ、fIF1のスペクトル成分の位相をφ、fIF1+fm1のスペクトル成分の位相をφ、Δfを校正信号の周波数間隔fとすると、次式(10)、(11)、(12)より、位相差Δφ/Δfを算出する。 As described above, the first phase difference calculator 41 calculates each phase of the spectrum components of f IF1 −f m1 , f IF1 , and f IF1 + f m1 . f IF1 -f 1 the phase phi of the spectral components of m1, 2 a phase spectral component phi of f IF1, f IF1 + f phases phi 3 spectral components m1, when the frequency interval f m of the calibration signals Delta] f, The phase difference Δ 2 φ / Δf 2 is calculated from the following equations (10), (11), and (12).

Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344

位相差Δφ/Δfを算出する操作を、校正信号の周波数fを必要な範囲内で変えて繰り返し、fの関数としての位相差Δφ(f)/Δfを得る。位相の2階の差分をとることにより、絶対時間によらずに(即ち時間原点が不明でも)位相特性を得ることができる。 The operation of calculating the phase difference Δ 2 φ / Δf 2, repeatedly changing the frequency f c of the calibration signal to the extent necessary to obtain the phase difference as a function of f c Δ 2 φ a (f c) / Δf 2 . By taking the difference of the second floor of the phase, the phase characteristic can be obtained regardless of the absolute time (that is, even if the time origin is unknown).

上記で求めた位相差は、局発光Pの光スペクトル成分の位相差に依存するため、局発光Pの光スペクトル成分の位相差がゼロでない場合は、補正を行なう必要がある。具体的には、局発光Pのf−fL2の光スペクトル成分の位相をφL1とし、fの光スペクトル成分の位相をφL2とし、f+fL2の光スペクトル成分の位相をφL3とすると、次式(13)、(14)、(15)より、局発光Pの位相差Δφ/Δfを算出する。そして、次式(16)のとおり、電気光学周波数変換部30からの出力信号の位相差Δφ(f)/Δfに局発光Pの位相差Δφ/Δfを加算することにより、局発光Pの光スペクトル成分の位相が補正された位相差Δφ(f)/Δfを得ることができる。 Phase difference obtained above is dependent on the phase difference of the optical spectrum component of the local light P L, when the phase difference of the light spectrum component of the local light P L is not zero, it is necessary to correct. Specifically, the phase of the optical spectrum component of f 2 -f L2 of the local light P L and phi L1, the phase of the optical spectrum component of f 2 and phi L2, the phase of the optical spectrum component of f 2 + f L2 When phi L3, the following equation (13), (14), calculates the phase difference Δ 2 φ L / Δf 2 than, local light P L (15). Then, as shown in the following equation (16), the phase difference Δ 2 φ L / Δf 2 of the local light P L is added to the phase difference Δ 2 φ (f c ) / Δf 2 of the output signal from the electro-optic frequency converter 30. by, local light P phase difference Δ 2 φ c (f c) the phase of the optical spectrum components are corrected for L / delta] f 2 can be obtained.

Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344

例えば、局発光発生部10の光位相変調器17が理想的な位相変調の場合は、φL1=π/2,φL2=0,φL3=π/2なので、Δφ/Δf=π/f となる。局発光発生部10の光位相変調器17の代わりに光振幅変調器が用いられ、それが理想的な振幅変調の場合は、φL1=0,φL2=0,φL3=0なので、Δφ/Δf=0となる。この位相差は、光周波数fの光スペクトル成分の変調特性によって決まるため、通常f−f=nfL1には依存せず、校正信号の周波数fを変えて繰り返す際は一定値の位相差補正を行なえばよい。 For example, when the optical phase modulator 17 of the local light generation unit 10 is ideal phase modulation, since φ L1 = π / 2, φ L2 = 0, φ L3 = π / 2, Δ 2 φ L / Δf 2 = Π / f 2 m . In the case where an optical amplitude modulator is used instead of the optical phase modulator 17 of the local light generation unit 10 and is an ideal amplitude modulation, φ L1 = 0, φ L2 = 0, φ L3 = 0, so Δ a 2 φ L / Δf 2 = 0 . This phase difference, because determined by the modulation characteristic of the optical spectrum component of the optical frequency f 2, independent of the normal f 2 -f 1 = nf L1, when repeated by changing the frequency f c of the calibration signal is of a constant value What is necessary is just to perform phase difference correction.

局発光発生部10の第1のCW信号発生器11と第2のCW信号発生器16と校正信号生成部20(中間周波信号発生器21と局発信号発生器22)と第1位相差算出器41のA/D変換のサンプリング周波数とを、共通の基準周波数に同期するように構成すると、第1位相差算出器41でA/D変換された結果には周波数誤差が含まれず、正確に周波数fIF1−fm1,fIF1,fIF1+fm1のスペクトル成分が得られるので、位相差の算出が容易かつ正確になる。 The first CW signal generator 11, the second CW signal generator 16, the calibration signal generator 20 (the intermediate frequency signal generator 21 and the local oscillator signal generator 22), and the first phase difference calculation of the local light generator 10. If the sampling frequency of the A / D conversion of the device 41 is synchronized with a common reference frequency, the result of the A / D conversion by the first phase difference calculator 41 does not include a frequency error, and is accurate. Since the spectral components of the frequencies f IF1 -f m1 , f IF1 , f IF1 + fm 1 are obtained, the phase difference can be calculated easily and accurately.

次いで、校正信号生成部20から出力される校正信号Eをミリ波帯信号測定部50に入力する。 Next, the calibration signal Er output from the calibration signal generation unit 20 is input to the millimeter waveband signal measurement unit 50.

具体的には、周波数f−f′,f,f+f′の少なくとも3つのスペクトル成分を有する校正信号Eをミリ波帯信号測定部50に入力し、中間周波信号測定器53から出力される校正信号のうち、f−f′のスペクトル成分の位相測定結果をφ′とし、fのスペクトル成分の位相測定結果をφ′とし、f+f′のスペクトル成分の位相測定結果をφ′とし、Δf′を校正信号Eの周波数間隔f′とすると、次式(17)、(18)、(19)より、位相差Δφ′/Δf′を算出する。 Specifically, a calibration signal Er having at least three spectral components of frequencies f c −f m ′, f c , and f c + f m ′ is input to the millimeter waveband signal measuring unit 50, and an intermediate frequency signal measuring device is obtained. 53, the phase measurement result of the spectrum component of f c −f m ′ is φ 1 ′, the phase measurement result of the spectrum component of f c is φ 2 ′, and the calibration signal output from 53 is f c + f m ′ Assuming that the phase measurement result of the spectral component is φ 3 ′ and Δf ′ is the frequency interval f m ′ of the calibration signal Er , the phase difference Δ 2 φ ′ / is obtained from the following equations (17), (18), and (19). Δf ′ 2 is calculated.

Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344

位相差Δφ′/Δf′を算出する操作を、校正信号Eの周波数fを必要な範囲内で変えて繰り返し、fの関数としての位相差Δφ′(f)/Δf′を取得する。 The operation of calculating the phase difference Δ 2 φ '/ Δf' 2 , repeatedly changing the extent necessary frequency f c of the calibration signal E r, the phase difference as a function of f c Δ 2 φ '(f c) / Δf ′ 2 is acquired.

周波数fにおける位相補正値θ(f)は、次式(20)、(21)、(22)を用いて求めることができる。 The phase correction value θ (f c ) at the frequency f c can be obtained using the following equations (20), (21), and (22).

Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344
Figure 2019191344

式(21)、(22)において、総和Σは、最低周波数から周波数fまでΔf間隔でfciを変えながらの積算である。 Equation (21), in (22), the sum Σ is the integration of while changing the f ci at Delta] f c interval from the lowest frequency to the frequency f c.

位相補正器55は、校正信号Eをミリ波帯信号測定部50に入力した時のスペクトル成分の位相差が、第1位相差算出器41により算出された位相差と等しくなるように位相補正を行なう。 The phase corrector 55 corrects the phase so that the phase difference of the spectrum component when the calibration signal Er is input to the millimeter waveband signal measuring unit 50 is equal to the phase difference calculated by the first phase difference calculator 41. To do.

位相補正器55における位相補正の方法としては、周波数領域補正法や時間領域補正法を採用することができる。周波数領域補正法は、中間周波信号測定器53で得られた時間領域のディジタル信号を離散フーリエ変換して周波数領域の信号に変換し、位相補正値θ(f)だけ位相を回転し、離散逆フーリエ変換して時間領域の信号に変換するものである。時間領域補正法は、位相補正値θ(f)から複素振幅exp{jθ(f)}を求め、離散逆フーリエ変換してインパルス応答に変換し、該インパルス応答を係数とする有限インパルス応答(FIR)フィルタで中間周波信号測定器53からのディジタル信号にフィルタ処理を行なうものである。 As a phase correction method in the phase corrector 55, a frequency domain correction method or a time domain correction method can be employed. In the frequency domain correction method, the digital signal in the time domain obtained by the intermediate frequency signal measuring device 53 is subjected to discrete Fourier transform to be converted into a frequency domain signal, and the phase is rotated by the phase correction value θ (f c ). Inverse Fourier transform is performed to convert the signal into a time domain signal. In the time domain correction method, a complex amplitude exp {jθ (f c )} is obtained from the phase correction value θ (f c ), converted into an impulse response by discrete inverse Fourier transform, and a finite impulse response having the impulse response as a coefficient. A digital signal from the intermediate frequency signal measuring device 53 is subjected to filter processing by an (FIR) filter.

電気光学周波数変換部30で校正信号Eの位相差を測定する時のスペクトル間隔fと、ミリ波帯信号測定部50で校正信号Eの位相差を測定する時のスペクトル間隔f′は、等しく設定するのが望ましいが、必ずしもそれに限られるものではない。また、電気光学周波数変換部30で校正信号Eの位相差を測定する時の複数のfと、ミリ波帯信号測定部50で校正信号Eの位相差を測定する時の複数のfは、等しく設定するのが望ましいが、必ずしもそれに限られるものではなく、補間処理等で位相差情報の周波数を合わせるようにしてもよい。 A spectral interval f m when measuring the phase difference of the calibration signal E r in the electro-optical frequency conversion unit 30, the spectral interval f m when measuring the phase difference of the calibration signal E r in the millimeter wave band signal measuring unit 50 ' Are preferably set equal, but not necessarily limited thereto. Further, a plurality of f c when measuring the phase difference between the calibration signal E r in the electro-optical frequency conversion unit 30, a plurality of f at the time of measuring the phase difference of the calibration signal E r in the millimeter wave band signal measuring unit 50 Although it is desirable to set c equal, it is not necessarily limited thereto, and the frequency of the phase difference information may be adjusted by interpolation processing or the like.

以上のようにして位相補正ができるようになった後、校正信号の代わりに被測定信号をミリ波帯信号測定部50に入力し、位相が補正された測定結果を出力する。被測定信号がQPSK(Quadrature Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)などの変調信号の場合、位相が補正された信号の変調解析を行ない、エラーベクトル振幅(EVM)などを正確に測定することができる。必要に応じて定期的に、又は周囲温度が大きく変化した場合に、再度校正信号を用いた位相校正を行なうようにしてもよい。   After the phase correction can be performed as described above, the signal under measurement is input to the millimeter waveband signal measuring unit 50 instead of the calibration signal, and the measurement result with the phase corrected is output. When the signal under measurement is a modulation signal such as QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation), perform modulation analysis of the signal whose phase is corrected, and accurately measure error vector amplitude (EVM), etc. Can do. If necessary, the phase calibration using the calibration signal may be performed again periodically or when the ambient temperature changes greatly.

(第2の実施形態)
次に、本発明の第2の実施形態に係る位相特性校正装置1Aを説明する。
(Second Embodiment)
Next, a phase characteristic calibration apparatus 1A according to a second embodiment of the present invention will be described.

本実施形態に係る位相特性校正装置1Aは、電気光学周波数変換部30と第1位相差算出器41の間に第2周波数変換部60を設けている点で、第1の実施形態と異なっている。その他の構成は第1の実施形態と同一であり、同一の構成については同一の符号を付し、詳細な説明は省略する。   The phase characteristic calibration apparatus 1A according to the present embodiment is different from the first embodiment in that a second frequency conversion unit 60 is provided between the electro-optic frequency conversion unit 30 and the first phase difference calculator 41. Yes. Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same configurations, and detailed description thereof is omitted.

図6に示すように、第2周波数変換部60は、増幅器61と、CW信号発生器62と、ミキサ63と、低域通過フィルタ(LPF)64とを備えている。第2周波数変換部60は、電気光学周波数変換部30からの中間周波信号EIFをさらに周波数の低い第2中間周波信号EIF2に変換するものである。 As shown in FIG. 6, the second frequency conversion unit 60 includes an amplifier 61, a CW signal generator 62, a mixer 63, and a low-pass filter (LPF) 64. The second frequency converter 60 is for converting the intermediate frequency signal E IF a further frequency lower second intermediate frequency signal E IF2 from the electro-optical frequency conversion unit 30.

