JP2019181494A - Forming method of caulking joint or negative angle structure body using composite laminate plate, and caulking joint and negative angle structure body - Google Patents

Forming method of caulking joint or negative angle structure body using composite laminate plate, and caulking joint and negative angle structure body Download PDF

Info

Publication number
JP2019181494A
JP2019181494A JP2018072413A JP2018072413A JP2019181494A JP 2019181494 A JP2019181494 A JP 2019181494A JP 2018072413 A JP2018072413 A JP 2018072413A JP 2018072413 A JP2018072413 A JP 2018072413A JP 2019181494 A JP2019181494 A JP 2019181494A
Authority
JP
Japan
Prior art keywords
melting point
composite laminate
resin layer
layer
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018072413A
Other languages
Japanese (ja)
Other versions
JP6969482B2 (en
Inventor
雅寛 斎藤
Masahiro Saito
雅寛 斎藤
亮 米林
Toru Yonebayashi
亮 米林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018072413A priority Critical patent/JP6969482B2/en
Publication of JP2019181494A publication Critical patent/JP2019181494A/en
Application granted granted Critical
Publication of JP6969482B2 publication Critical patent/JP6969482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide a forming method of a caulking joint or a negative angle structure body which has excellent adhesiveness and is capable of performing negative angle forming.SOLUTION: A forming method of caulking joint or negative angle structural body includes a process (a) of preparing a composite laminate plate which contains such a structure that a resin layer is sandwiched by metal layers via an adhesive layer having a melting point of 100 to 225°C, the resin layer having a melting point higher than the melting point described above, a ratio ηp/ηf of linear expansion coefficients ηf, ηp of the metal layer and the resin layer being 3 or more and the total plate thickness being 0.8 mm or more, a process (b) of performing a hemming processing or a press processing of assembling the composite laminate plate and an inner plate to provide a caulking joint, or a groove-shaped structure body or a hat-shaped structure body and a process (c) of performing heat treatment of the joint, or the groove-shaped structure body or the hat-shaped structure body at (melting point-20°C) or more of the adhesive layer and at a temperature less than melting point of the resin layer and reducing a bending angle of the joint, or the groove-shaped structure body or the hat-shaped structure body cooled to a temperature less than 100°C as compared to the bending angle before heat treatment.SELECTED DRAWING: Figure 15

Description

本開示は、複合積層板を用いたかしめ継ぎ手または負角構造体の成形方法、並びにかしめ継ぎ手及び負角構造体に関する。   The present disclosure relates to a method for forming a caulking joint or a negative angle structure using a composite laminate, and a caulking joint and a negative angle structure.

一般に、自動車の外板として、鋼板が用いられ、また、軽量化を目的としてアルミニウム板も用いられている(特許文献1)。   In general, a steel plate is used as an outer plate of an automobile, and an aluminum plate is also used for the purpose of weight reduction (Patent Document 1).

また、鋼板やアルミニウム板を自動車の外板として用いるためには、密着性の良いかしめ継ぎ手を得る必要がある(特許文献2)。   Moreover, in order to use a steel plate or an aluminum plate as an outer plate of an automobile, it is necessary to obtain a caulking joint with good adhesion (Patent Document 2).

特開2008−101239号公報JP 2008-101239 A 特開2005−28368号公報JP 2005-28368 A

しかしながら、軽量化のために鋼板やアルミニウム板の板厚を薄くすると、曲げ剛性(張り剛性)が低下して高級感が得られない。面外方向への曲げを受ける場合の曲げ剛性は、素材の弾性係数と形状の断面2次モーメントIの積で表わされる。弾性係数は素材固有の値であり、断面2次モーメントIは以下の式:
I=b×t/12
(式中、bは幅であり、tは板厚である)
で表され、板厚の3乗に比例する。
However, if the thickness of the steel plate or aluminum plate is reduced for weight reduction, the bending rigidity (tension rigidity) is lowered, and a high-class feeling cannot be obtained. The bending rigidity in the case of bending in the out-of-plane direction is expressed by the product of the elastic modulus of the material and the sectional second moment I of the shape. The elastic modulus is a value specific to the material, and the cross-sectional secondary moment I is expressed by the following formula:
I = b × t 3/12
(Where b is the width and t is the plate thickness)
And is proportional to the cube of the plate thickness.

また、ヘミング加工によって密着性の良いかしめ継ぎ手を得るため、または負角成形を行うためには、複雑な工程や特別な金型を必要とし、コストが高くなる問題もある。   In addition, in order to obtain a caulking joint with good adhesion by hemming or to perform negative angle forming, there is a problem that a complicated process or a special mold is required, which increases the cost.

本開示の要旨は、以下のとおりである。
(1)本開示のかしめ継ぎ手または負角構造体の成形方法は、
(a)接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfは3以上であり、
全体の板厚が0.8mm以上である、複合積層板を準備すること、
(b)前記複合積層板に、前記複合積層板に接するように配置した内板と組み合わせるヘミング加工、またはプレス加工を行い、かしめ継ぎ手、または溝形構造体若しくはハット形構造体を得ること、及び
(c)前記かしめ継ぎ手または負角構造体を、前記接着層の(融点−20℃)の温度以上且つ前記樹脂層の融点未満で熱処理し、次いで100℃未満に冷却処理して、前記かしめ継ぎ手または前記溝形構造体若しくはハット形構造体の曲げ角度を前記熱処理前よりも低減すること、
を含む。
(2)上記(1)に記載の成形方法において、前記曲げ角度の低減角度が0.55°以上である。
(3)上記(1)または(2)に記載の成形方法において、前記複合積層板が備える前記金属層の合計厚みに対する前記複合積層板が備える前記樹脂層の合計厚みの比率が1.00より大きい。
(4)上記(1)〜(3)のいずれかに記載の複合積層板は、金属層/接着層/樹脂層/接着層/金属層の5層構造を有する。
(5)本開示のかしめ継ぎ手は、内板と前記内板に密着するようにヘミング曲げされた複合積層板とを含み、
前記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、
前記複合積層板の全体の板厚が0.8mm以上である。
(6)本開示の負角構造体は、複合積層板で構成され且つ溝形またはハット形の断面を有し、
前記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、
前記複合積層板の全体の板厚が0.8mm以上である。
The gist of the present disclosure is as follows.
(1) A method for forming a caulking joint or a negative angle structure according to the present disclosure includes:
(A) including a structure in which a resin layer is sandwiched between metal layers via an adhesive layer;
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
Preparing a composite laminate having a total plate thickness of 0.8 mm or more;
(B) subjecting the composite laminate to hemming or pressing combined with an inner plate arranged in contact with the composite laminate to obtain a caulking joint, or a groove-shaped structure or a hat-shaped structure; and (C) The caulking joint or the negative angle structure is heat-treated at a temperature equal to or higher than the (melting point−20 ° C.) of the adhesive layer and lower than the melting point of the resin layer, and then cooled to less than 100 ° C. Or reducing the bending angle of the groove-shaped structure or the hat-shaped structure than before the heat treatment,
including.
(2) In the molding method according to (1), the bending angle reduction angle is 0.55 ° or more.
(3) In the molding method according to (1) or (2), a ratio of a total thickness of the resin layer included in the composite laminate to a total thickness of the metal layer included in the composite laminate is from 1.00. large.
(4) The composite laminate according to any one of (1) to (3) has a five-layer structure of metal layer / adhesive layer / resin layer / adhesive layer / metal layer.
(5) The caulking joint of the present disclosure includes an inner plate and a composite laminated plate that is hemmed and bent so as to be in close contact with the inner plate,
The composite laminate includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer,
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
The total thickness of the composite laminate is 0.8 mm or more.
(6) The negative angle structure of the present disclosure is composed of a composite laminate and has a groove-shaped or hat-shaped cross section,
The composite laminate includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer,
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
The total thickness of the composite laminate is 0.8 mm or more.

本開示の成形方法によれば、複雑な工程や特別な金型を要せずに、密着性の良いかしめ継ぎ手、または負角構造体を得ることができる。   According to the molding method of the present disclosure, it is possible to obtain a caulking joint or a negative angle structure with good adhesion without requiring a complicated process or a special mold.

