JP2019187349A - Withered seashore prevention material - Google Patents

Withered seashore prevention material Download PDF

Info

Publication number
JP2019187349A
JP2019187349A JP2018086073A JP2018086073A JP2019187349A JP 2019187349 A JP2019187349 A JP 2019187349A JP 2018086073 A JP2018086073 A JP 2018086073A JP 2018086073 A JP2018086073 A JP 2018086073A JP 2019187349 A JP2019187349 A JP 2019187349A
Authority
JP
Japan
Prior art keywords
mass
parts
cement
repellent
humic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018086073A
Other languages
Japanese (ja)
Other versions
JP7065684B2 (en
Inventor
洋亮 楯
Yosuke Tate
洋亮 楯
昌章 真下
Masaaki Mashita
昌章 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2018086073A priority Critical patent/JP7065684B2/en
Publication of JP2019187349A publication Critical patent/JP2019187349A/en
Application granted granted Critical
Publication of JP7065684B2 publication Critical patent/JP7065684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Catching Or Destruction (AREA)

Abstract

To provide a withered seashore prevention material that improves a withered seashore prevention effect.SOLUTION: A withered seashore prevention material is provided which contains cement and a repellent material. It is preferable to contain at least one of a lime nitrogen and a humus acid as the repellent material. Preferably, the usage of the repellent material may be 30-70 pts.mass to total of 100 pts.mass of the cement and the repellent material. Further, it is preferable to contain aggregate and water. Preferably, the usage of the aggregate may be 50-1000 pts.mass to the total of 100 pts.mass of the cement and the repellent material. A concrete structural body is formed by mixing the withered seashore prevention material and hardening it.SELECTED DRAWING: None

Description

本発明は、磯焼け防止材に関する。 The present invention relates to an anti-sunburn material.

沿岸海域には海藻が繁茂する藻場があり、海洋生物にとって餌場や産卵場等の重要な役割を果たす。しかし近年、藻場が消失する「磯焼け」と呼ばれる現象がみられている。磯焼けの原因は様々だが、ウニや魚類等の植食生物による食害、栄養塩の欠乏等が挙げられる(非特許文献1)。 There are algae beds where seaweeds grow in coastal waters, and they play an important role for marine organisms such as feeding grounds and spawning grounds. In recent years, however, a phenomenon called “burning fire” has been observed where the seaweed bed disappears. There are various causes of firewood burning, but examples include damage caused by herbivores such as sea urchins and fish, lack of nutrients, etc. (Non-patent Document 1).

これまで磯焼けを改善するために、植食生物の除去による食害の減少、海藻の生育を促進するための栄養塩供給に関する技術が種々提案されている(非特許文献1、特許文献1、2、3)。 In order to improve firewood burning, various techniques relating to the reduction of damage caused by the removal of herbivorous organisms and the supply of nutrient salts for promoting the growth of seaweed have been proposed (Non-Patent Document 1, Patent Documents 1 and 2). 3).

しかし、植食生物を除去しても藻場の回復に時間を要し、海藻の生育を促進しても植食生物の食圧に負けて藻場の回復が一時的である等、磯焼けを改善するには至っていない。
シアナミドと、腐植酸又はその含有物とを含有してなる肥料が記載されている(特許文献4)。しかし、忌避材について記載がない。
腐植酸質系物質と石こうを混合し、この混合物を固化してなることを特徴とする腐植酸供給体が記載されている(特許文献5)。しかし、セメントについて記載がない。
However, even if vegetative organisms are removed, it takes time to recover the algae ground, and even if the growth of seaweeds is promoted, the algae basin recovers temporarily due to the pressure of the vegetative organisms. It has not been improved.
A fertilizer comprising cyanamide and humic acid or a content thereof is described (Patent Document 4). However, there is no description about repellent materials.
A humic acid supplier characterized by mixing a humic acid substance and gypsum and solidifying the mixture is described (Patent Document 5). However, there is no description about cement.

特許第3311339号公報Japanese Patent No. 331339 特許第5112483号公報Japanese Patent No. 5112483 特許第6086937号公報Japanese Patent No. 6086937 特開2006−342028号公報JP 2006-342028 A 特開2003−91号公報JP 2003-91 A 水産庁、改訂 磯焼け対策ガイドライン、2015年Fisheries Agency, Revised Guidelines for Countermeasures against Burning, 2015

本発明は、磯焼け防止効果を向上した磯焼け防止材を提供する。 The present invention provides an anti-sunburn material having an improved anti-sunburn effect.

即ち、本発明は、セメントと忌避材を含有する磯焼け防止材であり、忌避材として石灰窒素及び腐植酸のうち少なくとも一つを含有する該磯焼け防止材であり、セメントと忌避材の合計100質量部に対して、忌避材の使用量が30〜70質量部である該磯焼け防止材であり、更に、骨材を含有する該磯焼け防止材であり、骨材の使用量は、セメントと忌避材の合計100質量部に対して50〜1000質量部である該磯焼け防止材であり、更に、水を含有する該磯焼け防止材であり、該磯焼け防止材を混合して硬化し、成形したコンクリート構造体であり、セメントと、石灰窒素及び腐植酸のうち少なくとも一つを含有する物質とを含有する磯焼け防止材である。 That is, the present invention is a firewood preventing material containing cement and a repellent material, the fireproof material containing at least one of lime nitrogen and humic acid as a repellent material, the sum of cement and repellent material The amount of repellent material used is 30 to 70 parts by weight with respect to 100 parts by weight, and the amount of the material used for the fireproofing material further includes aggregate. The anti-sunburn material is 50 to 1000 parts by mass with respect to a total of 100 parts by mass of cement and repellent material, and further the anti-sunburn material containing water, and the anti-sunburn material is mixed. It is a hardened and molded concrete structure, and is an anti-sunburn material containing cement and a substance containing at least one of lime nitrogen and humic acid.

