JP2019185923A - Manufacturing method for film electrode gas diffusion layer joined body - Google Patents

Manufacturing method for film electrode gas diffusion layer joined body Download PDF

Info

Publication number
JP2019185923A
JP2019185923A JP2018072470A JP2018072470A JP2019185923A JP 2019185923 A JP2019185923 A JP 2019185923A JP 2018072470 A JP2018072470 A JP 2018072470A JP 2018072470 A JP2018072470 A JP 2018072470A JP 2019185923 A JP2019185923 A JP 2019185923A
Authority
JP
Japan
Prior art keywords
adhesive
mask
diffusion layer
gas diffusion
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018072470A
Other languages
Japanese (ja)
Inventor
誠 安達
Makoto Adachi
誠 安達
貴士 北川
Takashi Kitagawa
貴士 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018072470A priority Critical patent/JP2019185923A/en
Publication of JP2019185923A publication Critical patent/JP2019185923A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a manufacturing method for a film electrode gas diffusion layer joined body that makes it possible to reduce air bubbles generated between an adhesive and a resin sheet and a gas diffusion layer.SOLUTION: A manufacturing method for a film electrode gas diffusion layer joined body 10 for manufacturing a film electrode gas diffusion layer joined body 10 by disposing a gas diffusion layer 12 and a resin sheet 13 on a film electrode joined body 11, comprises: a step of applying an adhesive B on the film electrode joined body 11; and a step of placing a resin sheet 13 and a gas diffusion layer 12 on the adhesive B. In the step of applying the adhesive B onto the film electrode joined body 11, a screen mask comprising a frame-shaped first mask 21 and a rectangular second mask 22 coupled to inside of the first mask 21 via a mesh 23, and thinner than the first mask 21 is disposed on the film electrode joined body 11, and the first mask 21 and the second mask 22 are brought into contact with the film electrode joined body 11 and the adhesive B is applied while the mesh 23 is kept inclined to the film electrode joined body 11.SELECTED DRAWING: Figure 2C

Description

本発明は、膜電極ガス拡散層接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode gas diffusion layer assembly.

膜電極ガス拡散層接合体は、膜電極接合体と樹脂シートおよびガス拡散層とが、膜電極接合体上に塗布された接着剤を介して接合され、製造される。特許文献1には、マスクの開口部の形状が上面と下面とで異なるメタルマスクを用い、スクリーン印刷法によって接着剤を塗布する、膜電極接合体上への接着剤の塗布に関する技術が開示されている。   The membrane electrode gas diffusion layer assembly is manufactured by joining the membrane electrode assembly, the resin sheet, and the gas diffusion layer via an adhesive applied on the membrane electrode assembly. Patent Document 1 discloses a technique related to the application of an adhesive onto a membrane electrode assembly, in which a metal mask having different shapes of openings on the upper surface and lower surface is used and an adhesive is applied by a screen printing method. ing.

特開2015−231686号公報JP2015-231686A

発明者は、膜電極接合体上に接着剤を塗布する際に、スクリーン印刷法に用いるマスクの上面と下面との開口部の形状に差があると、例えばマスクと膜電極接合体とで形成された鋭角の領域には接着剤が入り込みづらく、当該接着剤に樹脂シートおよびガス拡散層を載置する際に、接着剤と樹脂シートとの間に気泡が発生するという問題を見出した。   When the inventor applies an adhesive on the membrane electrode assembly, if there is a difference in the shape of the opening between the upper surface and the lower surface of the mask used in the screen printing method, for example, the mask and the membrane electrode assembly are formed. It has been found that the adhesive does not easily enter the acute angle region, and bubbles are generated between the adhesive and the resin sheet when the resin sheet and the gas diffusion layer are placed on the adhesive.

本発明は、上記の問題を鑑みてなされたものであり、膜電極接合体上に塗布した接着剤上に樹脂シートを載置する際に発生する気泡を抑制することが可能な、膜電極ガス拡散層接合体の製造方法を提供するものである。   The present invention has been made in view of the above problems, and a membrane electrode gas capable of suppressing bubbles generated when a resin sheet is placed on an adhesive applied on a membrane electrode assembly. A method for producing a diffusion layer assembly is provided.