具体的には、増幅器61が、電気光学周波数変換部30から入力した中間周波信号EIFを増幅してミキサ63に出力すると共に、CW信号発生器62が、CWの第2局発信号を発生してミキサ63に出力する。ミキサ63は、第2局発信号を用いて中間周波信号EIFに対して第2の周波数変換(ダウンコンバート)を行ない、低域通過フィルタ64に出力する。低域通過フィルタ64は、所望のスペクトル成分を抽出して、第2中間周波信号EIF2を出力する。第2の周波数変換時に高調波等によって発生するスプリアス成分を低減するために、ミキサ63の前に図示しないバンドパスフィルタを挿入してもよい。 Specifically, the amplifier 61 amplifies the intermediate frequency signal E IF input from the electro-optic frequency converter 30 and outputs the amplified signal to the mixer 63, and the CW signal generator 62 generates the second local oscillation signal of CW. And output to the mixer 63. The mixer 63 performs second frequency conversion (down-conversion) on the intermediate frequency signal E IF using the second local oscillation signal, and outputs the result to the low-pass filter 64. The low-pass filter 64 extracts a desired spectral component and outputs a second intermediate frequency signal EIF2 . In order to reduce spurious components generated by harmonics or the like during the second frequency conversion, a band pass filter (not shown) may be inserted before the mixer 63.

図7(a)は、電気光学周波数変換部30から出力された中間周波信号EIFのスペクトルを示す。前述のように、周波数fIF1を中心に周波数間隔fm1で3つ以上のスペクトル成分が存在する。図7(b)は、CW信号発生器62から出力される第2局発信号のスペクトルを示す。図7(c)は、低域通過フィルタ64から出力される第2中間周波信号EIF2のスペクトルを示す。CW信号発生器62からの第2局発信号の周波数をfLO2とすると、第2中間周波数はfIF2=fIF1−fLO2となり、第2中間周波信号EIF2の周波数間隔はfm1である。 FIG. 7A shows the spectrum of the intermediate frequency signal E IF output from the electro-optic frequency converter 30. As described above, there are three or more spectral components at the frequency interval f m1 around the frequency f IF1 . FIG. 7B shows a spectrum of the second local signal output from the CW signal generator 62. FIG. 7C shows the spectrum of the second intermediate frequency signal E IF2 output from the low-pass filter 64. FIG. When the frequency of the second local oscillation signal from the CW signal generator 62 is f LO2 , the second intermediate frequency is f IF2 = f IF1 −f LO2 , and the frequency interval of the second intermediate frequency signal E IF2 is f m1 . .

図7(c)に示されるように、fIF1−fm1より低い周波数のスペクトル成分、例えば周波数fIF1−2fm1が第2局発周波数fLO2より低い場合、第2中間周波信号EIF2のスペクトルは周波数ゼロで折り返されるので、折り返されたスペクトルがfIF2−fm1,fIF2,fIF2+fm1の3つのスペクトル成分に重ならないようにfLO2を設定するのが望ましい。ここでは、fLO2<fIF1に設定した例を示したが、逆にfLO2>fIF1となるように設定してもよい。 As shown in FIG. 7C, when a spectral component having a frequency lower than f IF1 -f m1 , for example, when the frequency f IF1 -2f m1 is lower than the second local frequency f LO2 , the second intermediate frequency signal E IF2 Since the spectrum is folded at a frequency of zero, it is desirable to set f LO2 so that the folded spectrum does not overlap the three spectral components f IF2 −f m1 , f IF2 , and f IF2 + f m1 . Here, an example is shown in which f LO2 <f IF1 is set, but conversely, f LO2 > f IF1 may be set.

第2の実施形態では、中間周波数fIF1を電気回路の1/f雑音が小さい周波数に設定し、第2周波数変換部60の増幅器61で十分に増幅した後に、十分低い第2中間周波数fIF2に変換している。前述のように中間周波信号EIFの周波数間隔はfm1=f−fL2で表され、第2のCW信号発生器16の周波数fL2を適切に設定することによりfm1を十分狭い周波数間隔に設定することが可能であり、かつ、第2中間周波信号EIF2の3つのスペクトル成分の周波数fIF2−fm1,fIF2,fIF2+fm1をいずれも十分低くすることが可能である。よって、電気回路の1/f雑音を避けて高いS/N比を保ちつつ、第1位相差算出器41のA/D変換器等の帯域とサンプリング速度を低くして安価な装置を実現することができる。 In the second embodiment, the intermediate frequency f IF1 is set to a frequency where the 1 / f noise of the electric circuit is small and sufficiently amplified by the amplifier 61 of the second frequency converter 60, and then the sufficiently low second intermediate frequency f IF2 is set. Has been converted. Frequency spacing of the intermediate frequency signal E IF as described above is expressed by f m1 = f m -f L2, sufficiently narrow frequency f m1 by setting the frequency f L2 of the second CW signal generator 16 appropriately The interval can be set, and the frequencies f IF2 −f m1 , f IF2 and f IF2 + f m1 of the three spectral components of the second intermediate frequency signal E IF2 can be sufficiently lowered. . Therefore, while avoiding the 1 / f noise of the electric circuit and maintaining a high S / N ratio, the band of the A / D converter and the like of the first phase difference calculator 41 and the sampling speed are lowered to realize an inexpensive device. be able to.

(第3の実施形態)
次に、本発明の第3の実施形態に係る位相特性校正装置1Bを説明する。
(Third embodiment)
Next, a phase characteristic calibration apparatus 1B according to a third embodiment of the present invention will be described.

本実施形態に係る位相特性校正装置1Bは、第2周波数変換部60Aが直交周波数変換を行う構成となっている点で、第2の実施形態と異なっている。その他の構成は第2の実施形態と同一であり、同一の構成については同一の符号を付し、詳細な説明は省略する。   The phase characteristic calibration apparatus 1B according to the present embodiment is different from the second embodiment in that the second frequency conversion unit 60A is configured to perform orthogonal frequency conversion. Other configurations are the same as those of the second embodiment. The same components are denoted by the same reference numerals, and detailed description thereof is omitted.