本発明の磯焼け防止材は、磯焼け防止効果を向上する。 The anti-burning material of the present invention improves the anti-burning effect.

本実施形態のコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートを総称するものである。
セメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、これらポルトランドセメントに、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造した環境調和型セメント(エコセメント)等が挙げられる。これらのうちの一種以上が使用できる。
セメントは、普通ポルトランドセメントが好ましい。セメントのブレーン比表面積は、2500〜4800cm/gが好ましく、2800〜4000cm/gがより好ましく、3000〜3600cm/gが最も好ましい。
セメントは、セメントクリンカーと石膏を含有することが好ましい。セメントクリンカーは、ボーグ式を用いて算出したセメント鉱物組成が、CS(珪酸三カルシウム)が40〜70質量%、CS(珪酸二カルシウム)が7〜40質量%、CA(アルミン酸三カルシウム)が1〜15質量%及びCAF(鉄アルミン酸四カルシウム)が5〜20質量%であることが好ましい。セメント中の石膏の含有量はSO換算として0.5〜4質量%が好ましく、1.5〜3質量%がより好ましい。
The concrete of this embodiment is a general term for cement paste, cement mortar, and concrete.
As cement, various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, various mixed cements in which blast furnace slag, fly ash, or silica is mixed with these portland cements, these portland cements, Examples include filler cement mixed with limestone powder, blast furnace slow-cooled slag fine powder, and the like, and environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials. One or more of these can be used.
The cement is preferably ordinary Portland cement. Blaine specific surface area of the cement, preferably 2500~4800cm 2 / g, more preferably 2800~4000cm 2 / g, 3000~3600cm 2 / g being most preferred.
The cement preferably contains a cement clinker and gypsum. The cement clinker has a cement mineral composition calculated using the Borg formula. C 3 S (tricalcium silicate) is 40 to 70% by mass, C 2 S (dicalcium silicate) is 7 to 40% by mass, C 3 A ( tricalcium aluminate) 1 to 15% by weight and C 4 AF (iron aluminate tetracalcium) is preferably 5 to 20 wt%. The content of gypsum in the cement is preferably 0.5 to 4% by mass, more preferably 1.5 to 3 % by mass in terms of SO 3 .

忌避材としては、ウニ等の植食生物に対する忌避効果を有する物質が好ましい。忌避材としては、磯焼けを防止する効果を有する物質が好ましい。磯焼けを防止する効果を有する物質としては、石灰窒素及び腐植酸のうち少なくとも一つを含有することがより好ましく、石灰窒素及び腐植酸を併用することが最も好ましい。忌避材としては、強度発現性の点で、石灰窒素が好ましい。忌避材としては、海藻の生長の点で、腐植酸が好ましい。
石灰窒素及び腐植酸を併用する場合、石灰窒素及び腐植酸の使用割合は、石灰窒素及び腐植酸の合計100質量部中、石灰窒素:腐植酸=10〜90質量部:10〜90質量部が好ましく、30〜70質量部:30〜70質量部が好ましく、等量が最も好ましい。
As the repellent material, a substance having a repellent effect on herbivores such as sea urchins is preferable. As the repellent material, a substance having an effect of preventing firewood burning is preferable. As a substance having an effect of preventing firewood burning, it is more preferable to contain at least one of lime nitrogen and humic acid, and it is most preferable to use lime nitrogen and humic acid in combination. As the repellent material, lime nitrogen is preferable in terms of strength development. As the repellent material, humic acid is preferable from the viewpoint of the growth of seaweed.
When lime nitrogen and humic acid are used in combination, the usage ratio of lime nitrogen and humic acid is lime nitrogen: humic acid = 10-90 parts by mass: 10-90 parts by mass in a total of 100 parts by mass of lime nitrogen and humic acid. Preferably, 30 to 70 parts by mass: 30 to 70 parts by mass is preferable, and an equivalent amount is most preferable.

石灰窒素は、一般に入手可能な石灰窒素で十分である。石灰窒素は、カルシウムシアナミド(CaCN)を主成分とし、生石灰(CaO)、消石灰(Ca(OH))、炭素(C)等を副成分とする物質等が知られているが、CaCNとして40質量%以上を含むものであればいずれも使用できる。平均粒子径は、0.01〜0.4mmが好ましく、0.05〜0.3mmがより好ましい。 As lime nitrogen, generally available lime nitrogen is sufficient. Lime nitrogen, a main component of calcium cyanamide (CaCN 2), quicklime (CaO), slaked lime (Ca (OH) 2), although materials such as a carbon (C) or the like subcomponents are known, CaCN 2 Any of those containing 40% by mass or more can be used. The average particle diameter is preferably from 0.01 to 0.4 mm, more preferably from 0.05 to 0.3 mm.