図1は、5層構造を有する複合積層板の断面模式図である。FIG. 1 is a schematic cross-sectional view of a composite laminate having a five-layer structure. 図2は、内板を配置して外板の複合積層板をヘミング加工したときの断面模式図である。FIG. 2 is a schematic cross-sectional view when the inner plate is arranged and the composite laminated plate of the outer plate is hemmed. 図3は、図2のヘミング加工した複合積層板を、熱処理及び冷却処理したときの断面模式図である。FIG. 3 is a schematic cross-sectional view of the hemmed composite laminate of FIG. 2 when heat-treated and cooled. 図4は、従来のハット形鋼(A)及び(C)、並びに本開示の複合積層板を用いて得られた負角構造体(B)の断面形状、断面二次モーメント、占有面積(体積)、及び部材剛性の断面効率の比較を示す。FIG. 4 shows the cross-sectional shape, the cross-sectional secondary moment, the occupied area (volume) of the negative angle structure (B) obtained by using the conventional hat-shaped steels (A) and (C) and the composite laminate of the present disclosure. ), And a comparison of cross-sectional efficiency of member rigidity. 図5は、曲げ剛性を評価する方法を説明する断面模式図である。FIG. 5 is a schematic cross-sectional view illustrating a method for evaluating bending rigidity. 図6は、ヘミング加工された複合積層体を側面から見た外観写真である。FIG. 6 is an appearance photograph of the hemmed composite laminate viewed from the side. 図7は、ヘミング加工された複合積層体を側面から見た外観写真である。FIG. 7 is an appearance photograph of the hemmed composite laminate viewed from the side. 図8は、ヘミング加工された金属板を側面から見た外観写真である。FIG. 8 is an appearance photograph of the hemmed metal plate viewed from the side. 図9は、プレス曲げによるヘミング加工を説明する模式図である。FIG. 9 is a schematic diagram for explaining hemming by press bending. 図10は、ローラーヘムによるヘミング加工を説明する模式図である。FIG. 10 is a schematic diagram for explaining the hemming process by the roller hem. 図11は、熱処理及び室温への冷却処理後の複合積層板を側面から見た外観写真である。FIG. 11 is an external view photograph of the composite laminate after heat treatment and cooling to room temperature, as viewed from the side. 図12は、ヘミング加工後に熱処理及び冷却処理が施された複合積層板を側面から見た外観写真である。FIG. 12 is an external view photograph of the composite laminate that has been heat-treated and cooled after the hemming process, as viewed from the side. 図13は、ヘミング加工後に熱処理及び冷却処理が施された複合積層板を側面から見た外観写真である。FIG. 13 is an external view photograph of a composite laminate that has been heat-treated and cooled after hemming, as viewed from the side. 図14は、シミュレーション解析モデルである。FIG. 14 shows a simulation analysis model. 図15は、シミュレーション結果である。FIG. 15 shows a simulation result. 図16は、シミュレーション結果である。FIG. 16 shows a simulation result. 図17は、曲げ内側の解析モデルである。FIG. 17 shows an analysis model inside the bend. 図18は、曲げ外側の解析モデルである。FIG. 18 shows an analysis model on the outside of the bend. 図19は、図17のモデルについて、熱収縮の解析を行って得られた変位量を表すコンター図である。FIG. 19 is a contour diagram showing the amount of displacement obtained by analyzing heat shrinkage for the model of FIG. 図20は、図18のモデルについて、熱収縮の解析を行って得られた変位量を表すコンター図である。FIG. 20 is a contour diagram showing the amount of displacement obtained by analyzing thermal contraction for the model of FIG. 図21は、金属層の線膨張係数ηfに対する樹脂層の線膨張係数ηpの比率ηp/ηfによる曲げ内Rの閉じ角度を表すグラフである。FIG. 21 is a graph showing the closing angle of the in-bending R according to the ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer. 図22は、曲げ剛性を表すグラフである。FIG. 22 is a graph showing the bending rigidity. 図23は、溝形の断面形状を有する構造体の模式図である。FIG. 23 is a schematic diagram of a structure having a groove-shaped cross-sectional shape. 図24には、ハット形の断面形状を有する構造体の模式図である。FIG. 24 is a schematic diagram of a structure having a hat-shaped cross-sectional shape.

本開示は、(a)接着層を介して樹脂層を金属層で挟んだ構造を含み、前記接着層は、100℃以上225℃以下の融点を有し、前記樹脂層は、前記接着層の融点よりも高い融点を有し、前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、全体の板厚が0.8mm以上である、複合積層板を準備すること、(b)前記複合積層板に、前記複合積層板に接するように配置した内板と組み合わせるヘミング加工、またはプレス加工を行い、かしめ継ぎ手、または溝形構造体若しくはハット形構造体を得ること、及び(c)前記かしめ継ぎ手または溝形構造体若しくはハット形構造体を、前記接着層の(融点−20℃)の温度以上且つ前記樹脂層の融点未満で熱処理し、次いで100℃未満に冷却処理して、前記かしめ継ぎ手または前記溝形構造体若しくはハット形構造体の曲げ角度を前記熱処理前よりも低減することを含む、かしめ継ぎ手または負角構造体の成形方法を対象とする。   The present disclosure includes (a) a structure in which a resin layer is sandwiched between metal layers via an adhesive layer, the adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower, and the resin layer is formed of the adhesive layer. A composite having a melting point higher than the melting point, a ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to a linear expansion coefficient ηf of the metal layer being 3 or more, and an overall plate thickness being 0.8 mm or more Preparing a laminated plate; (b) performing a hemming process or a pressing process in combination with an inner plate arranged in contact with the composite laminated plate on the composite laminated plate, and a caulking joint, or a grooved structure or a hat shape Obtaining a structure, and (c) heat-treating the caulking joint or groove-shaped structure or hat-shaped structure at a temperature not lower than the melting point of the adhesive layer and not higher than the melting point of the resin layer, and Cooling process below 100 ° C To, it includes reducing the caulking joint or the than before bending angle the heat treatment of the groove-shaped structure or a hat-shaped structure directed to a method of molding a caulking joint or negative angle structures.

本開示の成形方法に用いられる複合積層板は、接着層を介して樹脂層を金属層で挟んだ構造を含む。複合積層板に含まれる層数は特に限定されるものではなく、接着層を介して樹脂層を金属層で挟んだ構造を含む限り、複合積層板は所望の構成を有することができる。例えば、図1の断面模式図に示すように、複合積層板100は、金属層10/接着層30/樹脂層20/接着層30/金属層10の5層構造を有してもよく、この5層構造に金属層、接着層、及び樹脂層のうち少なくとも1層をさらに加えた構造を有してもよく、あるいは、線材を用いて網状に形成した網状の線材層をさらに含んでもよい。例えば、複合積層板は、金属層/接着層/網状の線材層/樹脂層/網状の線材層/接着層/金属層の7層構造を有してもよい。複合積層板は、好ましくは、金属層/接着層/樹脂層/接着層/金属層の5層構造を有する。   The composite laminate used in the molding method of the present disclosure includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer. The number of layers included in the composite laminate is not particularly limited, and the composite laminate can have a desired configuration as long as it includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer. For example, as shown in the schematic cross-sectional view of FIG. 1, the composite laminate 100 may have a five-layer structure of metal layer 10 / adhesive layer 30 / resin layer 20 / adhesive layer 30 / metal layer 10. It may have a structure in which at least one of a metal layer, an adhesive layer, and a resin layer is further added to a five-layer structure, or may further include a net-like wire rod layer formed in a net shape using a wire rod. For example, the composite laminate may have a seven-layer structure of metal layer / adhesive layer / network wire layer / resin layer / network wire layer / adhesion layer / metal layer. The composite laminate preferably has a five-layer structure of metal layer / adhesive layer / resin layer / adhesive layer / metal layer.

