JP2019190365A - Forged product for impeller - Google Patents

Forged product for impeller Download PDF

Info

Publication number
JP2019190365A
JP2019190365A JP2018083599A JP2018083599A JP2019190365A JP 2019190365 A JP2019190365 A JP 2019190365A JP 2018083599 A JP2018083599 A JP 2018083599A JP 2018083599 A JP2018083599 A JP 2018083599A JP 2019190365 A JP2019190365 A JP 2019190365A
Authority
JP
Japan
Prior art keywords
mass
impeller
forged
product
forged product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018083599A
Other languages
Japanese (ja)
Inventor
匠 丸山
Takumi Maruyama
匠 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2018083599A priority Critical patent/JP2019190365A/en
Publication of JP2019190365A publication Critical patent/JP2019190365A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an impeller composed of a forged product of high productivity and having high temperature strength.SOLUTION: A forged product 1 for an impeller including a hub 10 having a boss portion 12 on a center of a circular disc portion 11, and a plurality of blade portions 13 radially disposed on an outer surface of the hub 10, is composed of an aluminum alloy including 0.05 mass%-0.30 mass% of Si, 0.7 mass%-1.5 mass% of Fe, 1.7 mass%-2.9 mass% of Cu, 1.0 mass%-1.9 mass% of Mg, 0.03 mass%-0.15 mass% of Ti, 0.8 mass%-1.4 mass% of Ni, and the balance Al with unavoidable impurities, and an average particle size of crystal grain on an arbitrary cross-section in parallel with a rotating shaft of the disc portion 11 is 30 μm-120 μm.SELECTED DRAWING: Figure 1

Description

本発明は、自動車用ターボチャーザー用インペラに代表されるアルミニウム合金製インペラ用鍛造品に関する。   The present invention relates to a forged product made of an aluminum alloy impeller represented by an impeller for a turbocharger for automobiles.

自動車の内燃機関としてのターボチャージャーにおけるコンプレッサーホイール等のコンプレッサーインペラは、170℃程度の高温状況下において10000rpmを超える高速回転が与えられるため、回転中心部近傍には遠心力などに起因する高い応力が発生する。上記理由によりターボチャーザー用コンプレッサーインペラは170℃程度の高温下において高強度および高剛性を有することが要求される。加えてコンプレッサーインペラは、エネルギー損失の低減を図るために軽量化も要求されるとともに、高速回転に耐えることができる強度も要求される。   A compressor impeller such as a compressor wheel in a turbocharger as an internal combustion engine of an automobile is subjected to high-speed rotation exceeding 10,000 rpm under a high temperature condition of about 170 ° C. Therefore, high stress due to centrifugal force or the like is generated in the vicinity of the center of rotation. appear. For the above reasons, the turbocharger compressor impeller is required to have high strength and high rigidity at a high temperature of about 170 ° C. In addition, the compressor impeller is required to be lightweight in order to reduce energy loss, and also to be strong enough to withstand high-speed rotation.

従来のコンプレッサーインペラは、2618合金(Cu:1.9質量%〜2.7質量%、Mg:1.3質量%〜1.8質量%、Ni:0.9質量%〜1.2質量%、Fe:0.9質量%〜1.3質量%、Si:0.1質量%〜0.25質量%、Ti:0.04質量%〜0.1質量%、Al:残部)を用いられている。また、引用文献1には、3.0質量%〜5.5質量%のCuを含み、高温強度を従来以上に向上させたAl−Cu−Mg合金が開示されている。   Conventional compressor impellers are made of 2618 alloy (Cu: 1.9 mass% to 2.7 mass%, Mg: 1.3 mass% to 1.8 mass%, Ni: 0.9 mass% to 1.2 mass%) Fe: 0.9 mass% to 1.3 mass%, Si: 0.1 mass% to 0.25 mass%, Ti: 0.04 mass% to 0.1 mass%, Al: balance). ing. Further, cited document 1 discloses an Al—Cu—Mg alloy containing 3.0% by mass to 5.5% by mass of Cu and improving the high-temperature strength more than ever.

インペラを製造する方法としては、素材塊を切削加工して最終製品の形状に仕上げる方法がある。また、素材塊を鍛造加工してボス部の外周面に羽根部が形成された中間製品を作製し、この中間製品を切削加工して最終製品に仕上げる方法がある。後者の方法は、前者の方法よりも短時間で加工可能で生産性が良く、かつ切削加工による除去部分が少なく材料歩留まりも良いという特徴がある。   As a method of manufacturing an impeller, there is a method of cutting a material lump to finish the shape of a final product. In addition, there is a method in which an intermediate product in which blades are formed on the outer peripheral surface of a boss portion is produced by forging a lump of material, and the intermediate product is cut into a final product. The latter method is characterized in that it can be processed in a shorter time than the former method, has good productivity, has few parts removed by cutting, and has a good material yield.

特開2017−78216号公報JP 2017-78216 A

しかし、高温強度向上のために多種の元素を多量に添加したアルミニウム合金を用いてインペラを作製すると、鍛造加工の際に不安定性が露出する場合があり、かつ素材内部の偏析等によるばらつきも大きくなることがある。上記のような問題は、非常に高い特性を要求されるインペラにおいては致命的であり、とりわけ急激な回転と停止を繰り返し行うことにより発生する、インペラ羽根部における金属疲労を引き起こす可能性を示唆している。   However, if an impeller is made using an aluminum alloy with a large amount of various elements added to improve high-temperature strength, instability may be exposed during forging, and variations due to segregation inside the material are large. May be. The above problems are fatal in impellers that require extremely high characteristics, and suggest that there is a possibility of causing metal fatigue in the impeller blades, especially caused by repeated rapid rotation and stopping. ing.