石灰窒素の形状や成分濃度は、コンクリート構造体として硬化や成形ができれば特に限定されない。石灰窒素に含まれるシアナミドと酸化カルシウムはウニ等の植食生物に対して忌避効果を有し、海藻に対する食圧を抑制する。シアナミドは環境中で徐々に分解されるため、シアナミドの残存による環境汚染の心配はない。シアナミド態窒素は尿素態窒素を経てアンモニア態窒素又は硝酸態窒素に変化し、海藻の栄養として利用される。 The shape and component concentration of lime nitrogen are not particularly limited as long as the concrete structure can be hardened or molded. Cyanamide and calcium oxide contained in lime nitrogen have a repellent effect on herbivorous and other herbivorous organisms and suppress food pressure on seaweed. Since cyanamide is gradually degraded in the environment, there is no concern about environmental contamination due to residual cyanamide. Cyanamide nitrogen is converted to ammonia nitrogen or nitrate nitrogen via urea nitrogen and used as a nutrient for seaweed.

本実施形態の腐植酸は、例えば、腐植酸を含有する肥料や土壌改良材等が挙げられる。腐植酸としては、土壌中や陸水中に存在する天然品や、或いは亜炭や褐炭等の若年炭を酸化分解して得られた工業製品等が挙げられる。これらの中では、安定した品質が得られ、大量に製造できる点で、工業製品の腐植酸が好ましい。腐植酸としては、若年炭と、硝酸及び/又は硫酸との反応生成物が好ましく、亜炭と硝酸との反応生成物がより好ましい。 As for the humic acid of this embodiment, the fertilizer, soil improvement material, etc. containing humic acid are mentioned, for example. Examples of the humic acid include natural products existing in soil and inland water, or industrial products obtained by oxidative decomposition of young coal such as lignite and lignite. Among these, humic acid as an industrial product is preferable in that stable quality can be obtained and it can be produced in large quantities. As the humic acid, a reaction product of juvenile charcoal and nitric acid and / or sulfuric acid is preferable, and a reaction product of lignite and nitric acid is more preferable.

腐植酸は構造中にフェノール性のヒドロキシル基を持つポリフェノール類である。腐植酸は、例えば、シアナミドや酸化カルシウムと同様の忌避効果を有する。腐植酸は金属元素とのキレート作用による海藻の成長促進効果を有する。海藻の成長に必須な金属元素のうち、鉄は大部分が水酸化物として沈殿するため海藻による吸収性は低いが、腐植酸とキレート化することで溶解性及び吸収性が向上する。 Humic acid is a polyphenol having a phenolic hydroxyl group in its structure. Humic acid has a repellent effect similar to, for example, cyanamide and calcium oxide. Humic acid has the effect of promoting the growth of seaweed by chelating action with metal elements. Among the metal elements essential for the growth of seaweed, iron is mostly precipitated as hydroxide, so its absorbability by seaweed is low, but its solubility and absorbability are improved by chelating with humic acid.

本実施形態の腐植酸は、メラニックインデックス(以下、「MI」という。)が2.2〜3.0であることが好ましく、2.2〜2.4であることがより好ましい。
ここで、MIとは、腐植酸の分類に用いる指標であり、水酸化ナトリウム抽出液の吸収スペクトルの波長450nmと520nmにおける吸光度の比(A450/A520)である。(熊田恭一著、土壌有機物の化学第2版 学会出版センター(1981)、日本土壌肥料学雑誌 第71号 第1号 p.82〜85(2000))。
The humic acid of this embodiment preferably has a melanic index (hereinafter referred to as “MI”) of 2.2 to 3.0, and more preferably 2.2 to 2.4.
Here, MI is an index used for classification of humic acid, and is a ratio of absorbance at wavelengths of 450 nm and 520 nm (A450 / A520) of the absorption spectrum of the sodium hydroxide extract. (Shinichi Kumada, Chemistry of Soil Organic Matter 2nd Academic Publishing Center (1981), Japan Soil Fertilizer Journal No. 71 No. 1 p. 82-85 (2000)).

具体的には、本実施形態に係るMIとは、次の方法によって算出される。
乳鉢と250μm篩を用い、試料を250μm篩下品に粉砕する。そのうち約10gを、質量が既知の秤量ビンに取り精秤する。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温に戻してから再度精秤する。その質量減少分を水分とみなして試料の含水率を求める。次に、50ml遠沈管に、上記250μm篩下品0.10g(乾燥質量相当量)と、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過する。濾液の450nmの吸光度と520nmの吸光度を、蒸留水をブランクとして測定する。この場合、450nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加して吸光度を0.8以上1.0未満に調整してから、520nmの吸光度を測定する。(450nmでの吸光度/520nmでの吸光度)の比を算出し、MIとする。
Specifically, the MI according to the present embodiment is calculated by the following method.
Using a mortar and 250 μm sieve, grind the sample into a 250 μm sieved product. About 10 g of that is taken into a weighing bottle of known mass and weighed accurately. The weighing bottle is left in a dryer maintained at a temperature of 105 ° C. for about 12 hours, and then returned to room temperature in a desiccator and then weighed again. The moisture content of the sample is determined by regarding the reduced mass as moisture. Next, in a 50 ml centrifuge tube, 0.10 g of the above 250 μm sieved product (corresponding to dry mass) and 45 ml of 0.5 mol / L sodium hydroxide aqueous solution are placed and shaken at a room temperature of 20 ° C. for about 1 hour at a speed of 250 rpm. After that, centrifugation at 3,000 × g for about 10 minutes was carried out, and the supernatant was added to Advantech No. Filter through 5C filter paper. The absorbance at 450 nm and the absorbance at 520 nm of the filtrate are measured using distilled water as a blank. In this case, if the absorbance at 450 nm is 1.0 or more, 0.1 mol / L sodium hydroxide aqueous solution is added to adjust the absorbance to 0.8 or more and less than 1.0, and then the absorbance at 520 nm is adjusted. taking measurement. The ratio of (absorbance at 450 nm / absorbance at 520 nm) is calculated and set as MI.