第2の実施形態では、第2周波数変換部60が行う第2周波数変換において負の周波数成分が折り返され、負の周波数領域の雑音も折り返されるため、第2周波数変換を行なわない場合と比較してS/N比が3dB程度悪化する。fLO2以下の周波数成分を遮断するフィルタを第2周波数変換前の信号経路に配置することにより、第2周波数変換後の負の周波数領域の雑音を除去することができるが、一般に急峻なフィルタは位相の非線形が大きく、位相測定の誤差要因となる。このため、第3の実施形態では、第2周波数変換部60Aとして直交周波数変換を行なう構成とし、第2周波数変換における負の周波数成分の折り返しが発生しないようにしている。 In the second embodiment, the negative frequency component is folded back in the second frequency conversion performed by the second frequency conversion unit 60, and the noise in the negative frequency region is also folded back. Therefore, compared with the case where the second frequency conversion is not performed. The S / N ratio deteriorates by about 3 dB. By placing a filter that cuts off frequency components below f LO2 in the signal path before the second frequency conversion, noise in the negative frequency region after the second frequency conversion can be removed. Phase nonlinearity is large, which causes an error in phase measurement. For this reason, in the third embodiment, the second frequency conversion unit 60A is configured to perform orthogonal frequency conversion so that negative frequency components are not folded back in the second frequency conversion.

図8に示すように、第2周波数変換部60Aは、増幅器61と、CW信号発生器62aと、2つのミキサ63a、63bと、90度移相器65と、2つの低域通過フィルタ(LPF)64a、64bとを備えている。   As shown in FIG. 8, the second frequency converter 60A includes an amplifier 61, a CW signal generator 62a, two mixers 63a and 63b, a 90-degree phase shifter 65, and two low-pass filters (LPF). ) 64a and 64b.

具体的には、増幅器61は、電気光学周波数変換部30から入力した中間周波信号EIFを増幅して2つのミキサ63a、63bに出力する。CW信号発生器62aは、CWの第2局発信号を発生して一方のミキサ63aに出力すると共に、90度移相器65にも出力する。90度移相器65は、90度移相させた第2局発信号を他方のミキサ63bに出力する。ミキサ63a、63bは、互いに90度位相が異なる第2局発信号を用いて中間周波信号EIFに対して第2の周波数変換(ダウンコンバート)を行ない、それぞれ低域通過フィルタ64a、64bに出力する。低域通過フィルタ64a、64bは、所望のスペクトル成分を抽出して出力する。この構成により、第2周波数変換部60Aへの入力信号が直交周波数変換され、同相成分と直交成分の2つの信号が第2中間周波信号EIF2として第1位相差算出器41に出力される。 Specifically, amplifier 61 amplifies the intermediate frequency signal E IF input from the electro-optical frequency conversion unit 30 two mixers 63a, and outputs the 63 b. The CW signal generator 62a generates a CW second local oscillation signal and outputs it to one mixer 63a and also outputs it to the 90-degree phase shifter 65. The 90-degree phase shifter 65 outputs the second local oscillation signal phase-shifted by 90 degrees to the other mixer 63b. Mixers 63a, 63b performs a second frequency conversion to the intermediate frequency signal E IF (down-converted) using the second local oscillation signal 90 ° phase different from each other, respectively low-pass filters 64a, output 64b To do. The low-pass filters 64a and 64b extract and output a desired spectral component. With this configuration, the input signal to the second frequency conversion unit 60A is subjected to quadrature frequency conversion, and two signals of the in-phase component and the quadrature component are output to the first phase difference calculator 41 as the second intermediate frequency signal EIF2 .

CW信号発生器62aと90度移相器65の代わりに、90度位相が異なる正弦波を生成する2つのD/A変換器を使用してもよい。第2の周波数変換時に高調波等によって発生するスプリアス成分を低減するために、ミキサ63a、63bの前に図示しないバンドパスフィルタを挿入してもよい。   Instead of the CW signal generator 62a and the 90-degree phase shifter 65, two D / A converters that generate sine waves having a 90-degree phase difference may be used. In order to reduce spurious components generated by harmonics or the like during the second frequency conversion, bandpass filters (not shown) may be inserted before the mixers 63a and 63b.

図9(a)は、電気光学周波数変換部30から出力される中間周波信号EIFのスペクトルを示す。前述のように、周波数fIF1を中心に周波数間隔fm1で3つ以上のスペクトル成分が存在する。図9(b)は、CW信号発生器62aから出力される第2局発信号のスペクトルを示す。図9(c)は、低域通過フィルタ64a、64bから出力される第2中間周波信号EIF2のスペクトルを示す。CW信号発生器62aからの第2局発信号の周波数をfLO2とすると、第2中間周波数はfIF2=fIF1−fLO2となり、第2中間周波信号EIF2の周波数間隔はfm1である。 FIG. 9A shows the spectrum of the intermediate frequency signal E IF output from the electro-optic frequency converter 30. As described above, there are three or more spectral components at the frequency interval f m1 around the frequency f IF1 . FIG. 9B shows the spectrum of the second local signal output from the CW signal generator 62a. FIG. 9C shows the spectrum of the second intermediate frequency signal E IF2 output from the low-pass filters 64a and 64b. Assuming that the frequency of the second local oscillation signal from the CW signal generator 62a is f LO2 , the second intermediate frequency is f IF2 = f IF1 -f LO2 , and the frequency interval of the second intermediate frequency signal E IF2 is f m1 . .

但し、2つのミキサ63a、63bのバランスや直交度のずれによって正負の周波数成分が完全に分離されず、イメージ成分が発生する場合があるため、|fIF2−fm1|,|fIF2|,|fIF2+fm1|が互いに重ならないようにfLO2を設定するのが望ましい。また、周波数ゼロは直流オフセットの影響を受けるため、fIF2−fm1,fIF2,fIF2+fm1の各周波数成分がゼロにならないようにfLO2を設定するのが望ましい。本実施形態では、fLO2<fIF1に設定しているが、逆にfLO2>fIF1となるように設定してもよい。 However, since the positive and negative frequency components may not be completely separated due to the balance between the two mixers 63a and 63b or the deviation of the orthogonality, and image components may be generated, | f IF2 −f m1 |, | f IF2 |, It is desirable to set f LO2 so that | f IF2 + f m1 | does not overlap each other. Since the frequency zero is affected by the DC offset, it is desirable to set f LO2 so that each frequency component of f IF2 −f m1 , f IF2 , and f IF2 + f m1 does not become zero. In the present embodiment, f LO2 <f IF1 is set, but conversely, f LO2 > f IF1 may be set.