さらに、自動車等の内燃機関の技術分野において、コンプレッサーインペラは市場規模が大きくコストの低減化が必要とされており、容易に作製でき安価であることも要求されている。   Further, in the technical field of internal combustion engines such as automobiles, compressor impellers have a large market scale and need to reduce costs, and are also required to be easily manufactured and inexpensive.

本発明は、上述した技術背景に鑑み、生産性の良い鍛造品で高温強度を有するインペラを提供することを目的とする。   In view of the above-described technical background, an object of the present invention is to provide an impeller having high temperature strength with a productive forged product.

即ち、本発明は下記[1]〜[3]に記載の構成を有する。   That is, the present invention has the configurations described in [1] to [3] below.

[1]円形のディスク部の中心にボス部を有するハブと、前記ハブの外面に放射状に設けられた複数の羽根部を有するインペラ用鍛造品であり、
前記インペラ用鍛造品は、Si:0.05質量%〜0.30質量%、Fe:0.7質量%〜1.5質量%、Cu:1.7質量%〜2.9質量%、Mg:1.0質量%〜1.9質量%、Ti:0.03質量%〜0.15質量%、Ni:0.8質量%〜1.4質量%を含み、残部がAlと不可避不純物からなるアルミニウム合金からなり、
前記ディスク部の、インペラの回転軸に平行な任意の断面における結晶粒の平均粒径が30μm〜120μmであることを特徴とするインペラ用鍛造品。
[1] A forged product for an impeller having a hub having a boss portion at the center of a circular disk portion and a plurality of blade portions provided radially on the outer surface of the hub,
The forged product for the impeller includes: Si: 0.05% by mass to 0.30% by mass, Fe: 0.7% by mass to 1.5% by mass, Cu: 1.7% by mass to 2.9% by mass, Mg : 1.0% by mass to 1.9% by mass, Ti: 0.03% by mass to 0.15% by mass, Ni: 0.8% by mass to 1.4% by mass, and the balance from Al and inevitable impurities Made of an aluminum alloy
A forged article for impellers, wherein an average grain size of crystal grains in an arbitrary cross section parallel to the impeller rotation axis of the disk portion is 30 μm to 120 μm.

[2]前記アルミニウム合金が、さらにB:0.0012質量%〜0.006質量%を含む前項1に記載のインペラ用鍛造品。   [2] The forged product for an impeller according to the above item 1, wherein the aluminum alloy further contains B: 0.0012 mass% to 0.006 mass%.

[3]前記ディスク部の、インペラの回転軸に平行な任意の断面におけるCuAlのθ相化合物の平均粒径が1.0μm〜15μmであり、占有面積率が4%〜15%である前項1または2に記載のインペラ用鍛造品。 [3] The previous item in which an average particle diameter of the CuAl 2 θ-phase compound in an arbitrary cross section parallel to the rotation axis of the impeller is 1.0 μm to 15 μm and an occupied area ratio is 4% to 15%. The forged product for impellers according to 1 or 2.

上記[1]に記載のインペラ用鍛造品によれば、材料のアルミニウム合金の化学組成によって高い高温強度が得られ、ディスク部においては結晶粒サイズに基づいて高い高温強度が得られる。しかも、ディスク部よりも加工率の高い羽根部はディスク部よりも微細化されているので、ディスク部よりも高い高温強度が得られる。また、鍛造加工によってディスク部、ボス部および羽根部が成形されたインペラであるから、切削加工による成形品よりも生産性が良く、低コストで作製できる。   According to the impeller forged product described in [1] above, high high-temperature strength is obtained by the chemical composition of the aluminum alloy material, and high high-temperature strength is obtained in the disk portion based on the crystal grain size. In addition, since the blade portion having a higher processing rate than the disk portion is made finer than the disk portion, a high temperature strength higher than that of the disk portion can be obtained. In addition, since the impeller has a disk portion, a boss portion, and a blade portion formed by forging, the productivity is better than that of a molded product by cutting and can be manufactured at low cost.

上記[2]に記載のインペラ用鍛造品によれば、Bの添加によりさらに結晶粒が微細化されて高い高温強度が得られる。   According to the forged product for an impeller described in [2] above, the addition of B further refines the crystal grains and provides high high-temperature strength.

上記[3]に記載のインペラ用鍛造品によれば、CuAlのθ相化合物の析出によって特に高い高温強度が得られる。 According to the forged product for an impeller described in [3] above, a particularly high high-temperature strength can be obtained by precipitation of a CuAl 2 θ-phase compound.

本発明にかかるインペラ用鍛造品の一実施形態を示す斜視図である。It is a perspective view showing one embodiment of a forged product for impellers according to the present invention. 実施例において材料特性調査用鍛造材の作製工程を示す斜視図である。It is a perspective view which shows the preparation process of the forging material for a material characteristic investigation in an Example.

図1に、本発明の一実施形態として、ターボチャーザーに用いるインペラ用鍛造品1を示す。   FIG. 1 shows an impeller forged product 1 used in a turbocharger as an embodiment of the present invention.

インペラ用鍛造品1は、円形のディスク部11の中心にボス部12を有するハブ10と、前記ハブ10の外面に放射状に設けられた複数の羽根部13を有している。前記インペラ用鍛造品1はボス部12の中心が回転軸となる。   The impeller forged product 1 includes a hub 10 having a boss portion 12 at the center of a circular disk portion 11 and a plurality of blade portions 13 provided radially on the outer surface of the hub 10. In the impeller forged product 1, the center of the boss portion 12 serves as a rotation axis.