MIが2.2以上であれば、充分なアルコール性水酸基やメトキシル基等の活性基を有しているので、水溶性が向上する。MIが3.0以下であれば、過剰な酸化反応を抑制し硝酸コストの低減につながる。
MIの増減は腐植酸粗製物製造時の硝酸量の増減によって行うことができ、硝酸量を多くすればMIが増加する。
If MI is 2.2 or more, it has sufficient active groups such as alcoholic hydroxyl groups and methoxyl groups, so water solubility is improved. If MI is 3.0 or less, an excessive oxidation reaction will be suppressed and the nitric acid cost will be reduced.
MI can be increased / decreased by increasing / decreasing the amount of nitric acid during the production of crude humic acid, and increasing the amount of nitric acid increases MI.

本実施形態の腐植酸は、重量平均分子量が500〜50000であることが好ましく、1000〜7000であることがより好ましい。
腐植酸の重量平均分子量は、Waters社製 Alliance HPLC System を用い、HPSEC法(GPC法)により測定した値である。カラムはSHODEX社製、 SB−803HQを用い、標準試料はポリスチレンスルホン酸ナトリウムを用いた。移動相は25%アセトニトリル含有の10mmol/Lりん酸ナトリウム緩衝液を用いた。検出波長は260nmである。
The humic acid of this embodiment preferably has a weight average molecular weight of 500 to 50,000, more preferably 1000 to 7000.
The weight average molecular weight of humic acid is the value measured by HPSEC method (GPC method) using Waters Alliance HPLC System. SB-803HQ manufactured by SHODEX was used for the column, and sodium polystyrene sulfonate was used for the standard sample. The mobile phase was 10 mmol / L sodium phosphate buffer containing 25% acetonitrile. The detection wavelength is 260 nm.

腐植酸は、亜炭や褐炭等の若年炭の酸化分解物や、腐植酸の水溶性の塩、例えば、マグネシウム塩、カリウム塩、カルシウム塩等、を含有しても良い。 Humic acid may contain oxidative decomposition products of young coals such as lignite and lignite, and water-soluble salts of humic acids such as magnesium salts, potassium salts, calcium salts, and the like.

忌避材の使用量は、コンクリート構造体の強度を一定以上に保つ点で、セメントと忌避材の合計100質量部に対して30〜70質量部が好ましく、植食生物に対する忌避効果を高める点で、40〜70質量部がより好ましい。
コンクリート構造体を製造する際、水の使用量は、セメントと忌避材の合計100質量部に対して5〜60質量部が好ましく、8〜25質量部がより好ましく、10〜20質量部が最も好ましい。
本発明は、磯焼け防止効果とコンクリート構造体の強度を向上する点で、骨材を使用することが好ましい。
骨材としては、細骨材や粗骨材等が挙げられる。骨材としては、川砂、山砂及び砕石等が挙げられる。骨材の粒径は、0.1〜20mmが好ましく、5〜13mmがより好ましい。
The amount of repellent used is preferably 30 to 70 parts by weight with respect to a total of 100 parts by weight of cement and repellent, in order to keep the strength of the concrete structure above a certain level, and to increase the repellent effect on herbivores. 40 to 70 parts by mass are more preferable.
When manufacturing a concrete structure, the amount of water used is preferably 5 to 60 parts by mass, more preferably 8 to 25 parts by mass, and most preferably 10 to 20 parts by mass with respect to 100 parts by mass of the cement and the repellent. preferable.
In the present invention, it is preferable to use an aggregate in terms of improving the effect of preventing the burning and improving the strength of the concrete structure.
Examples of the aggregate include fine aggregate and coarse aggregate. Examples of aggregates include river sand, mountain sand, and crushed stone. The particle size of the aggregate is preferably 0.1 to 20 mm, and more preferably 5 to 13 mm.

コンクリート構造体を製造する際、骨材の使用量は、セメントと忌避材の合計100質量部に対して50〜1000質量部が好ましく、200〜500質量部がより好ましく、300〜400質量部が最も好ましい。50質量部以上だと磯焼け防止効果を長期間持続し、1000質量部以下だとコンクリート構造体の強度が大きくなる。 When producing a concrete structure, the amount of aggregate used is preferably 50 to 1000 parts by weight, more preferably 200 to 500 parts by weight, and more preferably 300 to 400 parts by weight with respect to 100 parts by weight as a total of cement and repellent. Most preferred. If it is 50 parts by mass or more, the effect of preventing the burning will last for a long time, and if it is 1000 parts by mass or less, the strength of the concrete structure will increase.

