JP2019189059A - Posture control system for ocean movable body and buoy having the posture control system - Google Patents

Posture control system for ocean movable body and buoy having the posture control system Download PDF

Info

Publication number
JP2019189059A
JP2019189059A JP2018084775A JP2018084775A JP2019189059A JP 2019189059 A JP2019189059 A JP 2019189059A JP 2018084775 A JP2018084775 A JP 2018084775A JP 2018084775 A JP2018084775 A JP 2018084775A JP 2019189059 A JP2019189059 A JP 2019189059A
Authority
JP
Japan
Prior art keywords
control system
moving body
wind
buoy
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018084775A
Other languages
Japanese (ja)
Inventor
優 菅野
Masaru Sugano
優 菅野
岡本 修
Osamu Okamoto
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKYA CO Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
OKYA CO Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKYA CO Ltd, Institute of National Colleges of Technologies Japan filed Critical OKYA CO Ltd
Priority to JP2018084775A priority Critical patent/JP2019189059A/en
Publication of JP2019189059A publication Critical patent/JP2019189059A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

To provide an autonomous buoy not needing mooring capable of staying in an intended sea area without interfering with vessel navigation or fishing.SOLUTION: A movable body includes a system for calculating a relative relationship among an underwater transverse flow prevention plate, a mechanism for generating a lift force by receiving wind on water surface, a GNSS antenna for specifying a position on ground by receiving a signal from a satellite, and an own machine position with respect to target position information of instructed longitude and latitude. The movable body is provided with means for acquiring a wind direction and means for acquiring angles with respect to the wind directions of the moving body and/or the transverse flow prevention plate, wherein the angles of the movable body and/or the transverse flow prevention plate are adjusted with respect to the change in the wind direction so that the angle in the advancing direction of the movable body is not smaller than 45 degrees on both sides toward the wind direction by adjusting the angles with respect to the wind directions of the moving body and/or the transverse flow prevention plate, and a lift force generating mechanism.SELECTED DRAWING: Figure 1

Description

この発明は、洋上で風による揚力を利用して航行する移動体の風向に対する姿勢の制御システム並びに該姿勢制御システムを有するブイに関するものである。 The present invention relates to a posture control system for a wind direction of a moving body that travels on the ocean using wind lift, and a buoy having the posture control system.

海洋は広大で深度もあるためデータ取得は様々な手法で行われている。 Because the ocean is vast and deep, data acquisition is performed in various ways.

調査員が船舶に乗船し、海洋の様々な場所に行く現地調査が行われてきた。 Field surveys have been conducted in which inspectors board the ship and go to various locations in the ocean.

連続したデータを取得するため、沿岸では係留型や据置型のブイや、沖合では漂流型のブイが用いられることがある。 To obtain continuous data, moored or stationary buoys may be used offshore, and drifting buoys may be used offshore.

広範囲の情報を取得するため、人工衛星を利用した調査もされている。 In order to obtain a wide range of information, research using artificial satellites is also being conducted.

水面に浮かぶ浮体部と水中に沈むグライダー部とこれらをつなぐケーブル部からなり、波のうねりを利用し、うねりを下るときにグライダー部が水中でストッパーとなり浮体部を前進させ、うねりを上るときにグライダー部を前進させ、自然エネルギーを利用して航行するAOV(Autonomous Ocean Vehicle)も利用されている。(非特許文献1参照) It consists of a floating body that floats on the surface of the water, a glider that sinks in the water, and a cable that connects these parts. AOV (Autonomous Ocean Vehicle) is also used, which advances the glider part and navigates using natural energy. (See Non-Patent Document 1)

洋上で同じ位置を維持する移動体としては、ヨットの船体の前後が両方とも舳先になる対称の形状とし、セイルをマスト軸周りに回転させてセイルの表裏に交互に風を受けて姿勢を変えることなく往復移動をすることで、同じ場所を維持する浮体式洋上風力発電設備が特願2015-27059で提案されている。(特許文献1参照) As a moving body that maintains the same position on the ocean, both the front and rear of the yacht hull should be symmetrical, with the sail rotated around the mast axis and the attitude changed by receiving wind alternately on the front and back of the sail. Japanese Patent Application No. 2015-27059 proposes a floating offshore wind power generation facility that keeps the same location by reciprocating without moving. (See Patent Document 1)

衛星測位システムが高精度となり、3基以上の衛星測位アンテナのうち、少なくとも1つのアンテナを移動体上に設け、複数の測位用衛星からの電波をそれぞれ受信し、アンテナ間の相対位置を取得する手段が提案されている(特許文献2参照)。 The satellite positioning system becomes highly accurate, and at least one of the three or more satellite positioning antennas is provided on the moving body, receives radio waves from a plurality of positioning satellites, and acquires the relative position between the antennas. Means have been proposed (see Patent Document 2).