本発明にかかる膜電極ガス拡散層接合体の製造方法では、膜電極接合体上に樹脂シートおよびガス拡散層を配設して膜電極ガス拡散層接合体を製造する膜電極ガス拡散層接合体の製造方法であって、前記膜電極接合体上に接着剤を塗布する工程と、前記接着剤上に前記樹脂シート及び前記ガス拡散層を載置する工程と、を備え、前記膜電極接合体上に接着剤を塗布する工程では、枠形状の第1マスクと、前記第1マスクの内側にメッシュを介して連結され、前記第1マスクより厚さが薄い矩形状の第2マスクと、を備えるスクリーンマスクを前記膜電極接合体上に配置し、前記第1マスク及び前記第2マスクを前記膜電極接合体に接触させて前記メッシュを前記膜電極接合体に対して傾斜させた状態で前記接着剤を塗布する。   In the method of manufacturing a membrane electrode gas diffusion layer assembly according to the present invention, a membrane electrode gas diffusion layer assembly is manufactured by disposing a resin sheet and a gas diffusion layer on the membrane electrode assembly. A method of applying an adhesive on the membrane electrode assembly, and a step of placing the resin sheet and the gas diffusion layer on the adhesive, the membrane electrode assembly In the step of applying the adhesive, a frame-shaped first mask and a rectangular second mask connected to the inside of the first mask via a mesh and having a thickness smaller than the first mask, A screen mask provided on the membrane electrode assembly, the first mask and the second mask are brought into contact with the membrane electrode assembly, and the mesh is inclined with respect to the membrane electrode assembly. Apply adhesive.

本発明にかかる膜電極ガス拡散層接合体の製造方法では、膜電極接合体上に接着剤を塗布する工程において、枠形状の第1マスクと、第1マスクの内側にメッシュを介して連結され、第1マスクより厚さが薄い矩形状の第2マスクと、を備えるスクリーンマスクを膜電極接合体上に配置し、第1マスク及び第2マスクを膜電極接合体に接触させてメッシュを膜電極接合体に対して傾斜させた状態で接着剤を塗布する。よって、膜電極接合体上に塗布した接着剤に樹脂シートを載置する際に接着剤と樹脂シートの間に発生する気泡を抑制することができる。   In the method for manufacturing a membrane electrode gas diffusion layer assembly according to the present invention, in the step of applying an adhesive on the membrane electrode assembly, the frame-shaped first mask is connected to the inside of the first mask via a mesh. A second mask having a rectangular shape thinner than the first mask is disposed on the membrane electrode assembly, and the mesh is formed by bringing the first mask and the second mask into contact with the membrane electrode assembly. An adhesive is applied in a state of being inclined with respect to the electrode assembly. Therefore, bubbles generated between the adhesive and the resin sheet when the resin sheet is placed on the adhesive applied on the membrane electrode assembly can be suppressed.

本発明により、膜電極接合体上に塗布した接着剤に樹脂シートを載置する際に、接着剤と樹脂シートの間に発生する気泡を抑制することができる。   According to the present invention, when the resin sheet is placed on the adhesive applied on the membrane electrode assembly, bubbles generated between the adhesive and the resin sheet can be suppressed.

実施の形態にかかる膜電極ガス拡散層接合体の製造方法によって製造される膜電極ガス拡散層接合体である。It is a membrane electrode gas diffusion layer assembly manufactured by the manufacturing method of the membrane electrode gas diffusion layer assembly according to the embodiment. 実施の形態にかかる膜電極ガス拡散層接合体の製造方法に用いるスクリーン版をMEA上に配置した状態を示す平面図である。It is a top view which shows the state which has arrange | positioned the screen plate used for the manufacturing method of the membrane electrode gas diffusion layer assembly concerning embodiment to MEA. 図2AのIIB−IIB線に沿う正面断面図である。It is front sectional drawing which follows the IIB-IIB line | wire of FIG. 2A. 実施の形態にかかるスクリーン版を用いてMEA上に接着剤を塗布している状態を示す正面断面図である。It is front sectional drawing which shows the state which has apply | coated the adhesive agent on MEA using the screen plate concerning embodiment. 実施の形態にかかるMEA上に接着剤が塗布された状態を示す断面斜視図である。It is a cross-sectional perspective view which shows the state by which the adhesive agent was apply | coated on MEA concerning embodiment. 実施の形態にかかるMEA上に塗布した接着剤の頂部に樹脂シートを載置した状態を示す断面斜視図である。It is a cross-sectional perspective view which shows the state which mounted the resin sheet on the top part of the adhesive agent apply | coated on MEA concerning embodiment. 実施の形態にかかるMEA上に樹脂シートを圧力をかけて配置する工程を示す正面断面図である。It is front sectional drawing which shows the process of applying and arrange | positioning a resin sheet on MEA concerning embodiment. 実施の形態にかかるMEAにGDLを積層する工程を示す正面断面図である。It is front sectional drawing which shows the process of laminating | stacking GDL on MEA concerning embodiment. 実施の形態にかかるMEA上にGDLを圧力をかけて配置した状態を示す断面斜視図である。It is a section perspective view showing the state where GDL was arranged under pressure on MEA concerning an embodiment.

