JP2019184326A - Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement - Google Patents

Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement Download PDF

Info

Publication number
JP2019184326A
JP2019184326A JP2018072796A JP2018072796A JP2019184326A JP 2019184326 A JP2019184326 A JP 2019184326A JP 2018072796 A JP2018072796 A JP 2018072796A JP 2018072796 A JP2018072796 A JP 2018072796A JP 2019184326 A JP2019184326 A JP 2019184326A
Authority
JP
Japan
Prior art keywords
measurement
light
residual strength
layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018072796A
Other languages
Japanese (ja)
Inventor
多郎 中野
Taro Nakano
多郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018072796A priority Critical patent/JP2019184326A/en
Publication of JP2019184326A publication Critical patent/JP2019184326A/en
Pending legal-status Critical Current

Links

Abstract

To provide a residual strength measurement device and method for multilayer piping capable of visualizing peeling and cracking in the depth direction from a surface of the multilayer piping.SOLUTION: The pipe inner diameter of the multilayer piping which is a cylindrical container is finely changed in the inner diameter thickness when it is weak or incomplete in adhesion or there is a gap between the layers. The cylinder receives bending such as causing swelling (bulging) around a crack or subjected to a circumferential stress by internal pressure. By optical three-dimensional measurement of such changes, cracks, breaks, crack depths such as a peeling on a surface, and a spread length in the axial direction are visualized in detail and quickly measured by precise measurement to allow determination. By rotating the projection light of the light going straight from the P point to the C point, surface cracks, damages, and the maximum depth of the crack such as peeling to allow the measurement to the maximum measurement angle of 30 degrees to 15 degrees or less.SELECTED DRAWING: Figure 3

Description

本発明は、多層配管の製造工程並びに使用中のプラントで評価測定するために、当該多層配管を構成する鋼管と該鋼管内面に被覆される樹脂ライニングとの界面と表面に発生する欠陥を検出する光三次元計測による多層配管の残存強度測定方法および残存強度測定装置に関する。   The present invention detects defects occurring at the interface and surface between a steel pipe constituting the multilayer pipe and a resin lining coated on the inner surface of the steel pipe in order to evaluate and measure in the manufacturing process of the multilayer pipe and the plant in use. The present invention relates to a residual strength measuring method and a residual strength measuring device for multilayer pipes by optical three-dimensional measurement.

多層配管は、特に鋼管では通水により内面の腐食が進み、さまざまの問題が発生している。このため、耐久性、耐食性に優れた多層配管の普及が図られている。例えば鋼管の内面に硬質塩化ビニールやポリエチレンを被覆(ライニング)した樹脂ライニング構成を持つ。昨今では、耐環境性重視から多層配管の普及がはかられるようになっている。   In multilayer pipes, especially steel pipes, corrosion of the inner surface proceeds due to water flow, and various problems occur. For this reason, the spread of multilayer piping excellent in durability and corrosion resistance is achieved. For example, it has a resin lining structure in which the inner surface of a steel pipe is coated (lining) with hard vinyl chloride or polyethylene. Nowadays, multi-layer piping has become popular due to the importance of environmental resistance.

特開2009−98031号公報JP 2009-98031 A 特開2013−83545号公報JP2013-83545A

多層配管の生産ラインにおいて、硬質塩化ビニール管やポリエチレン管を鋼管の内面に圧入し、さらに加熱融着することによって得られ、これらの密着強度が管材としての品質要素になっている。従って、これらの間に隙間があると品質保全上重大な問題となる。特に、加熱融着後の密着力や厚みの品質管理が重要になる。これまでの検査は、生産ラインより任意個数抜取り電気的ピンホールタスター等の種々の状態試験の方法を用いて実施している。   In the production line of multilayer piping, it is obtained by press-fitting a hard vinyl chloride pipe or polyethylene pipe into the inner surface of a steel pipe and further heat-sealing, and these adhesion strengths are quality factors as a pipe material. Therefore, if there is a gap between them, it becomes a serious problem in terms of quality maintenance. In particular, quality control of adhesion strength and thickness after heat fusion is important. The inspections so far have been carried out using various state test methods such as extracting an arbitrary number from the production line and using an electrical pinhole taster.

しかしながら、上述のような多層配管の抜き取り検査には、生産ラインを一時停止させて、電磁膜厚計により樹脂ライニングの膜厚の測定を多層配管の全周に亘り実施する必要から、測定検査時間および作業工数が多くなり、その結果として多層配管の生産効率が低下するという不都合が生じていた。   However, in the sampling inspection of the multilayer pipe as described above, it is necessary to temporarily stop the production line and measure the film thickness of the resin lining with the electromagnetic film thickness meter over the entire circumference of the multilayer pipe. In addition, the number of work steps is increased, resulting in a disadvantage that the production efficiency of the multilayer piping is lowered.