特開2015-27059 浮体式洋上風力発電設備JP2015-27059 Floating offshore wind power generation facility 特開2002-40124 キャリア移送相対測位装置JP 2002-40124 Relative positioning device for carrier transfer

株式会社ハイドロシステム開発殿取扱いWave Glider〈http://www.hydro-sys.com/files/product/files/072.WaveGlider_Brochure2015.pdf〉[2018年4月10日検索]Wave Glider <http://www.hydro-sys.com/files/product/files/072.WaveGlider_Brochure2015.pdf> [Search April 10, 2018]

船舶を利用した有人調査は、船舶の利用スケジュールの調整の労力、費用が大きくかかる。また悪天候に遭遇するなど人の命にかかわる危険性がある。 A manned survey using a ship requires a lot of labor and cost to adjust the use schedule of the ship. In addition, there is a risk of human life such as encountering bad weather.

係留、または据置型のブイは定点での測定しか行えず、また設置やメンテナンスに大きな費用が発生する。また係留索が船舶や漁業の網に絡まる可能性がある。漂流型ブイは海洋に投入するだけのため設置費用は大きくはかからないが、行き先が潮流や風次第となるため所望の海域の連続したデータが得られない可能性がある。 Mooring or stationary buoys can only be measured at a fixed point and are expensive to install and maintain. Also, mooring lines can get entangled in ships and fishing nets. Drifting buoys are only introduced into the ocean, so the installation cost is not large, but the destination depends on the tide and wind, so there is a possibility that continuous data of the desired sea area cannot be obtained.

人工衛星を利用した調査は水面から上方の情報しか得られず、静止衛星以外は地球の周回のタイミングに合わせた調査頻度となる制約がある。 Surveys using artificial satellites can only obtain information above the surface of the water, and other than geostationary satellites, there are restrictions on the frequency of surveys that match the orbit of the earth.

海洋のうねりを利用するAOVは、航行速度が遅く、小回りが利かないため定点での調査は難しく、浮体のデッキ上での太陽光発電のみでは調査に十分なエネルギーが得られないことがある。 AOVs that use ocean swells are difficult to survey at a fixed point because of their slow navigating speed and lack of a small turn, and solar power on a floating deck may not provide sufficient energy for the survey.

特許文献1は風向に対する移動体、揚力発生機構の角度が不明瞭である。
特許文献2は船舶の方位角および姿勢角を算出するだけのものである。
In Patent Document 1, the angle of the moving body and the lift generation mechanism with respect to the wind direction is unclear.
Patent Document 2 merely calculates the azimuth angle and attitude angle of a ship.

船舶の航行や漁業を邪魔することなく、意図した海域で留まることができる、係留が不要な自律型ブイを提供する。 To provide an autonomous buoy that can stay in the intended sea area without interfering with vessel navigation and fishing, and that does not require mooring.

水中の横流れ防止板と、水面上の風を受けて揚力を発生する機構と、人工衛星からの信号を受信し地上の位置を特定するGNSSアンテナと、指示される緯度経度の目的位置情報に対する自機位置との相対関係を計算するシステムを有する移動体において、
風向を取得する手段と、移動体および、または横流れ防止板の風向に対する角度を取得する手段とを搭載し、
移動体および、または横流れ防止板と、揚力発生機構の風向に対する角度を調整し、移動体の進行方向が風向に向かって両側45度より小さい角度としないよう、
風向の変化に対して移動体および、または横流れ防止板の角度を調整する。
An underwater crossflow prevention plate, a mechanism that generates lift by receiving wind on the surface of the water, a GNSS antenna that receives a signal from an artificial satellite and identifies the position on the ground, and the target position information of the indicated latitude and longitude In a moving body having a system for calculating the relative relationship with the machine position,
A means for obtaining the wind direction and a means for obtaining the angle of the moving body and / or the crossflow prevention plate with respect to the wind direction are mounted.
Adjust the angle of the moving body and / or cross flow prevention plate and the lift generating mechanism to the wind direction so that the moving direction of the moving body does not become less than 45 degrees on both sides toward the wind direction.
The angle of the moving body and / or the cross flow prevention plate is adjusted with respect to the change in the wind direction.