前記インペラ用鍛造品1は後述する鍛造加工によって成形したものであり、切削加工等により仕上げ加工した後にターボチャージャーに組み込まれる。本発明のインペラ用鍛造品は、仕上げ加工前の鍛造品と仕上げ加工後の鍛造品の両方を含んでいる。   The impeller forged product 1 is formed by a forging process, which will be described later, and is incorporated into a turbocharger after finishing by a cutting process or the like. The impeller forged product of the present invention includes both a forged product before finishing and a forged product after finishing.

前記インペラ用鍛造品1は、材料のアルミニウム合金の化学組成およびディスク部11における金属組織が規定されている。
(アルミニウム合金の化学組成)
アルミニウム合金は、必須元素として、Si、Fe、Cu、Mg、Ti、Niを含み、要すればさらにBを含む。いずれの合金においても残部はAlおよび不可避不純物である。以下に、各元素の添加意義および濃度について詳述する。
In the impeller forged product 1, the chemical composition of the material aluminum alloy and the metal structure of the disk portion 11 are defined.
(Chemical composition of aluminum alloy)
The aluminum alloy contains Si, Fe, Cu, Mg, Ti, and Ni as essential elements, and further contains B if necessary. In any alloy, the balance is Al and inevitable impurities. Hereinafter, the addition significance and concentration of each element will be described in detail.

Siは、溶体化処理時に過飽和固溶体として強制固溶し、人工時効処理の際にMgSiとして微細析出して強度を上昇させる。この効果はSiの添加量が0.05質量%未満では効果が低く、0.30質量%を超えると鋳造時に粗大晶出物として生成し機械的特性を低下させる。よってSiは0.05質量%〜0.30質量%とする。より好ましいSi添加量は0.1質量%〜0.25質量%である。 Si forcibly dissolves as a supersaturated solid solution during the solution treatment, and fine precipitates as Mg 2 Si during the artificial aging treatment to increase the strength. This effect is low when the amount of Si added is less than 0.05% by mass, and when it exceeds 0.30% by mass, it is produced as a coarse crystallized product at the time of casting and the mechanical properties are deteriorated. Therefore, Si shall be 0.05 mass%-0.30 mass%. A more preferable Si addition amount is 0.1% by mass to 0.25% by mass.

Feは、高温強度、とりわけインペラの実用温度域である170℃における強度を向上させる作用がある。上記作用はAlとNiと共に金属間化合物を生成し、粒界に優先的に晶出し分散強化を得ることによる。この効果はFeの添加量が0.7質量%未満ではAl−Fe−Ni系晶出物の分散強化を十分に得られず、1.5質量%を超えると鋳造時に粗大晶出物として晶出し機械的特性を低下させる。よってFeは0.7質量%〜1.5質量%とする。より好ましいFe添加量は0.9質量%〜1.2質量%である。   Fe has the effect of improving the high-temperature strength, particularly the strength at 170 ° C., which is the practical temperature range of the impeller. The above action is due to the formation of an intermetallic compound together with Al and Ni, and crystallization preferentially at the grain boundaries to obtain dispersion strengthening. This effect is that when the added amount of Fe is less than 0.7% by mass, sufficient dispersion strengthening of the Al—Fe—Ni-based crystallized product cannot be obtained. Reduces mechanical properties. Therefore, Fe is made 0.7 mass% to 1.5 mass%. A more preferable Fe addition amount is 0.9 mass% to 1.2 mass%.

Cuは、高温強度を向上させる作用がある。Cuは溶体化処理時に固溶し、人工時効処理時にAlと化合物(CuAl)を形成し微細析出物として析出することで、インペラの実用温度域である170℃での強度向上に寄与する。この効果はCuの添加量が1.7質量%以上で顕著に表れ、2.9質量%を超えると鋳造時に粗大晶出物として晶出して機械的特性を低下させる。よってCuは1.7質量%〜2.9%質量とする。より好ましいCu添加量は1.9質量%〜2.7質量%である。 Cu has the effect of improving the high temperature strength. Cu forms a solid solution during solution treatment, forms Al and a compound (CuAl 2 ) during artificial aging treatment, and precipitates as fine precipitates, thereby contributing to strength improvement at 170 ° C., which is a practical temperature range of the impeller. This effect is prominent when the amount of Cu added is 1.7% by mass or more, and when it exceeds 2.9% by mass, it is crystallized as a coarse crystallized product at the time of casting, and the mechanical properties are deteriorated. Therefore, Cu is 1.7% by mass to 2.9% by mass. A more preferable Cu addition amount is 1.9 mass% to 2.7 mass%.

Mgは、溶体化処理時に過飽和固溶体として強制固溶し、人口時効処理の際にMgSiとして微細析出し強度を上昇させる。この効果はMgの添加量が1.0質量%未満では効果が低く、1.9質量%を超えると鋳造時に粗大晶出物として生成し機械的特性を低下させる。よってMgは1.0質量%〜1.9質量%とする。より好ましいMg添加量は1.2質量%〜1.7質量%である。 Mg forcibly dissolves as a supersaturated solid solution during solution treatment, and finely precipitates as Mg 2 Si during population aging treatment to increase the strength. This effect is not effective when the amount of Mg added is less than 1.0% by mass, and when it exceeds 1.9% by mass, it is produced as a coarse crystallized product at the time of casting and mechanical properties are deteriorated. Therefore, Mg is set to 1.0 mass% to 1.9 mass%. A more preferable amount of added Mg is 1.2% by mass to 1.7% by mass.