図1に示す光三次元計測は、本来は外面形状計測を主体にしたものであり、プロジェクター3から直線状の縞パターン光を3Dオブジェクター対象物1に投射及び投影し、これが物体の表面形状により変化した視差画像をカメラ2で捉えて解析する表面形状の欠陥検査方式が知られている。物体の外側表面の腐食計測用を主な特徴とする3D計測システム3DSLが提案されている。図1のカメラ2と対象物1との角度β、プロジェクターとの角度α、は可変で、光の精度を高めるために切断光を薄い帯状にすることで、測定がより可能となる。図1の基線長をL、測定対象物体上のPまでの距離Zは角度βとし、αは90°として使われる。図1の距離Zは基線長をLとし、測定対象物体とプロジェクターの距離D、角度α、βから,以下の式で求めることができる。
The optical three-dimensional measurement shown in FIG. 1 is primarily based on the outer surface shape measurement, and projects and projects linear stripe pattern light from the projector 3 onto the 3D object target 1, which is the surface shape of the object. There is known a surface shape defect inspection method in which a parallax image changed by the above is captured by a camera 2 and analyzed. A 3D measurement system 3DSL, which is mainly characterized for measuring corrosion on the outer surface of an object, has been proposed. The angle β between the camera 2 and the object 1 in FIG. 1 and the angle α between the projector and the projector 1 are variable, and the measurement becomes possible by making the cutting light into a thin band shape in order to improve the accuracy of the light. The base line length in FIG. 1 is L, the distance Z to P on the object to be measured is an angle β, and α is 90 °. The distance Z in FIG. 1 can be obtained by the following formula from the distance D between the object to be measured and the projector and the angles α and β, where the base length is L.

しかしながら、この外側表面の腐食計測用の欠陥検査方法では物体の欠陥亀裂の深さは検出することができないため、表面の欠陥形状しか検出できず、特に管材層の接着状態、密着状態や材質の性状に応じた欠陥情報を捉えることが難しいという不都合があった。   However, since this defect inspection method for corrosion measurement on the outer surface cannot detect the depth of defect cracks on the object, it can only detect the defect shape on the surface, especially the adhesion state, adhesion state and material quality of the tube layer. There was an inconvenience that it was difficult to capture defect information according to properties.

本発明は、上述した事情に鑑みてなされたものでる。その目的は、形状に応じたライン光の内面変形を観察することで、多層配管を構成する鋼管および樹脂ライ二ングの接着状況、密接状態、界面状態、欠陥深さ等をこれら複数部位について詳細かつ迅速に判別することができる。多層配管の光三次元計測による損傷評価を推定する残存強度測定方法および残存強度検出装置を提供することにある。   The present invention has been made in view of the above-described circumstances. The purpose is to observe the inner surface deformation of the line light according to the shape, and to check the adhesion status, intimate state, interface state, defect depth, etc. of the steel pipe and resin lining constituting the multi-layer pipe in detail for these multiple parts. And it can discriminate quickly. An object of the present invention is to provide a residual strength measuring method and a residual strength detecting device for estimating damage evaluation by optical three-dimensional measurement of multilayer piping.

前述した目的を達成するために、本発明に係る多層配管の光三次元計測による残存強度検出装置は、ライン状の光を測定物体上に投影し、このラインが前記測定物体の表面形状に応じて変形を観察する光三次元計測による多層配管の残存強度測定装置であって、前記光を前記測定物体に投射するプロジェクターと、前記プロジェクターからの光を捉えるカメラと、物理的な欠陥情報を可視化する演算処理部と、を有し、前記プロジェクターから発せられる前記光を順に動かし前記カメラで捉えることにより三次元形状情報を得ることができ、三次元による表面深度、内面、表面形状、亀裂等、物理的な欠陥情報を可視化することを特徴とする。   In order to achieve the above-described object, the apparatus for detecting residual intensity based on optical three-dimensional measurement of multilayer piping according to the present invention projects line-shaped light onto a measurement object, and the line corresponds to the surface shape of the measurement object. A device for measuring the residual strength of multi-layer pipes by optical three-dimensional measurement for observing deformation, and projecting the light onto the measurement object, a camera for capturing the light from the projector, and visualizing physical defect information A three-dimensional surface depth, an inner surface, a surface shape, a crack, and the like, by sequentially moving the light emitted from the projector and capturing it with the camera. It is characterized by visualizing physical defect information.

上記構成により、多層配管を構成する鋼管の表面にブロジェクタ―から直線状の縞パターン光を投射し、これが鋼管の表面形状により変化したライン光の視差画像から、その変化した様子をカメラで捉えて観測される。受光素子としての図1のカメラは、コンプュータの高速化による解析処理をCCD(Charge Coupled Device)カメラを用いて観測される。   With the above configuration, a linear stripe pattern light is projected from the projector onto the surface of the steel pipe that constitutes the multi-layer pipe, and this change is captured by the camera from the parallax image of the line light that has changed due to the surface shape of the steel pipe. Observed. The camera shown in FIG. 1 as a light receiving element observes an analysis process by increasing the speed of a computer using a CCD (Charge Coupled Device) camera.