海底に係留しないため水深に影響されず、洋上のほぼ同じ位置を維持するブイを実現する。 Because it is not moored at the bottom of the sea, it will be unaffected by water depth and will realize a buoy that maintains the same position on the ocean.

図1は本発明の実施例を示した平面図である。FIG. 1 is a plan view showing an embodiment of the present invention. 図2は本発明の実施例を示した正面図である。FIG. 2 is a front view showing an embodiment of the present invention. 図3は本発明の実施例において風2に対するセイル3に発生する揚力15と抗力16を示した平面図である。FIG. 3 is a plan view showing the lift 15 and the drag 16 generated in the sail 3 against the wind 2 in the embodiment of the present invention. 図4は本発明の実施例のセイル9に発生する抗力16と、横流れ防止板6に発生する水による抵抗力17を示した正面図である。FIG. 4 is a front view showing a drag force 16 generated in the sail 9 and a resistance force 17 caused by water generated in the transverse flow prevention plate 6 according to the embodiment of the present invention. 図5は本発明の船体1の進行方向が風2に向かって45度より小さな角度を向いた時のセイル9に発生する揚力15と抗力16、横流れ防止板6に発生する抵抗力17、17’を示した平面図である。FIG. 5 shows the lift 15 and the drag 16 generated in the sail 9 when the traveling direction of the hull 1 of the present invention is less than 45 degrees toward the wind 2, and the resistance forces 17 and 17 generated in the crossflow prevention plate 6. It is the top view which showed '. 図6は本発明の実施例において風向が2’へ変化した場合の平面図である。FIG. 6 is a plan view when the wind direction is changed to 2 'in the embodiment of the present invention. 図7は本発明の実施例の片側の抵抗板11Rを水中に差し込んだ状態の正面図である。FIG. 7 is a front view showing a state where the resistance plate 11R on one side of the embodiment of the present invention is inserted into water. 図8は本発明の揚力発生機構はマグナスローターと呼ばれる円筒18を使用する応用例の平面図である。FIG. 8 is a plan view of an application example in which the lift generating mechanism of the present invention uses a cylinder 18 called a magna slater. 図9は本発明の揚力発生機構はマグナスローターと呼ばれる円筒18を使用する応用例の正面図である。FIG. 9 is a front view of an application example in which the lift generating mechanism of the present invention uses a cylinder 18 called a magna slater. 図10は発明の揚力発生機構にセイルを使用した場合のセイルの開き具合はブーム8の自由端側にGNSS信号アンテナ3’を取り付けた応用例の平面図である。FIG. 10 is a plan view of an application example in which a GNSS signal antenna 3 ′ is attached to the free end side of the boom 8 when the sail is used for the lift generating mechanism of the invention. 図11は本発明の進行方向調整機構に移動体水中下にラダー19、19’を使用した応用例の平面図である。FIG. 11 is a plan view of an application example in which ladders 19 and 19 'are used under the moving body underwater in the traveling direction adjusting mechanism of the present invention. 図12は本発明の進行方向調整機構に移動体水中下にラダー19、19’を使用した応用例の正面図である。FIG. 12 is a front view of an application example in which ladders 19 and 19 'are used under the moving body underwater in the traveling direction adjusting mechanism of the present invention. 図13は本発明の進行方向調整機構に移動体上にサブセイル21、21’を使用した応用例の平面図である。FIG. 13 is a plan view of an application example in which the sub sails 21 and 21 'are used on the moving body in the traveling direction adjusting mechanism of the present invention. 図14は本発明の進行方向調整機構に移動体上にサブセイル21、21’を使用した応用例の正面図である。FIG. 14 is a front view of an application example in which the sub sails 21 and 21 'are used on the moving body in the traveling direction adjusting mechanism of the present invention. 図15は実施例の制御システムを示すフローチャートである。FIG. 15 is a flowchart showing the control system of the embodiment.

移動体上に、風が吹いてくる方位を取得する風向計と、風向に対する移動体の垂直軸周りの角度を取得する測定系を搭載する。移動体の上には風を受けて揚力を発生する機構を、水中には横流れ防止板を有している。 An anemometer that acquires the direction in which the wind blows and a measurement system that acquires an angle around the vertical axis of the moving body with respect to the wind direction are mounted on the moving body. On the moving body, there is a mechanism that generates wind by receiving wind, and a crossflow prevention plate is provided in the water.