Tiは、鋳造時の結晶粒の成長抑制効果を促進するために、結晶粒微細化効果を狙って添加される。この効果はTiの添加量が0.03%質量未満では効果が低く、0.15質量%を超えると鋳造時に粗大晶出物として晶出し機械的特性を低下させる。よってTiは0.03質量〜0.15質量%とする。好ましいTi添加量は0.05質量%〜0.10%質量である。   Ti is added for the purpose of refining the crystal grains in order to promote the effect of suppressing the growth of crystal grains during casting. This effect is low when the amount of Ti added is less than 0.03% by mass, and when it exceeds 0.15% by mass, the crystallization mechanical properties are deteriorated as a coarse crystallized product during casting. Therefore, Ti is set to 0.03 mass% to 0.15 mass%. A preferable Ti addition amount is 0.05% by mass to 0.10% by mass.

Niは、高温強度、とりわけインペラの実用温度域である170℃における強度を向上させる作用がある。上記作用はAlとFeと共に金属間化合物を生成し、粒界に優先的に晶出し分散強化を得ることによる。この効果はNiの添加量が0.8質量%未満ではAl−Fe−Ni系晶出物の分散強化を十分に得られず、1.4質量%を超えると鋳造時に粗大晶出物として晶出し機械的特性を低下させる。よってNiは0.8質量%〜1.4質量%とする。好ましいNi添加量は0.9質量%〜1.2質量%である。   Ni has the effect of improving the high temperature strength, particularly the strength at 170 ° C., which is the practical temperature range of the impeller. The above action is due to the formation of an intermetallic compound together with Al and Fe, and preferentially crystallizing out at the grain boundary to obtain dispersion strengthening. This effect is that when the addition amount of Ni is less than 0.8% by mass, sufficient dispersion strengthening of the Al—Fe—Ni-based crystallized product cannot be obtained. Reduces mechanical properties. Therefore, Ni is made 0.8 mass% to 1.4 mass%. A preferable Ni addition amount is 0.9 mass% to 1.2 mass%.

Bは、Tiと共に同時添加することでTiと同様に鋳造時の結晶粒の成長抑制効果を促進するために、結晶粒微細化効果を狙って添加される。この効果はBの添加量が0.0012質量%未満では効果が低く、0.00質量6%を超えると鋳造時に粗大晶出物として晶出し機械的特性を低下させる。よって、Bは0.0012質量%〜0.006質量%とする。好ましいB添加量は0.002質量%〜0.004質量%である。
(金属組織)
インペラ用鍛造品1の強度は上述したアルミニウム合金の化学組成にとともに金属組織の影響を受ける。また、インペラ用鍛造品1は、素材塊、例えば円柱形の素材を鍛造加工をしてディスク部11、ボス部12、羽根部13を成形する。金属組織は鍛造加工における加工率(据込率)の影響を受けるが、加工率は一様ではなく部位によって異なる。インペラ用鍛造品1における各部の据込率は羽根部>ボス部>ディスク部となり、据込率が高いほど金属組織が微細化されて強度が高くなる傾向がある。本発明のインペラ用鍛造品1はディスク部11の金属組織を規定することによって、他の部位の金属組織を間接的に規定している。本発明は各部の据込率を規定するものではないが、羽根部13における据込率は45%〜55%であり、ディスク部11における据込率は5%〜15%であり、ボス部12における据込率は25%〜35%である。
B is added for the purpose of refining the crystal grains in order to promote the effect of suppressing the growth of crystal grains at the time of casting by adding simultaneously with Ti. This effect is low when the amount of B added is less than 0.0012% by mass, and when it exceeds 0.006% by mass, the crystallization mechanical properties are deteriorated as a coarse crystallized product during casting. Therefore, B is set to 0.0012 mass% to 0.006 mass%. A preferable B addition amount is 0.002 mass% to 0.004 mass%.
(Metal structure)
The strength of the impeller forged product 1 is affected by the metal structure as well as the chemical composition of the aluminum alloy described above. Further, the impeller forged product 1 forms a disk portion 11, a boss portion 12, and a blade portion 13 by forging a material block, for example, a cylindrical material. The metal structure is affected by the processing rate (upsetting rate) in the forging process, but the processing rate is not uniform and varies depending on the part. The upsetting rate of each part in the impeller forged product 1 is blade portion> boss portion> disk portion, and the higher the setting rate, the finer the metal structure tends to increase the strength. In the impeller forged product 1 according to the present invention, the metal structure of the disk portion 11 is defined to indirectly define the metal structure of other parts. Although this invention does not prescribe | regulate the upsetting rate of each part, the upsetting rate in the blade | wing part 13 is 45%-55%, the upsetting rate in the disk part 11 is 5%-15%, and a boss | hub part The upsetting rate at 12 is 25% to 35%.

本発明のインペラ用鍛造品1はディスク部11の金属組織によってディスク部11が高い高温強度を有していること示し、間接的にディスク部11よりも微細化された金属組織を有する羽根部13がディスク部11よりも高い高温強度を有していることを示している。インペラ用鍛造品1において、羽根部13は急激な回転と停止の繰り返しによって金属疲労を起こしやすい部位であって、ディスク部11およびボス部12よりも高い高温強度が要求される部位である。従って、羽根部13がディスク部11よりも高い高温強度を有していることはインペラの各部位に要求される機械的特性に適合している。   The impeller forged product 1 of the present invention shows that the disk part 11 has high high-temperature strength due to the metal structure of the disk part 11, and the blade part 13 having a metal structure that is indirectly refined than the disk part 11. Indicates that it has higher high-temperature strength than the disk portion 11. In the impeller forged product 1, the blade portion 13 is a portion where metal fatigue is likely to occur due to repeated rapid rotation and stop, and is a portion that requires higher high-temperature strength than the disk portion 11 and the boss portion 12. Accordingly, the fact that the blade portion 13 has a higher high-temperature strength than the disk portion 11 is suitable for the mechanical characteristics required for each part of the impeller.