本実施形態は、磯焼け防止材を混合して硬化し、成形することにより、コンクリート構造体を作製する。例えば、忌避材として石灰窒素及び腐植酸のうち少なくとも一つをセメントに混合して硬化、成形することにより、コンクリート構造体を作製する。
コンクリート構造体の構造は特に限定されないが、忌避物質の溶出効果を持続させるためには、ポーラス構造が好ましい。ポーラス構造にするには、骨材を使用することが好ましい。コンクリート構造体の形状は特に限定されないが、円柱体、角柱体、直方体、円錐体、球体、テトラポット体等の形状が挙げられる。コンクリート構造体の形状は、設置する海域等の条件に応じて大きさ・形状が決められる。例えば、潮流の速い地域ではテトラポット体を複数個組み合わせることにより、コンクリート構造体が流されることを防ぎ、目的の箇所に留めることができる。
In the present embodiment, a concrete structure is produced by mixing and hardening and molding a flame-proofing material. For example, a concrete structure is prepared by mixing and curing and molding at least one of lime nitrogen and humic acid as a repellent material in cement.
The structure of the concrete structure is not particularly limited, but a porous structure is preferable in order to maintain the elution effect of the repellent substance. In order to obtain a porous structure, it is preferable to use an aggregate. Although the shape of a concrete structure is not specifically limited, Shapes, such as a cylinder, a prismatic body, a rectangular parallelepiped, a cone, a sphere, a tetrapot body, are mentioned. The size and shape of the concrete structure is determined according to conditions such as the sea area where it is installed. For example, by combining a plurality of tetrapot bodies in a region where the tidal current is fast, the concrete structure can be prevented from being washed away and can be kept at a target location.

以下、実験例によって本実施形態を具体的に説明するが、本実施形態はこれらの実験例によって限定されるものではない。 Hereinafter, the present embodiment will be specifically described with experimental examples, but the present embodiment is not limited to these experimental examples.

[忌避効果の評価試験]
海藻としてワカメを供試材料とし、植食生物としてキタムラサキウニを供試材料とし、忌避効果の評価試験を実施した。コンテナ(内寸長さ36.5 cm×内寸幅24.3 cm×内寸高さ8.8cm)に人工海水(商品名:インスタントオーシャンプレミアム、アクアリウムシステムズ社製)6Lを入れ、円柱体のコンクリート構造体(直径10cm×高さ20cm)を1個設置した。葉長3cmのワカメ胞子体及び殻径30mmのキタムラサキウニを1個体ずつ移植し、温度20℃、光量90μmol/m/s、12時間の明期と12時間の暗期といった光周期の培養条件で1週間培養した。人工海水は2〜3日毎に新しく調製したものに入れ替えた。1週間後のワカメの葉長を測定した。このワカメの葉長を忌避材の効果として評価した。
[Evaluation test of repellent effect]
An evaluation test of the repellent effect was conducted using seaweed as a seaweed as a test material and kitamura sea urchin as a herbivore. Put 6L of artificial seawater (trade name: Instant Ocean Premium, manufactured by Aquarium Systems) into a container (inner length 36.5 cm x inner width 24.3 cm x inner height 8.8 cm). One concrete structure (diameter 10 cm × height 20 cm) was installed. One individual of a 3 cm leaf long seaweed spore and a 30 mm shell diameter sea urchin, transplanted one by one, under culture conditions of a photoperiod such as a temperature of 20 ° C., a light intensity of 90 μmol / m 2 / s, a light period of 12 hours and a dark period of 12 hours Cultured for 1 week. The artificial seawater was replaced with a freshly prepared one every 2-3 days. The leaf length of wakame after one week was measured. The leaf length of this seaweed was evaluated as an effect of the repellent.

[圧縮強度の評価試験]
圧縮強度:JIS R 5201−1997「セメントの物理試験方法」に準拠し、コンクリート構造体の圧縮強度を、セメントペーストと骨材を混合してから7日後に測定した。
[Compressive strength evaluation test]
Compressive strength: Based on JIS R 5201-1997 “Physical testing method of cement”, the compressive strength of the concrete structure was measured 7 days after mixing the cement paste and the aggregate.

[ブレーン比表面積の評価試験]
JIS R 5201−1997「セメントの物理試験方法」に準拠し、測定した。
[Brain specific surface area evaluation test]
Measured according to JIS R 5201-1997 “Cement physical test method”.

[石灰窒素及び腐植酸の粒径の評価試験]
レーザー回折式粒度分布計を用い、超音波装置を用いて分散させた状態で測定を行った。超音波装置の機種は、LA−920(堀場製作所)を使用した。平均粒子径を粒径とした。
[Evaluation test of particle size of lime nitrogen and humic acid]
Measurement was performed using a laser diffraction particle size distribution meter in a dispersed state using an ultrasonic device. LA-920 (Horiba Seisakusho) was used as the model of the ultrasonic device. The average particle size was taken as the particle size.

[骨材の粒径の評価試験]
JIS A 1102「骨材のふるい分け試験」に準拠し、篩分けを行い、各篩にとどまる質量分率が最も高い篩の篩目を粒径とした。
[Evaluation test of particle size of aggregate]
In accordance with JIS A 1102 “Aggregate Screening Test”, sieving was performed, and the sieve size of the sieve having the highest mass fraction remaining on each sieve was defined as the particle size.