以下、本発明の具体的な実施の形態について、図面を参照しながら詳細に説明する。
なお、当然のことながら、図1〜図2Hに示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。通常、z軸プラス向きが鉛直上向き、xy平面が水平面である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
As a matter of course, the right-handed xyz coordinates shown in FIGS. 1 to 2H are convenient for explaining the positional relationship of the constituent elements. Usually, the z-axis plus direction is vertically upward, and the xy plane is a horizontal plane.

<実施の形態>
図1は、本実施の形態にかかる膜電極ガス拡散層接合体の製造方法によって製造される膜電極ガス拡散層接合体(Membrane Electrode Gas diffusion layer Assembly, MEGA)である。図1は、カソード側(z軸方向正側)のMEGA10を示している。図1に示すように、本実施の形態におけるMEGA10は、膜電極接合体(Membrane Electrode Assembly, MEA)11と、MEA11のカソード側(z軸方向正側)に設けられたガス拡散層(Gas Diffusion Layer, GDL)12及び樹脂シート13を備える。MEA11と、GDL12及び樹脂シート13と、は接着剤Bを介して接合される。さらに、MEGA10にセパレータを積層したものが、単セルである。また、複数の単セルを積層したものが、燃料電池に用いられる燃料電池スタックである。
<Embodiment>
FIG. 1 shows a membrane electrode gas diffusion layer assembly (MEGA) manufactured by the method for manufacturing a membrane electrode gas diffusion layer assembly according to the present embodiment. FIG. 1 shows the MEGA 10 on the cathode side (z-axis direction positive side). As shown in FIG. 1, the MEGA 10 in this embodiment includes a membrane electrode assembly (MEA) 11 and a gas diffusion layer (Gas Diffusion) provided on the cathode side (z-axis direction positive side) of the MEA 11. Layer, GDL) 12 and resin sheet 13. The MEA 11, the GDL 12, and the resin sheet 13 are joined via the adhesive B. Further, a single cell is formed by stacking a separator on the MEGA 10. Also, a stack of a plurality of single cells is a fuel cell stack used for a fuel cell.

本実施の形態ではカソード側のMEGAについて説明するが、MEAと、GDL及び樹脂シートとを、接着剤を介して接合する構成は、カソード側またはアノード側のどちらか一方が有していればよい。すなわち、z軸方向正側をアノード側として、MEAにGDL及び樹脂シートを接合してもよい。この場合は、各構成要素の「カソード」と「アノード」が逆になる。また、カソード側と同様に、アノード側も、MEAと、アノード側GDL及び樹脂シートとを、接着剤を介して接合してもよい。換言すると、GDL及び樹脂シートを接着剤を介してMEAに接合する構成を、MEAの片面、すなわちカソード側又はアノード側のどちらか一方に有していてもよく、MEAの両面、すなわちカソード側およびアノード側に有していてもよい。   In this embodiment, the MEGA on the cathode side will be described. However, the structure for joining the MEA, the GDL, and the resin sheet via an adhesive only needs to be provided on either the cathode side or the anode side. . That is, the GDL and the resin sheet may be joined to the MEA with the positive side in the z-axis direction as the anode side. In this case, the “cathode” and “anode” of each component are reversed. Similarly to the cathode side, on the anode side, the MEA, the anode side GDL, and the resin sheet may be joined via an adhesive. In other words, the structure in which the GDL and the resin sheet are bonded to the MEA via the adhesive may be provided on one side of the MEA, that is, either the cathode side or the anode side. You may have on the anode side.

GDL12は、ガス透過性を有する導電性部材(例えば、カーボン多孔質体や金属多孔質体)を用いて構成することができる。また、セパレータは、例えばチタン等の金属材料を用いて構成することができる。また、樹脂シート13には、可撓性を有する熱硬化性樹脂等を用いることができる。また、接着剤Bには、例えばポリイソブチレン等を含む紫外線硬化性樹脂等を用いることができる。   GDL12 can be comprised using the electroconductive member (For example, a carbon porous body and a metal porous body) which has gas permeability. Moreover, a separator can be comprised using metal materials, such as titanium, for example. The resin sheet 13 can be a flexible thermosetting resin or the like. For the adhesive B, for example, an ultraviolet curable resin containing polyisobutylene or the like can be used.