本開示の成形方法においては、複合積層板にヘミング加工またはプレス加工を行い、かしめ継ぎ手または負角構造体を成形し、かしめ継ぎ手または負角構造体を所定の温度で熱処理し、次いで所定の温度まで冷却処理を行う。これにより、ヘミング加工で成形したかしめ継ぎ手またはプレス加工で成形した負角構造体の内側曲げ角度(以下、曲げ角度という)をさらに小さくすることができ、複雑な工程や特別な金型を要せずに、内板と外板と間の密着性を向上したかしめ継ぎ手、または負角構造体を得ることができる。   In the forming method of the present disclosure, hemming or pressing is performed on the composite laminate to form a caulking joint or a negative angle structure, heat-treating the caulking joint or the negative angle structure at a predetermined temperature, and then a predetermined temperature. The cooling process is performed. As a result, the inner bending angle (hereinafter referred to as the bending angle) of the caulking joint formed by hemming or the negative angle structure formed by pressing can be further reduced, requiring complicated processes and special molds. In addition, it is possible to obtain a caulking joint with improved adhesion between the inner plate and the outer plate, or a negative angle structure.

複合積層板の全体の板厚は、0.8mm以上、好ましくは1.0mm以上、より好ましくは1.2mm以上、さらに好ましくは1.4mm以上である。複合積層板が上記範囲の板厚を有することにより、曲げ剛性を確保して外板の高級感を高めることができる。   The total thickness of the composite laminate is 0.8 mm or more, preferably 1.0 mm or more, more preferably 1.2 mm or more, and further preferably 1.4 mm or more. When the composite laminate has a thickness in the above range, the bending rigidity can be ensured and the high-grade feeling of the outer plate can be enhanced.

複合積層板が備える金属層の合計厚みは、好ましくは0.03〜0.40mm、より好ましくは0.05〜0.20mm、さらに好ましくは0.07〜0.15mmである。   The total thickness of the metal layers included in the composite laminate is preferably 0.03 to 0.40 mm, more preferably 0.05 to 0.20 mm, and still more preferably 0.07 to 0.15 mm.

複合積層板が備える樹脂層の合計厚みは、好ましくは0.06〜0.80mm、より好ましくは0.10〜0.50mm、さらに好ましくは0.14〜0.30mmである。   The total thickness of the resin layers included in the composite laminate is preferably 0.06 to 0.80 mm, more preferably 0.10 to 0.50 mm, and still more preferably 0.14 to 0.30 mm.

金属層及び樹脂層が上記範囲の厚みを有することにより、複合積層板の軽量化及び曲げ剛性をより向上することができる。   When the metal layer and the resin layer have a thickness in the above range, the composite laminate can be reduced in weight and bending rigidity.

複合積層板が備える樹脂層の合計厚み/複合積層板が備える金属層の合計厚みの比率は、好ましくは1.00より大きく6.00以下、より好ましくは1.50以上5.50以下、さらに好ましくは1.75以上5.00以下、さらにより好ましくは2.00以上4.00以下である。   The ratio of the total thickness of the resin layers provided in the composite laminate / the total thickness of the metal layers provided in the composite laminate is preferably greater than 1.00 and not greater than 6.00, more preferably not less than 1.50 and not greater than 5.50. Preferably they are 1.75 or more and 5.00 or less, More preferably, they are 2.00 or more and 4.00 or less.

金属層及び樹脂層が、上記樹脂層の厚み/金属層の厚みの比率を有することにより、複合積層板のさらなる軽量化及び曲げ剛性のさらなる向上を図ることができ、より優れた密着性を有するかしめ継ぎ手を得ること、及びより容易に負角成形を行うことが可能となる。   When the metal layer and the resin layer have a ratio of the thickness of the resin layer / the thickness of the metal layer, the composite laminate can be further reduced in weight and bending rigidity, and has better adhesion. It is possible to obtain a caulking joint and to perform negative angle forming more easily.

接着層は接着剤で構成され、接着剤は、100℃以上225℃以下の融点を有する。接着剤は、好ましくは180℃以下、より好ましくは170℃以下、さらに好ましくは160℃以下の融点を有する。   The adhesive layer is composed of an adhesive, and the adhesive has a melting point of 100 ° C. or higher and 225 ° C. or lower. The adhesive preferably has a melting point of 180 ° C. or lower, more preferably 170 ° C. or lower, and further preferably 160 ° C. or lower.

接着剤は、好ましくは、熱圧着型変性ポリプロピレン接着剤、熱可塑性樹脂系接着剤、エラストマー系接着剤、及び無機系接着剤のうち少なくとも1つである。熱圧着型変性ポリプロピレン接着剤は約160℃〜170℃の融点を有し得る。   The adhesive is preferably at least one of a thermocompression-bonded modified polypropylene adhesive, a thermoplastic resin adhesive, an elastomer adhesive, and an inorganic adhesive. The thermocompression modified polypropylene adhesive may have a melting point of about 160 ° C to 170 ° C.

本開示の成形方法においては、接着層の(融点−20℃)の温度以上且つ樹脂層の融点未満で、かしめ継ぎ手または負角構造体を熱処理することにより、接着剤の流動性を高めて、ヘミング加工または負角成形加工の際に金属層と樹脂層との間に発生した応力を緩和することができる。そして、その後の冷却過程で、外力無しに、ヘミング加工または負角成形加工で形成した曲げ角度をさらに閉じることができるので、良好な密着性を有するかしめ継ぎ手を得ることができ、またはより容易に負角構造体を得ることができる。   In the molding method of the present disclosure, the fluidity of the adhesive is increased by heat-treating the caulking joint or the negative angle structure at a temperature equal to or higher than the melting point of the adhesive layer and lower than the melting point of the resin layer, Stress generated between the metal layer and the resin layer during hemming or negative angle forming can be relaxed. In the subsequent cooling process, the bending angle formed by hemming or negative angle forming can be further closed without external force, so that a caulking joint having good adhesion can be obtained, or more easily A negative angle structure can be obtained.

熱処理温度の下限は、好ましくは接着層の融点以上、より好ましくは接着層の融点よりも高温である。熱処理温度の上限は、好ましくは樹脂層の(融点−20℃)以下、より好ましくは樹脂層の(融点−30℃)以下である。上記温度範囲で熱処理することにより、より安定して上記かしめ継ぎ手または負角構造体を得ることができる。   The lower limit of the heat treatment temperature is preferably equal to or higher than the melting point of the adhesive layer, more preferably higher than the melting point of the adhesive layer. The upper limit of the heat treatment temperature is preferably (melting point−20 ° C.) or less of the resin layer, more preferably (melting point−30 ° C.) or less of the resin layer. By heat-treating in the above temperature range, the above caulking joint or negative angle structure can be obtained more stably.

熱処理工程における上記温度範囲内での保持時間は、好ましくは0(保持無し)〜60分、より好ましくは5〜30分、さらに好ましくは10〜20分である。熱処理工程における上記温度範囲内への昇温速度は、好ましくは5〜100℃/分、より好ましくは10〜50℃/分である。   The holding time within the above temperature range in the heat treatment step is preferably 0 (no holding) to 60 minutes, more preferably 5 to 30 minutes, and further preferably 10 to 20 minutes. The rate of temperature rise within the above temperature range in the heat treatment step is preferably 5 to 100 ° C./min, more preferably 10 to 50 ° C./min.

冷却処理条件は、100℃未満に冷却する限り、特に限定されないが、好ましくは70℃以下、より好ましくは50℃以下、さらに好ましくは室温まで冷却する。冷却速度は、好ましくは5〜100℃/分、より好ましくは10〜50℃/分である。   The cooling treatment condition is not particularly limited as long as it is cooled to less than 100 ° C., but is preferably 70 ° C. or less, more preferably 50 ° C. or less, and further preferably to room temperature. The cooling rate is preferably 5 to 100 ° C./min, more preferably 10 to 50 ° C./min.

