JP2019181711A - Metal-resin bonded product - Google Patents

Metal-resin bonded product Download PDF

Info

Publication number
JP2019181711A
JP2019181711A JP2018071359A JP2018071359A JP2019181711A JP 2019181711 A JP2019181711 A JP 2019181711A JP 2018071359 A JP2018071359 A JP 2018071359A JP 2018071359 A JP2018071359 A JP 2018071359A JP 2019181711 A JP2019181711 A JP 2019181711A
Authority
JP
Japan
Prior art keywords
resin
metal
bonded
particles
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018071359A
Other languages
Japanese (ja)
Inventor
聡美 田嶋
Satomi Tajima
聡美 田嶋
敏孝 石崎
Toshitaka Ishizaki
敏孝 石崎
野田 浩司
Koji Noda
浩司 野田
明渡 邦夫
Kunio Aketo
邦夫 明渡
俊男 堀江
Toshio Horie
俊男 堀江
正昭 土森
Masaaki Tsuchimori
正昭 土森
龍介 泉
Ryusuke Izumi
龍介 泉
青吾 大澤
Seigo Osawa
青吾 大澤
穂高 森
Hodaka Mori
穂高 森
和輝 神田
Kazuki Kanda
和輝 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2018071359A priority Critical patent/JP2019181711A/en
Publication of JP2019181711A publication Critical patent/JP2019181711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a metal-resin bonded product with a high joint strength.SOLUTION: A metal-resin bonded product is made by bonding a metallic body and a resin body. The bonded surface of the metallic body is unlevel with a surface roughness (Ra) ranging 0.3-10 μm. At least a part of convex parts forming the unlevel surface has metallic particles with size ranging 100-1000 nm joined together at the tip. Spiry projections are distributed like a pinholder on the unlevel surface, and, preferably the metallic particles are joined together at the top of projections. The unlevel surface of this sort is obtained, for example, by roughened plating. The metallic particles, at least partially, are preferably swollen in a tuft-like state from tips of the projections to the bonded surface. In this way the surface area of the bonded interface increases, and the resin penetrated into the concave part is locked with the swollen metallic particles, to provide the metal-resin bonded product with a particularly high joint strength.SELECTED DRAWING: Figure 1

Description

本発明は、金属と樹脂を接合した金属樹脂接合体に関する。   The present invention relates to a metal-resin joined body obtained by joining a metal and a resin.

近年、自動車分野や航空機分野における軽量化ニーズ等に伴い、信頼性に優れた金属と樹脂の接合部材が求められている。例えば、樹脂でパッケージ化された電子機器やパワーデバイス等は、樹脂と金属の接合界面に高い気密性等が求められることが多い。   In recent years, with the need for weight reduction in the automotive field and the aircraft field, a highly reliable metal / resin bonding member is required. For example, electronic devices and power devices packaged with a resin often require high airtightness at the bonding interface between the resin and metal.

金属と樹脂の接合界面における気密性は、一般的に、Oリング、かしめ、接着剤等により確保される。Oリングの使用は、部材の大型化や部数点数の増加を招く。かしめは加工工数の増加を招く。接着剤は、経年劣化による剥離等を生じ得る。また接着剤の使用は、環境負荷物質である接着溶剤の使用等を伴うことが多い。   In general, the airtightness at the bonding interface between the metal and the resin is ensured by an O-ring, caulking, an adhesive, or the like. The use of the O-ring causes an increase in the size of the member and an increase in the number of parts. Caulking causes an increase in processing man-hours. The adhesive may cause peeling due to aging. Also, the use of an adhesive often involves the use of an adhesive solvent, which is an environmentally hazardous substance.

そこで金属と樹脂を直接的に接合しつつ、両者間の気密性等を確保することが望まれる。このような金属と樹脂を接合する提案は種々なされており、例えば、下記の特許文献に関連する記載がある。   Therefore, it is desired to secure the airtightness between the two while directly joining the metal and the resin. Various proposals have been made to join such a metal and a resin. For example, there are descriptions related to the following patent documents.

WO2009/093668号公報WO2009 / 093668 WO2009/151099号公報WO2009 / 151099 特開2015−100959号公報Japanese Unexamined Patent Publication No. 2015-100959 特開2016−65267号公報Japanese Patent Laid-Open No. 2006-65267 特開2012−214027号公報JP 2012-214027 A 特開2014−4773号公報JP 2014-4773 A

特許文献1と特許文献2では、エッチング処理により粗面化した金属表面に、樹脂を接合している。特許文献3では、レーザー照射により凹部を形成した金属表面に、樹脂を接合している。特許文献4では、粗化銅めっき層や小突起銅めっき層等を有する銅箔に、樹脂フィルムを接合している。   In patent document 1 and patent document 2, resin is joined to the metal surface roughened by the etching process. In patent document 3, resin is joined to the metal surface in which the recessed part was formed by laser irradiation. In Patent Document 4, a resin film is bonded to a copper foil having a roughened copper plating layer, a small protrusion copper plating layer, and the like.

特許文献5、6では、電解研磨した金属(Cu、Al等)の表面に、Agナノ粒子を結合させて形成した凹凸面に、樹脂(PPS)を接合している。但し、その接合強度は高々10MPa程度に過ぎない。   In Patent Documents 5 and 6, a resin (PPS) is bonded to an uneven surface formed by bonding Ag nanoparticles to the surface of electropolished metal (Cu, Al, etc.). However, the bonding strength is only about 10 MPa at most.

本発明はこのような事情下で為されたものであり、高い接合強度を発揮し得る新たな金属樹脂接合体等を提供することを目的とする。   The present invention has been made under such circumstances, and an object thereof is to provide a new metal-resin joined body and the like that can exhibit high joint strength.

本発明者はこの課題を解決すべく鋭意研究した結果、金属体の被接合面上にある微細な凸部の先端に金属粒子を選択的に結合させることに成功し、その被接合面を介して接合した金属樹脂接合体が高い接合強度を発揮することを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventors have succeeded in selectively bonding metal particles to the tips of minute convex portions on the surface to be joined of the metal body, and through the surface to be joined. It was newly found that the metal-resin bonded body bonded in this way exhibits high bonding strength. By developing this result, the present invention described below has been completed.