第3の実施形態では、中間周波数fIF1を電気回路の1/f雑音が小さい周波数に設定し、第2周波数変換部60Aの増幅器61で十分に増幅した後に、十分低い第2中間周波数fIF2に変換している。前述のように、中間周波信号EIFの周波数間隔fm1を十分狭く設定することが可能であり、かつ、第2中間周波信号EIF2の3つのスペクトル成分の周波数fIF2−fm1,fIF2,fIF2+fm1をいずれも十分低くすることが可能である。よって、電気回路の1/f雑音を避けて高いS/N比を保ちつつ、第1位相差算出器41のA/D変換器等のサンプリング速度を低くして安価な装置を実現することができる。そして、直交周波数変換された同相成分と直交成分により正負の周波数成分を分離することができるため、基本的に負の周波数成分の折り返しは発生せず、第2の実施形態で生じ得るS/N比の悪化は生じない特徴を有する。 In the third embodiment, the intermediate frequency f IF1 is set to a frequency where the 1 / f noise of the electric circuit is small and sufficiently amplified by the amplifier 61 of the second frequency converter 60A, and then the sufficiently low second intermediate frequency f IF2 is set. Has been converted. As described above, the frequency interval f m1 of the intermediate frequency signal E IF can be set sufficiently narrow, and the frequencies f IF2 −f m1 and f IF2 of the three spectral components of the second intermediate frequency signal E IF2 can be set. , F IF2 + f m1 can be made sufficiently low. Therefore, it is possible to realize an inexpensive device by reducing the sampling rate of the A / D converter of the first phase difference calculator 41 while maintaining a high S / N ratio while avoiding 1 / f noise of the electric circuit. it can. Since the positive and negative frequency components can be separated by the in-phase component and the quadrature component that have undergone quadrature frequency conversion, the negative frequency component is basically not aliased and can be generated in the second embodiment. The ratio is not deteriorated.

第2の実施形態及び第3の実施形態において、基準周波数に同期するようにするためには、局発光発生部10の第1のCW信号発生器11と第2のCW信号発生器16と校正信号生成部20と第1位相差算出器41のA/D変換のサンプリング周波数とに加えて、第2周波数変換部60、60Aの第2局発信号を生成するCW信号発生器62、62aも共通の基準周波数に同期させるとよい。   In the second embodiment and the third embodiment, in order to synchronize with the reference frequency, the first CW signal generator 11 and the second CW signal generator 16 of the local light generator 10 and the calibration are performed. In addition to the A / D conversion sampling frequency of the signal generation unit 20 and the first phase difference calculator 41, CW signal generators 62 and 62a that generate the second local oscillation signals of the second frequency conversion units 60 and 60A are also included. Synchronize with a common reference frequency.

以上述べたように、本発明は、ミリ波帯信号測定回路の位相特性を精度良く校正することができるという効果を有し、位相特性校正装置及び位相特性校正方法の全般に有用である。   As described above, the present invention has an effect that the phase characteristics of the millimeter waveband signal measurement circuit can be calibrated with high accuracy, and is useful for all of the phase characteristic calibration apparatus and the phase characteristic calibration method.

1、1A、1B 位相特性校正装置
10 局発光発生部(発生部)
11 第1のCW信号発生器
12 光コム発生器
13 光分岐器
14 第1光バンドパスフィルタ
15 第2光バンドパスフィルタ
16 第2のCW信号発生器
17 光位相変調器
18 光合波器
20 校正信号生成部(生成部)
21 中間周波信号発生器
22 局発信号発生器
23、51 周波数変換器
30、30A 電気光学周波数変換部(周波数変換部)
31 電気光学結晶
32 光分岐部
32'、32a、32b 偏光ビームスプリッタ(PBS)
33、33a、33b 受光器
34 誘電体反射膜
35、35a、35b 1/2波長板(HWP)
36 1/4波長板(QWP)
37 ファラデーローテータ(FR)
38 差動増幅器
40 校正処理部(校正部)
41 第1位相差算出器
42 加算器
43 第2位相差算出器
44 位相補正値算出器
50 ミリ波帯信号測定部(測定回路)
52 局発信号発生器
53 中間周波信号測定器
54 切替スイッチ
55 位相補正器
60、60A 第2周波数変換部
61 増幅器
62、62a CW信号発生器
63、63a、63b ミキサ
64、64a、64b 低域通過フィルタ(LPF)
65 90度移相器
REF 基準信号
1, 1A, 1B Phase characteristic calibration device 10 Local light emission generator (generator)
DESCRIPTION OF SYMBOLS 11 1st CW signal generator 12 Optical comb generator 13 Optical splitter 14 1st optical bandpass filter 15 2nd optical bandpass filter 16 2nd CW signal generator 17 Optical phase modulator 18 Optical multiplexer 20 Calibration Signal generator (generator)
21 Intermediate frequency signal generator 22 Local signal generator 23, 51 Frequency converter 30, 30A Electro-optic frequency converter (frequency converter)
31 Electro-optic crystal 32 Optical branching section 32 ', 32a, 32b Polarizing beam splitter (PBS)
33, 33a, 33b Light receiver 34 Dielectric reflection film 35, 35a, 35b 1/2 wavelength plate (HWP)
36 1/4 wave plate (QWP)
37 Faraday rotator (FR)
38 Differential amplifier 40 Calibration processing section (calibration section)
41 First phase difference calculator 42 Adder 43 Second phase difference calculator 44 Phase correction value calculator 50 Millimeter wave band signal measurement unit (measurement circuit)
52 Local signal generator 53 Intermediate frequency signal measuring instrument 54 Changeover switch 55 Phase corrector 60, 60A Second frequency converter 61 Amplifier 62, 62a CW signal generator 63, 63a, 63b Mixer 64, 64a, 64b Low-pass Filter (LPF)
65 90 degree phase shifter REF Reference signal

Claims (9)