一般に、自動車の外板を作製する際、外板に接するように外板の端部に沿って内板を配置し、外板が内側に配置される内板に密着するように外板にヘミング加工が行われ、かしめ継ぎ手を形成して外板を内板に密着させる。さらに、かしめ継ぎ手を有する外板に、100〜225℃、特に170〜180℃で20〜30分間、焼付け塗装処理(BH処理)が行われる。そこで、本開示の成形方法においてヘミング加工を行う場合、好ましくは、熱処理としてBH処理を行う。すなわち、ヘミング加工後に、接着層の(融点−20℃)以上且つ樹脂層の融点未満に加熱するBH処理を行うことにより、ヘミング加工で形成した曲げ角度をさらに閉じることができ、良好な密着性を有するかしめ継ぎ手を得ることができる。本開示の成形方法においてプレス加工を行う場合またはフランジ加工を行う場合にも、好ましくは、熱処理として同様のBH処理を行う。   In general, when manufacturing an automobile outer plate, the inner plate is disposed along the edge of the outer plate so as to be in contact with the outer plate, and hemming is performed on the outer plate so that the outer plate is in close contact with the inner plate disposed inside. Processing is carried out to form a caulking joint to bring the outer plate into close contact with the inner plate. Further, a baking coating process (BH process) is performed on the outer plate having the caulking joint at 100 to 225 ° C., particularly at 170 to 180 ° C. for 20 to 30 minutes. Therefore, when hemming is performed in the molding method of the present disclosure, preferably, BH treatment is performed as heat treatment. In other words, after the hemming process, the bending angle formed by the hemming process can be further closed by performing the BH treatment in which the adhesive layer is heated to (melting point−20 ° C.) or higher and lower than the melting point of the resin layer, and good adhesion is achieved. A caulking joint with can be obtained. Also in the case of performing press working or flanging in the molding method of the present disclosure, the same BH treatment is preferably performed as the heat treatment.

樹脂層は樹脂で構成される。樹脂層の樹脂は、接着層の接着剤の融点よりも高い融点、好ましくは接着層の接着剤の融点+20℃以上の融点を有する。樹脂層の樹脂は、好ましくは熱可塑性である。樹脂層の樹脂は、好ましくは225℃超、より好ましくは250℃以上、さらに好ましくは270℃以上、さらにより好ましくは290℃以上の融点を有する。樹脂層の樹脂が、上記範囲の融点を有することにより、熱処理において樹脂層が溶融することを防止することができる。   The resin layer is made of resin. The resin of the resin layer has a melting point higher than the melting point of the adhesive of the adhesive layer, preferably a melting point of the adhesive of the adhesive layer + 20 ° C. or higher. The resin of the resin layer is preferably thermoplastic. The resin of the resin layer preferably has a melting point of more than 225 ° C., more preferably 250 ° C. or more, further preferably 270 ° C. or more, and even more preferably 290 ° C. or more. When the resin of the resin layer has a melting point in the above range, the resin layer can be prevented from melting in the heat treatment.

樹脂層の樹脂は、好ましくは、ポリアミド6(PA6)、アセチルセルロース、ポリブチレンテレフタレート、ポリアミド66(PA66)、ポリエチレンテレフタレート、ポリフェニレンスルファイド、及びポリアミドイミドのうち少なくとも1つである。ポリアミド6(PA6)は約225℃の融点、アセチルセルロースは約230℃の融点、ポリブチレンテレフタレートは約245℃の融点、ポリアミド66(PA66)は約265℃の融点、ポリエチレンテレフタレートは約255℃の融点、ポリフェニレンスルファイドは約290℃の融点、ポリアミドイミドは約300℃の融点を有し得る。   The resin of the resin layer is preferably at least one of polyamide 6 (PA6), acetylcellulose, polybutylene terephthalate, polyamide 66 (PA66), polyethylene terephthalate, polyphenylene sulfide, and polyamideimide. Polyamide 6 (PA6) has a melting point of about 225 ° C, acetylcellulose has a melting point of about 230 ° C, polybutylene terephthalate has a melting point of about 245 ° C, polyamide 66 (PA66) has a melting point of about 265 ° C, and polyethylene terephthalate has a melting point of about 255 ° C. Melting point, polyphenylene sulfide may have a melting point of about 290 ° C, and polyamideimide may have a melting point of about 300 ° C.

図2に、内板40を配置して外板の複合積層板100をヘミング加工したときの断面模式図を示す。図3に、図2のヘミング加工した複合積層板100を、上記所定の温度で熱処理し、次いで100℃未満に冷却処理したときの断面模式図を示す。図2に示すように、ヘミング加工後はスプリングバックが起こるため、複合積層板のかしめ継ぎ手の曲げ角度が開いて、外板と内板との密着性が低下する。本開示の複合積層板によれば、ヘミング加工後に熱処理及び冷却処理を行うことにより、図3に示すように、かしめ継ぎ手の曲げ角度が閉じるために、密着性の高いかしめ継ぎ手を得ることができる。   FIG. 2 is a schematic cross-sectional view when the inner plate 40 is arranged and the composite laminate 100 of the outer plate is hemmed. FIG. 3 shows a schematic cross-sectional view of the composite laminate 100 that has been hemmed in FIG. 2 when heat-treated at the predetermined temperature and then cooled to below 100 ° C. FIG. As shown in FIG. 2, since the springback occurs after the hemming process, the bending angle of the caulking joint of the composite laminate is opened, and the adhesion between the outer plate and the inner plate is lowered. According to the composite laminate of the present disclosure, by performing heat treatment and cooling treatment after hemming, as shown in FIG. 3, the bending angle of the caulking joint is closed, so that a caulking joint with high adhesion can be obtained. .

ヘミング加工は、プレス曲げ、ローラーヘム等の従来方法により行うことができる。外板は、ヘミング加工された後、密着性確保のためにシーラー塗布され得る。   The hemming process can be performed by a conventional method such as press bending or roller hem. The outer plate can be applied with a sealer to ensure adhesion after hemming.

本開示の成形方法によれば、複合積層板をプレス加工(プレス曲げ)して溝形構造体またはハット形構造体を形成した後に、上記所定の温度で熱処理し、次いで100℃未満に冷却処理を行うことによって、曲げ角度を閉じることができるため、負角成形を容易に行うことができる。負角成形とは、90°よりも小さい曲げ角度を有する成形部を形成することをいう。通常のプレス工法では負角構造体を成形することはできない。負角構造体を成形するには、多工程化や斜めから金型を移動させるカム工法が必要となるが、コストが高くなる。   According to the forming method of the present disclosure, the composite laminate is pressed (press-bent) to form a groove-shaped structure or a hat-shaped structure, and then heat-treated at the predetermined temperature, and then cooled to less than 100 ° C. Since the bending angle can be closed by performing the step, negative angle forming can be easily performed. Negative angle molding refers to forming a molded part having a bending angle smaller than 90 °. A negative angle structure cannot be formed by a normal press method. In order to form a negative angle structure, a multi-step process or a cam method for moving a mold from an oblique direction is required, but the cost increases.

本開示の成形方法によって得られる負角構造体は、図23に模式的に示す溝形の断面形状または図24に模式的に示すハット形の断面形状を有することができ、優れた断面二次モーメント、占有面積(体積)、及び部材剛性の断面効率を両立することができる。   The negative angle structure obtained by the molding method of the present disclosure can have a groove-shaped cross-sectional shape schematically shown in FIG. 23 or a hat-shaped cross-sectional shape schematically shown in FIG. The moment, the occupied area (volume), and the sectional efficiency of the member rigidity can be compatible.

図4に、金属板を用いて従来工法で作製したハット形鋼(A)、本開示の成形方法を用いてハット形鋼(A)と同じ断面形状のハット形鋼を作製し、次いで上記所定の温度で熱処理し、次いで100℃未満に冷却処理して作製した負角構造体(B)、及び金属板を用いてフランジ部が負角構造体(B)と同じ幅を有するようにした通常工法で作製したハット形鋼(C)の断面形状、断面二次モーメント、占有面積(体積)、及び部材剛性の断面効率の比較を示す。   In FIG. 4, a hat-shaped steel (A) manufactured by a conventional method using a metal plate, and a hat-shaped steel having the same cross-sectional shape as the hat-shaped steel (A) using the forming method of the present disclosure are manufactured. The negative angle structure (B) produced by heat treatment at a temperature of 100 ° C. and then cooled to less than 100 ° C., and the flange portion having the same width as the negative angle structure (B) using a metal plate The cross-sectional shape of the hat-shaped steel (C) produced by the construction method, the cross-sectional secondary moment, the occupied area (volume), and the comparison of the cross-sectional efficiency of the member rigidity are shown.