移動体上の揚力発生機構では風向の直角方向の左右いずれか側に揚力が発生する。 In the lift generating mechanism on the moving body, lift is generated on either the right or left side of the direction perpendicular to the wind direction.

横流れ防止板は平面側を風向に向けると移動体が風で押し流される際に水による抵抗力がはたらくため風下に押し流されにくい。一方で、平面の直角方向へは水の抵抗が少なく進行が容易であるため、揚力で進行することができる。 When the flat flow side is directed to the wind direction, the lateral flow prevention plate is not easily pushed down by the wind because the resistance force due to water works when the moving body is washed away by the wind. On the other hand, in the direction perpendicular to the plane, water resistance is low and the progress is easy.

移動体に対する風向が変化すると、揚力は常に風向に対して直角方向に発生するため移動体にはたらく揚力、抗力、水の抵抗力などのバランスが変わり、移動体は同様の進行を続けられなくなる。したがって、移動体および揚力発生機構の向きを風向に合わせて調整する必要がある。 When the wind direction with respect to the moving body changes, the lift force is always generated in a direction perpendicular to the wind direction, so the balance of the lift force, drag force, water resistance force, etc. acting on the moving body changes, and the moving body cannot continue the same progress. Therefore, it is necessary to adjust the direction of the moving body and the lift generation mechanism according to the wind direction.

移動体の姿勢調整機構を用いて風向に対する移動体の姿勢を調整する。 The posture of the moving body with respect to the wind direction is adjusted using the posture adjustment mechanism of the moving body.

GNSSアンテナは、移動体とは別に、移動体に垂直な軸周りに角度を変えられる横流れ防止板に連動する位置に取り付けてもよい。 The GNSS antenna may be attached to a position interlocked with a lateral flow prevention plate that can change an angle around an axis perpendicular to the moving body, separately from the moving body.

本発明の実施例を説明する。 Examples of the present invention will be described.

図1、2のとおり、船体1の上に、人工衛星からの信号を受けて地上の位置を特定できるGNSSアンテナ3が複数、アンテナ同士を離した状態で、船体1上の位置が既知の場所に設置されている。 As shown in FIGS. 1 and 2, a plurality of GNSS antennas 3 that can identify the position on the ground by receiving a signal from an artificial satellite on the hull 1 and where the positions on the hull 1 are known with the antennas separated. Is installed.

船体1上に、風向計4と風速計5が設置されており、別途船体1上に搭載された蓄電池12から電力を供給され、マイコン13に接続され、常時、風向と風速を測定している。 An anemometer 4 and an anemometer 5 are installed on the hull 1 and supplied with electric power from a storage battery 12 mounted on the hull 1 and connected to a microcomputer 13 to constantly measure the wind direction and the wind speed. .

船体1の水中下には横流れ防止板6が取り付けられており、横流れ防止板6の平面側が風2を正面に受ける位置関係となっている。 A cross flow preventing plate 6 is attached under the water of the hull 1, and the plane side of the cross flow preventing plate 6 is in a positional relationship where the wind 2 is received in the front.

船体1の上にはマスト7が立設されており、マスト7にブーム8が取り付けられ、マスト7とブーム8の間にセイル9を張っている。 A mast 7 is erected on the hull 1, a boom 8 is attached to the mast 7, and a sail 9 is stretched between the mast 7 and the boom 8.

船体1上に架台10と抵抗板11を取り付ける。抵抗板11は常時は水面の上側にあるが、操作によって船体1のそれぞれの側で上下操作することが可能で、水中に差し込むことができる。 Mount the gantry 10 and the resistance plate 11 on the hull 1. Although the resistance plate 11 is always above the water surface, it can be operated up and down on each side of the hull 1 by operation and can be inserted into the water.