測定回路(50)の位相特性を校正する位相特性校正装置(1)であって、
互いに異なる周波数の3波以上の連続波が合成された校正信号(E)を生成する生成部(20)と、
互いに異なる周波数の3波以上の連続光が合成された第1の光と、前記第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光とが合成された局発光(P)を発生する発生部(10)と、
前記局発光を用いて電気光学効果により前記校正信号を周波数変換して中間周波数帯の3波以上の連続波が合成された中間周波信号(EIF)を出力する周波数変換部(30)と、
前記校正信号の3波以上の連続波の周波数を所定の周波数帯域内で変更する周波数変更部(70)と、
前記周波数変更部による周波数変更毎に、変更される周波数の値に応じて前記第1の光と前記第2の光との周波数間隔を変更させ、前記中間周波信号の3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第1の位相差特性を取得すると共に、前記周波数変更部による周波数変更毎に、前記測定回路を用いて前記校正信号を測定して前記測定回路から出力される3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第2の位相差特性を取得し、取得した前記第1及び第2の位相差特性に基づいて、前記測定回路の位相特性を校正する校正部(40)と、
を備え、前記中間周波信号の3波以上の連続波のいずれの周波数も、前記校正信号の3波以上の連続波のいずれの周波数よりも低く、かつ、前記校正信号の3波以上の連続波の周波数間隔と、前記第1の光の3波以上の連続光の周波数間隔とが異なり、かつ、前記中間周波信号の3波以上の連続波の周波数間隔が、前記校正信号の3波以上の連続波の周波数間隔よりも狭くなるように、前記校正信号及び前記局発光の前記各周波数が設定されることを特徴とする位相特性校正装置。
A phase characteristic calibration device (1) for calibrating the phase characteristic of a measurement circuit (50),
A generation unit (20) that generates a calibration signal (E r ) in which three or more continuous waves of different frequencies are combined;
A second light which is a continuous light having a frequency smaller than or greater than any of the first light in which continuous light of three or more waves having different frequencies is combined and the continuous light of three or more waves of the first light. A generator (10) for generating local light (P L ) synthesized with the light of
A frequency converter (30) for outputting an intermediate frequency signal (E IF ) in which the calibration signal is frequency-converted by the electro-optic effect using the local light to synthesize three or more continuous waves in the intermediate frequency band;
A frequency changing unit (70) for changing the frequency of three or more continuous waves of the calibration signal within a predetermined frequency band;
For each frequency change by the frequency changing unit, the frequency interval between the first light and the second light is changed according to the value of the changed frequency, and three or more continuous waves of the intermediate frequency signal The first phase difference characteristic over the entire predetermined frequency band is acquired, and the calibration signal is measured using the measurement circuit for each frequency change by the frequency changing unit. And calculating a phase difference between three or more continuous waves output from the measurement circuit, obtaining a second phase difference characteristic over the entire predetermined frequency band, and obtaining the obtained first and A calibration unit (40) for calibrating the phase characteristic of the measurement circuit based on the second phase difference characteristic;
Any of the three or more continuous waves of the intermediate frequency signal is lower than any of the three or more continuous waves of the calibration signal and is three or more continuous waves of the calibration signal And the frequency interval of three or more continuous lights of the first light are different, and the frequency interval of three or more continuous waves of the intermediate frequency signal is three or more of the calibration signal. The phase characteristic calibration apparatus, wherein the calibration signal and each frequency of the local light are set so as to be narrower than the frequency interval of the continuous wave.
前記発生部(10)は、第1の連続波信号を発生する第1のCW信号発生器(11)と、前記第1の連続波信号の周波数の間隔で複数の光スペクトル成分を有する光コムを発生する光コム発生器(12)と、前記光コム発生器からの出力光を2つに分岐する光分岐器(13)と、前記光分岐器の一方及び他方の出力光から互いに異なる光スペクトル成分をそれぞれ抽出する第1の光バンドパスフィルタ(14)及び第2の光バンドパスフィルタ(15)と、第2の連続波信号を発生する第2のCW信号発生器(16)と、前記第2の光バンドパスフィルタの出力光に対して前記第2の連続波信号で振幅変調又は位相変調をかけて前記第2の連続波信号の周波数の間隔で複数の側帯波を発生させる光変調器(17)と、前記第1の光バンドパスフィルタの出力光と前記光変調器の出力光とを合波する光合波器(18)と、を有することを特徴とする請求項1に記載の位相特性校正装置。   The generator (10) includes a first CW signal generator (11) for generating a first continuous wave signal, and an optical comb having a plurality of optical spectrum components at frequency intervals of the first continuous wave signal. An optical comb generator (12) that generates light, an optical splitter (13) that splits the output light from the optical comb generator into two, and different light from one and the other output light of the optical splitter A first optical bandpass filter (14) and a second optical bandpass filter (15) for extracting spectral components, respectively, a second CW signal generator (16) for generating a second continuous wave signal, Light that generates a plurality of sidebands at frequency intervals of the second continuous wave signal by subjecting the output light of the second optical bandpass filter to amplitude modulation or phase modulation with the second continuous wave signal. A modulator (17) and the first optical bandpass; Optical multiplexer which multiplexes the output light of the output light of filters the light modulator (18), the phase characteristics calibration apparatus according to claim 1, characterized in that it comprises a. 前記第1のCW信号発生器、前記第2のCW信号発生器、及び前記生成部は、共通の基準周波数に同期した周波数の前記第1の連続波信号、前記第2の連続波信号、及び前記校正信号をそれぞれ生成し、前記中間周波信号の3波以上の連続波の周波数は、それぞれ前記基準周波数に同期していることを特徴とする請求項2に記載の位相特性校正装置。   The first CW signal generator, the second CW signal generator, and the generation unit are configured such that the first continuous wave signal, the second continuous wave signal having a frequency synchronized with a common reference frequency, and 3. The phase characteristic calibrating apparatus according to claim 2, wherein each of the calibration signals is generated, and frequencies of three or more continuous waves of the intermediate frequency signal are respectively synchronized with the reference frequency. 前記周波数変換部と前記校正部との間に、前記中間周波信号の3波以上の連続波を増幅して周波数変換を行ない第2中間周波数帯の3波以上の連続波が合成された第2中間周波信号(EIF2)を出力する第2周波数変換部(60)を更に有し、前記校正部は、前記中間周波信号の代わりに、前記第2周波数変換部から出力される前記第2中間周波信号の3波以上の連続波の間の位相差を算出し、前記第2中間周波信号の3波以上の連続波のいずれの周波数も、前記中間周波信号の3波以上の連続波のいずれの周波数よりも低くなるように設定されていることを特徴とする請求項1に記載の位相特性校正装置。 Between the frequency conversion unit and the calibration unit, a second continuous wave of three or more waves in the second intermediate frequency band is synthesized by performing frequency conversion by amplifying three or more continuous waves of the intermediate frequency signal. A second frequency conversion unit (60) for outputting an intermediate frequency signal (E IF2 ) is further included, and the calibration unit is configured to output the second intermediate signal output from the second frequency conversion unit instead of the intermediate frequency signal. A phase difference between three or more continuous waves of the frequency signal is calculated, and any frequency of the three or more continuous waves of the second intermediate frequency signal is any of the three or more continuous waves of the intermediate frequency signal. The phase characteristic calibrating apparatus according to claim 1, wherein the phase characteristic calibrating apparatus is set to be lower than the frequency of. 