[比較例1]
セメント(市販品、普通ポルトランドセメント、ブレーン比表面積3300cm/g、セメントクリンカー中のセメント鉱物組成は、CS56質量%、CS26質量%、CA9質量%、CAF9質量%である。セメント中の石膏の含有量はSO換算として2.1質量%である)100質量部と水道水15質量部をコンクリートミキサー(オムニミキサー、チヨダマシナリー社製)に投入して練り混ぜ、セメントペーストを調製した。セメントペーストに骨材として6号砕石(新潟県糸魚川産、粒径9.5mm)を、セメント100質量部に対して340質量部を投入して更に練り混ぜ、直径10 cm×高さ20cmの型枠に流し込んだ。テーブル・バイブレータ(CF−1033、丸東製作所社製)を用いて振動数2800rpmで約20秒間締固めを行い、24時間室温で静置して養生した。脱型したコンクリート構造体を用いて、上述の評価試験を実施した。
[Comparative Example 1]
Cement (commercially available, ordinary Portland cement, Blaine specific surface area 3300 cm 2 / g, cement mineral composition in cement clinker is C 3 S56 mass%, C 2 S 26 mass%, C 3 A 9 mass%, C 4 AF 9 mass% there. the content of gypsum in the cement is kneaded by introducing a 2.1% by mass) 15 parts by weight 100 parts by weight of tap water as calculated as SO 3 concrete mixer (Omni mixer, the Chiyoda Machinery Co., Ltd.), A cement paste was prepared. No. 6 crushed stone (product of Itoigawa, Niigata Prefecture, particle size 9.5 mm) as aggregate in cement paste, 340 parts by mass with respect to 100 parts by mass of cement, and further kneaded, a mold with a diameter of 10 cm and a height of 20 cm Poured into the frame. Using a table vibrator (CF-1033, manufactured by Maruto Seisakusho Co., Ltd.), it was compacted at a frequency of 2800 rpm for about 20 seconds, and allowed to stand at room temperature for 24 hours for curing. The above-described evaluation test was carried out using the demolded concrete structure.

[比較例2]
石膏(市販品、焼石膏)60質量部と、腐植酸(市販品、亜炭と硝酸の反応生成物、平均粒子径2mm、MI値2.3、重量平均分子量4000)40質量部と、水道水15質量部とを、コンクリートミキサーに投入して練り混ぜ、石膏と忌避材(腐植酸)の合計100質量部に対して骨材340質量部を投入したこと以外は比較例1と同様に実施した。
[Comparative Example 2]
60 parts by mass of gypsum (commercial product, calcined gypsum), 40 parts by mass of humic acid (commercial product, reaction product of lignite and nitric acid, average particle diameter 2 mm, MI value 2.3, weight average molecular weight 4000), and tap water 15 parts by mass was put into a concrete mixer and kneaded, and was carried out in the same manner as in Comparative Example 1 except that 340 parts by mass of aggregate was added to a total of 100 parts by mass of gypsum and repellent (humic acid). .

[実施例1]
セメント60質量部と、石灰窒素(市販品、粉状品、CaCN50質量%含有、平均粒子径0.1mm)40質量部と、水道水15質量部とを、コンクリートミキサーに投入して練り混ぜ、セメントと忌避材(石灰窒素)の合計100質量部に対して骨材340質量部を投入したこと以外は比較例1と同様に実施した。
[Example 1]
60 parts by mass of cement, 40 parts by mass of lime nitrogen (commercial product, powdered product, CaCN 2 50% by mass, average particle size 0.1 mm) and 15 parts by mass of tap water are put into a concrete mixer and kneaded. This was carried out in the same manner as in Comparative Example 1 except that 340 parts by mass of aggregate was added to 100 parts by mass of cement and repellent (lime nitrogen).

[実施例2]
セメント60質量部と、石灰窒素20質量部と、腐植酸20質量部と、水道水15質量部とを、コンクリートミキサーに投入して練り混ぜ、セメントと忌避材(石灰窒素と腐植酸)の合計100質量部に対して骨材340質量部を投入したこと以外は比較例1と同様に実施した。
[Example 2]
60 parts by mass of cement, 20 parts by mass of lime nitrogen, 20 parts by mass of humic acid, and 15 parts by mass of tap water are put into a concrete mixer and mixed, and the total of cement and repellent materials (lime nitrogen and humic acid) It implemented similarly to the comparative example 1 except having added 340 mass parts of aggregates with respect to 100 mass parts.

[実施例3]
セメント60質量部と、腐植酸40質量部と、水道水15質量部とを、コンクリートミキサーに投入して練り混ぜ、セメントと忌避材(腐植酸)の合計100質量部に対して骨材340質量部を投入したこと以外は比較例1と同様に実施した。
[Example 3]
60 parts by mass of cement, 40 parts by mass of humic acid, and 15 parts by mass of tap water are put into a concrete mixer and kneaded, and aggregate 340 parts by mass with respect to a total of 100 parts by mass of cement and repellent (humic acid). This was carried out in the same manner as Comparative Example 1 except that parts were added.

[実施例4]
セメント40質量部と、石灰窒素30質量部と、腐植酸30質量部と、水道15質量部とを、コンクリートミキサーに投入して練り混ぜ、セメントと忌避材(石灰窒素と腐植酸)の合計100質量部に対して骨材340質量部を投入したこと以外は比較例1と同様に実施した。
[Example 4]
40 parts by mass of cement, 30 parts by mass of lime nitrogen, 30 parts by mass of humic acid, and 15 parts by mass of tap water are put into a concrete mixer and kneaded to total 100 cement and repellent materials (lime nitrogen and humic acid). It implemented like the comparative example 1 except having added 340 mass parts of aggregates with respect to the mass part.

[実施例5]
セメント40質量部と、石灰窒素30質量部と、腐植酸30質量部と、水道15質量部とを、コンクリートミキサーに投入して練り混ぜ、セメントと忌避材(石灰窒素と腐植酸)の合計100質量部に対して骨材50質量部を投入したこと以外は比較例1と同様に実施した。
[Example 5]
40 parts by mass of cement, 30 parts by mass of lime nitrogen, 30 parts by mass of humic acid, and 15 parts by mass of tap water are put into a concrete mixer and kneaded to total 100 cement and repellent materials (lime nitrogen and humic acid). It implemented similarly to the comparative example 1 except having added 50 mass parts of aggregates with respect to the mass part.