図3、4は、図1、2の状態で発生する力の関係を示したものである。セイル9に風2を受けてセイル9がばたつかずに風をはらむと、セイル9が風2の流れを変える向きと反対側で、風向と直角の方向に揚力15を、また風下方向には抗力16を発生させる。横流れ防止板6に対して生じる水の抵抗力17が発生し、船体1は風下方向に流されにくい。 3 and 4 show the relationship between the forces generated in the states of FIGS. If the sail 9 receives the wind 2 and the wind does not flutter, the sail 9 has a lift 15 in the direction perpendicular to the wind direction on the side opposite to the direction in which the flow of the wind 2 changes, and in the leeward direction. A drag 16 is generated. The resistance 17 of the water which arises with respect to the crossflow prevention board 6 generate | occur | produces, and the hull 1 is hard to be flowed in the leeward direction.

セイル9が発生させる抗力16が、水中で横流れ防止板に発生する抵抗力17とほぼ相殺される条件の時、船体1は揚力15によって進行する。 The hull 1 travels by the lift 15 when the drag 16 generated by the sail 9 is substantially offset by the resistance 17 generated in the transverse flow prevention plate underwater.

図6は船体1が図中の上側に向かって進行している状態である。風2’が図中の左上側から吹いている。 FIG. 6 shows a state in which the hull 1 is moving upward in the drawing. Wind 2 'is blowing from the upper left side in the figure.

船体1を風2’に対し90度の向きにしたいとき、図6のとおりに抵抗板11Rを水中に差し込むと船体1の進行方向は時計回りに変わる。11Rではなく11Fを水中に差し込むと、船体1の進行方向は反時計回りに変わり、風上寄りを向く。 When the hull 1 is to be oriented at 90 degrees with respect to the wind 2 ', when the resistance plate 11R is inserted into the water as shown in FIG. 6, the traveling direction of the hull 1 changes clockwise. When 11F is inserted into the water instead of 11R, the traveling direction of the hull 1 changes counterclockwise and faces upwind.

図5のとおり、船体1は進行方向が風向に向かって45度より小さくなると揚力発生機構による揚力15に対し、水による抵抗力17’がはたらく。また抗力16にたいし抵抗力17が小さくなるため移動体は風上方向へは進み続けることができなくなる。 As shown in FIG. 5, when the traveling direction of the hull 1 becomes smaller than 45 degrees toward the wind direction, the resistance force 17 'due to water acts against the lift force 15 generated by the lift generation mechanism. Further, since the resistance force 17 is smaller than the drag force 16, the moving body cannot continue to advance in the windward direction.

図14は本姿勢制御システムのフローチャートである。
最初は外部入力により移動体の目標位置が設定される。搭載する複数のGNSSアンテナ3で自機位置情報を取得する。風向計5で移動体上の風向を取得する。前記位置情報から自機移動体および/または横流れ防止板6の角度情報が取得できる。風向に対して目標位置が左右どちらにあるかで、目標位置に近付く向きに進行方向が決まる。自機位置と目標位置と風向から、自機位置から目標位置への風向に対する角度が計算される。目標位置への角度が、風向に対して両側45度以上の場合、移動体は目標位置へ向かって直進させる。目標位置への角度が、風向に対して両側45度より小さい場合、目標位置へ直接進むことはできないため、移動体は風向に対して45度の向きで進み、しばらく進んだ後、再度目標位置と自機との位置関係から進行方向、進行角度を判断する。
FIG. 14 is a flowchart of the posture control system.
Initially, the target position of the moving body is set by external input. Acquires location information from multiple GNSS antennas 3 installed. The wind direction on the moving object is acquired with the anemometer 5. The angle information of the mobile device and / or the lateral flow prevention plate 6 can be acquired from the position information. Depending on whether the target position is on the left or right with respect to the wind direction, the traveling direction is determined in the direction approaching the target position. An angle with respect to the wind direction from the own machine position to the target position is calculated from the own machine position, the target position, and the wind direction. When the angle to the target position is 45 degrees or more on both sides with respect to the wind direction, the moving body moves straight toward the target position. If the angle to the target position is less than 45 degrees on both sides with respect to the wind direction, the mobile body cannot move directly to the target position, so the moving body moves in the direction of 45 degrees with respect to the wind direction. The traveling direction and traveling angle are determined from the positional relationship between the aircraft and the aircraft.

なお、目標位置へ到着した後は、目標位置が変更されない限りは目標位置の上を往復移動を繰り返し、同じ場所を維持する。 After arriving at the target position, as long as the target position is not changed, the same position is maintained by repeating reciprocating movement over the target position.