《金属樹脂接合体》
(1)本発明は、金属体と樹脂体を接合した金属樹脂接合体であって、前記金属体の被接合面は、表面粗さ(Ra)が0.3〜10μmである凹凸面からなり、該凹凸面を構成する少なくとも一部の凸部の先端側には、粒径が100〜1000nmである金属粒子が結合している金属樹脂接合体である。
《Metal-resin bonded body》
(1) The present invention is a metal-resin joined body obtained by joining a metal body and a resin body, and a surface to be joined of the metal body is an uneven surface having a surface roughness (Ra) of 0.3 to 10 μm. The metal resin bonded body has metal particles having a particle size of 100 to 1000 nm bonded to the tip side of at least some of the convex portions constituting the uneven surface.

(2)本発明の金属樹脂接合体(単に「接合体」という。)は、高い接合強度または高い密着性やシール性等を発揮し得る。このため本発明の接合体は、各種分野の様々な製品に利用され得る。本発明の接合体がそのような優れた効果を発揮し得る理由は、次のように考えられる。 (2) The metal-resin bonded body of the present invention (simply referred to as “bonded body”) can exhibit high bonding strength or high adhesion and sealing properties. Therefore, the joined body of the present invention can be used for various products in various fields. The reason why the bonded body of the present invention can exhibit such excellent effects is considered as follows.

先ず、本発明に係る金属体の被接合面は、電解研磨等した平滑面ではなく、所定の粗さを有する凹凸面からなる。このため、金属体と樹脂体の間には大きな接触面積が確保され、いわゆるアンカー効果により、両者間に高い接合強度が生じる。   First, the surface to be joined of the metal body according to the present invention is not a smooth surface obtained by electropolishing but an uneven surface having a predetermined roughness. For this reason, a large contact area is ensured between the metal body and the resin body, and a high bonding strength is generated between them due to a so-called anchor effect.

さらに、その凹凸面の凸部には、金属粒子が結合している。この金属粒子は、凸部の先端側にほぼ選択的に結合している。つまり、凸部の根元付近や凹部の底面付近には、殆ど結合していない。このため、金属粒子は、上述した凹凸面を平滑化させることはなく、金属体と樹脂体の接触面積をさらに増加させたり界面形態をより複雑化させて、アンカー効果による接合強度を増大させる。   Furthermore, the metal particle is couple | bonded with the convex part of the uneven surface. The metal particles are almost selectively bonded to the tip side of the convex portion. That is, there is almost no coupling near the base of the convex portion or the bottom surface of the concave portion. For this reason, the metal particles do not smooth the uneven surface described above, and further increase the contact area between the metal body and the resin body or make the interface form more complicated, thereby increasing the bonding strength due to the anchor effect.

このように、所定の表面粗さを有する凹凸面とその凸部に結合した金属粒子とが相乗的に作用することにより、本発明の接合体は高い接合強度を発揮するようになったと考えられる。   Thus, it is thought that the joined body of the present invention has exhibited high joint strength by the synergistic action of the uneven surface having a predetermined surface roughness and the metal particles bonded to the projecting portion. .

《金属樹脂接合体の製造方法》
本発明は接合体の製造方法としても把握できる。すなわち本発明は、金属体の被接合面に樹脂を接合する接合工程を備え、前記被接合面は、表面粗さ(Ra)が0.3〜10μmである凹凸面からなり、該凹凸面を構成する少なくとも一部の凸部の先端側には、粒径が100〜1000nmである金属粒子が結合している金属樹脂接合体の製造方法でもよい。
<< Method for producing metal-resin bonded body >>
The present invention can also be grasped as a method for manufacturing a joined body. That is, the present invention includes a bonding step of bonding a resin to a bonded surface of a metal body, and the bonded surface includes an uneven surface having a surface roughness (Ra) of 0.3 to 10 μm. A metal resin joined body manufacturing method in which metal particles having a particle diameter of 100 to 1000 nm are bonded to the front end side of at least some of the convex portions constituting the surface may be used.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

金属体の被接合面の断面を示す模式図である。It is a schematic diagram which shows the cross section of the to-be-joined surface of a metal body. 銀ナノ粒子の結合前のニッケルめっき面を観察したSEM像である。It is the SEM image which observed the nickel plating surface before the coupling | bonding of a silver nanoparticle. 銀ナノ粒子の結合後のニッケルめっき面を観察したSEM像である。It is the SEM image which observed the nickel plating surface after the coupling | bonding of a silver nanoparticle.

本明細書で説明する内容は、本発明の接合体のみならず、その製造方法にも適宜該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。製造方法に関する構成要素は、物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be appropriately applied not only to the joined body of the present invention but also to the manufacturing method thereof. One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. A component related to the manufacturing method can also be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.

《金属体の被接合面》
(1)表面粗さ
樹脂体に接合される金属体の被接合面は凹凸面からなる。凹凸面は、算術平均粗さ(Ra/JIS B 0601)が0.3〜10μmさらには0.4〜4μmであると好ましい。凹凸面の表面粗さが過小または過大であると、金属粒子の結合による表面積や接合強度の増大を不十分となる。
《Metal body surface to be joined》
(1) Surface roughness The to-be-joined surface of the metal body joined to a resin body consists of an uneven surface. The uneven surface preferably has an arithmetic average roughness (Ra / JIS B 0601) of 0.3 to 10 μm, more preferably 0.4 to 4 μm. If the surface roughness of the uneven surface is too small or too large, the increase in surface area and bonding strength due to the bonding of metal particles will be insufficient.

ここでいう表面粗さは、金属粒子の結合後の凹凸面について、無作為に抽出した領域(110μm×145μm)における表面粗さ(Ra)として求められる。接合体から金属体の表面粗さを特定するときは、樹脂を溶失または焼失等させてから表面粗さ(Ra)を測定するとよい。   The surface roughness here is determined as the surface roughness (Ra) in a randomly extracted region (110 μm × 145 μm) with respect to the uneven surface after the metal particles are bonded. When specifying the surface roughness of the metal body from the bonded body, the surface roughness (Ra) may be measured after the resin is melted or burned out.