前記第2周波数変換部は、前記第2中間周波信号の同相成分と直交成分とを出力する直交周波数変換器(60A)であることを特徴とする請求項4に記載の位相特性校正装置。   The phase characteristic calibration apparatus according to claim 4, wherein the second frequency conversion unit is a quadrature frequency converter (60A) that outputs an in-phase component and a quadrature component of the second intermediate frequency signal. 前記周波数変換部と前記校正部との間に、前記中間周波信号の3波以上の連続波を増幅して周波数変換を行ない第2中間周波数帯の3波以上の連続波が合成された第2中間周波信号(EIF2)を出力する第2周波数変換部(60)を更に有し、前記校正部は、前記中間周波信号の代わりに、前記第2周波数変換部から出力される前記第2中間周波信号の3波以上の連続波の間の位相差を算出し、前記第2中間周波信号の3波以上の連続波のいずれの周波数も、前記中間周波信号の3波以上の連続波のいずれの周波数よりも低くなるように設定されていることを特徴とする請求項2又は請求項3のいずれか1項に記載の位相特性校正装置。 Between the frequency conversion unit and the calibration unit, a second continuous wave of three or more waves in the second intermediate frequency band is synthesized by performing frequency conversion by amplifying three or more continuous waves of the intermediate frequency signal. A second frequency conversion unit (60) for outputting an intermediate frequency signal (E IF2 ) is further included, and the calibration unit is configured to output the second intermediate signal output from the second frequency conversion unit instead of the intermediate frequency signal. A phase difference between three or more continuous waves of the frequency signal is calculated, and any frequency of the three or more continuous waves of the second intermediate frequency signal is any of the three or more continuous waves of the intermediate frequency signal. The phase characteristic calibrating apparatus according to claim 2, wherein the phase characteristic calibrating apparatus is set to be lower than the frequency of. 前記第2周波数変換部は、前記第2中間周波信号の同相成分と直交成分とを出力する直交周波数変換器(60A)であることを特徴とする請求項6に記載の位相特性校正装置。   The phase characteristic calibration apparatus according to claim 6, wherein the second frequency conversion unit is a quadrature frequency converter (60A) that outputs an in-phase component and a quadrature component of the second intermediate frequency signal. 前記第1のCW信号発生器、前記第2のCW信号発生器、及び前記生成部は、共通の基準周波数に同期した周波数の前記第1の連続波信号、前記第2の連続波信号、及び前記校正信号をそれぞれ生成し、前記第2周波数変換部は、前記基準周波数に同期した局発信号に基づいて周波数変換を行ない、前記第2中間周波信号の3波以上の連続波の周波数は、それぞれ前記基準周波数に同期していることを特徴とする請求項6又は請求項7のいずれか1項に記載の位相特性校正装置。   The first CW signal generator, the second CW signal generator, and the generation unit are configured such that the first continuous wave signal, the second continuous wave signal having a frequency synchronized with a common reference frequency, and Each of the calibration signals is generated, and the second frequency conversion unit performs frequency conversion based on a local oscillation signal synchronized with the reference frequency, and the frequency of three or more continuous waves of the second intermediate frequency signal is: The phase characteristic calibration apparatus according to claim 6, wherein each of the phase characteristic calibration apparatuses is synchronized with the reference frequency. 測定回路(50)の位相特性を校正する位相特性校正方法であって、
互いに異なる周波数の3波以上の連続波が合成された校正信号(E)を生成する生成ステップと、
互いに異なる周波数の3波以上の連続光が合成された第1の光と、前記第1の光の3波以上の連続光のいずれの周波数よりも小さいか又は大きい周波数の連続光である第2の光とが合成された局発光(P)を発生する発生ステップと、
前記局発光を用いて電気光学効果により前記校正信号を周波数変換して中間周波数帯の3波以上の連続波が合成された中間周波信号(EIF)を出力する周波数変換ステップと、
前記校正信号の3波以上の連続波の周波数を所定の周波数帯域内で変更する周波数変更ステップと、
前記周波数変更ステップによる周波数変更毎に、変更される周波数の値に応じて前記第1の光と前記第2の光との周波数間隔を変更させ、前記中間周波信号の3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第1の位相差特性を取得すると共に、前記周波数変更ステップによる周波数変更毎に、前記測定回路を用いて前記校正信号を測定して前記測定回路から出力される3波以上の連続波の間の位相差を算出していき、前記所定の周波数帯域全体に渡る第2の位相差特性を取得し、取得した前記第1及び第2の位相差特性に基づいて、前記測定回路の位相特性を校正する校正ステップと、
を備え、前記中間周波信号の3波以上の連続波のいずれの周波数も、前記校正信号の3波以上の連続波のいずれの周波数よりも低く、かつ、前記校正信号の3波以上の連続波の周波数間隔と、前記第1の光の3波以上の連続光の周波数間隔とが異なり、かつ、前記中間周波信号の3波以上の連続波の周波数間隔が、前記校正信号の3波以上の連続波の周波数間隔よりも狭くなるように、前記校正信号及び前記局発光の前記各周波数が設定されることを特徴とする位相特性校正方法。
A phase characteristic calibration method for calibrating the phase characteristic of a measurement circuit (50), comprising:
A generation step of generating a calibration signal (E r ) in which three or more continuous waves of different frequencies are combined;
A second light which is a continuous light having a frequency smaller than or greater than any of the first light in which continuous light of three or more waves having different frequencies is combined and the continuous light of three or more waves of the first light. Generating step of generating local light (P L ) synthesized with the light of
A frequency conversion step of frequency-converting the calibration signal by the electro-optic effect using the local light and outputting an intermediate frequency signal (E IF ) in which three or more continuous waves in the intermediate frequency band are synthesized;
A frequency changing step of changing the frequency of three or more continuous waves of the calibration signal within a predetermined frequency band;
For each frequency change in the frequency changing step, the frequency interval between the first light and the second light is changed according to the value of the changed frequency, and three or more continuous waves of the intermediate frequency signal The first phase difference characteristic over the entire predetermined frequency band is acquired and the calibration signal is measured using the measurement circuit every time the frequency is changed by the frequency changing step. And calculating a phase difference between three or more continuous waves output from the measurement circuit, obtaining a second phase difference characteristic over the entire predetermined frequency band, and obtaining the obtained first and A calibration step of calibrating the phase characteristic of the measurement circuit based on the second phase difference characteristic;
Any of the three or more continuous waves of the intermediate frequency signal is lower than any of the three or more continuous waves of the calibration signal and is three or more continuous waves of the calibration signal And the frequency interval of three or more continuous lights of the first light are different, and the frequency interval of three or more continuous waves of the intermediate frequency signal is three or more of the calibration signal. A phase characteristic calibration method, wherein the calibration signal and each frequency of the local light are set so as to be narrower than a frequency interval of a continuous wave.
JP2018083203A 2018-04-24 2018-04-24 Phase characteristic calibration device and phase characteristic calibration method Active JP6933604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083203A JP6933604B2 (en) 2018-04-24 2018-04-24 Phase characteristic calibration device and phase characteristic calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083203A JP6933604B2 (en) 2018-04-24 2018-04-24 Phase characteristic calibration device and phase characteristic calibration method