なお、本発明において高温強度の高いディスク部とは、170℃における疲労強度が128MPa以上のディスク部であり、あるいはさらに170℃における引張強度が345MPa以上であることを意味する。   In the present invention, the disk portion having high high-temperature strength means a disk portion having a fatigue strength at 170 ° C. of 128 MPa or more, or a tensile strength at 170 ° C. of 345 MPa or more.

本発明のインペラ用鍛造品1は、アルミニウム合金の化学組成を規定し、さらにディスク部11の、回転軸に平行な任意の断面における結晶粒の平均粒径が30μm〜120μmに規定されている。ディスク部11における結晶粒の平均粒径を上記範囲に規定することにより高い高温強度が得られる。前記ディスク部11における好ましい平均粒径は50μm〜80μmである。   In the impeller forged product 1 of the present invention, the chemical composition of the aluminum alloy is specified, and the average grain size of the crystal grains in an arbitrary cross section of the disk portion 11 parallel to the rotation axis is specified to be 30 μm to 120 μm. By defining the average grain size of the crystal grains in the disk portion 11 within the above range, high high-temperature strength can be obtained. A preferable average particle diameter in the disk portion 11 is 50 μm to 80 μm.

前記インペラ用鍛造品1の金属組織はCuAlのθ相化合物を含んでいる。CuAlは高温強度を高める効果があり、ディスク部11の回転軸に平行な任意の断面において、平均粒径が1.0μm〜15μmであり、かつ占有面積率が4%〜15%であることが好ましい。さらに好ましい平均粒径3.0μm〜10μmであり、さらに好ましい占有面積率は6%〜10%である。 The metal structure of the impeller forged product 1 includes a CuAl 2 θ-phase compound. CuAl 2 has the effect of increasing the high-temperature strength, and the average particle diameter is 1.0 μm to 15 μm and the occupied area ratio is 4% to 15% in an arbitrary cross section parallel to the rotation axis of the disk portion 11. Is preferred. A more preferable average particle diameter is 3.0 μm to 10 μm, and a more preferable occupation area ratio is 6% to 10%.

本発明は羽根部13およびボス部12の金属組織を規定するものではないが、羽根部13における好ましい結晶粒の平均粒径は10μm〜30μmであり、ボス部12における好ましい結晶粒の平均粒径は30μm〜100μmである。   Although this invention does not prescribe | regulate the metal structure of the blade | wing part 13 and the boss | hub part 12, the average particle diameter of the preferable crystal grain in the blade | wing part 13 is 10 micrometers-30 micrometers, and the average particle diameter of the preferable crystal grain in the boss | hub part 12 is. Is 30 μm to 100 μm.

上記の金属組織を有するインペラ用鍛造品1は、例えば以下の工程によって製造することができる。   The impeller forged product 1 having the above metal structure can be manufactured, for example, by the following steps.

鍛造加工用の素材として連続鋳造材を用いる場合、連続鋳造材を470℃〜540℃で0.5時間〜4.0時間の均質化処理を行い、ピーリングを行って所要の長さに切断する。切断した素材にボンデ処理を施して20℃〜450℃に加熱する一方、金型温度を20℃〜250℃に加熱し、図1に示すインペラ用鍛造品1の形状に鍛造加工する。成形した鍛造品は、520℃〜540℃×0.5時間〜6時間の溶体化処理後に焼き入れし(例えば10℃〜80℃の水冷)、160〜220℃で1時間〜48時間の人工時効処理を行う。     When a continuous casting material is used as a material for forging, the continuous casting material is homogenized at 470 ° C. to 540 ° C. for 0.5 hours to 4.0 hours, and then peeled and cut to a required length. . The cut material is bonded and heated to 20 ° C. to 450 ° C., while the mold temperature is heated to 20 ° C. to 250 ° C., and forged into the shape of the impeller forged product 1 shown in FIG. The formed forged product is quenched after solution treatment at 520 ° C. to 540 ° C. × 0.5 hours to 6 hours (for example, water cooling at 10 ° C. to 80 ° C.) and artificial at 160 to 220 ° C. for 1 hour to 48 hours. Perform aging treatment.

表1に示す実施例1、2および比較例1〜12の化学組成に調整したアルミニウム合金で直径50mmの円形の連続鋳造材を作製し、30℃×7時間の均質化処理を施し、空冷した。前記連続鋳造材はピーリング後に長さ80mmに切断し、これを図2に示す鍛造用素材20とした。前記鍛造用素材20は直径50mm×長さ80mmの円柱である。   A circular continuous cast material having a diameter of 50 mm was produced from the aluminum alloys adjusted to the chemical compositions of Examples 1 and 2 and Comparative Examples 1 to 12 shown in Table 1, homogenized at 30 ° C. for 7 hours, and air-cooled. . The continuous cast material was cut into a length of 80 mm after peeling to obtain a forging material 20 shown in FIG. The forging material 20 is a cylinder having a diameter of 50 mm and a length of 80 mm.