(2)形態
凹凸面は、凸部が略尖塔状(または略錐体状)の突起からなり、その突起が剣山状に分布したものであると好ましい(図1、図2A参照)。このような突起の頂部(樹脂体側の先端部)に結合している金属粒子は、凹凸面の凹部と協働してアンダーカットを形成する(図1、図2B参照)。つまり金属粒子は、いわゆる「逆テーパー」または「かえし」のように作用する。このような金属粒子により、凹部へ侵入した樹脂は機械的に掛止されるようになる。この結果、金属体と樹脂体の接合界面には、より強いアンカー効果が生じて両者は一層強固に接合されるようになる。この傾向は、金属粒子の少なくとも一部が、凹部を閉塞しない範囲で、凸部の先端側から横方向(被接合面方向)に膨出している程度が大きくなるほど顕著となる。
(2) Form It is preferable that the concavo-convex surface has convex portions that are substantially spire-shaped (or substantially cone-shaped) projections, and the projections are distributed in a sword mountain shape (see FIGS. 1 and 2A). The metal particles bonded to the top of the protrusion (tip on the resin body side) form an undercut in cooperation with the concave portion of the concave and convex surface (see FIGS. 1 and 2B). That is, the metal particles act like a so-called “reverse taper” or “barbage”. With such metal particles, the resin that has entered the recesses is mechanically locked. As a result, a stronger anchor effect is produced at the joint interface between the metal body and the resin body, and both are joined more firmly. This tendency becomes more prominent as the extent to which at least a part of the metal particles bulge in the lateral direction (bonded surface direction) from the tip side of the convex portion is within a range in which the concave portion is not blocked.

(3)金属粒子
金属粒子は、ナノサイズ〜マイクロサイズの凸部の先端部(頂部)に結合できるものであれば、一次粒子のみでもよいし、微細な一次粒子が凝集して所望サイズになった二次粒子でもよい。
(3) Metal particles As long as the metal particles can be bonded to the tip (top) of the nano-sized to micro-sized convex portions, only the primary particles may be used, or fine primary particles aggregate to a desired size. Secondary particles may also be used.

凸部に結合する金属粒子の粒径は100〜1000nmさらには300〜600nmであると好ましい。過小な金属粒子では、接合界面の表面積を十分に増加させることができない。過大な金属粒子では、凸部から脱落等し易くなる。この金属粒子が一次粒子が凝集した二次粒子からなる場合、その一次粒子の粒径は1〜500nmさらには50〜300nmであると好ましい。金属粒子がそのようなナノ粒子(一次粒子または二次粒子)からなる場合、凸部の先端側に選択的に結合した所望形状の金属粒子が形成され易い。   The particle size of the metal particles bonded to the convex portion is preferably 100 to 1000 nm, more preferably 300 to 600 nm. If the metal particles are too small, the surface area of the bonding interface cannot be increased sufficiently. Excessive metal particles are likely to fall off the convex portion. When the metal particles are composed of secondary particles in which primary particles are aggregated, the primary particles preferably have a particle size of 1 to 500 nm, more preferably 50 to 300 nm. When the metal particles are composed of such nanoparticles (primary particles or secondary particles), metal particles having a desired shape that are selectively bonded to the tip side of the convex portion are easily formed.

本明細書でいう粒径は、特に断らない限り、走査型電子顕微鏡(SEM)により観察した領域について、任意に抽出した100個の粒子の最大長を相加平均して特定される。   Unless otherwise specified, the particle size referred to in the present specification is specified by arithmetically averaging the maximum lengths of 100 particles arbitrarily extracted in a region observed with a scanning electron microscope (SEM).

金属粒子は、凸部の先端部(頂部)に結合可能な材質からなればよく、例えば、Ag、Au、Cu、Pt、Ru、Pd、Ir、Os、Rh等の純金属または合金から選択される。金属粒子の材質は、凹凸面の材質に応じて選択されると、金属粒子と凸部の結合強度、ひいては金属体と樹脂体の接合強度の向上を図れて好ましい。例えば、凹凸面がニッケル(Ni)またはその合金からなる場合、金属粒子は銀(Ag)またはその合金からなるとよい。なお、所望の接合強度が確保される限り、金属粒子と凹凸面は同材質でもよい。また、金属粒子と凸部の結合層は、それらの材質や処理により種々あり得る。例えば、結合層として、焼結層、合金層、金属間化合物層等が考えられる。   The metal particles may be made of a material that can be bonded to the tip (top) of the convex portion, and may be selected from pure metals or alloys such as Ag, Au, Cu, Pt, Ru, Pd, Ir, Os, and Rh. The The material of the metal particles is preferably selected according to the material of the concavo-convex surface in order to improve the bonding strength between the metal particles and the convex portion, and hence the bonding strength between the metal body and the resin body. For example, when the uneven surface is made of nickel (Ni) or an alloy thereof, the metal particles are preferably made of silver (Ag) or an alloy thereof. Note that the metal particles and the concavo-convex surface may be made of the same material as long as the desired bonding strength is ensured. Further, the bonding layer of the metal particles and the convex portions may be various depending on their materials and processing. For example, as the bonding layer, a sintered layer, an alloy layer, an intermetallic compound layer, or the like can be considered.

(4)凹凸面の形成
凹凸面は、金属体を構成する基材表面にそのまま形成されたものでも、基材表面に設けられた被覆層(めっき等)に形成されたものでもよい。凹凸面は、例えば、粗化めっき、(ウエット)エッチング、レーザー加工、プレス、ダイカスト成形、切削、ブラスト加工、スパッタリング、各種の蒸着(CVD、PVD)等により形成可能である。もっとも、粗化めっきを用いると凹凸面を効率的に形成できるため、凹凸面は粗化めっき層であると好ましい。
(4) Formation of concavo-convex surface The concavo-convex surface may be formed directly on the surface of the base material constituting the metal body or may be formed on a coating layer (plating or the like) provided on the surface of the base material. The uneven surface can be formed by, for example, roughening plating, (wet) etching, laser processing, pressing, die casting, cutting, blasting, sputtering, various types of vapor deposition (CVD, PVD) or the like. However, since the uneven surface can be efficiently formed by using rough plating, the uneven surface is preferably a rough plating layer.