Publications (2)

Publication Number Publication Date
JP2019191344A true JP2019191344A (en) 2019-10-31
JP6933604B2 JP6933604B2 (en) 2021-09-08

Family

ID=68389944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083203A Active JP6933604B2 (en) 2018-04-24 2018-04-24 Phase characteristic calibration device and phase characteristic calibration method

Country Status (1)

Country Link
JP (1) JP6933604B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173963A (en) * 2022-07-06 2022-10-11 成都中创锐科信息技术有限公司 Vector signal calibration method and device for vector signal generation equipment
CN115210603A (en) * 2021-10-20 2022-10-18 深圳市速腾聚创科技有限公司 Laser radar and laser radar control method
WO2023002997A1 (en) * 2021-07-19 2023-01-26 国立研究開発法人情報通信研究機構 Calibration method for phase modulator, calibration method for balanced photodetector, and calibration system for phase modulator
WO2024042630A1 (en) * 2022-08-24 2024-02-29 日本電信電話株式会社 Optical transmission device and optical signal generation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500929A (en) * 1987-10-27 1991-02-28 マーチン・マリエッタ・コーポレーション Calibration method for microwave/millimeter wave circuit evaluation equipment
US20050175358A1 (en) * 2004-01-12 2005-08-11 Vladimir Ilchenko Tunable radio frequency and microwave photonic filters
JP2007163963A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Light source for millimeter wave generation and optical millimeter wave signal generation method
JP2011064460A (en) * 2009-09-15 2011-03-31 Anritsu Corp Photoelectric conversion type signal generation device, spectrum analyzer, and reference radio wave generation device
JP2012007997A (en) * 2010-06-24 2012-01-12 Hitachi Maxell Ltd Millimeter wave antenna evaluation device and method
JP2014508956A (en) * 2011-03-23 2014-04-10 メジット ソシエテ アノニム Measurement of bladed rotor
JP2015180060A (en) * 2014-02-28 2015-10-08 地方独立行政法人東京都立産業技術研究センター Frequency converter, measurement system, and measurement method
JP2020193848A (en) * 2019-05-27 2020-12-03 アンリツ株式会社 Phase characteristic calibration device and phase characteristic calibration method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500929A (en) * 1987-10-27 1991-02-28 マーチン・マリエッタ・コーポレーション Calibration method for microwave/millimeter wave circuit evaluation equipment
US20050175358A1 (en) * 2004-01-12 2005-08-11 Vladimir Ilchenko Tunable radio frequency and microwave photonic filters
JP2007163963A (en) * 2005-12-15 2007-06-28 Nippon Telegr & Teleph Corp <Ntt> Light source for millimeter wave generation and optical millimeter wave signal generation method
JP2011064460A (en) * 2009-09-15 2011-03-31 Anritsu Corp Photoelectric conversion type signal generation device, spectrum analyzer, and reference radio wave generation device
JP2012007997A (en) * 2010-06-24 2012-01-12 Hitachi Maxell Ltd Millimeter wave antenna evaluation device and method
JP2014508956A (en) * 2011-03-23 2014-04-10 メジット ソシエテ アノニム Measurement of bladed rotor
JP2015180060A (en) * 2014-02-28 2015-10-08 地方独立行政法人東京都立産業技術研究センター Frequency converter, measurement system, and measurement method
JP2020193848A (en) * 2019-05-27 2020-12-03 アンリツ株式会社 Phase characteristic calibration device and phase characteristic calibration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002997A1 (en) * 2021-07-19 2023-01-26 国立研究開発法人情報通信研究機構 Calibration method for phase modulator, calibration method for balanced photodetector, and calibration system for phase modulator
CN115210603A (en) * 2021-10-20 2022-10-18 深圳市速腾聚创科技有限公司 Laser radar and laser radar control method
CN115173963A (en) * 2022-07-06 2022-10-11 成都中创锐科信息技术有限公司 Vector signal calibration method and device for vector signal generation equipment
WO2024042630A1 (en) * 2022-08-24 2024-02-29 日本電信電話株式会社 Optical transmission device and optical signal generation method

Also Published As

Publication number Publication date
JP6933604B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6933604B2 (en) Phase characteristic calibration device and phase characteristic calibration method
US8618966B2 (en) Photonic assisted analog-to-digital conversion using phase detection
US6873405B2 (en) Propagation measuring apparatus and a propagation measuring method
US8565347B2 (en) Antenna measurement system and method
CN107528638B (en) Broadband microwave signal arrival angle estimation method based on microwave photon filtering
US10644806B2 (en) Coherent optical receiver testing
CN106093598B (en) Electromagnetic signal characteristic measuring system and method
US9590740B1 (en) Method and system for robust symmetrical number system photonic direction finding
US11032628B2 (en) Electronic demodulation of optically phase demodulated signals
Shi et al. Photonics-based broadband microwave instantaneous frequency measurement by frequency-to-phase-slope mapping
CN109696300B (en) Precise extraction method and device for frequency response characteristic of high-frequency broadband electro-optic intensity modulator
US20190334628A1 (en) Coherent optical receiver testing
Olvera et al. A true optoelectronic spectrum analyzer for millimeter waves with Hz resolution
Chen et al. Photonic-enabled Doppler frequency shift measurement for weak echo signals based on optical single-sideband mixing using a fixed low-frequency reference
JP6839226B2 (en) Phase characteristic calibration device and phase characteristic calibration method
Onori et al. A 0–40 GHz RF tunable receiver based on photonic direct conversion and digital feed-forward lasers noise cancellation
JP6196879B2 (en) Signal analysis apparatus and signal analysis method
Xue et al. Ultrahigh-resolution optical vector analysis for arbitrary responses using low-frequency detection
Tang et al. Photonics-assisted joint radar detection and frequency measurement system
Li et al. Photonic-assisted Approach to Simultaneous Measurement of Frequency and Angle-of-arrival
JP3843316B2 (en) Optical pulse timing jitter measurement method and measurement apparatus therefor
Zhang et al. Ultrafast and wideband optical vector analyzer based on optical dual linear-frequency modulation
Dong et al. Photonic-Based W-Band Integrated Sensing and Communication System With Flexible Time-Frequency Division Multiplexed Waveforms for Fiber-Wireless Network
Mori et al. A Phase Calibration Method for Millimeter-Wave Up-Converter Using Electro-Optic Sampling
Zhou et al. Microwave photonic I/Q mixer for wideband frequency down conversion with

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6933604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150