以下、図2A〜図2Hを用いて、本実施の形態にかかる膜電極ガス拡散層接合体の製造方法について説明する。   Hereinafter, the manufacturing method of the membrane electrode gas diffusion layer assembly according to the present embodiment will be described with reference to FIGS. 2A to 2H.

<接着剤の塗布(図2A〜図2D)>
以下、図2A〜図2Dを参照して、MEA11と、GDL12及び樹脂シート13とを接合するために、スクリーン印刷法を用いてMEA11上に接着剤を塗布する工程を説明する。
<Application of adhesive (FIGS. 2A to 2D)>
Hereinafter, with reference to FIG. 2A-FIG. 2D, the process of apply | coating an adhesive agent on MEA11 using a screen printing method in order to join MEA11, GDL12, and the resin sheet 13 is demonstrated.

図2Aは、本実施の形態にかかる膜電極ガス拡散層接合体の製造方法に用いるスクリーン版をMEA上に配置した状態を示す平面図である。まず、図2Aを用いて、スクリーン版20について説明する。図2Aに示すように、スクリーン版20は、版枠Fに張られたメッシュ23と、メッシュ23に乳剤を塗布して形成される枠形状の第1マスク21及び矩形状の第2マスク22と、スキージSと、を備える、スクリーンマスクである。換言すると、枠形状の第1マスク21と矩形状の第2マスク22とは、メッシュ23を介して配設されている。   FIG. 2A is a plan view showing a state in which a screen plate used in the manufacturing method of the membrane electrode gas diffusion layer assembly according to the present embodiment is arranged on the MEA. First, the screen plate 20 will be described with reference to FIG. 2A. As shown in FIG. 2A, the screen plate 20 includes a mesh 23 stretched on a plate frame F, a frame-shaped first mask 21 and a rectangular second mask 22 formed by coating the mesh 23 with an emulsion. And a squeegee S. In other words, the frame-shaped first mask 21 and the rectangular second mask 22 are arranged via the mesh 23.

スクリーン印刷法を用いた接着剤の塗布では、まず、MEA11上にスクリーン版20を配置し、スキージSと第1マスク21とが接する面に沿って接着剤Bを配置する。次に、第1マスク21、第2マスク22及びメッシュ23の表面に対し、スキージSを線接触させ、加圧しつつ水平移動(x軸正方向)させることによって、接着剤Bがメッシュ23より押し出され、接着剤BがMEA11上に塗布される。換言すると、MEA11に対して接着剤Bを塗布しない領域にマスクをして、接着剤Bの塗布後にマスクを離間することによって、MEA11上に接着剤Bを枠形状に塗布することができる。   In the application of the adhesive using the screen printing method, first, the screen plate 20 is arranged on the MEA 11 and the adhesive B is arranged along the surface where the squeegee S and the first mask 21 are in contact. Next, the squeegee S is brought into line contact with the surfaces of the first mask 21, the second mask 22, and the mesh 23, and the adhesive B is pushed out of the mesh 23 by moving horizontally while applying pressure (in the positive x-axis direction). Then, the adhesive B is applied onto the MEA 11. In other words, by masking a region where the adhesive B is not applied to the MEA 11 and separating the mask after the adhesive B is applied, the adhesive B can be applied in a frame shape on the MEA 11.

図2Bは、図2AのIIB−IIB線に沿う正面断面図である。図2Bに示すように、スクリーン版20の版枠Fはクランプ(不図示)等によって保持されているため、接着剤Bの塗布開始前は、スクリーン版20とMEA11とは離間した状態である。   2B is a front cross-sectional view taken along the line IIB-IIB in FIG. 2A. As shown in FIG. 2B, since the plate frame F of the screen plate 20 is held by a clamp (not shown) or the like, the screen plate 20 and the MEA 11 are separated from each other before the application of the adhesive B is started.

図2Bに示すように、第1マスク21の厚さより、第2マスク22の厚さの方が薄い。換言すると、版枠Fに張られたメッシュ23に塗布された乳剤の厚さは、第1マスク21より第2マスク22の方が薄い。例えば、第1マスク21に塗布された乳剤の厚さより、第2マスク22に塗布された乳剤の厚さの方が、10〜50μm薄い。   As shown in FIG. 2B, the thickness of the second mask 22 is thinner than the thickness of the first mask 21. In other words, the thickness of the emulsion applied to the mesh 23 stretched on the plate frame F is smaller in the second mask 22 than in the first mask 21. For example, the thickness of the emulsion applied to the second mask 22 is 10 to 50 μm thinner than the thickness of the emulsion applied to the first mask 21.