《金属体》
金属体は、金属粒子が結合される凹凸面(被接合面)が得られる限り、その材質や形態を問わない。金属体は、例えば、銅や銅合金(銅系金属)、鉄や鉄合金(鉄系金属/鋼材(炭素鋼、合金鋼、ステンレス鋼等)を含む。)、アルミニウムやアルミニウム合金(アルミニウム系金属)、マグネシウムやマグネシウム合金(マグネシウム系金属)、チタンやチタン合金(チタン系金属)等からなる。また、ニッケルやニッケル合金(ニッケル系金属)、スズやスズ合金(スズ系金属)、銀や銀合金(銀系金属)、金等からなってもよい。さらに、それら金属をマトリックスとして、分散材を含む複合材でもよい。
《Metal body》
The metal body may be of any material or form as long as an uneven surface (bonded surface) to which metal particles are bonded is obtained. The metal body is, for example, copper or copper alloy (copper metal), iron or iron alloy (including iron metal / steel materials (carbon steel, alloy steel, stainless steel, etc.)), aluminum or aluminum alloy (aluminum metal). ), Magnesium or magnesium alloy (magnesium-based metal), titanium or titanium alloy (titanium-based metal), or the like. Further, it may be made of nickel, nickel alloy (nickel metal), tin, tin alloy (tin metal), silver, silver alloy (silver metal), gold or the like. Furthermore, a composite material including a dispersion material using these metals as a matrix may be used.

《樹脂体》
樹脂体は、金属体の被接合面に接合可能であれば、その材質や形態を問わない。本発明の場合、基本的にアンカー効果により接合強度が確保されるため、多種多様な樹脂が金属体の被接合面に接合され得る。
<Resin body>
As long as the resin body can be bonded to the bonded surface of the metal body, the material and the form thereof are not limited. In the case of the present invention, since the bonding strength is basically secured by the anchor effect, a wide variety of resins can be bonded to the bonded surfaces of the metal bodies.

樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよい。具体的にいうと、ポリフェニレンサルファイド(PPS)系樹脂、エポキシ系樹脂、ポリブチレンテレフタレート(PBT)系樹脂、シリコーン系樹脂、ポリアミド(PA)系樹脂、ポリアセタール(POM)系樹脂、ジアリルフタレート(PDAP)系樹脂(フタル酸ジアリル、アリル樹脂等)、芳香族ポリアミド(APA)系樹脂、フッ素系樹脂(PTFE、PFA、EPA)、ポリイミド(PI)系樹脂、ポリプロピレン(PP)系樹脂、ポリアセタール(POM)系樹脂、ポリエチレンテレフタレート(PET)系樹脂、フェノール(PF)系樹脂、不飽和ポリエステル(UP)系樹脂、ポリウレタン(PUR)、メラミン(MF)、芳香族ポリエステル(APES)系樹脂、ポリカーボネート(PC)系樹脂、ポリアミドイミド(PAI)系樹脂、ポリスルホン(PSU)系樹脂、ポリエーテルサルホン(PES)系樹脂、ポリフェニレンエーテル(PPE)系樹脂、変性ノリル系樹脂(PPE+PS等)等のいずれをも用いることができる。   The resin may be a thermoplastic resin or a thermosetting resin. Specifically, polyphenylene sulfide (PPS) resin, epoxy resin, polybutylene terephthalate (PBT) resin, silicone resin, polyamide (PA) resin, polyacetal (POM) resin, diallyl phthalate (PDAP) Resin (diallyl phthalate, allyl resin, etc.), aromatic polyamide (APA) resin, fluorine resin (PTFE, PFA, EPA), polyimide (PI) resin, polypropylene (PP) resin, polyacetal (POM) Resin, polyethylene terephthalate (PET) resin, phenol (PF) resin, unsaturated polyester (UP) resin, polyurethane (PUR), melamine (MF), aromatic polyester (APES) resin, polycarbonate (PC) Resin, polyamideimide ( AI) resin, polysulfone (PSU) resin, polyethersulfone (PES) resin, polyphenylene ether (PPE) resin, can be used any of such modified Noryl resins (PPE + PS, etc.).

金属体の被接合面(凹凸面)に接触する領域に樹脂が存在する限り、樹脂体は、その全体が樹脂のみからなる場合でも、樹脂中に各種のフィラーが分散した複合材からなる場合でもよい。フィラーには、例えば、軟質粒子(例えばシリコーンゴム、架橋NBR、アクリル系ゴム、架橋オレフィンゴム等)、硬質粒子(カーボン、セラミクス等)、繊維(カーボン、セラミクス、ガラス等)がある。なお、樹脂は、単種に限らず、複数種の混合物でもよい。   As long as the resin exists in the region in contact with the surface to be joined (uneven surface) of the metal body, the resin body may be composed entirely of resin or a composite material in which various fillers are dispersed in the resin. Good. Examples of the filler include soft particles (for example, silicone rubber, crosslinked NBR, acrylic rubber, crosslinked olefin rubber), hard particles (carbon, ceramics, etc.), and fibers (carbon, ceramics, glass, etc.). The resin is not limited to a single type, and may be a mixture of a plurality of types.

《製造方法》
金属体の被接合面に樹脂を接合する接合工程は、例えば、軟化または溶融した樹脂を被接合面上で固化させてなされる。この接合工程は、例えば、その被接合面へ軟化または溶融した樹脂を供給する供給工程と、樹脂を固化させて樹脂体とする固化工程とによりなされる。供給工程は、例えば、金属体を成形型内へ収容またはセットし、金属体の被接合面と接触するように軟化または溶融した樹脂をその成形型内へ注入してなされる。いわゆるインサート成形により、金属体と樹脂体の接合が併せてなされると効率的である。なお、樹脂体の成形は、射出成形、押出成形、ブロー成形、真空成形、トランスファー成形、圧縮成形等のいずれによりなされてもよい。
"Production method"
The joining step for joining the resin to the surface to be joined of the metal body is performed, for example, by solidifying the softened or melted resin on the surface to be joined. This joining step is performed by, for example, a supplying step of supplying a softened or melted resin to the surfaces to be joined and a solidifying step of solidifying the resin to obtain a resin body. The supplying step is performed, for example, by containing or setting a metal body in a mold and injecting a softened or molten resin into the mold so as to come into contact with the surface to be joined of the metal body. It is efficient if the metal body and the resin body are joined together by so-called insert molding. The resin body may be molded by any of injection molding, extrusion molding, blow molding, vacuum molding, transfer molding, compression molding, and the like.

接合工程は、既に所望形状に成形されている樹脂体を、別途、金属体に熱溶着してなされてもよい。この接合工程は、例えば、樹脂体の被接合面近傍にある樹脂を直接的または間接的に加熱して軟化または溶融させる加熱工程と、その溶融または軟化した樹脂を金属体の被接合面に接触(または圧接)させた状態で冷却して固化させる冷却工程とによりなされる。   The joining step may be performed by separately thermally welding a resin body that has already been formed into a desired shape to a metal body. This joining process includes, for example, a heating process in which the resin in the vicinity of the surface to be joined of the resin body is heated directly or indirectly to soften or melt, and the molten or softened resin is brought into contact with the surface to be joined of the metal body. (Or pressure contact) and a cooling step of cooling and solidifying.