観測情報は、この高速度カメラに内蔵の演算処理部にて、パターン光を利用したデータ解析による位相計算により画像信号の演算処理を行い、物理的な欠陥情報を可視化する。図2に示すように、表面から内部への亀裂、割れ、剥離等の深さ、軸方向の広がり、長さ等、深さをP点からA点に、C点からB点に、β=30°で回転しながらさらに15°までの角度で、欠陥のより深度の内面側面を計測することにより、このような変化を光三次元計測により、可視化により精密に測定することで、より詳細かつ迅速正確に判定可能にすることができる。   The observation information is processed in the image signal by the phase calculation based on the data analysis using the pattern light in the calculation processing unit built in the high-speed camera, and the physical defect information is visualized. As shown in FIG. 2, the depth from the surface to the inside, such as cracks, cracks, delamination, spread in the axial direction, length, etc., the depth from point P to point A, point C to point B, β = By measuring the depth of the inner surface of the defect at an angle of up to 15 ° while rotating at 30 °, this change can be measured in more detail and more accurately by optical 3D measurement. The determination can be made quickly and accurately.

また、本発明に係る光三次元計測による損傷評価を推定する残存強度測定検出方法は、円筒容器では内圧により円周方向応力を受けるだけでなく、亀裂のまわりで膨れ(Bulging)を生じるような曲げを受けて強度の減少が進行する。減肉等の損傷を受けた配管の塑性崩壊荷重(Pdc)と健全な配管の塑性崩壊荷重(Puc)の比を、強度が残存していることを表す残存強度ファクターRsf(Remaining Strength Factor)として、アメリカ機械学会基準ASME FFS−1で定義されている。この円筒容器である多層配管についての損傷評価を、剥離やピンホールや亀裂等の物理的内部欠陥情報を残存強度ファクターにあてはめ、演算処理部に内蔵する評価ソフトにより測定検出して比較、鋼管と樹脂ライニングとの界面に発生した物理的欠陥情報を可視化することを特徴とする。   Further, the residual strength measurement detection method for estimating damage evaluation by optical three-dimensional measurement according to the present invention not only receives circumferential stress due to internal pressure but also causes bulging around a crack in a cylindrical container. The strength decreases due to bending. The ratio of the plastic collapse load (Pdc) of a pipe damaged by thinning or the like and the plastic collapse load (Puc) of a healthy pipe is a residual strength factor Rsf (Remaining Strength Factor) indicating that the strength remains. Defined by the American Society of Mechanical Engineers standard ASME FFS-1. The damage evaluation of this multi-layer pipe, which is a cylindrical container, is applied to the residual strength factor by applying physical internal defect information such as peeling, pinholes, cracks, etc., measured and detected by the evaluation software built in the processing unit, and compared with the steel pipe. It is characterized in that physical defect information generated at the interface with the resin lining is visualized.

これにより、多層配管を構成する鋼管と樹脂ライニングとの接合面、密着度および界面状態を、d:亀裂深さ、t:肉厚(一定)、C:軸方向の亀裂ながさ、Ri:内半径、Mt(係数:Bulging Factor)等の物理量の比較によって、円筒容器等の安全確保を評価指標として、図10に示す残存強度ファクターを正確に推測することができるとともに、これにより多層配管の生産ライン止めることなく、非接触、非破壊で高精度かつ効率的に多層配管の計測が可能となる。   As a result, the joint surface, adhesion degree and interface state between the steel pipe and the resin lining constituting the multi-layer pipe are as follows: d: crack depth, t: wall thickness (constant), C: axial crack length, Ri: inner radius , Mt (coefficient: bulling factor), etc., the remaining strength factor shown in FIG. 10 can be accurately estimated using the safety assurance of the cylindrical container etc. as an evaluation index. Without stopping, multi-layer piping can be measured with high accuracy and efficiency without contact and without destruction.

本発明によれば、多層配管の内面や表面に、ライン光を走査して、三次元形状情報を利用して、鋼管および樹脂ライニング相互の界面状態を各層管材各部について詳細かつ迅速に検査することができる。   According to the present invention, scanning the line light on the inner surface or surface of the multilayer pipe and using the three-dimensional shape information, the interface state between the steel pipe and the resin lining is inspected in detail and quickly for each part of each layer pipe material. Can do.