スキージSは可撓性を有しており、例えばゴム等から構成されている。スキージSは、前述の通り、第1マスク21、第2マスク22及びメッシュ23に線接触し、各表面を加圧しつつ平行移動(x軸正方向、白抜き矢印)する。したがって、図2Bに示すように、原位置のスキージSは、第1マスク21と接する面が撓んだ状態である。   The squeegee S is flexible and is made of, for example, rubber. As described above, the squeegee S makes line contact with the first mask 21, the second mask 22 and the mesh 23, and moves in parallel (pressure in the positive direction of the x-axis, white arrow) while pressing each surface. Therefore, as shown in FIG. 2B, the squeegee S at the original position is in a state where the surface in contact with the first mask 21 is bent.

図2Cは、本実施の形態にかかるスクリーン版を用いてMEA上に接着剤を塗布している状態を示す正面断面図である。図2Cに示すように、第1マスク21、第2マスク22及びメッシュ23の表面を、スキージSを用いて加圧しつつ水平移動(x軸正方向、白抜き矢印)させると、第1マスク21及び第2マスク22がMEA11に接触する。前述の通り、第1マスク21の厚さより、第2マスク22の厚さの方が薄く、メッシュ23はMEA11に対して傾斜する。メッシュ23をMEA11に対して傾斜させた状態で、MEA11に接着剤Bを塗布すると、塗布された接着剤Bはメッシュ23の形状と同様、上面(z軸正側のxy平面)がMEA11に対して傾斜した状態になる。   FIG. 2C is a front sectional view showing a state in which an adhesive is applied on the MEA using the screen plate according to the present embodiment. As shown in FIG. 2C, when the surfaces of the first mask 21, the second mask 22 and the mesh 23 are horizontally moved (x-axis positive direction, white arrow) while being pressurized using the squeegee S, the first mask 21 And the 2nd mask 22 contacts MEA11. As described above, the second mask 22 is thinner than the first mask 21, and the mesh 23 is inclined with respect to the MEA 11. When the adhesive 23 is applied to the MEA 11 in a state where the mesh 23 is inclined with respect to the MEA 11, the applied adhesive B has an upper surface (the xy plane on the z-axis positive side) with respect to the MEA 11 as in the shape of the mesh 23. Will be inclined.

図2Dは、本実施の形態にかかるMEA上に接着剤が塗布された状態を示す断面斜視図である。図2Dに示すように、MEA11上には、枠形状の接着剤Bが塗布される。また、本実施の形態では前述の通り、第1マスク21及び第2マスク22をMEA11に接触させて、メッシュ23をMEA11に対して傾斜させた状態で接着剤Bを塗布している。したがって、塗布された枠形状の接着剤Bは、MEA11に対して枠形状の外側から内側に向かって傾斜した状態で塗布される。換言すると、接着剤Bの各辺は、略三角柱形状に形成される。   FIG. 2D is a cross-sectional perspective view showing a state in which an adhesive is applied on the MEA according to the present embodiment. As shown in FIG. 2D, a frame-shaped adhesive B is applied on the MEA 11. In the present embodiment, as described above, the adhesive B is applied in a state where the first mask 21 and the second mask 22 are brought into contact with the MEA 11 and the mesh 23 is inclined with respect to the MEA 11. Therefore, the applied frame-shaped adhesive B is applied to the MEA 11 in an inclined state from the outer side of the frame shape toward the inner side. In other words, each side of the adhesive B is formed in a substantially triangular prism shape.

<樹脂シートの積層(図2E、図2F)>
次に、図2E及び図2Fを参照して、MEA11に樹脂シート13を積層する工程について説明する。図2Eは、本実施の形態にかかるMEA上に塗布した接着剤の頂部に樹脂シートを載置した状態を示す断面斜視図である。図2Eに示すように、MEA11に対して傾斜した接着剤Bの頂部に、樹脂シート13を載置する。
<Lamination of resin sheets (FIGS. 2E and 2F)>
Next, the process of laminating the resin sheet 13 on the MEA 11 will be described with reference to FIGS. 2E and 2F. FIG. 2E is a cross-sectional perspective view showing a state in which a resin sheet is placed on top of the adhesive applied on the MEA according to the present embodiment. As shown in FIG. 2E, the resin sheet 13 is placed on the top of the adhesive B inclined with respect to the MEA 11.