《接合体》
本発明の接合体は、高い接合強度を発揮するため、種々の分野における様々な製品に利用可能である。せん断試験により求まる接合体の接合強度は、例えば、20MPa以上、25MPa以上さらには30MPa以上となり得る。
《Joint body》
Since the bonded body of the present invention exhibits high bonding strength, it can be used for various products in various fields. The joint strength of the joined body obtained by the shear test can be, for example, 20 MPa or more, 25 MPa or more, or 30 MPa or more.

また、本発明の接合体では、表面積の大きい被接合面(さらには金属粒子により逆テーパー状となった凹凸面)に樹脂が密着した状態となっている。このため本発明の接合体は、接合強度が高いのみならず、接合界面における気密性(シール性)も高い。このため本発明の接合体は、金属体と樹脂体の接合界面が流体のシール面となるような部材等に好適である。   Moreover, in the joined body of the present invention, the resin is in close contact with the surface to be joined having a large surface area (and the uneven surface that has been reversely tapered by the metal particles). For this reason, the bonded body of the present invention has not only high bonding strength but also high airtightness (sealability) at the bonding interface. Therefore, the joined body of the present invention is suitable for a member or the like in which the joining interface between the metal body and the resin body serves as a fluid sealing surface.

そのような部材として、例えば、気体や流体の圧力センサーがある。圧力センサーは、センシング部やその電気信号を外部コネクタに伝えるターミナル部等(金属体)と、それらの保持や絶縁性等を確保するケース部やパッケージ部等(樹脂体)とを備える。この場合、接合界面近傍に流体圧が作用しても、接合界面に沿った剥離や流体のリーク等が抑止され、金属部分の防錆効果と相俟って、圧力センサーの信頼性の向上が図られる。   An example of such a member is a gas or fluid pressure sensor. The pressure sensor includes a sensing portion and a terminal portion (metal body) that transmits an electric signal to the external connector (metal body), and a case portion and a package portion (resin body) that secure their retention and insulation. In this case, even if fluid pressure acts near the joint interface, peeling along the joint interface, fluid leakage, etc. are suppressed, and in combination with the rust prevention effect of the metal part, the reliability of the pressure sensor is improved. Figured.

基材(金属体)上に(粗化)ニッケルめっきを施し、さらにそのニッケルめっき上に銀ナノ粒子(金属粒子)を結合させた。この処理面(被接合面)を介して、基材上に樹脂を一体成形した。得られた接合体の接合強度を測定すると共にその処理面を観察した。このような具体例を通じて本発明をより詳細に説明する。   (Roughening) nickel plating was performed on the base material (metal body), and silver nanoparticles (metal particles) were further bonded on the nickel plating. The resin was integrally formed on the base material via this treated surface (surface to be joined). The bonding strength of the obtained bonded body was measured and its treated surface was observed. The present invention will be described in more detail through such specific examples.

《試料の製造》
(1)基材(金属体)
基材として、無酸素銅板(20mm角×3mm厚/JIS C1020)を用意した。めっきの密着性を高めるため、基材の表面を電解脱脂して洗浄した後、過硫酸系溶媒中でエッチングを行い、さらに塩酸(10体積%)中で酸活性化した。
<Production of sample>
(1) Base material (metal body)
As a base material, an oxygen-free copper plate (20 mm square × 3 mm thickness / JIS C1020) was prepared. In order to improve the adhesion of the plating, the surface of the base material was electrolytically degreased and washed, then etched in a persulfuric acid solvent, and further acid-activated in hydrochloric acid (10% by volume).

(2)ニッケルめっき
その前処理した基材の表面に、電解ニッケルめっきを施した(凹凸形成工程)。めっき浴にはワット浴(硫酸ニッケル、塩化ニッケルおよびホウ酸の水溶液)を用いた。めっき浴の調製に、他の添加剤は用いなかった。硫酸ニッケルおよび塩化ニッケルはNiイオンの供給源とし、ホウ酸はpH緩衝剤として用いた。こうして得られためっき浴のpHは6であった。
(2) Nickel plating Electrolytic nickel plating was applied to the surface of the pretreated substrate (unevenness forming step). A Watt bath (an aqueous solution of nickel sulfate, nickel chloride and boric acid) was used as the plating bath. No other additives were used in the preparation of the plating bath. Nickel sulfate and nickel chloride were used as a source of Ni ions, and boric acid was used as a pH buffer. The pH of the plating bath thus obtained was 6.

60℃に保持しためっき浴に浸漬した基材へ、電流密度:0.5〜1A/dmを通電した。処理時間は90分間とした。この際、撹拌を行わない静止浴中でめっきした。こうして、表面粗さ(Ra)が0.35μmであるニッケルめっき面を基材表面に形成した。なお、表面粗さの算出については後述する。 The substrate was immersed in a plating bath maintained at 60 ° C., and a current density of 0.5 to 1 A / dm 2 was applied. The processing time was 90 minutes. At this time, plating was performed in a static bath without stirring. Thus, a nickel plated surface having a surface roughness (Ra) of 0.35 μm was formed on the substrate surface. The calculation of the surface roughness will be described later.

(3)銀ナノ粒子の結合
ニッケルめっき面(凹凸面)に銀ナノ粒子(金属粒子)を結合させた(粒子結合工程)。この処理は、特開2014−4773号公報または特開2012−214027号公報の記載に沿って行った。その概要は次の通りである。
(3) Bonding of silver nanoparticles Silver nanoparticles (metal particles) were bonded to a nickel-plated surface (uneven surface) (particle bonding step). This process was performed according to the description in Japanese Patent Application Laid-Open No. 2014-4773 or Japanese Patent Application Laid-Open No. 2012-214027. The outline is as follows.