断面二次モーメントについては、断面積が最も大きいハット形鋼(A)が優れているが、負角構造体(B)も線長(図芯からの距離)が大きいので良好であり、ハット形鋼(C)は断面積が小さいので劣っている。   Regarding the sectional moment of inertia, the hat-shaped steel (A) having the largest cross-sectional area is excellent, but the negative angle structure (B) is also excellent because the wire length (distance from the center of the figure) is large, and the hat-shaped steel Steel (C) is inferior because of its small cross-sectional area.

占有面積(体積)については、断面積が最も大きいハット形鋼(A)が劣っており、負角構造体(B)及びハット形鋼(C)は優れている。   Regarding the occupied area (volume), the hat-shaped steel (A) having the largest cross-sectional area is inferior, and the negative-angle structure (B) and the hat-shaped steel (C) are excellent.

部材剛性の断面効率については、ハット形鋼(A)及びハット形鋼(C)は不十分であるが、負角構造体(B)は優れている。   Regarding the cross-sectional efficiency of the member rigidity, the hat-shaped steel (A) and the hat-shaped steel (C) are insufficient, but the negative angle structure (B) is excellent.

理論に束縛されるものではないが、本開示の方法における熱処理及び冷却処理により曲げ角度が閉じる方向に変形する理由は次のように考えられる。   Although not bound by theory, the reason why the bending angle is deformed in the closing direction by the heat treatment and the cooling treatment in the method of the present disclosure is considered as follows.

複合積層板から得られたかしめ継ぎ手または溝形構造体若しくはハット形構造体の熱処理過程で、金属層と樹脂層との間の線膨張係数差に起因する熱歪みが発生する。ここで、接着剤の(融点−20℃)の温度以上に加熱して熱処理を行うと、接着剤が軟化または溶融するため、金属層と樹脂層との間の接着力が低下して金属層と樹脂層との間でずれが生じ、金属層と樹脂層との線膨張係数差に起因する熱歪みが緩和する。熱処理をした後、100℃未満までの冷却過程で、金属層と樹脂層との間で硬化または再接着が生じ、金属層及び樹脂層は収縮し、線膨張係数差により金属層と樹脂層との間にせん断応力が発生して、曲げ角度が閉じる方向に変形すると考えられる。   Thermal distortion due to the difference in linear expansion coefficient between the metal layer and the resin layer is generated in the heat treatment process of the caulking joint or the groove-shaped structure or the hat-shaped structure obtained from the composite laminate. Here, when the heat treatment is performed by heating to a temperature higher than (melting point−20 ° C.) of the adhesive, the adhesive softens or melts, so that the adhesive force between the metal layer and the resin layer is reduced, and the metal layer Deviation occurs between the resin layer and the resin layer, and thermal strain due to the difference in linear expansion coefficient between the metal layer and the resin layer is alleviated. After the heat treatment, the metal layer and the resin layer are cured or re-adhered in the cooling process to less than 100 ° C., the metal layer and the resin layer shrink, and the difference between the linear expansion coefficient causes the metal layer and the resin layer to It is considered that a shear stress is generated during this period, and the bending angle is deformed in the closing direction.

100℃未満では金属層と樹脂層との層間は固定され、接着層の(融点−20℃)の温度以上且つ樹脂層の融点未満で熱処理を行う際に、接着剤が軟化または溶融し金属層と樹脂層との層間がずれる必要がある。   When the temperature is lower than 100 ° C., the metal layer and the resin layer are fixed, and when the heat treatment is performed at a temperature equal to or higher than the melting point (−20 ° C.) of the adhesive layer and lower than the melting point of the resin layer, the adhesive softens or melts. It is necessary to shift the interlayer between the resin layer and the resin layer.

金属層は、225℃超の融点を有する金属板または合金板で構成され、好ましくは鋼板、アルミニウム合金板、銅合金板、純チタン板、チタン合金板、またはマグネシウム合金板であることができる。鋼板は、好ましくは270〜590MPaの引張強度を有し、例えばめっき鋼板、電気めっき鋼板、ぶりき、または缶用鋼板(TFS:ティンフリースチール)であることができる。   The metal layer is composed of a metal plate or an alloy plate having a melting point exceeding 225 ° C., and preferably a steel plate, an aluminum alloy plate, a copper alloy plate, a pure titanium plate, a titanium alloy plate, or a magnesium alloy plate. The steel plate preferably has a tensile strength of 270 to 590 MPa, and can be, for example, a plated steel plate, an electroplated steel plate, a tinplate, or a steel plate for cans (TFS: Tin Free Steel).

接着層の一層の厚みは、好ましくは0.001〜0.200mm、より好ましくは0.050〜0.100mm、さらに好ましくは0.100〜0.050mmである。接着層が上記範囲の厚みを有することにより、樹脂層と金属層とを良好に接着することができる。   The thickness of one layer of the adhesive layer is preferably 0.001 to 0.200 mm, more preferably 0.050 to 0.100 mm, and still more preferably 0.100 to 0.050 mm. When the adhesive layer has a thickness in the above range, the resin layer and the metal layer can be favorably bonded.

外板をヘミング加工して内板とかしめ継ぎ手を形成する場合、外板を曲げた部分(フランジ部分)の内板と外板との密着性が重要である。内板は、特に限定されず、従来より用いられている金属板等であることができる。   When the outer plate is hemmed to form a caulking joint with the inner plate, the adhesion between the inner plate and the outer plate at the bent portion (flange portion) is important. The inner plate is not particularly limited, and can be a conventionally used metal plate or the like.

本開示の成形方法によれば、複合積層板のヘミング加工後またはプレス加工後に、上記所定の温度で熱処理し、次いで冷却処理を行うことにより、熱処理前よりも曲げ角度を低減することができる。熱処理前の曲げ角度に対する曲げ角度の低減角度(閉じ角度)は、好ましくは0.55°以上、より好ましくは2.00°以上、さらに好ましくは2.30°以上、さらにより好ましくは2.50°以上、さらにより好ましくは2.60°以上、さらにより好ましくは5.00°以上、さらにより好ましくは5.10°以上である。曲げ角度の低減角度の上限は特に限定されないが、例えば20°または10°であることができる。   According to the forming method of the present disclosure, after the hemming process or press process of the composite laminate, the bending angle can be reduced more than before the heat treatment by performing a heat treatment at the predetermined temperature and then performing a cooling process. The reduction angle (closing angle) of the bending angle with respect to the bending angle before the heat treatment is preferably 0.55 ° or more, more preferably 2.00 ° or more, further preferably 2.30 ° or more, and even more preferably 2.50. It is at least 0 °, more preferably at least 2.60 °, even more preferably at least 5.00 °, and even more preferably at least 5.10 °. Although the upper limit of the bending angle reduction angle is not particularly limited, it can be, for example, 20 ° or 10 °.

金属層の線膨張係数ηfに対する樹脂層の線膨張係数ηpの比率ηp/ηfが大きいほど、熱処理後の冷却過程での曲げ角度の閉じ角度(変化量)が大きくなり、密着性に優れたかしめ継ぎ手を得ることができ、または容易に負角構造体を得ることができる。   The larger the ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer, the larger the closing angle (change amount) of the bending angle in the cooling process after heat treatment, and the better the adhesion. A joint can be obtained, or a negative angle structure can be easily obtained.

金属層の線膨張係数ηfに対する樹脂層の線膨張係数ηpの比率ηp/ηfは、3以上、好ましくは5以上、より好ましくは7以上である。かしめ継ぎ手を成形する場合、比率ηp/ηfが大きいほど、熱処理後の冷却過程での曲げ角度の閉じ角度(変化量)が大きくなり、密着性に優れたかしめ継ぎ手を得ることが可能であり、上記範囲で、工業的に必要なかしめ力を得ることができる。負角構造体を成形する場合も、比率ηp/ηfが大きいほど、熱処理後の冷却過程での曲げ角度の閉じ角度(変化量)が大きくなり、複雑な工程や特別な金型を要せずに、曲げ角度がより小さい負角構造体を容易に得ることができる。曲げ角度がより小さい負角構造体は、断面2次モーメントを得るための効率がより高く、剛性がより優れている。ηp/ηfの上限値は特に限定されるものではないが、例えばηp/ηfを20以下にしてもよい。   The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more, preferably 5 or more, more preferably 7 or more. When molding a caulking joint, the larger the ratio ηp / ηf, the larger the closing angle (change amount) of the bending angle in the cooling process after heat treatment, and it is possible to obtain a caulking joint with excellent adhesion, In the above range, it is possible to obtain an industrially required caulking force. Even in the case of forming a negative angle structure, the larger the ratio ηp / ηf, the larger the closing angle (change amount) of the bending angle in the cooling process after heat treatment, and no complicated process or special mold is required. In addition, a negative angle structure having a smaller bending angle can be easily obtained. A negative angle structure having a smaller bending angle has higher efficiency for obtaining a second moment of cross section and is more excellent in rigidity. The upper limit value of ηp / ηf is not particularly limited. For example, ηp / ηf may be 20 or less.