図8、9のとおり、移動体の揚力発生機構として、マグナスローター18と称される円筒を使用してもよい。風の中で円筒を回転させることで、風向に対して円筒を挟んだ両側で気圧の違いが発生し気圧の小さい側に揚力が発生する。 As shown in FIGS. 8 and 9, a cylinder called a magna slater 18 may be used as the lift generating mechanism of the moving body. By rotating the cylinder in the wind, a difference in atmospheric pressure is generated on both sides of the cylinder with respect to the wind direction, and lift is generated on the side where the atmospheric pressure is low.

図10のとおり、ブーム8の自由端にGNSSアンテナ3’を取り付けて、GNSS同士の相対位置を算出し、セイルの開き角度を算出してもよい。 As shown in FIG. 10, the GNSS antenna 3 ′ may be attached to the free end of the boom 8, the relative position between the GNSSs may be calculated, and the sail opening angle may be calculated.

図11、12のとおり、船体1の姿勢調整機構として船体底に取り付けたラダー19、19’の向きを操作してもよい。 As shown in FIGS. 11 and 12, the orientations of the ladders 19 and 19 ′ attached to the bottom of the hull may be operated as the attitude adjustment mechanism of the hull 1.

図13、14のとおり、移動体上の姿勢調整機構としてサブセイル用マスト20、20’サブセイル21、21’を取り付けて、サブセイルの角度を操作することで向きを変えてもよい。 As shown in FIGS. 13 and 14, the sub-sail mast 20, 20 ′ and the sub-sail 21, 21 ′ may be attached as the posture adjustment mechanism on the moving body, and the direction may be changed by manipulating the angle of the sub-sail.

本発明は、環境モニタリングや監視に使用されるブイに利用される。 The present invention is used for buoys used for environmental monitoring and monitoring.

1 船体
2 風
3 GNSSアンテナ
4 風向計
5 風速計
6 横流れ防止板
7 マスト
8 ブーム
9 セイル
10 架台
11 抵抗板
12 蓄電池
13 マイコン
14 水面
15 揚力
16 抗力
17 抵抗力
18 マグナスローター
19 ラダー
20 サブセイル用マスト
21 サブセイル
1 hull
2 wind
3 GNSS antenna
4 Anemometer
5 Anemometer
6 Cross flow prevention plate
7 Mast
8 Boom
9 Sail
10 frame
11 Resistance plate
12 Storage battery
13 Microcomputer
14 Water surface
15 Lift
16 Drag
17 Resistance
18 Magna Slaughter
19 Ladder
20 Subsail mast
21 Subsail

Claims (9)