硝酸銀の水溶液とクエン酸三ナトリウム水溶液を用いて、Ag粒子含有分散液を調製した。上記公報にあるように、その分散液中に含まれるAg粒子の粒径は3nm程度であった。また、ポリエチレンイミン(PEI)の水溶液からなるカチオン性ポリマー液も調製した。ニッケルめっき面をAg粒子含有分散液とカチオン性ポリマー液に交互に浸漬して、ニッケルめっき面に銀ナノ粒子を担持させた。   An Ag particle-containing dispersion was prepared using an aqueous silver nitrate solution and an aqueous trisodium citrate solution. As described in the above publication, the particle size of Ag particles contained in the dispersion was about 3 nm. A cationic polymer solution comprising an aqueous solution of polyethyleneimine (PEI) was also prepared. The nickel-plated surface was alternately immersed in a dispersion containing Ag particles and a cationic polymer solution, and silver nanoparticles were supported on the nickel-plated surface.

ニッケルめっき面に上述した処理を施した基材を、水素ガス雰囲気中で250℃×1時間加熱した(焼成工程)。なお、この工程後に、特開2014−4773号公報に記載されているような有機修飾処理は行っていない。   The base material subjected to the above-described treatment on the nickel plating surface was heated in a hydrogen gas atmosphere at 250 ° C. for 1 hour (firing step). In addition, the organic modification process as described in Unexamined-Japanese-Patent No. 2014-4773 is not performed after this process.

ちなみに、特開2014−4773号公報または特開2012−214027号公報の記載は本明細書の一部をなし、本明細書で記載していない詳細な内容は、それら公報の記載に依る。   Incidentally, the description in Japanese Patent Application Laid-Open No. 2014-4773 or Japanese Patent Application Laid-Open No. 2012-214027 constitutes a part of this specification, and the detailed contents not described in this specification depend on the description of those publications.

(4)樹脂接合
上述した処理後の基材(焼成工程後の基材)を配置した成形金型内へ、330℃に加熱して溶融した非強化ポリフェニレンサルファイド樹脂(PPS/東レ製A900)を射出した(供給工程)。その後、成形金型を冷却して樹脂を固化させた(固化工程)。このインサート成形により、処理面を介して基材に樹脂体(5mm角×4mm厚)を接合した接合体(金属樹脂接合体)を得た。なお、基材と樹脂体の接触領域(接合部)は25mm〜40mmとした。この接合体を試料1という。
(4) Resin bonding The non-reinforced polyphenylene sulfide resin (PPS / A900 manufactured by Toray Industries, Inc.) melted by heating to 330 ° C. into the molding die in which the base material after the above-described treatment (base material after the firing step) is disposed. Injected (supply process). Thereafter, the molding die was cooled to solidify the resin (solidification step). By this insert molding, a joined body (metal resin joined body) in which a resin body (5 mm square × 4 mm thickness) was joined to the base material via the treated surface was obtained. The contact region (junction) of the substrate and the resin member was 25mm 2 ~40mm 2. This joined body is referred to as Sample 1.

(5)比較試料
銀ナノ粒子の結合処理を行わず、それ以外は試料1と同様にして、ニッケルめっきしたままの表面に樹脂を直接接合した。こうして得られた接合体を試料C1という。
(5) Comparative sample Resin was directly joined to the surface of the nickel-plated surface in the same manner as Sample 1 except that the silver nanoparticles were not bonded. The joined body thus obtained is referred to as Sample C1.

表面粗さ(Ra)が0.15μmであるニッケルめっき面を有する基材も用意した。このニッケルめっき面に試料1の場合と同様にして、銀ナノ粒子の結合処理および樹脂接合を行った。こうして得られた接合体を試料C2という。   A base material having a nickel-plated surface having a surface roughness (Ra) of 0.15 μm was also prepared. In the same manner as in the case of Sample 1, this nickel plating surface was subjected to silver nanoparticle bonding treatment and resin bonding. The joined body thus obtained is referred to as Sample C2.

《せん断試験》
せん断試験により各試料に係る接合強度を求めた。接合強度は、各接合体毎にせん断抵抗力と破断面積を測定し、せん断抵抗力を破断面積で除して算出した。
<Shear test>
The joining strength concerning each sample was calculated | required by the shear test. The bonding strength was calculated by measuring the shear resistance and fracture area for each joined body and dividing the shear resistance by the fracture area.

せん断抵抗力は、万能型ボンドテスタ(ノードソンアドバンスドテスタ製4000PLUS)を用いてダイシェアテスト測定法により測定した。この際、シェアツールの高さ:50μm、ツール速度:50μm/min、準拠規格:Department of Defense, Test method standard microcircuits, MIL STD-883E, Dec. 31, 1996. METHOD 2019.5, May 29, 1987.とした。   The shear resistance was measured by a die shear test measurement method using a universal bond tester (4000PLUS manufactured by Nordson Advanced Tester). At this time, the height of the share tool: 50 μm, tool speed: 50 μm / min, conformity standard: Department of Defense, Test method standard microcircuits, MIL STD-883E, Dec. 31, 1996. METHOD 2019.5, May 29, 1987. did.

破断面積は、せん断試験後の基材側破断面に係る光学顕微鏡写真を、画像処理して測定した(ソフトウエア:ImageJ、National Institutes of Health)。こうして得られた各試料の接合強度を表1に併せて示した。   The fracture area was measured by image processing of an optical micrograph of the base-side fracture surface after the shear test (software: ImageJ, National Institutes of Health). Table 1 shows the bonding strength of each sample thus obtained.

《被接合面の測定・観察》
(1)観察
試料1に係る基材について、銀ナノ粒子の結合前のニッケルめっき面と銀ナノ粒子の結合後のニッケルめっき面とをSEMで観察した。それぞれのSEM像を図2Aと図2Bに示した。
《Measurement and observation of bonded surface》
(1) Observation About the base material which concerns on the sample 1, the nickel plating surface before the coupling | bonding of a silver nanoparticle and the nickel plating surface after the coupling | bonding of a silver nanoparticle were observed by SEM. The respective SEM images are shown in FIGS. 2A and 2B.

(2)表面粗さ
各試料に係る基材について、銀ナノ粒子の結合前のニッケルめっき面と銀ナノ粒子の結合後のニッケルめっき面との表面粗さ(Ra)を測定(算出)した。その結果を表1に併せて示した。
(2) Surface roughness About the base material which concerns on each sample, the surface roughness (Ra) of the nickel plating surface before the coupling | bonding of a silver nanoparticle and the nickel plating surface after the coupling | bonding of a silver nanoparticle was measured (calculated). The results are also shown in Table 1.