90°曲げの場合にηp/ηfが3であると、熱処理及び冷却処理により、曲げ角度の閉じ角度(変化量)は0.55°になる。稜線開き角度の合計が180°以上となる部品においては、閉じ角度の合計は1.1°になる。一般に、ヘミング加工により、内板と外板とでかしめ継ぎ手を形成する場合に必要なフランジ長さは25mmであり、面精度は±0.5mmである。すなわち、面精度が低い場合は0.5mmの隙間が生じ、接合不良が生じ得る。ηp/ηfを3以上にすることによって、フランジ端の隙間を0.5mm(25mm×sin(1.1°)=0.5mm)狭めて、隙間を塞ぐことができる。   When ηp / ηf is 3 in the case of 90 ° bending, the closing angle (change amount) of the bending angle becomes 0.55 ° by the heat treatment and the cooling treatment. In a part where the total ridge opening angle is 180 ° or more, the total closing angle is 1.1 °. Generally, the flange length required for forming a caulking joint between the inner plate and the outer plate by hemming is 25 mm, and the surface accuracy is ± 0.5 mm. That is, when the surface accuracy is low, a gap of 0.5 mm is generated, which may cause poor bonding. By setting ηp / ηf to 3 or more, the gap at the flange end can be narrowed by 0.5 mm (25 mm × sin (1.1 °) = 0.5 mm) and the gap can be closed.

例えば、樹脂層の材料として好ましいポリアミド6(PA6)の線膨張係数は、5.9〜10×10−5/℃であり、アセチルセルロースの線膨張係数は、8〜18×10−5/℃であり、ポリブチレンテレフタレートの線膨張係数は、6.0〜9.5×10−5/℃であり、ポリアミド66(PA66)の線膨張係数は、8〜10×10−5/℃であり、ポリエチレンテレフタレートの線膨張係数は、6.5×10−5/℃であり、ポリフェニレンスルファイドの線膨張係数は、4.9×10−5/℃であり、ポリアミドイミドの線膨張係数は、3.1×10−5/℃である。例えば、金属層の材料として好ましい鋼板の線膨張係数は、9.0〜12.8×10−6/℃であり、アルミニウム板の線膨張係数は、23×10−6/℃であり、銅板の線膨張係数は、17.7×10−6/℃である。ηp/ηfが所望の比率になるように、金属層及び樹脂層の材料を選択することができる。 For example, the coefficient of linear expansion of polyamide 6 (PA6), which is preferable as a material for the resin layer, is 5.9 to 10 × 10 −5 / ° C., and the coefficient of linear expansion of acetylcellulose is 8 to 18 × 10 −5 / ° C. The linear expansion coefficient of polybutylene terephthalate is 6.0 to 9.5 × 10 −5 / ° C., and the linear expansion coefficient of polyamide 66 (PA66) is 8 to 10 × 10 −5 / ° C. The linear expansion coefficient of polyethylene terephthalate is 6.5 × 10 −5 / ° C., the linear expansion coefficient of polyphenylene sulfide is 4.9 × 10 −5 / ° C., and the linear expansion coefficient of polyamideimide is 3.1 × 10 −5 / ° C. For example, the linear expansion coefficient of a steel plate preferable as a material for the metal layer is 9.0 to 12.8 × 10 −6 / ° C., and the linear expansion coefficient of an aluminum plate is 23 × 10 −6 / ° C. The linear expansion coefficient is 17.7 × 10 −6 / ° C. The material of the metal layer and the resin layer can be selected so that ηp / ηf has a desired ratio.

複合積層板は、金属板の間に接着剤を介して樹脂を挟み、熱間圧着して、作製され得る。熱間圧着は、例えば、温度を100〜200℃に加熱しながら、0.01〜5.00MPaの圧力で1.0×10〜1.0×10秒間、プレスすることによって行われる。 The composite laminate can be produced by sandwiching a resin between metal plates via an adhesive and hot pressing. Hot pressing is performed by, for example, pressing at a pressure of 0.01 to 5.00 MPa for 1.0 × 10 1 to 1.0 × 10 5 seconds while heating the temperature to 100 to 200 ° C.

本開示はまた、内板と前記内板に密着するようにヘミング曲げされた複合積層板とを含むかしめ継ぎ手であって、記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、前記接着層は、100℃以上225℃以下の融点を有し、前記樹脂層は、前記接着層の融点よりも高い融点を有し、前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、前記複合積層板の全体の板厚が0.8mm以上である、かしめ継ぎ手を対象とする。   The present disclosure is also a caulking joint including an inner plate and a composite laminated plate that is hemmed and bent so as to be in close contact with the inner plate, and the composite laminated plate sandwiches a resin layer with a metal layer via an adhesive layer. The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower, the resin layer has a melting point higher than the melting point of the adhesive layer, and the linear expansion coefficient ηf of the metal layer A caulking joint in which the ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer is 3 or more and the total thickness of the composite laminate is 0.8 mm or more is an object.

本開示はまた、複合積層板で構成され且つ溝形またはハット形の断面を有する負角構造体であって、前記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、前記接着層は、100℃以上225℃以下の融点を有し、前記樹脂層は、前記接着層の融点よりも高い融点を有し、前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、前記複合積層板の全体の板厚が0.8mm以上である、負角構造体を対象とする。   The present disclosure is also a negative-angle structure that is formed of a composite laminate and has a groove-shaped or hat-shaped cross section, in which the composite laminate has a structure in which a resin layer is sandwiched between metal layers via an adhesive layer. The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower, the resin layer has a melting point higher than the melting point of the adhesive layer, and the resin layer has a linear expansion coefficient ηf with respect to the linear expansion coefficient ηf. A negative angle structure in which the ratio ηp / ηf of the linear expansion coefficient ηp is 3 or more and the overall thickness of the composite laminate is 0.8 mm or more is intended.

本開示のかしめ継ぎ手及び負角構造体において、複合積層板等に関する構成は、上記成形方法について説明した構成が適用される。   In the caulking joint and the negative angle structure according to the present disclosure, the configuration described for the molding method is applied to the configuration related to the composite laminate.

(複合積層板の準備)
それぞれの板厚が0.2mmで線膨張係数ηfが11.7×10−6/℃の2枚の缶用鋼板(TFS)の間に、融点が160℃の熱圧着型変性ポリプロピレン接着剤を介して、0.54mmの板厚、225℃の融点、及び8×10−5/℃の線膨張係数ηpを有するポリアミド6(PA6)を挟み、180℃、10000kgで、1.0×10秒間、熱間圧着して、板厚が1.1mmの5層の複合積層板を作製した。圧着後の複合積層板の縦横寸法は、400mm×600mmであった。缶用鋼板の線膨張係数ηfに対するポリアミド6の線膨張係数ηpの比率ηp/ηfは、6.8であった。金属層の合計厚みに対する樹脂層の合計厚みの比率は1.35であった。
(Preparation of composite laminate)
A thermocompression-bonding-type modified polypropylene adhesive having a melting point of 160 ° C. is interposed between two steel plates for cans (TFS) each having a thickness of 0.2 mm and a linear expansion coefficient ηf of 11.7 × 10 −6 / ° C. Sandwiching polyamide 6 (PA6) having a plate thickness of 0.54 mm, a melting point of 225 ° C., and a linear expansion coefficient ηp of 8 × 10 −5 / ° C., 180 ° C. and 10000 kg, 1.0 × 10 5 The film was hot-pressed for 2 seconds to produce a 5-layer composite laminate having a thickness of 1.1 mm. The vertical and horizontal dimensions of the composite laminate after press bonding were 400 mm × 600 mm. The ratio ηp / ηf of the linear expansion coefficient ηp of the polyamide 6 to the linear expansion coefficient ηf of the steel plate for cans was 6.8. The ratio of the total thickness of the resin layer to the total thickness of the metal layer was 1.35.