水中の横流れ防止板と、水面上の風を受けて揚力を発生する機構と、人工衛星からの信号を受信し地上の位置を特定するGNSSアンテナと、指示される緯度経度の目的位置情報に対する自機位置との相対関係を計算するシステムを有する移動体において、
風向を取得する手段と、移動体および、または横流れ防止板の風向に対する角度を取得する手段とを搭載し、
移動体および、または横流れ防止板と、揚力発生機構の風向に対する角度を調整し、移動体の進行方向が風向に向かって両側45度より小さい角度としないよう、
風向の変化に対して移動体および、または横流れ防止板の角度を調整する制御システムと該制御システムを有するブイ。
An underwater crossflow prevention plate, a mechanism that generates lift by receiving wind on the surface of the water, a GNSS antenna that receives a signal from an artificial satellite and identifies the position on the ground, and the target position information of the indicated latitude and longitude In a moving body having a system for calculating the relative relationship with the machine position,
A means for obtaining the wind direction and a means for obtaining the angle of the moving body and / or the crossflow prevention plate with respect to the wind direction are mounted.
Adjust the angle of the moving body and / or cross flow prevention plate and the lift generating mechanism to the wind direction so that the moving direction of the moving body does not become less than 45 degrees on both sides toward the wind direction.
A control system for adjusting the angle of the moving body and / or the cross flow prevention plate with respect to a change in wind direction, and a buoy having the control system.
請求項1に記載のうち、風向に対する移動体および、または横流れ防止板の角度を、人工衛星からの信号で位置情報を取得する複数の受信アンテナを、移動体および、または横流れ防止板上の位置が既知の部位に搭載して取得する姿勢制御システムと該制御システムを有するブイ。 The position of the plurality of receiving antennas for obtaining the position information by a signal from an artificial satellite, the position of the mobile body and / or the crossflow prevention plate, the angle of the mobile body and / or the crossflow prevention plate with respect to the wind direction. Is a posture control system that is acquired by mounting on a known part, and a buoy having the control system. 請求項1に記載したうち、風向に対する移動体および、または横流れ防止板の角度をジャイロスコープで取得する制御システムと該制御システムを有するブイ。 The control system according to claim 1, wherein the angle of the moving body and / or the cross flow preventing plate with respect to the wind direction is acquired by a gyroscope, and the buoy having the control system. 請求項1に記載のうち、風を受けることによる揚力を移動体上に立設したセイルで得る姿勢制御システムと該制御システムを有するブイ。 2. A posture control system and a buoy having the control system according to claim 1, wherein the lift by receiving wind is obtained by a sail erected on a moving body. 請求項1に記載のうち、風を受けて発生する揚力はマグナスローターと呼ばれる円筒を回転させて発生させる姿勢制御システムと該制御システムを有するブイ。 2. A posture control system for generating lift by receiving a wind by rotating a cylinder called a magna slater and a buoy having the control system. 請求項1に記載のうち、風向に対する移動体の角度の調整を水中のラダーで行う姿勢制御システムとその該制御システムを有するブイ。 The attitude control system for adjusting the angle of the moving body with respect to the wind direction by using an underwater ladder and a buoy having the control system. 請求項1に記載のうち、移動体の風下側、または風上側に抵抗板を挿入することにより移動体および、または横流れ防止板の角度の調整を行う姿勢制御システムと該制御システムを有するブイ。 2. A posture control system for adjusting an angle of a moving body and / or a lateral flow preventing plate by inserting a resistance plate on the leeward side or the windward side of the moving body, and a buoy having the control system. 請求項1に記載のうち、移動体の前方、または後方の補助セイルを操作して風を受けて移動体の姿勢を調整する姿勢調整システムと該制御システムを有するブイ。 The buoy having the attitude adjustment system for adjusting the attitude of the moving body by operating the auxiliary sail in front of or behind the moving body and receiving wind to adjust the attitude of the moving body. 請求項1に記載のうち、水中のスラスターを動かして移動体の姿勢を調整する姿勢制御システムと該制御システムを有するブイ。 2. A posture control system for adjusting a posture of a moving body by moving an underwater thruster and a buoy having the control system.
JP2018084775A 2018-04-26 2018-04-26 Posture control system for ocean movable body and buoy having the posture control system Pending JP2019189059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084775A JP2019189059A (en) 2018-04-26 2018-04-26 Posture control system for ocean movable body and buoy having the posture control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084775A JP2019189059A (en) 2018-04-26 2018-04-26 Posture control system for ocean movable body and buoy having the posture control system

Publications (1)

Publication Number Publication Date
JP2019189059A true JP2019189059A (en) 2019-10-31

Family

ID=68388385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084775A Pending JP2019189059A (en) 2018-04-26 2018-04-26 Posture control system for ocean movable body and buoy having the posture control system

Country Status (1)

Country Link
JP (1) JP2019189059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538340A (en) * 2020-06-02 2020-08-14 哈尔滨工程大学 Autonomous navigation control method for power buoy with sail

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111538340A (en) * 2020-06-02 2020-08-14 哈尔滨工程大学 Autonomous navigation control method for power buoy with sail

Similar Documents

Publication Publication Date Title
US11731748B2 (en) Autonomous ocean data collection
CA2907568C (en) Autonomous sailboat for oceanographic monitoring
AU2013303190B2 (en) Satellite and acoustic tracking device
JP6694485B2 (en) Ocean buoy
CN108860454B (en) All-weather long-voyage unmanned sailing ship design method
US10518850B2 (en) High speed fairing block systems and methods
JP2008120304A (en) Underwater sailing body and moving method for underwater sailing body
US20140126333A1 (en) Doppler Angle of Attack Sensor System for Watercraft
US3369516A (en) Stable oceanic station
CA2902314C (en) Method for operation of an unmanned ocean vessel.
JP2019189059A (en) Posture control system for ocean movable body and buoy having the posture control system
JP6568615B1 (en) Autonomous navigation type ocean buoy and ocean information system using it
WO2019207052A1 (en) A geographical self-positioning buoy
CN117811635A (en) Offshore communication relay node capable of resisting typhoons and offshore communication platform
JP7517306B2 (en) Ships
JP6195554B2 (en) Maritime position retention method
Ferguson et al. SeaKeeper–An Operational Remote Minehunting System
Cudby Tangaroa

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180426