なお、表面粗さ(算術平均粗さ:Ra/JIS B 0601)は、レーザー顕微鏡(キーエンス製 VK-X)を用いて、倍率:100倍として、縦110μm×横145μmの測定エリアにおける粗さ曲線(Z(x,y))に基づいて行った。   The surface roughness (arithmetic average roughness: Ra / JIS B 0601) is a roughness curve in a measurement area of 110 μm in length and 145 μm in width with a magnification of 100 times using a laser microscope (VK-X manufactured by Keyence). Based on (Z (x, y)).

(3)金属粒子の粒径
図2BのSEM像に基づいて、銀ナノ粒子(主に二次粒子)の(平均)粒径を既述した方法で算出した。その結果も併せて表1に示した。なお、試料1に係る一次粒子の粒径は100nmであった。
(3) Particle Size of Metal Particle Based on the SEM image of FIG. 2B, the (average) particle size of silver nanoparticles (mainly secondary particles) was calculated by the method described above. The results are also shown in Table 1. In addition, the particle diameter of the primary particle which concerns on the sample 1 was 100 nm.

《評価》
(1)接合強度
表1に示した試料1から明らかなように、銀ナノ粒子が結合しており、所定の表面粗さを有する被接合面に樹脂を接合した接合体は、非常に高い接合強度を発揮することがわかった。一方、試料C1と試料C2からわかるように、被接合面に銀ナノ粒子の結合処理がされていない場合または被接合面の表面粗さが所望範囲内でない場合、試料1のような大きい接合強度は得られなかった。
<Evaluation>
(1) Bonding strength As is clear from Sample 1 shown in Table 1, a bonded body in which silver nanoparticles are bonded and a resin is bonded to a bonded surface having a predetermined surface roughness is a very high bond. It was found to exert strength. On the other hand, as can be seen from Sample C1 and Sample C2, when the bonding surface of the silver nanoparticles is not applied to the surfaces to be bonded or when the surface roughness of the surfaces to be bonded is not within the desired range, the high bonding strength as in Sample 1 is obtained. Was not obtained.

(2)考察
図2Aからわかるように、ニッケルめっき後の表面は、尖塔状の突起が剣山状に分布した凹凸面となっていることがわかる。また、図2Bからわかるように、銀ナノ粒子の結合処理後の表面は、その突起の先端部(頂部)にだけ、選択的に銀ナノ粒子が結合していることがわかる。また、銀ナノ粒子は、各突起の頂部から横方向(被接合面に沿った方向)に房状に膨出していることもわかる。
(2) Consideration As can be seen from FIG. 2A, it can be seen that the surface after nickel plating is a concavo-convex surface in which spire-like protrusions are distributed in a sword mountain shape. Further, as can be seen from FIG. 2B, it can be seen that the surface after the silver nanoparticle binding treatment is selectively bonded with the silver nanoparticle only at the tip (top) of the protrusion. It can also be seen that the silver nanoparticles swell in a tuft shape in the lateral direction (direction along the bonded surface) from the top of each protrusion.

このような銀ナノ粒子により接合界面の面積が増加すると共に、ニッケルめっきの凹部に侵入した樹脂は、房状に膨出した銀ナノ粒子に掛止された状態(ひっかかった状態)となる。これらが相乗的に作用することにより、試料1の接合体は非常に高い接合強度を発揮するようになったと考えられる。このことは、試料1と試料C1との接合強度の比較からも明らかである。   The area of the bonding interface is increased by such silver nanoparticles, and the resin that has entered the concave portion of the nickel plating is in a state of being hooked on the silver nanoparticles swelled in a tuft shape. It is considered that the joined body of Sample 1 exhibited very high bonding strength due to the synergistic action of these. This is also clear from the comparison of the bonding strength between sample 1 and sample C1.

また、試料C2は、銀ナノ粒子の結合処理を施したにも拘わらず、その接合強度は比較的小さかった。このことから、高い接合強度を得るためには、処理後の表面粗さが所定範囲内にあることも必要であるといえる。このためには、処理前のニッケルめっき面の表面粗さも重要であると考えられる。表1からわかるように、その処理後の表面粗さは、処理前の表面粗さに対して、0.1μm増加する程度である。従って、処理前の表面粗さも、本発明で規定する金属粒子の結合処理後の表面粗さと同程度にしておくことが好ましい。   Moreover, although the sample C2 was subjected to the silver nanoparticle bonding treatment, its bonding strength was relatively small. From this, it can be said that the surface roughness after the treatment must be within a predetermined range in order to obtain a high bonding strength. For this purpose, it is considered that the surface roughness of the nickel-plated surface before processing is also important. As can be seen from Table 1, the surface roughness after the treatment is about 0.1 μm higher than the surface roughness before the treatment. Therefore, it is preferable that the surface roughness before the treatment is also approximately the same as the surface roughness after the metal particle bonding treatment defined in the present invention.

こうして、本発明で規定した被接合面を介することにより、金属体と樹脂体を強固に接合できることが明らかとなった。   Thus, it has been clarified that the metal body and the resin body can be firmly bonded through the bonded surface defined in the present invention.

Claims (9)