次に、MEA11と樹脂シート13とを接着剤Bを介して接合する。図2Fは、本実施の形態にかかるMEA上に樹脂シートを圧力をかけて配置する工程を示す正面断面図である。図2Fに示すように、樹脂シート13に対し、鉛直下向き方向(z軸負方向、白抜き矢印)に圧力をかけ、MEA11と樹脂シート13とを接着剤Bを介して接合する。図2Fに示すように、樹脂シート13に対して圧力がかけられると、接着剤BはMEA11の中央方向に向かって押し出され(黒矢印)、盛り上がった状態になる。   Next, the MEA 11 and the resin sheet 13 are bonded via the adhesive B. FIG. 2F is a front sectional view showing a step of placing a resin sheet under pressure on the MEA according to the present embodiment. 2F, pressure is applied to the resin sheet 13 in the vertically downward direction (z-axis negative direction, white arrow), and the MEA 11 and the resin sheet 13 are bonded via the adhesive B. As shown in FIG. 2F, when pressure is applied to the resin sheet 13, the adhesive B is pushed out toward the center of the MEA 11 (black arrow), and is in a raised state.

なお、図2E及び図2Fでは、樹脂シート13は平板状であり、下面(z軸負側xy面)がMEA11に対して水平に載置されているが、樹脂シート13は可撓性を有する。したがって、樹脂シート13を接着剤Bに載置する際にしならせ、接着剤Bの傾斜に沿って配置した上で圧力を加え、最終的にMEA11に対して水平に配設することもできる。   2E and 2F, the resin sheet 13 has a flat plate shape, and the lower surface (z-axis negative side xy surface) is placed horizontally with respect to the MEA 11, but the resin sheet 13 has flexibility. . Therefore, when placing the resin sheet 13 on the adhesive B, the resin sheet 13 can be arranged along the inclination of the adhesive B, pressure is applied, and finally, the resin sheet 13 can be arranged horizontally with respect to the MEA 11.

<GDLの積層(図2G、図2H)>
次に、図2G及び図2Hを参照して、MEA11にGDL12を積層する工程について説明する。図2Gは、本実施の形態にかかるMEAにGDLを積層する工程を示す正面断面図である。図2Gに示すように、樹脂シート13の積層工程においてMEA11の中央方向に向かい盛り上がった状態の接着剤Bの頂部に対し、GDL12を載置する。次に、GDL12に対して鉛直下向き方向(z軸負方向、白抜き矢印)に圧力をかけ、MEA11とGDL12とを接着剤Bを介して配設する。本実施の形態にかかるGDL12は、樹脂シート13の内枠より小さい矩形状であり、GDL12と樹脂シート13とは離間して配設される。
<Lamination of GDL (FIGS. 2G and 2H)>
Next, with reference to FIG. 2G and FIG. 2H, the process of laminating | stacking GDL12 on MEA11 is demonstrated. FIG. 2G is a front sectional view showing a step of stacking GDL on the MEA according to the present embodiment. As shown in FIG. 2G, the GDL 12 is placed on the top of the adhesive B in a state of rising in the center direction of the MEA 11 in the step of laminating the resin sheets 13. Next, pressure is applied to the GDL 12 in a vertically downward direction (z-axis negative direction, white arrow), and the MEA 11 and the GDL 12 are disposed via the adhesive B. GDL12 concerning this Embodiment is a rectangular shape smaller than the inner frame of the resin sheet 13, and the GDL12 and the resin sheet 13 are spaced apart and arrange | positioned.

図2Hは、本実施の形態にかかるMEA上に載置したGDLに圧力をかけて配置した状態を示す断面斜視図である。図2Hに示すように、GDL12が、接着剤Bを介してMEA11に対して水平に配置されている。なお、GDL12の底面(z軸負側のxy平面)と樹脂シート13の底面(z軸負側のxy平面)とが同一平面上であり、且つ、MEA11に対して水平になるように配設することが好ましい。また、GDL12の厚さは樹脂シート13の厚さより薄いため、樹脂シート13の上面(z軸正側のxy平面)よりGDL12の上面(z軸正側のxy平面)が凹んだ状態で配置される。   FIG. 2H is a cross-sectional perspective view showing a state in which the GDL placed on the MEA according to the present embodiment is placed under pressure. As shown in FIG. 2H, the GDL 12 is disposed horizontally with respect to the MEA 11 with the adhesive B interposed therebetween. The bottom surface of the GDL 12 (z-axis negative side xy plane) and the bottom surface of the resin sheet 13 (z-axis negative side xy plane) are on the same plane and are disposed so as to be horizontal to the MEA 11. It is preferable to do. Further, since the thickness of the GDL 12 is thinner than the thickness of the resin sheet 13, the GDL 12 is disposed with the upper surface (xy plane on the z-axis positive side) of the GDL 12 recessed from the upper surface (z-axis positive side of the xy plane). The