前記鍛造用素材20はボンデ処理を行い、素材温度25℃、金型温度30℃で、図2に示すように、鋳造材の軸方向(L方向)と軸方向に垂直な方向(LT方向、周方向指定なし)に、据込率10%、20%、30%、40%、50%で据え込みを加工を行い、未鍛造(据込率0%)を含めて、6種類の材料特性調査用鍛造材21を成形した。この材料特性調査用鍛造材21における厚み方向をST方向とする。   As shown in FIG. 2, the forging material 20 is subjected to a bonding process at a material temperature of 25 ° C. and a mold temperature of 30 ° C. As shown in FIG. 2, the axial direction (L direction) of the cast material and the direction perpendicular to the axial direction (LT direction, 6 types of material characteristics including upsetting (10%, 20%, 30%, 40%, 50% upsetting) and unforged (upsetting rate 0%) A forging material 21 for investigation was formed. The thickness direction in the forging material 21 for material property investigation is defined as the ST direction.

さらに、前記各材料特性調査用鍛造材21を530℃×3時間の溶体化処理を施し、30℃の水にて焼き入れし、その後200℃×20時間の人工時効処理を施して鍛造T6品とした。据え込み率10%の鍛造T6品はインペラ用鍛造品1のディスク部11に相当し、据込率30%の鍛造T6品はボス部12に相当し、据込率50%の鍛造T6品は羽根部13に相当する。また、ST方向に平行な断面がインペラ用鍛造品の回転軸に平行な断面に対応する。   Further, each of the forging materials 21 for investigating the material properties was subjected to a solution treatment at 530 ° C. for 3 hours, quenched with water at 30 ° C., and then subjected to an artificial aging treatment at 200 ° C. for 20 hours to produce a forged T6 product. It was. A forged T6 product with an upsetting rate of 10% corresponds to the disk portion 11 of the impeller forged product 1, a forged T6 product with an upsetting rate of 30% corresponds to the boss portion 12, and a forged T6 product with an upsetting rate of 50% It corresponds to the blade part 13. The cross section parallel to the ST direction corresponds to the cross section parallel to the rotation axis of the impeller forged product.

熱処理後の各材料特性調査用鍛造材21(鍛造T6品)に対し、以下の方法で引張強度、疲労強度、金属組織を調べた。
[引張強度]
常温引張試験を行うために、前記鍛造T6品から、切削加工により常温引張試験片を切り出した。試験片形状はJIS4号試験片を採用し、JISZ2241の規定に準拠し引張試験を行い引張強度を測定した。
The tensile strength, fatigue strength, and metal structure of each forged material 21 (forged T6 product) after heat treatment were examined by the following methods.
[Tensile strength]
In order to perform a room temperature tensile test, a room temperature tensile test piece was cut out from the forged T6 product by cutting. The shape of the test piece was a JIS No. 4 test piece, and a tensile test was performed in accordance with the provisions of JISZ2241 to measure the tensile strength.

高温引張試験を行うため、前記鍛造T6品を170℃×100時間で予備加熱し、切削加工により高温引張試験片を切り出した。試験片形状はJIS4号試験片を採用し、JISZ2241の規定に準拠し引張試験を行い引張強度を測定した。
[疲労強度]
高温疲労試験を行うため、上記鍛造T6品を170℃×100時間で予備加熱し切削加工により、所定の試験片形状に切り出した。疲労試験は小野式回転曲げ試験機を用いて測定し、各合金8回測定しS-N曲線を得た。得られたS-N曲線より繰返し数10回における疲労強度を求め、170℃における疲労強度とした。
[金属組織]
組織観察用試料として、前記鍛造T6品から、L方向の断面およびST方向の断面が露出する1cm×1cm×1cmの角材を切り出し、樹脂に埋めてST方向の断面をエメリー紙による研磨およびバフ研磨を実施して鏡面に仕上げた。
In order to perform a high temperature tensile test, the forged T6 product was preheated at 170 ° C. for 100 hours, and a high temperature tensile test piece was cut out by cutting. The shape of the test piece was a JIS No. 4 test piece, and a tensile test was performed in accordance with the provisions of JISZ2241 to measure the tensile strength.
[Fatigue strength]
In order to perform a high temperature fatigue test, the forged T6 product was preheated at 170 ° C. for 100 hours and cut into a predetermined test piece shape by cutting. The fatigue test was measured using an Ono rotary bending tester, and each alloy was measured 8 times to obtain an SN curve. The resulting calculated fatigue strength at repeated several 10 7 times from S-N curves and the fatigue strength at 170 ° C..
[Metal structure]
From the forged T6 product, a 1 cm × 1 cm × 1 cm square material in which the cross section in the L direction and the cross section in the ST direction are exposed is cut out from the forged T6 product, embedded in resin, and the cross section in the ST direction is polished with emery paper and buffed And finished to a mirror surface.

鏡面仕上げをした試料のST方向の断面を光学顕微鏡Nikon EPIPHOT 300を用いて、対物レンズ×10で順光組織観察を行った。さらに、鏡面仕上げをした試料をホウフッ化水素酸を1.8%に希釈した溶液に3分間浸食させ、かつ溶液中に20Vの電圧をかけることで腐食させて、偏光組織観察用試料とした。この偏光組織観察用試料のST方向の断面を光学顕微鏡Nikon EPIPHOT 300を用いて対物レンズ×40で偏光組織観察を行った。   The cross section in the ST direction of the mirror-finished sample was observed with a light microscope using an optical microscope Nikon EPIPOT 300 with an objective lens × 10. Further, the sample having a mirror finish was eroded for 3 minutes in a solution obtained by diluting borofluoric acid to 1.8%, and was corroded by applying a voltage of 20 V in the solution to obtain a sample for polarizing structure observation. The cross section in the ST direction of the sample for observing the polarized structure was observed with the objective lens × 40 using the optical microscope Nikon EPIPHOT 300.