本発明の実施の形態の光三次元計測による多層配管の残存強度測定方法および測定検出装置を示す接続図である。FIG. 3 is a connection diagram illustrating a method for measuring the residual strength of a multi-layer pipe and a measurement detection device by optical three-dimensional measurement according to an embodiment of the present invention. 検査対象となる多層配管に欠陥2mmφを形成したときの断面図である。It is sectional drawing when a defect 2mmphi is formed in the multilayer piping used as inspection object. 3層構造の多層配管の断面図である。It is sectional drawing of the multilayer piping of 3 layer structure. 多層配管の断面図である。It is sectional drawing of multilayer piping. 検査対象となる多層配管に模擬的な欠陥を形成した加工図である。It is the processing figure which formed the simulated defect in the multilayer piping used as inspection object. 模擬の欠陥2mmφの3次元立方体形状計測画像である。It is a three-dimensional cube shape measurement image of a simulated defect of 2 mmφ. 3層構造配管のY方向における内部欠陥検出図である。It is an internal defect detection figure in the Y direction of 3 layer structure piping. 3層構造配管のX方向における内部欠陥検出図である。It is an internal defect detection figure in the X direction of 3 layer structure piping. 3層構造配管XY方向における表面欠陥検出図である。It is a surface defect detection figure in 3 layer structure piping XY direction. 模擬の欠陥0.5〜2mmφと残存強度ファクターRsfの計算結果を示すグラフである。It is a graph which shows the calculation result of 0.5-2 mm (phi) of simulated defects, and residual strength factor Rsf.

以下、本発明の実施の形態にかかわる多層配管の光三次元計測による残存強度測定方法および残存強度測定検出装置を、図1乃至図10を参照して説明する。   Hereinafter, a residual strength measurement method and a residual strength measurement detection device by optical three-dimensional measurement of multilayer piping according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10.

[計測装置]
本実施形態による光三次元計測による多層配管の残存強度測定検出装置は、内面に樹脂ライニングを施した鋼管の表面からの亀裂、割れ、剥離等に対し、従来は外面形状を測ることを主体にしていたが、内面の層間状態、異物混入、空孔、割れ等に対しても、鋼管の欠陥の損傷状態等に対し、安全確保の評価指標として演算処理部に内蔵する評価ソフトに残存強度ファクターによる製品品質の向上、使用中のプラントでの評価を採用することで、可視化を可能にする演算処理部を備えて構成される。
[Measurement equipment]
The multi-layered pipe residual strength measurement and detection device according to the present embodiment mainly measures the outer surface shape for cracks, cracks, delamination, etc. from the surface of the steel pipe with the resin lining on the inner surface. However, the residual strength factor is included in the evaluation software built in the calculation processing section as an evaluation index for ensuring safety against the damage state of the defects of the steel pipe, etc., even with respect to the interlayer state of the inner surface, contamination, voids, cracks etc. By adopting the improvement of the product quality by the evaluation and the evaluation in the plant in use, it is configured with an arithmetic processing unit that enables visualization.

本実施形態による多層配管の光三次元計測による残存強度測定方法および残存強度測定検出装置は、図1に示すように、対象物である3Dオブジェクションである対象物1と、物体の表面形状により変化した様子を捉えるカメラ2と、直線状の縞基準パターンを対象物1に投影するプロジェクター3とから構成される。カメラ2には、画像信号を解析する演算処理部と残存強度検出装置としての残存強度ファクターを比較検出する評価ソフト内蔵する。本実施の形態では、三次元計測システムとしてS社製3DSLシリーズを一部用いているが、これに限定されず他の機器を用いてもよい。   As shown in FIG. 1, the residual strength measuring method and the residual strength measuring / detecting device by the optical three-dimensional measurement of the multilayer pipe according to the present embodiment are based on the target 1 that is a 3D object that is the target and the surface shape of the object. It comprises a camera 2 that captures the changed state and a projector 3 that projects a linear stripe reference pattern onto the object 1. The camera 2 includes an arithmetic processing unit that analyzes the image signal and evaluation software that compares and detects the residual intensity factor as the residual intensity detecting device. In this embodiment, a part of the 3DSL series manufactured by S company is used as the three-dimensional measurement system, but the present invention is not limited to this, and other devices may be used.

鋼管および樹脂ライニング内面に図1のプロジェクター3から、パターン光を投射し、その変化した様子をカメラで捉えて観測される。受光素子としての図1のカメラ2には、画像信号をコンプュータの高速化による解析処理を内蔵の演算処理部にて行い、かつ内蔵する評価ソフトにより残存強度検出装置にて残存強度ファクターRsfを比較検出し、安全確保の評価指標として正確に推測する。これらを比較検出することによって、正常の判定出力を得ることができる。   The pattern light is projected from the projector 3 in FIG. 1 onto the inner surface of the steel pipe and the resin lining, and the changed state is observed with a camera. The camera 2 in FIG. 1 as the light receiving element performs analysis processing of the image signal by speeding up the computer in the built-in arithmetic processing unit, and compares the remaining strength factor Rsf in the remaining strength detection device by the built-in evaluation software. Detect and accurately infer as a safety evaluation index. By comparing and detecting these, a normal determination output can be obtained.