なお、接着剤Bが紫外線硬化性樹脂の場合、樹脂シート13及びGDL12に対してそれぞれ圧力をかけてMEA11上に配設した後に紫外線を照射し、接着剤Bを硬化させ、MEA11と、GDL12及び樹脂シート13とを、接着剤Bを介して接合する。   In the case where the adhesive B is an ultraviolet curable resin, the resin sheet 13 and the GDL 12 are respectively placed on the MEA 11 by applying pressure, and then the ultraviolet rays are irradiated to cure the adhesive B. The resin sheet 13 is bonded via the adhesive B.

従来のように、膜電極接合体上に接着剤を塗布する際に、スクリーン印刷法に用いるマスクの上面と下面との開口部の形状に差があると、例えばマスクと膜電極接合体とで形成された鋭角の領域には接着剤が入り込みづらく、接着剤を狙った領域や形状に塗布することが困難となり、当該接着剤に樹脂シートおよびガス拡散層を載置した際に、接着剤と、樹脂シートと、の間に気泡が発生するという問題があった。   As in the prior art, when applying an adhesive on a membrane electrode assembly, if there is a difference in the shape of the opening between the upper surface and the lower surface of the mask used in the screen printing method, for example, the mask and the membrane electrode assembly It is difficult for the adhesive to enter the formed acute angle region, and it becomes difficult to apply the adhesive to the target region or shape, and when the resin sheet and the gas diffusion layer are placed on the adhesive, There was a problem that air bubbles were generated between the resin sheet and the resin sheet.

本実施の形態では、メッシュを膜電極接合体に対して傾斜させた状態で接着剤を塗布している。塗布された枠形状の接着剤は、膜電極接合体に対して枠の外側から内側に向かい傾斜した状態で塗布されるため、接着剤に樹脂シート載置した際に、接着剤と樹脂シートとの間に発生する気泡を抑制することができる。また、接着剤と樹脂シートとの間に発生する気泡を抑制することができるため、接合の際に気泡を取り除くための加圧が不要となり、製造工程の削減が可能となる。さらに、接着剤と樹脂シートとの間に気泡が混入する場合は気泡により接着強度が低下するため、膜電極接合体および樹脂シートの大きさを本来必要な大きさよりも大きく作製し、接着剤の接着する面を拡大することによって、接着強度の低下を補う必要があった。一方本実施の形態では、接着剤と、樹脂シートと、の間に発生する気泡の発生を抑制できるため、膜電極ガス拡散層接合体を適切な大きさで作製することができる。換言すると、膜電極ガス拡散層接合体の体積を減少させることができる。   In the present embodiment, the adhesive is applied in a state where the mesh is inclined with respect to the membrane electrode assembly. The applied frame-shaped adhesive is applied to the membrane electrode assembly in an inclined state from the outside to the inside of the frame, so that when the resin sheet is placed on the adhesive, the adhesive and the resin sheet Bubbles generated during the period can be suppressed. In addition, since air bubbles generated between the adhesive and the resin sheet can be suppressed, it is not necessary to apply pressure for removing the air bubbles at the time of joining, and the manufacturing process can be reduced. Furthermore, when bubbles are mixed between the adhesive and the resin sheet, the adhesive strength is reduced due to the bubbles. Therefore, the membrane electrode assembly and the resin sheet are made larger than originally required, and the adhesive It was necessary to compensate for the decrease in adhesive strength by enlarging the bonding surface. On the other hand, in the present embodiment, since the generation of bubbles generated between the adhesive and the resin sheet can be suppressed, the membrane electrode gas diffusion layer assembly can be produced with an appropriate size. In other words, the volume of the membrane electrode gas diffusion layer assembly can be reduced.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

10 膜電極ガス拡散層接合体
11 膜電極接合体
12 ガス拡散層
13 樹脂シート
20 スクリーン版
21 第1マスク
22 第2マスク
23 メッシュ
B 接着剤
F 版枠
S スキージ
DESCRIPTION OF SYMBOLS 10 Membrane electrode gas diffusion layer assembly 11 Membrane electrode assembly 12 Gas diffusion layer 13 Resin sheet 20 Screen plate 21 First mask 22 Second mask 23 Mesh B Adhesive F Plate frame S Squeegee

Claims (1)