金属体と樹脂体を接合した金属樹脂接合体であって、
前記金属体の被接合面は、表面粗さ(Ra)が0.3〜10μmである凹凸面からなり、
該凹凸面を構成する少なくとも一部の凸部の先端側には、粒径が100〜1000nmである金属粒子が結合している金属樹脂接合体。
A metal-resin joined body obtained by joining a metal body and a resin body,
The bonded surface of the metal body is an uneven surface having a surface roughness (Ra) of 0.3 to 10 μm,
A metal-resin bonded body in which metal particles having a particle size of 100 to 1000 nm are bonded to the tip side of at least some of the convex portions constituting the irregular surface.
前記凸部は、略尖塔状の突起からなり、
前記凹凸面は、該突起が剣山状に分布してなり、
前記金属粒子は、該突起の頂部に結合している請求項1に記載の金属樹脂接合体。
The convex portion is composed of a substantially spire-shaped protrusion,
The uneven surface has the protrusions distributed in a sword mountain shape,
The metal resin bonded body according to claim 1, wherein the metal particles are bonded to the tops of the protrusions.
前記金属粒子の少なくとも一部は、前記凸部の先端側から膨出している請求項1または2に記載の金属樹脂接合体。   The metal-resin joined body according to claim 1 or 2, wherein at least a part of the metal particles bulge from a tip side of the convex portion. 前記金属粒子は、一次粒子が凝集した二次粒子からなる請求項1〜3のいずれかに記載の金属樹脂接合体。   The metal resin joined body according to any one of claims 1 to 3, wherein the metal particles are formed of secondary particles in which primary particles are aggregated. 前記凹凸面は、ニッケルからなり、
前記金属粒子は、銀からなる請求項1〜4のいずれかに記載の金属樹脂接合体。
The uneven surface is made of nickel,
The metal resin joined body according to claim 1, wherein the metal particles are made of silver.
前記凹凸面は、粗化めっき層からなる請求項1〜5のいずれかに記載の金属樹脂接合体。   The metal-resin joined body according to any one of claims 1 to 5, wherein the uneven surface includes a roughened plating layer. 前記樹脂体は、ポリフェニレンサルファイド系樹脂、エポキシ系樹脂、ポリブチレンテレフタレート系樹脂、シリコーン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ジアリルフタレート系樹脂、芳香族ポリアミド系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリプロピレン系樹脂、ポリアセタール系樹脂、ポリエチレンテレフタレート系樹脂、フェノール系樹脂、不飽和ポリエステル系樹脂、ポリウレタン、メラミン、芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミドイミド系樹脂、ポリスルホン系樹脂、ポリエーテルサルホン系樹脂、ポリフェニレンエーテル系樹脂、変性ノリル系樹脂のいずれかからなる請求項1〜6のいずれかに記載の金属樹脂接合体。   The resin body includes polyphenylene sulfide resin, epoxy resin, polybutylene terephthalate resin, silicone resin, polyamide resin, polyacetal resin, diallyl phthalate resin, aromatic polyamide resin, fluorine resin, polyimide resin. Polypropylene resin, polyacetal resin, polyethylene terephthalate resin, phenol resin, unsaturated polyester resin, polyurethane, melamine, aromatic polyester resin, polycarbonate resin, polyamideimide resin, polysulfone resin, polyethersal The metal resin joined body according to any one of claims 1 to 6, comprising any one of a phon resin, a polyphenylene ether resin, and a modified noryl resin. せん断試験により求まる接合強度が20MPa以上である請求項1〜7のいずれかに記載の金属樹脂接合体。   The metal-resin joined body according to any one of claims 1 to 7, wherein a joining strength obtained by a shear test is 20 MPa or more. 前記金属体と前記樹脂体の接合界面が流体のシール面となる請求項1〜8のいずれかに記載の金属樹脂接合体。   The metal-resin joined body according to claim 1, wherein a joint interface between the metal body and the resin body serves as a fluid sealing surface.
JP2018071359A 2018-04-03 2018-04-03 Metal-resin bonded product Pending JP2019181711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018071359A JP2019181711A (en) 2018-04-03 2018-04-03 Metal-resin bonded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018071359A JP2019181711A (en) 2018-04-03 2018-04-03 Metal-resin bonded product

Publications (1)

Publication Number Publication Date
JP2019181711A true JP2019181711A (en) 2019-10-24

Family

ID=68338889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018071359A Pending JP2019181711A (en) 2018-04-03 2018-04-03 Metal-resin bonded product

Country Status (1)

Country Link
JP (1) JP2019181711A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340877A (en) * 2020-08-07 2022-04-12 睦月电机株式会社 Metal-resin bonded body and method for producing metal-resin bonded body
WO2022230803A1 (en) * 2021-04-30 2022-11-03 Rimtec株式会社 Metal-resin layered body and method for manufacturing metal-resin layered body
US11815467B2 (en) 2021-02-15 2023-11-14 Prime Planet Energy & Solutions, Inc. Nano projection structure inspection apparatus and nano projection structure inspection method
WO2024038701A1 (en) * 2022-08-17 2024-02-22 株式会社ダイセル Laminate and manufacturing method for laminate
JP7498585B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498583B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498584B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498585B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498583B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
JP7498584B2 (en) 2020-03-30 2024-06-12 株式会社ノリタケカンパニーリミテド Metal-resin bonded body and its manufacturing method
CN114340877A (en) * 2020-08-07 2022-04-12 睦月电机株式会社 Metal-resin bonded body and method for producing metal-resin bonded body
CN114340877B (en) * 2020-08-07 2024-06-07 睦月电机株式会社 Metal-resin bonded body and method for producing metal-resin bonded body
US11815467B2 (en) 2021-02-15 2023-11-14 Prime Planet Energy & Solutions, Inc. Nano projection structure inspection apparatus and nano projection structure inspection method
WO2022230803A1 (en) * 2021-04-30 2022-11-03 Rimtec株式会社 Metal-resin layered body and method for manufacturing metal-resin layered body
WO2024038701A1 (en) * 2022-08-17 2024-02-22 株式会社ダイセル Laminate and manufacturing method for laminate

Similar Documents

Publication Publication Date Title
JP2019181711A (en) Metal-resin bonded product
JP2019181710A (en) Metal-resin bonded product
JP6094779B2 (en) Metal resin composite material, method for producing the same, and aluminum substrate having an aluminum oxide coating
JP2012116126A (en) Metal-resin composite structure, method for producing the same, busbar, module case and resin connector component
TWI464053B (en) Composite of stainless steel and resin and method for making same
JP6588296B2 (en) Metal part-resin bonding method and metal part-resin integrated molding
JP6543278B2 (en) CFRTP-metal complex
JP2019177704A (en) Method for joining metal component and resin, and integral molding of metal component and resin
US20170291393A1 (en) Composite article and method for making the same
KR102148308B1 (en) Manufacturing method for heterojunction type resin-metal composite
JP2016525032A (en) Composite of metal alloy and ceramic resin and method for producing the same
JPWO2008126812A1 (en) Copper alloy composite and manufacturing method thereof
JP6630297B2 (en) An integrated product of metal and resin
JP2008248324A (en) Diamond particle-dispersed metal matrix composite material, and method for producing the same
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
KR20080099368A (en) Method for manufacturing conductive composites
JP5784067B2 (en) Method for producing composite molded body
JP2011189631A (en) Insert molding, and manufacturing method therefor
CN103963214A (en) Method for bonding aluminum-containing base material and plastic
KR101568991B1 (en) Aluminium-resin metal composition and method for fabricating the same
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP4524958B2 (en) Compact
JP2010105338A (en) Rubber molding mold
JP7010255B2 (en) Metal resin joint member and its manufacturing method
JP2018171749A (en) Silicon-containing aluminium alloy resin composite material and manufacturing method therefor