Figure 2019187349
Figure 2019187349

Figure 2019187349
Figure 2019187349

結果を表1〜2に示した。表1〜2の結果に示すように、本実施形態に係る実施例1〜4の原料配合比では、忌避材の効果によりウニによる食害がなく、ワカメの葉長は4.5〜6cmとなった。比較例1では忌避材を含有しないため、ウニによる食害がみられ、1週間後のワカメの葉長は計測できなかった。比較例2ではセメントを含有しないため、ウニによる食害がみられ、強度が小さかった。骨材を使用することにより、ワカメの葉長が長くなった(実施例4〜5の対比)。
以上から、忌避効果を得るためには、セメントと忌避材の合計100質量部に対して、忌避材の含有量を30〜70質量部にすることが好ましく、骨材の含有量を50〜1000質量部にすることが好ましい。
The results are shown in Tables 1-2. As shown to the result of Tables 1-2, in the raw material compounding ratio of Examples 1-4 which concern on this embodiment, there is no food damage by a sea urchin by the effect of a repellent, and the leaf length of a seaweed becomes 4.5-6 cm. It was. In Comparative Example 1, since no repellent material was contained, damage by sea urchin was observed, and the leaf length of wakame after one week could not be measured. In Comparative Example 2, since no cement was contained, the damage by sea urchin was observed and the strength was small. By using the aggregate, the leaf length of the seaweed became longer (contrast with Examples 4 to 5).
From the above, in order to obtain a repellent effect, the repellent content is preferably 30 to 70 parts by mass and the aggregate content is 50 to 1000 with respect to 100 parts by mass of cement and repellent. It is preferable to make it a mass part.

本実施形態の磯焼け防止材は、石灰窒素に含まれるシアナミドや酸化カルシウム、腐植酸を沿岸海域に供給し、海藻に対する植食生物の食圧(摂食圧)を抑制する。シアナミドは海藻の成長に必須な主要成分である窒素源として海藻の成長を促す。腐植酸は海藻の成長に必須な成分である鉄とキレートを形成してその吸収性を向上し、海藻の成長を促す。
本実施形態によれば、繁茂していたコンブ、ワカメ、アラメ、カジメ等の有用海藻類が育たずに死滅し、岩肌が露出若しくは石灰藻等で覆われてしまうといった、磯焼けと呼んでいる現象を防止できる。本実施形態によれば、ウニ等の植食生物に対する忌避効果を有し、海藻に対する食圧を抑制する有効な忌避物質を提供できる。同時に海藻の栄養である窒素の供給量を増加し、鉄の吸収性を向上し、海藻の成長を促進できる。本実施形態のシアナミド及び腐植酸は生分解性があるので、本実施形態はシアナミド及び腐植酸が環境中に残存する等の不具合がなく、沿岸域での養殖や陸上での海産物養殖、磯焼けの改善の場でも利用できる。本実施形態のコンクリート構造体は強度が大きいので、長期間水中に設置できる。
本実施形態のコンクリート構造体は、忌避材の供給体としてのみならず、藻類育成資材としても使用できる。

The anti-burning material of the present embodiment supplies cyanamide, calcium oxide, and humic acid contained in lime nitrogen to the coastal sea area, and suppresses the feeding pressure (feeding pressure) of the herbivore against seaweed. Cyanamide promotes seaweed growth as a nitrogen source, which is a major component essential for seaweed growth. Humic acid forms a chelate with iron, which is an essential component for seaweed growth, and improves its absorbability and promotes seaweed growth.
According to this embodiment, useful seaweeds such as kombu, wakame, arame, kajime, etc. that have flourished are killed without growing, and the rock surface is exposed or covered with lime algae etc. The phenomenon can be prevented. According to the present embodiment, an effective repellent substance that has a repellent effect on herbivores such as sea urchins and suppresses the food pressure on seaweed can be provided. At the same time, the supply of nitrogen, which is a nutrient for seaweed, can be increased, the iron absorption can be improved, and the growth of seaweed can be promoted. Since the cyanamide and humic acid of this embodiment are biodegradable, this embodiment is free from defects such as cyanamide and humic acid remaining in the environment. It can also be used for improvement. Since the concrete structure of the present embodiment has high strength, it can be installed in water for a long time.
The concrete structure of the present embodiment can be used not only as a repellent supply body but also as an algae growing material.

Claims (8)

セメントと忌避材を含有する磯焼け防止材。 Anti-burning material containing cement and repellent. 忌避材として石灰窒素及び腐植酸のうち少なくとも一つを含有する請求項1に記載の磯焼け防止材。 The anti-sunburn material according to claim 1, comprising at least one of lime nitrogen and humic acid as a repellent material. セメントと忌避材の合計100質量部に対して、忌避材の使用量が30〜70質量部である請求項1又は2に記載の磯焼け防止材。 The anti-sunburn material according to claim 1 or 2, wherein the amount of the repellent used is 30 to 70 parts by mass with respect to a total of 100 parts by mass of the cement and the repellent. 更に、骨材を含有する請求項1〜3のいずれか一項に記載の磯焼け防止材。 Furthermore, the anti-burning material according to any one of claims 1 to 3, further comprising an aggregate. 骨材の使用量は、セメントと忌避材の合計100質量部に対して50〜1000質量部である請求項1〜4のいずれか一項に記載の磯焼け防止材。 The amount of aggregate used is 50 to 1000 parts by mass with respect to 100 parts by mass in total of cement and repellent material. 更に、水を含有する請求項1〜5のいずれか一項に記載の磯焼け防止材。 Furthermore, the anti-sunburn material as described in any one of Claims 1-5 containing water. 請求項1〜5のいずれか一項に記載の磯焼け防止材を混合して硬化し、成形したコンクリート構造体。 A concrete structure obtained by mixing, curing, and molding the anti-sunburn material according to any one of claims 1 to 5. セメントと、石灰窒素及び腐植酸のうち少なくとも一つを含有する物質とを含有する磯焼け防止材。

An anti-sunburn material containing cement and a substance containing at least one of lime nitrogen and humic acid.