膜電極接合体上に樹脂シート及びガス拡散層を配設して膜電極ガス拡散層接合体を製造する膜電極ガス拡散層接合体の製造方法であって、
前記膜電極接合体上に接着剤を塗布する工程と、
前記接着剤上に前記樹脂シート及び前記ガス拡散層を載置する工程と、を備え、
前記膜電極接合体上に接着剤を塗布する工程では、
枠形状の第1マスクと、前記第1マスクの内側にメッシュを介して連結され、前記第1マスクより厚さが薄い矩形状の第2マスクと、を備えるスクリーンマスクを前記膜電極接合体上に配置し、前記第1マスク及び前記第2マスクを前記膜電極接合体に接触させて前記メッシュを前記膜電極接合体に対して傾斜させた状態で前記接着剤を塗布する、
膜電極ガス拡散層接合体の製造方法。
A method for producing a membrane electrode gas diffusion layer assembly comprising a resin sheet and a gas diffusion layer disposed on a membrane electrode assembly to produce a membrane electrode gas diffusion layer assembly,
Applying an adhesive on the membrane electrode assembly;
Placing the resin sheet and the gas diffusion layer on the adhesive, and
In the step of applying an adhesive on the membrane electrode assembly,
A screen mask comprising a frame-shaped first mask and a rectangular second mask that is connected to the inside of the first mask via a mesh and is thinner than the first mask is disposed on the membrane electrode assembly. The adhesive is applied in a state where the first mask and the second mask are brought into contact with the membrane electrode assembly and the mesh is inclined with respect to the membrane electrode assembly.
Manufacturing method of membrane electrode gas diffusion layer assembly.
JP2018072470A 2018-04-04 2018-04-04 Manufacturing method for film electrode gas diffusion layer joined body Pending JP2019185923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072470A JP2019185923A (en) 2018-04-04 2018-04-04 Manufacturing method for film electrode gas diffusion layer joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072470A JP2019185923A (en) 2018-04-04 2018-04-04 Manufacturing method for film electrode gas diffusion layer joined body

Publications (1)

Publication Number Publication Date
JP2019185923A true JP2019185923A (en) 2019-10-24

Family

ID=68341596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072470A Pending JP2019185923A (en) 2018-04-04 2018-04-04 Manufacturing method for film electrode gas diffusion layer joined body

Country Status (1)

Country Link
JP (1) JP2019185923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923549B2 (en) 2020-12-25 2024-03-05 Toyota Jidosha Kabushiki Kaisha Fuel cell and manufacturing method of membrane electrode assembly plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923549B2 (en) 2020-12-25 2024-03-05 Toyota Jidosha Kabushiki Kaisha Fuel cell and manufacturing method of membrane electrode assembly plate

Similar Documents

Publication Publication Date Title
JP7188192B2 (en) Fuel cell and manufacturing method thereof
JP6263214B2 (en) Step MEA with resin frame for fuel cells
JP5695086B2 (en) 5-layer membrane electrode assembly having peripheral portions bonded thereto and manufacturing method thereof
CN107305960B (en) Battery, battery manufacturing method, and battery manufacturing apparatus
CN110492110A (en) Welding tool
JP2019185923A (en) Manufacturing method for film electrode gas diffusion layer joined body
US20210288338A1 (en) Fuel cell and method for producing fuel cell
JP2010123509A (en) Method of manufacturing membrane-electrode-gas diffusion layer assembly used in fuel cell
CN108701855A (en) Electrode assembly and its manufacturing method
JP2018120736A (en) Method of manufacturing mea plate
JP2003022827A (en) Separator for fuel cell, laminating method for membrane-electrode assembly, and laminating device for the membrane-electrode assembly
CN105898988B (en) Backlight FPC full pages glued membrane and its whole rubberizing technique
JP2019140027A (en) Gas diffusion layer-integrated gasket and member for fuel battery cell
CN111048810A (en) Method for producing fuel cell membrane electrode
JP2020149886A (en) Manufacturing method of fuel battery cell
JP2020114767A (en) Method for transporting thin plate member for fuel cell
JP2013258097A (en) Electrolyte membrane/electrode structure and manufacturing method thereof
JP6848830B2 (en) Fuel cell manufacturing method
JP5466131B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2016201219A (en) Catalyst layer transfer base material, manufacturing method for membrane electrode assembly, and membrane electrode assembly
JP5282536B2 (en) Peeling device and method for manufacturing joined body using the same
JP7207242B2 (en) Method for manufacturing fuel cell
JP5461361B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2022067828A (en) Manufacturing method for fuel cell separator
JP2020170648A (en) Manufacturing apparatus of fuel cell single cell