残存強度を検出する際は、プロジェクター3からのライン光を測定物体である対象物1上に投影する。本実施の形態による残存強度検出装置は、このライン光で物体の表面形状に応じて変形を観察するライン光走査方式である。本走査方式では、図2に示すように、3層構造の配管において、ライン光をPからCと内部へ回転することにより、光3次元計測による欠陥低部からの反射光から内壁面並びに3層目の深度からの欠陥情報を測定することが可能となる。図2の深さA点からP点に、C点からB点に、対象物1の底面にβ=30°でライン光を回転させながら15°までの角度で変化させることにより、欠陥の深い深度の内壁面の測定を可能にする。   When detecting the residual intensity, the line light from the projector 3 is projected onto the object 1 that is a measurement object. The residual intensity detection apparatus according to the present embodiment is a line light scanning method that observes deformation according to the surface shape of an object with this line light. In this scanning method, as shown in FIG. 2, in the three-layer structure pipe, the line light is rotated from P to C to the inside, thereby reflecting the inner wall surface and 3 It becomes possible to measure defect information from the depth of the layer. The depth of point A is changed from point A to point P in FIG. 2 and from point C to point B, and the bottom of the object 1 is changed by an angle of up to 15 ° while rotating the line light at β = 30 ° at 15 °. Enables measurement of depth inner wall.

図2では、3層構造配管断面の欠陥表面PとC間でライン光を回転することにより、β=30°の角度でA〜Bの内面測定している。さらにβ=15°の角度で内面計測することにより、深度の深い内面測定が可能となり、測定した表面からの欠陥の緒情報を計測することができるため、より精度の高い演算処理が可能となる。   In FIG. 2, the inner surfaces of A to B are measured at an angle of β = 30 ° by rotating the line light between the defect surfaces P and C of the three-layer structure pipe cross section. Furthermore, by measuring the inner surface at an angle of β = 15 °, it is possible to measure the inner surface at a deep depth, and it is possible to measure the information of the defect from the measured surface, thereby enabling more accurate calculation processing. .

[計測対象]
図3は多層配管の一例を示す縦断面図である。多層配管は、外周面に硬質塩化ビニ―ルなどの樹脂ライニングを施したライニング層4と、鋼材(炭素鋼)層5と、硬質塩化ビニ―ルなどの樹脂ライニング層である内面6と、から構成される。図4は他の多層配管として、水道用亜鉛めっき鋼管構造であって、鋼管(炭素鋼)の内周面に硬質塩化ビニールなどの樹脂ライニング7を施したものである。外周面には亜鉛めっき層(水道用を示すW:SGP管)8による防錆処理がなされている。このような3層構造の多層配管も、本発明による接合面、密着度および界面状態等の物理状態の検査対象にすることができる。
[Measurement target]
FIG. 3 is a longitudinal sectional view showing an example of a multilayer pipe. The multi-layer pipe is composed of a lining layer 4 having a resin lining such as hard vinyl chloride on the outer peripheral surface, a steel (carbon steel) layer 5 and an inner surface 6 being a resin lining layer such as hard vinyl chloride. Composed. FIG. 4 shows a galvanized steel pipe structure for water supply as another multi-layer pipe, in which a resin lining 7 such as hard vinyl chloride is applied to the inner peripheral surface of the steel pipe (carbon steel). The outer peripheral surface is rust-proofed by a galvanized layer (W: SGP pipe for water service) 8. A multilayer pipe having such a three-layer structure can also be used as an inspection target for physical states such as a joint surface, adhesion degree, and interface state according to the present invention.

次に、実際に残存強度測定検出装置によって計測した試料を図5に基づいて説明する。3層構造の配管は、第1層は硬質塩化ビニール1.5mm厚、第2層目は鋼材層2.8mm厚、第3層目は硬質塩化ビニール1.5mm厚である。2mmφの人工欠陥を多層配管表面から内面に形成した。   Next, a sample actually measured by the residual strength measurement detection device will be described with reference to FIG. In the three-layered pipe, the first layer is 1.5 mm thick hard vinyl chloride, the second layer is 2.8 mm thick steel layer, and the third layer is 1.5 mm thick hard vinyl chloride. A 2 mmφ artificial defect was formed from the surface of the multilayer pipe to the inner surface.