(曲げ剛性の評価)
作製した複合積層板について、図5に示す方法にしたがって、曲げ剛性を評価した。図5は、寸法が1.1mm×30mm×200mmの複合積層板100を、100mm間隔で配置したR5.0mmの支持点の上に配置し、中央部を、R5.0mmのパンチで押し込んで曲げ成形したときの曲げ剛性を測定する方法を表す。アルミニウム板及び缶用鋼板(TFS)についても、同様に曲げ剛性を評価した。
(Evaluation of bending stiffness)
About the produced composite laminated board, the bending rigidity was evaluated according to the method shown in FIG. In FIG. 5, the composite laminate 100 having dimensions of 1.1 mm × 30 mm × 200 mm is placed on R5.0 mm support points arranged at intervals of 100 mm, and the center portion is pushed by an R5.0 mm punch and bent. This represents a method for measuring the bending stiffness when molded. The bending rigidity was similarly evaluated about the aluminum plate and the steel plate for cans (TFS).

図22に示すように、実施例1で作製した複合積層板は、0.50mm厚の缶用鋼板(TFS)と同等の質量で0.50mm厚の缶用鋼板の曲げ剛性よりも大幅に高い曲げ剛性が得られた。この曲げ剛性は、1.3mm厚のアルミニウム板と同等であった。このように、実施例1で作製した複合積層板は、軽量且つ高い曲げ剛性を示した。   As shown in FIG. 22, the composite laminate produced in Example 1 has a mass equivalent to that of a 0.50 mm thick steel plate for cans (TFS) and is significantly higher than the bending rigidity of a 0.50 mm thick steel plate for cans. Bending rigidity was obtained. This bending rigidity was equivalent to a 1.3 mm thick aluminum plate. Thus, the composite laminate produced in Example 1 exhibited light weight and high bending rigidity.

(実施例1)
それぞれの板厚が0.2mmで線膨張係数ηfが11.7×10−6/℃の2枚のブリキ板の間に、融点が160℃の熱圧着型変性ポリプロピレン接着剤を介して、0.54mmの板厚、225℃の融点及び8〜10×10−5/℃の線膨張係数ηfを有するポリアミド6(PA6)を挟み、180℃、10000kgで、1.0×10秒間、熱間圧着して、板厚が1.1mmの5層の複合積層板を作製した。圧着後の複合積層板の縦横寸法は、400mm×600mmであった。ブリキ板の線膨張係数ηfに対するポリアミド6の線膨張係数ηpの比率ηp/ηfは、6.8であった。
Example 1
0.54 mm between two tin plates each having a thickness of 0.2 mm and a linear expansion coefficient ηf of 11.7 × 10 −6 / ° C. via a thermocompression-bonding type modified polypropylene adhesive having a melting point of 160 ° C. Is sandwiched between polyamide 6 (PA6) having a melting point of 225 ° C. and a melting point of 225 ° C. and a linear expansion coefficient ηf of 8 to 10 × 10 −5 / ° C., 180 ° C. and 10,000 kg, and hot pressing for 1.0 × 10 5 seconds. Thus, a 5-layer composite laminate having a thickness of 1.1 mm was produced. The vertical and horizontal dimensions of the composite laminate after press bonding were 400 mm × 600 mm. The ratio ηp / ηf of the linear expansion coefficient ηp of the polyamide 6 to the linear expansion coefficient ηf of the tin plate was 6.8.

内板無しで、内R曲げ半径が1.0mmのヘミング加工を、図9に示すプレス曲げで行い、図6に示すヘミング加工された複合積層板を得た。図9に示すように、プレス曲げでは、全2工程で180度曲げを完了した。次いで、乾燥炉に入れて、大気中で、170℃まで0.1℃/秒で加熱し、170℃で20分間の熱処理を行い、その後室温まで空冷した。熱処理及び冷却処理を行うことよって、複合積層板は、ヘミング加工部の曲げ角度が閉じる方向に変形した。   Hemming with an inner R bend radius of 1.0 mm without an inner plate was performed by press bending as shown in FIG. 9 to obtain a hemmed composite laminate as shown in FIG. As shown in FIG. 9, in the press bending, the bending at 180 degrees was completed in all two steps. Then, it was put into a drying furnace, heated in air to 170 ° C. at 0.1 ° C./second, heat-treated at 170 ° C. for 20 minutes, and then air-cooled to room temperature. By performing the heat treatment and the cooling treatment, the composite laminate was deformed in a direction in which the bending angle of the hemming portion was closed.

(実施例2)
図10に示すローラーヘムでヘミング加工を行ったこと以外は、実施例1と同じ条件で複合積層板を作製し、内R曲げ半径が1.0mmのヘミング加工を行い、図7に示すヘミング加工された複合積層板を得た。図10に示すように、ローラーヘムでは、全4工程で180度曲げを完了した。次いで、実施例1と同様に熱処理及び冷却処理を行った。
(Example 2)
A composite laminate was produced under the same conditions as in Example 1 except that the hemming was performed with the roller hem shown in FIG. 10, and the hemming with an inner R-bending radius of 1.0 mm was performed. A composite laminate was obtained. As shown in FIG. 10, in the roller hem, the 180-degree bending was completed in all four steps. Next, heat treatment and cooling treatment were performed in the same manner as in Example 1.

図11に、170℃で20分間の熱処理及び室温への冷却処理後の、実施例2の複合積層板を側面から見た外観写真を示す。熱処理及び冷却処理を行うことよって、複合積層板は、ヘミング加工部の曲げ角度が閉じる方向に変形した。   In FIG. 11, the external appearance photograph which looked at the composite laminated sheet of Example 2 after the heat processing for 20 minutes at 170 degreeC and the cooling process to room temperature was seen from the side surface is shown. By performing the heat treatment and the cooling treatment, the composite laminate was deformed in a direction in which the bending angle of the hemming portion was closed.

(実施例3)
170℃で5分間の熱処理を行い、その後室温まで空冷したこと以外は、実施例2と同じ条件で複合積層板を作製し、ヘミング加工を行い、熱処理及び冷却処理を行い、図13に示すヘミング加工された複合積層板を得た。熱処理及び冷却処理を行うことよって、複合積層板は、ヘミング加工部の曲げ角度が閉じる方向に変形した。
(Example 3)
A composite laminate was prepared under the same conditions as in Example 2 except that heat treatment was performed at 170 ° C. for 5 minutes and then air-cooled to room temperature, hemming was performed, heat treatment and cooling treatment were performed, and the hemming shown in FIG. A processed composite laminate was obtained. By performing the heat treatment and the cooling treatment, the composite laminate was deformed in a direction in which the bending angle of the hemming portion was closed.

(実施例4)
140℃まで加熱した後、温度を保持せずに室温に空冷したこと以外は、実施例2と同じ条件で複合積層板を作製し、ヘミング加工を行い、熱処理及び冷却処理を行い、図12に示すヘミング加工された複合積層板を得た。熱処理及び冷却処理を行うことよって、複合積層板は、ヘミング加工部の曲げ角度が閉じる方向に変形した。
Example 4
After heating to 140 ° C., a composite laminate was produced under the same conditions as in Example 2 except that it was air-cooled to room temperature without maintaining the temperature, hemming was performed, heat treatment and cooling treatment were performed, and FIG. The hemmed composite laminate shown was obtained. By performing the heat treatment and the cooling treatment, the composite laminate was deformed in a direction in which the bending angle of the hemming portion was closed.

(実施例5)
接着剤として、融点が170℃の熱圧着型変性ポリプロピレンを用いたこと以外は、実施例1と同じ条件で複合積層板を作製し、内R曲げ半径が1.0mmのヘミング加工を行い、複合積層板を得た。次いで、実施例1と同じ条件で熱処理及び冷却処理を行った。
(Example 5)
A composite laminate was produced under the same conditions as in Example 1 except that a thermocompression-bonded modified polypropylene having a melting point of 170 ° C. was used as the adhesive, and hemming was performed with an inner R-bending radius of 1.0 mm. A laminate was obtained. Next, heat treatment and cooling treatment were performed under the same conditions as in Example 1.