結晶粒径およびCuAlθ相化合物の粒径は、偏光観察写真から4視野を取出し、各視野においてST方向にそれぞれ3本ずつ線を引き、線の長さを結晶粒または化合物の数で除した値を粒径とした。得られた粒径をそれぞれ加算し測定数で再度除して結晶粒または化合物の平均粒径とした。 The crystal grain size and the grain size of the CuAl 2 θ phase compound are obtained by taking four fields from a polarization observation photograph, drawing three lines in the ST direction in each field, and dividing the length of the line by the number of crystal grains or compounds. The value obtained was defined as the particle size. The obtained particle sizes were added and divided again by the number of measurements to obtain the average particle size of crystal grains or compounds.

CuAlθ相化合物の占有面積率は、順光組織写真において、偏光組織観察で測定した粒径を円相当径とみなして化合物の面積を計算し、視野範囲に対する化合物の占有面積率を計算した。 The occupied area ratio of the CuAl 2 θ phase compound was calculated by calculating the area of the compound by regarding the particle diameter measured by polarization structure observation as the equivalent circle diameter in the normal light texture photograph, and calculating the occupied area ratio of the compound with respect to the visual field range. .

表1に、実施例1、2および比較例1〜12のアルミニウム合金で作製した据込率10%の鍛造T6品の金属組織および170℃疲労強度を示す。表2に、実施例1のアルミニウム合金で作製した、据込率0%の未鍛造T6品、据込率10%、20%、30%、40%の鍛造T6品の常温引張強度、170℃引張強度、170℃疲労強度、結晶粒の平均粒径を示す。また、表3に、実施例2のアルミニウム合金で作製した、据込率0%の未鍛造T6品、据込率10%、20%、30%、40%の鍛造T6品の常温引張強度、170℃引張強度、170℃疲労強度、結晶粒の平均粒径を示す。   Table 1 shows the metal structure and 170 ° C. fatigue strength of the forged T6 product with upsetting ratio of 10% produced from the aluminum alloys of Examples 1 and 2 and Comparative Examples 1 to 12. Table 2 shows the room temperature tensile strength of the unforged T6 products with the upsetting rate of 0%, forged T6 products with the upsetting rates of 10%, 20%, 30%, and 40%, which were produced from the aluminum alloy of Example 1, 170 ° C. The tensile strength, 170 ° C. fatigue strength, and average grain size are shown. Table 3 shows room temperature tensile strengths of unforged T6 products with an upsetting rate of 0%, forged T6 products with an upsetting rate of 10%, 20%, 30%, and 40%, made of the aluminum alloy of Example 2. 170 ° C. tensile strength, 170 ° C. fatigue strength, and average grain size of crystal grains are shown.

Figure 2019190365
Figure 2019190365

Figure 2019190365
Figure 2019190365

Figure 2019190365
Figure 2019190365

表1に示すように、インペラのディスク部に相当する据込率10%鍛造T6品においてアルミニウム合金の化学組成と金属組織を制御することにより、170℃の疲労強度が128MPa以上の高温強度が得られる。   As shown in Table 1, high temperature strength with a fatigue strength at 170 ° C. of 128 MPa or higher is obtained by controlling the chemical composition and metal structure of the aluminum alloy in a forged T6 product with a 10% upsetting rate corresponding to the disk portion of the impeller. It is done.

表2および表3に示すように、羽根部13に相当する据込率50%鍛造T6品の結晶粒の平均粒径がディスク部11に相当する据込率10%鍛造T6品の結晶粒の平均粒径よりも小さく、かつ据込率50%鍛造T6品の高温強度が据込率10%鍛造T6品よりも高い。   As shown in Tables 2 and 3, the average grain size of the forged T6 product with a 50% upsetting rate corresponding to the blade portion 13 is the average grain size of the forged T6 product with a 10% upsetting rate corresponding to the disk portion 11. The high temperature strength of the forged T6 product, which is smaller than the average particle size and has an upsetting rate of 50%, is higher than that of the forged T6 product having an upsetting rate of 10%.

以上の結果は、インペラ用鍛造品はディスク部11の高温強度が345MPa以上であり、かつ羽根部13の高温強度がディスク部11よりも高いことを示している。   The above results indicate that the impeller forged product has a high temperature strength of the disk portion 11 of 345 MPa or more and a high temperature strength of the blade portion 13 is higher than that of the disk portion 11.

本発明のインペラ用鍛造品は高い高温強度が要求されるターボチャージャーのインペラとして利用できる。   The forged product for an impeller of the present invention can be used as an impeller for a turbocharger that requires high high-temperature strength.