3層構造の配管は光3次元計測による欠陥低部からの反射光から、3層目の深さからの欠陥を測定することができる。図5(a)は半割した多層配管において内側を表面とした図であって、図5(b)は半割した多層配管において外側を表面とした図である。いずれにおいても、一方の端面から3cmの位置に0.5mmφのドリル孔を形成し、他方の端面から3cmの位置に2mmφのドリル孔を形成し、中心に1mmφのドリル孔を形成した。図5(a)においては、内側より2層目である鋼材層に到達する程度のドリル孔を形成し、図5(b)においては、外側より2層目である鋼材層に到達する程度のドリル孔を形成している。このようにして形成された人工的な欠陥は、本発明による接合面、密着度および界面状態等の物理状態の検査対象となる。   The three-layer structure pipe can measure the defect from the depth of the third layer from the reflected light from the low part of the defect by optical three-dimensional measurement. FIG. 5 (a) is a diagram with the inner surface of the half-divided multilayer piping, and FIG. 5 (b) is a diagram with the outer surface of the half-divided multilayer piping. In either case, a 0.5 mmφ drill hole was formed at a position 3 cm from one end face, a 2 mmφ drill hole was formed at a position 3 cm from the other end face, and a 1 mmφ drill hole was formed at the center. In FIG. 5A, a drill hole is formed so as to reach the second steel layer from the inside, and in FIG. 5B, the second steel layer is reached from the outside. A drill hole is formed. The artificial defect formed in this way becomes an inspection target of physical states such as the joint surface, adhesion degree, and interface state according to the present invention.

[計測結果]
次に、図5(a)の2mmφのドリル孔の計測結果について図6乃至図9に基づいて説明する。図6に示す3Dの計測結果は、測定器の平面分解能0.4mm、深さ分解能50μmであり、欠陥のより深い深度の内面の計測が可能となる。図9に示すX方向における表面形状を図8に示し、図9に示すY方向における表面形状を図7に示す。カメラ2が捉えた反射光に基づいて、演算処理部が画像処理を行い、図7、及び図8に示すように、欠陥深さ2.97mmが確認された。
[Measurement result]
Next, the measurement result of the 2 mmφ drill hole in FIG. 5A will be described with reference to FIGS. The 3D measurement result shown in FIG. 6 has a plane resolution of 0.4 mm and a depth resolution of 50 μm of the measuring instrument, and can measure the inner surface of the defect at a deeper depth. The surface shape in the X direction shown in FIG. 9 is shown in FIG. 8, and the surface shape in the Y direction shown in FIG. 9 is shown in FIG. Based on the reflected light captured by the camera 2, the arithmetic processing unit performs image processing, and as shown in FIGS. 7 and 8, a defect depth of 2.97 mm is confirmed.

図7において、プロジェクター3からの光が欠陥低部まで到達するため、深度2.97mmで第2層厚さ2.8mmからの反射をカメラ2が捉えることができる。塩ビ層ではドリルによって人工欠陥が大きく広がり、鋼材層で段差が生じているA点及びB点を、カメラ2が捉えた反射光から演算処理によって観測することができる。ここで、A点は塩ビ層と鋼材層との境界である。   In FIG. 7, since the light from the projector 3 reaches the defect low part, the camera 2 can capture reflection from the second layer thickness of 2.8 mm at a depth of 2.97 mm. In the polyvinyl chloride layer, artificial defects are greatly spread by the drill, and the points A and B where the level difference is generated in the steel layer can be observed from the reflected light captured by the camera 2 by a calculation process. Here, point A is the boundary between the vinyl chloride layer and the steel material layer.

図8は、欠陥低部からの反射光におけるX方向の画像である。図9に示すX軸は表面形状の中心からずれ人工欠陥の周縁を通過しているため、図8においては一部の線が途切れたように表されている。画像の表面振動は、照射する光による表面荒さに起因する外光擾乱(じょう乱)を示している。内面深度、層間状態、壁面、表面形状等、物理的な欠陥情報を可視化し、欠陥低部からの反射光による接合面、密着度および界面状態等の物理状態の検査対象にする事が出来る。図8においても、同様に塩ビ層と鋼材層との段差であるA´点が観測される。   FIG. 8 is an image in the X direction of the reflected light from the defect low part. Since the X axis shown in FIG. 9 is shifted from the center of the surface shape and passes through the periphery of the artificial defect, in FIG. 8, some lines are shown as being interrupted. The surface vibration of the image indicates external light disturbance (disturbance) caused by surface roughness due to light to be irradiated. It is possible to visualize physical defect information such as inner surface depth, interlayer state, wall surface, surface shape, and the like, and to inspect physical states such as a joint surface, adhesion degree, and interface state by reflected light from the lower part of the defect. In FIG. 8 as well, a point A ′ that is a step between the vinyl chloride layer and the steel material layer is observed.

図9にその表面形状の測定結果を示す。C点に図5(b)ドリル孔の欠陥形状2mmφが計測される。3層構造の配管は光3次元計測による欠陥低部からの反射光から、3層目の深さからの欠陥情報を得ることが可能となる。   FIG. 9 shows the measurement result of the surface shape. The defect shape 2 mmφ in FIG. 5B is measured at the point C. The three-layer structure pipe can obtain defect information from the depth of the third layer from the reflected light from the defect lower part by optical three-dimensional measurement.