JP2018086073A 2018-04-27 2018-04-27 Rocky-shore shore prevention material Active JP7065684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086073A JP7065684B2 (en) 2018-04-27 2018-04-27 Rocky-shore shore prevention material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086073A JP7065684B2 (en) 2018-04-27 2018-04-27 Rocky-shore shore prevention material

Publications (2)

Publication Number Publication Date
JP2019187349A true JP2019187349A (en) 2019-10-31
JP7065684B2 JP7065684B2 (en) 2022-05-12

Family

ID=68387490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086073A Active JP7065684B2 (en) 2018-04-27 2018-04-27 Rocky-shore shore prevention material

Country Status (1)

Country Link
JP (1) JP7065684B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222537A (en) * 1994-02-10 1995-08-22 Nippon Data Service Kk Artificial fish reef for aquatic resources, capable of preventing predation by herbivorous animals
JPH11137117A (en) * 1997-09-08 1999-05-25 Hokuetsu:Kk Concrete block for creating seaweed colony and seaweed reef
JP2003000092A (en) * 2001-06-21 2003-01-07 Occ Corp Method for producing humic acid feeder, humic acid feed device to be used underwater and method for setting humic acid feeder
JP2006342028A (en) * 2005-06-10 2006-12-21 Denki Kagaku Kogyo Kk Fertilizer
JP5112483B2 (en) * 2010-08-11 2013-01-09 中川特殊鋼株式会社 Canned for marine greening, method for using canned for marine greening, and method for producing canned for marine greening
JP2013245118A (en) * 2012-05-23 2013-12-09 Daiki Koga Concrete block for cleaning water environment
JP2018050513A (en) * 2016-09-28 2018-04-05 太平洋セメント株式会社 Algae growth promotion material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222537A (en) * 1994-02-10 1995-08-22 Nippon Data Service Kk Artificial fish reef for aquatic resources, capable of preventing predation by herbivorous animals
JPH11137117A (en) * 1997-09-08 1999-05-25 Hokuetsu:Kk Concrete block for creating seaweed colony and seaweed reef
JP2003000092A (en) * 2001-06-21 2003-01-07 Occ Corp Method for producing humic acid feeder, humic acid feed device to be used underwater and method for setting humic acid feeder
JP2006342028A (en) * 2005-06-10 2006-12-21 Denki Kagaku Kogyo Kk Fertilizer
JP5112483B2 (en) * 2010-08-11 2013-01-09 中川特殊鋼株式会社 Canned for marine greening, method for using canned for marine greening, and method for producing canned for marine greening
JP2013245118A (en) * 2012-05-23 2013-12-09 Daiki Koga Concrete block for cleaning water environment
JP2018050513A (en) * 2016-09-28 2018-04-05 太平洋セメント株式会社 Algae growth promotion material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中川雅夫: "鉄鋼スラグによる海域環境改善技術", 建設の施工企画, vol. 742, JPN6021045327, 25 December 2011 (2011-12-25), pages 49 - 53, ISSN: 0004639477 *

Also Published As

Publication number Publication date
JP7065684B2 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
Dwivedi et al. Fly ash–waste management and overview: A Review
CN101906304B (en) Soil curing agent and using method thereof
JP4729120B1 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
KR20020093204A (en) Solidificator Manufacturing Method with Waste Oyster Shell
JP5047745B2 (en) Ground improvement material
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP2013202550A (en) Method of producing solidified material from biomass incineration ash
CN110105049A (en) A kind of preparation method on ceramsite concrete light-weight water-permeable brick road
JP5799585B2 (en) Manufacturing method of artificial stone
CN109650808A (en) Composite curing agent based on biomass/sludge co-combustion ash and application thereof
JP3894732B2 (en) Porous ceramic particles and method for producing the same
JP7065684B2 (en) Rocky-shore shore prevention material
KR101640160B1 (en) Method for preparing a hardening composition for deep mixing method and hardening composition for deep mixing method
CN111661993A (en) Sludge curing agent and preparation method and use method thereof
JP5180328B2 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP4748608B2 (en) Soil-solidifying agent and soil-solidifying method
KR101447267B1 (en) Method for preparing a hardening composition for deep mixing method and hardening composition for deep mixing method
JP2022152501A (en) Concrete containing attractant and concrete structure
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
KR20030075045A (en) The Manufacturing Method and The Soil Stabilizer Improving High Water Content-Soft Ground Reusong Industrial Discharge and Ocean Waste
JP2010221156A (en) Artificial water retention material and method for producing the material
JP2010089069A (en) Method for reducing amount of water of accumulated mud in water treatment plant and sewage sludge
JP4584630B2 (en) Soil improvement material
JP4012962B2 (en) Fertilizer for improving marine resource growth environment and manufacturing method thereof
JP6204099B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150