1…インペラ用鍛造品
10…ハブ
11…ディスク部
12…ボス部
13…羽根部
DESCRIPTION OF SYMBOLS 1 ... Impeller forged product 10 ... Hub 11 ... Disk part 12 ... Boss part 13 ... Blade | wing part

Claims (3)

円形のディスク部の中心にボス部を有するハブと、前記ハブの外面に放射状に設けられた複数の羽根部を有するインペラ用鍛造品であり、
前記インペラ用鍛造品は、Si:0.05質量%〜0.30質量%、Fe:0.7質量%〜1.5質量%、Cu:1.7質量%〜2.9質量%、Mg:1.0質量%〜1.9質量%、Ti:0.03質量%〜0.15質量%、Ni:0.8質量%〜1.4質量%を含み、残部がAlと不可避不純物からなるアルミニウム合金からなり、
前記ディスク部の、インペラの回転軸に平行な任意の断面における結晶粒の平均粒径が30μm〜120μmであることを特徴とするインペラ用鍛造品。
A forged article for an impeller having a hub having a boss part at the center of a circular disk part and a plurality of blade parts provided radially on the outer surface of the hub;
The forged product for the impeller includes: Si: 0.05% by mass to 0.30% by mass, Fe: 0.7% by mass to 1.5% by mass, Cu: 1.7% by mass to 2.9% by mass, Mg : 1.0% by mass to 1.9% by mass, Ti: 0.03% by mass to 0.15% by mass, Ni: 0.8% by mass to 1.4% by mass, and the balance from Al and inevitable impurities Made of an aluminum alloy
A forged article for impellers, wherein an average grain size of crystal grains in an arbitrary cross section parallel to the impeller rotation axis of the disk portion is 30 μm to 120 μm.
前記アルミニウム合金が、さらにB:0.0012質量%〜0.006質量%を含む請求項1に記載のインペラ用鍛造品。   The forged product for an impeller according to claim 1, wherein the aluminum alloy further contains B: 0.0012 mass% to 0.006 mass%. 前記ディスク部の、インペラの回転軸に平行な任意の断面におけるCuAlのθ相化合物の平均粒径が1.0μm〜15μmであり、占有面積率が4%〜15%である請求項1または2に記載のインペラ用鍛造品。
The average particle size of the CuAl 2 θ-phase compound in an arbitrary cross section parallel to the impeller rotation axis of the disk portion is 1.0 μm to 15 μm, and the occupied area ratio is 4% to 15%. The forged product for impellers according to 2.
JP2018083599A 2018-04-25 2018-04-25 Forged product for impeller Pending JP2019190365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018083599A JP2019190365A (en) 2018-04-25 2018-04-25 Forged product for impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083599A JP2019190365A (en) 2018-04-25 2018-04-25 Forged product for impeller

Publications (1)

Publication Number Publication Date
JP2019190365A true JP2019190365A (en) 2019-10-31

Family

ID=68389391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083599A Pending JP2019190365A (en) 2018-04-25 2018-04-25 Forged product for impeller

Country Status (1)

Country Link
JP (1) JP2019190365A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290545A (en) * 2003-12-18 2005-10-20 Showa Denko Kk Method for producing shaped-product of aluminum alloy, shaped-product of aluminum alloy and production system
JP2006305629A (en) * 2005-03-30 2006-11-09 Kobe Steel Ltd Method for producing forged material for rotating body
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
WO2015087907A1 (en) * 2013-12-13 2015-06-18 昭和電工株式会社 Formed material for turbo-compressor wheel made of aluminum alloy, and method of manufacturing turbo-compressor wheel
JP2017222893A (en) * 2016-06-13 2017-12-21 昭和電工株式会社 Aluminum alloy forging article and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290545A (en) * 2003-12-18 2005-10-20 Showa Denko Kk Method for producing shaped-product of aluminum alloy, shaped-product of aluminum alloy and production system
JP2006305629A (en) * 2005-03-30 2006-11-09 Kobe Steel Ltd Method for producing forged material for rotating body
JP2010018854A (en) * 2008-07-11 2010-01-28 Sumitomo Light Metal Ind Ltd Lightweight and high strength aluminum alloy excellent in heat resistance
WO2015087907A1 (en) * 2013-12-13 2015-06-18 昭和電工株式会社 Formed material for turbo-compressor wheel made of aluminum alloy, and method of manufacturing turbo-compressor wheel
JP2017222893A (en) * 2016-06-13 2017-12-21 昭和電工株式会社 Aluminum alloy forging article and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
CN111532080B (en) Aluminum alloy forged wheel, manufacturing method thereof, and casting blank for forming forged wheel
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP6057855B2 (en) Aluminum alloy extruded material for cutting
WO2015087907A1 (en) Formed material for turbo-compressor wheel made of aluminum alloy, and method of manufacturing turbo-compressor wheel
JPWO2008001758A1 (en) Aluminum cast alloy, cast compressor impeller made of this alloy, and manufacturing method thereof
WO2012169317A1 (en) Aluminum alloy having excellent high-temperature characteristics
WO2014064876A1 (en) Al ALLOY CAST IMPELLER FOR COMPRESSOR AND PROCESS FOR PRODUCING SAME
JP4328996B2 (en) Al-Mg-Si aluminum alloy cold forging manufacturing method
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
JP4958292B2 (en) Aluminum die-cast alloy, cast compressor impeller made of this alloy, and method for manufacturing the same
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
JP7172833B2 (en) Aluminum alloy material and its manufacturing method
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
JP2019190365A (en) Forged product for impeller
JP2019190366A (en) Forged product for impeller
JP2019190364A (en) Forged product for impeller
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP5083965B2 (en) Casting compressor impeller
JPH11246925A (en) Aluminum alloy casting with high toughness, and its manufacture
JP6829783B2 (en) Manufacturing method of heat-resistant aluminum alloy material
JP6726058B2 (en) Manufacturing method of Al alloy casting
JP2008088460A (en) High-strength aluminum casting alloy and compressor impeller using the same
JP2000104149A (en) Production of aluminum-manganese alloy rolling stock having fine recrystallized grain structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712