多層配管は内圧により円周方向応力を受けるだけでなく亀裂のまわりで膨れを生じるような曲げを受ける。円筒容器である多層配管について、人工キズを造作し損傷評価を実施した。剥離やピンホール等により円筒容器が減肉損傷を受けた場合、多層配管等の塑性崩壊荷重(Pdc)と健全な多層配管の塑性崩壊荷重(Puc)の比を、強度が残存していることを表す残存強度ファクターRsf(Remaining Strength Factor)で推定可能になる。この残存強度ファクターRsfは、Rt(残存肉厚比)=1−dmm/tmm、d:亀裂深さ、t:肉厚(一定)、C:軸方向の亀裂ながさ、Ri:内半径から、以下の式により求めることができる。ここでMtは係数である。
上記式により、図10に示すように、その残存強度Rsfは欠陥外径φが小さくなり1mmφ以下となると急激に上昇し、残存強度は増大する。
Multi-layer piping is not only subjected to circumferential stress due to internal pressure, but also subjected to bending that causes swelling around the crack. For multi-layer piping, which is a cylindrical container, we made an artificial scratch and evaluated the damage. If the cylindrical container suffers from thinning damage due to peeling or pinholes, the strength remains in the ratio of the plastic collapse load (Pdc) of the multilayer pipe etc. to the plastic collapse load (Puc) of the sound multilayer pipe. It can be estimated by a residual strength factor Rsf (Remaining Strength Factor) representing This residual strength factor Rsf is Rt (residual thickness ratio) = 1-dmm / tmm, d: crack depth, t: wall thickness (constant), C: axial crack length, Ri: inner radius, It can obtain | require by the type | formula. Here, Mt is a coefficient.
According to the above formula, as shown in FIG. 10, the residual strength Rsf increases rapidly when the defect outer diameter φ decreases to 1 mmφ or less, and the residual strength increases.

以上のように、本実施形態では、光3次元計測による3層構造の多層配管のプラント維持技術として、布設稼動中に発生する欠陥損傷の程度を推定する非破壊検査技術として利用可能である。円筒容器等の欠陥損傷が、安全確保を評価指標として、残存強度ファクターRsfが用いられる。2mmφドリル径の試算によるとRsf=0.982で、測定結果から98.2%の強度が残存していることを表していることが確認された。これは1.8%の強度が低下していることになる。プラント等の健全性に破壊力学の観点から、損傷評価の判断指標を提供することができることになれば、有効な非破壊検査の判定技術として利用することができる。   As described above, this embodiment can be used as a non-destructive inspection technique for estimating the degree of defect damage that occurs during laying operation as a plant maintenance technique for a multi-layer pipe having a three-layer structure by optical three-dimensional measurement. The residual strength factor Rsf is used for the defect damage of the cylindrical container or the like with safety as an evaluation index. According to the trial calculation of the 2 mmφ drill diameter, Rsf = 0.982, and it was confirmed from the measurement result that 98.2% strength remained. This is a 1.8% drop in strength. If a judgment index for damage evaluation can be provided from the viewpoint of fracture mechanics to the soundness of a plant or the like, it can be used as a judgment technique for effective nondestructive inspection.

本発明は鋼管および樹脂ライニング相互の界面状態をこれらの複数部位について、詳細にかつ迅速に判定評価することができるという効果を有し、多層配管を構成する鋼管と当該鋼管内面に被覆される樹脂ライニングとの界面に発生する欠陥を検出する多層配管の光三次元計測による残存強度測定方法および装置である。   The present invention has an effect that the interface state between the steel pipe and the resin lining can be determined and evaluated in detail and quickly for these plural parts, and the steel pipe constituting the multilayer pipe and the resin coated on the inner surface of the steel pipe This is a method and apparatus for measuring residual strength by optical three-dimensional measurement of multilayer piping for detecting defects generated at the interface with the lining.

本発明は光三次元計測により非接触により、対象物体の外面形状を捉える従来の機能を超えて多層配管の複数部位について、詳細にかつ迅速に内面の形状の計測とともに、欠陥検査も同時に行う事を可能にする。物体の変形に伴う評価検出技術の重要性は測定技術と組み合わせて、測定時間の短縮化が求められる。その効果が多層配管の光三次元計測による残存強度測定方法および装置に有用である。 In the present invention, in addition to the conventional function of capturing the outer surface shape of a target object in a non-contact manner by optical three-dimensional measurement, the inner surface shape of a plurality of parts of a multilayer pipe is measured in detail and quickly, and defect inspection is simultaneously performed. Enable. The importance of the evaluation detection technique accompanying the deformation of an object is required to shorten the measurement time in combination with the measurement technique. The effect is useful for a residual strength measurement method and apparatus by optical three-dimensional measurement of multilayer piping.

1 3Dオブジェクション
2 カメラ
3 プロジェクター
4 硬質塩化ビニ―ル層
5 鋼材(炭素鋼)層
6 硬質塩化ビニ―ル層
7 樹脂ライニング層
8 亜鉛めっき
DESCRIPTION OF SYMBOLS 1 3D object 2 Camera 3 Projector 4 Hard vinyl chloride layer 5 Steel (carbon steel) layer 6 Hard vinyl chloride layer 7 Resin lining layer 8 Zinc plating

Claims (2)

ライン状の光を測定物体上に投影し、このラインが前記測定物体の表面形状に応じて変形を観察する光三次元計測による多層配管の残存強度測定装置であって、
前記光を前記測定物体に投射するプロジェクターと、
前記プロジェクターからの光を捉えるカメラと、
物理的な欠陥情報を可視化する演算処理部と、を有し、
前記プロジェクターから発せられる前記光を順に動かし前記カメラで捉えることにより三次元形状情報を得ることができ、
三次元による表面深度、内面、表面形状等、物理的な欠陥情報を可視化することを特徴とする多層配管の残存強度測定装置。
A line-shaped light is projected onto a measurement object, and this line is a residual strength measuring device for multi-layer piping by optical three-dimensional measurement in which deformation is observed according to the surface shape of the measurement object,
A projector that projects the light onto the measurement object;
A camera that captures light from the projector;
An arithmetic processing unit that visualizes physical defect information,
Three-dimensional shape information can be obtained by moving the light emitted from the projector in order and capturing with the camera,
An apparatus for measuring the residual strength of multi-layer pipes that visualizes physical defect information such as surface depth, inner surface, and surface shape in three dimensions.
内面に樹脂ライニングを施した鋼管の表面にライン状の光を走査するステップと、
前記光が前記鋼管および前記樹脂ライニング内に存在する欠陥表面および内面に進行することによって、前記光の反射光を捉え物理的な肉厚(t)、表面亀裂深さ(d),残存肉厚比(Rt)の欠陥情報を計測するステップと、を有する光三次元計測による多層配管の残存強度測定方法。
Scanning the line-shaped light on the surface of the steel pipe with the resin lining on the inner surface;
The light travels on the surface and inner surface of the defect existing in the steel pipe and the resin lining, thereby capturing the reflected light of the light, the physical thickness (t), the surface crack depth (d), and the remaining thickness. Measuring the defect information of the ratio (Rt), and a method for measuring the residual strength of the multilayer pipe by optical three-dimensional measurement.
JP2018072796A 2018-04-04 2018-04-04 Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement Pending JP2019184326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072796A JP2019184326A (en) 2018-04-04 2018-04-04 Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072796A JP2019184326A (en) 2018-04-04 2018-04-04 Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement

Publications (1)

Publication Number Publication Date
JP2019184326A true JP2019184326A (en) 2019-10-24

Family

ID=68340729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072796A Pending JP2019184326A (en) 2018-04-04 2018-04-04 Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement

Country Status (1)

Country Link
JP (1) JP2019184326A (en)

Similar Documents

Publication Publication Date Title
JP4596331B2 (en) Ultrasonic flaw detection method for pipe threaded joints
CA2669973A1 (en) System and method for inspecting the interior surface of a pipeline
Marció et al. Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques
Zhu et al. Non-destructive in-situ condition assessment of plastic pipe using ultrasound
KR101815223B1 (en) Apparatus and Method for Pipeline Visual Inspection
JP6356579B2 (en) Eddy current flaw detector and eddy current flaw detection method
TW201940874A (en) Plant inspection method
CN110632167B (en) Online detection method for chemical pipeline
JP3893074B2 (en) Inspection device for work inner surface
JP2019184326A (en) Residual strength measurement device and method for multilayer piping by optical three-dimensional measurement
KR101858032B1 (en) Apparatus, Method, System and Program for Pipeline Visual Inspection
GB2531529A (en) Method for assessing the condition of piping and vessels
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JP6489798B2 (en) Defect evaluation method and defect evaluation apparatus
RU2671296C1 (en) Method of metal corrosion loss assessment in pipeline inaccessible area
KR101815224B1 (en) Apparatus and Method for Pipeline Visual Inspection
CN108592846B (en) Portable petroleum pipe inner wall defect measuring instrument
US10408615B2 (en) Method of inspecting a degraded area of a metal structure covered by a composite repair and method of measuring a remaining wall thickness of a composite structure
CN116953196B (en) Defect detection and safety state assessment method for steel tee joint
Боровикова Development of test specimens for ferromagnetic object flaw detection with a magnetic field viewing film
PIRON et al. Innovation in 3D scanning technology and software is pushing the limits of complex corrosion and mechanical damage assessment on pipelines.
Ng Video endoscopic metrology for pipeline welding
Wang et al. Online micro defects detection for ductile cast iron pipes based on twin light photometric stereo
US20210041400A1 (en) Portable articulating ultrasonic inspection
Granville et al. Detection and sizing of baffle plate erosion and fretting using eddy current array technology

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180416