(実施例6)
170℃で5分間の熱処理を行ったこと以外は、実施例1と同じ条件で複合積層板を作製し、ヘミング加工を行い、熱処理及び冷却処理を行った。
(Example 6)
A composite laminate was produced under the same conditions as in Example 1 except that heat treatment was performed at 170 ° C. for 5 minutes, hemming was performed, and heat treatment and cooling treatment were performed.

(比較例1)
0.2mm厚のブリキ板について、実施例1と同じ条件でヘミング加工を行い、図8に示すヘミング加工された金属板を得た。
(Comparative Example 1)
The 0.2 mm thick tin plate was hemmed under the same conditions as in Example 1 to obtain a hemmed metal plate shown in FIG.

表1に、実施例1〜6の複合積層板及び比較例1の金属板の、熱処理前を基準にして、熱処理及び冷却処理を経た後に曲げ角度が閉じた角度(変化量)を示す。   Table 1 shows the angle (change amount) at which the bending angle was closed after the heat treatment and the cooling treatment of the composite laminated plates of Examples 1 to 6 and the metal plate of Comparative Example 1 before heat treatment.

比較例1の鋼板の曲げ角度は、熱処理及び冷却処理の前と後でほぼ一定であったが、実施例1〜6の複合積層板は、熱処理及び冷却処理により、曲げ角度が熱処理前よりも大幅に小さくなった。   Although the bending angle of the steel plate of Comparative Example 1 was substantially constant before and after the heat treatment and the cooling treatment, the bending angles of the composite laminates of Examples 1 to 6 were larger than those before the heat treatment by the heat treatment and the cooling treatment. Significantly smaller.

(シミュレーション解析)
熱処理及び室温冷却処理で、曲げ角度が閉じる方向に変化することを、熱処理過程で接着剤が溶融し且つ冷却過程で金属層と樹脂層との間で再接着が行われると仮定して、シミュレーション解析を行った。
(Simulation analysis)
Simulation that assumes that the bending angle changes in the direction of closing in the heat treatment and room temperature cooling treatment, assuming that the adhesive melts in the heat treatment process and re-adhesion takes place between the metal layer and the resin layer in the cooling process. Analysis was performed.

図14に解析モデルを示す。0.7mm厚の樹脂層を0.2mm厚(合計0.4mm厚)の鋼板層で挟んだ長さ20mmの複合積層板を、曲げ角度が90°で内側曲げ半径Rが1mmのコーナーでつないだモデルを作成した。作成したモデルにおいて、接着剤は溶融せずに鋼板層及び樹脂層の接合を保ち、鋼板層と樹脂層とは共有接点を有する。このモデルについて、180℃から25℃に冷却する際の熱収縮歪みを計算した。鋼板層及び樹脂層の物性値を表2に示す。   FIG. 14 shows an analysis model. A composite laminate having a length of 20 mm, in which a 0.7 mm thick resin layer is sandwiched between 0.2 mm thick (total 0.4 mm thick) steel plate layers, is joined at a corner having a bending angle of 90 ° and an inner bending radius R of 1 mm. I created a model. In the created model, the adhesive does not melt and keeps the joining of the steel plate layer and the resin layer, and the steel plate layer and the resin layer have a shared contact. For this model, the heat shrinkage strain upon cooling from 180 ° C. to 25 ° C. was calculated. Table 2 shows physical property values of the steel sheet layer and the resin layer.

図15及び図16に、シミュレーション結果を示す。図15に示すように、180℃から25℃に冷却することで、曲げ角度は1.6°減少した。図16の結果から、冷却する際に、曲げ角度は、ほぼ線形に減少することが分かる。   15 and 16 show the simulation results. As shown in FIG. 15, the bending angle decreased by 1.6 ° by cooling from 180 ° C. to 25 ° C. From the results of FIG. 16, it can be seen that when cooling, the bending angle decreases almost linearly.

曲げ内側と曲げ外側に分けて、冷却過程で曲げ角度が減少することについて、さらに解析を行った。図17に、曲げ内側の解析モデルを示し、図18に、曲げ外側の解析モデルを示す。   We further analyzed that the bending angle decreased during the cooling process, divided into the bending inner side and the bending outer side. FIG. 17 shows an analysis model inside the bend, and FIG. 18 shows an analysis model outside the bend.

図17及び図18は、0.7mm厚の樹脂層を0.2mm厚の鋼板層で挟んだ長さ4mmの複合積層板を曲げ角度が90°で内側曲げ半径Rが1mmのコーナーでつないだものを、樹脂層の厚み方向の中心位置で、鋼板層及び樹脂層の接合面に平行にきった場合のモデルである。すなわち、図17及び図18のそれぞれにおいて、樹脂層の厚みは0.35mmである。   17 and 18, a composite laminate having a length of 4 mm in which a 0.7 mm-thick resin layer is sandwiched between 0.2 mm-thick steel plate layers is connected at a corner having a bending angle of 90 ° and an inner bending radius R of 1 mm. This is a model in the case where the object is cut in parallel with the joining surface of the steel plate layer and the resin layer at the center position in the thickness direction of the resin layer. That is, in each of FIGS. 17 and 18, the thickness of the resin layer is 0.35 mm.

図17のモデルについて、熱収縮の解析を行った結果を図19に示す。図18のモデルについて、熱収縮の解析を行った結果を図20に示す。図19及び図20の変位量を表すコンター図から、曲げ内側の曲げ角度は冷却処理で大きくなり、曲げ外側の曲げ角度は冷却処理で小さくなることが分かる。   FIG. 19 shows the result of thermal shrinkage analysis performed on the model of FIG. FIG. 20 shows the result of thermal shrinkage analysis performed on the model shown in FIG. 19 and FIG. 20, it can be seen that the bending angle inside the bend is increased by the cooling process, and the bending angle outside the bend is decreased by the cooling process.

図19及び図20の解析結果から、鋼板を曲げ外に配置した場合、せん断応力の最大値は217MPaであり、鋼板を曲げ内に配置した場合、せん断応力の最大値は161MPaであることが分かった。   From the analysis results of FIGS. 19 and 20, it is found that when the steel plate is placed outside the bend, the maximum value of the shear stress is 217 MPa, and when the steel plate is placed within the bend, the maximum value of the shear stress is 161 MPa. It was.

以上の結果より、鋼板を曲げ外に配置した方が、鋼板を曲げ内に配置するよりも、角閉じ方向の変位量と層間のせん断応力は大きいことが分かる。鋼板を曲げ外に配置した方が、鋼板を曲げ内に配置するよりも、鋼板層と樹脂層との間の境界面積が大きい。境界面積が大きい方がせん断応力は大きくなり、曲げ角度の曲げ方向を支配するため、複合積層板の曲げ角度は、冷却に伴い小さくなると考えられる。   From the above results, it is understood that the amount of displacement in the corner closing direction and the shear stress between the layers are larger when the steel plate is disposed outside the bend than when the steel plate is disposed within the bend. The boundary area between the steel sheet layer and the resin layer is larger when the steel sheet is disposed outside the bend than when the steel sheet is disposed within the bend. The larger the boundary area, the greater the shear stress and the more the bending direction of the bending angle dominates, so the bending angle of the composite laminate is considered to decrease with cooling.

鋼板層の線膨張係数ηfを11.7×10−6(/℃)に固定して、表3及び図21に示すように、樹脂層の線膨張係数ηpを変更して、線膨張係数比率ηp/ηfを1〜11の範囲で変更して、線膨張係数比率ηp/ηfに対する曲げ内Rの閉じ角度を調べた。 The linear expansion coefficient ηf of the steel sheet layer is fixed to 11.7 × 10 −6 (/ ° C.), and the linear expansion coefficient ηp of the resin layer is changed as shown in Table 3 and FIG. ηp / ηf was changed in the range of 1 to 11, and the closing angle of the in-bending R with respect to the linear expansion coefficient ratio ηp / ηf was examined.

金属層の線膨張係数ηfに対する樹脂層の線膨張係数ηpの比率ηp/ηfが大きいほど、熱処理後の冷却過程での曲げ角度の閉じ角度(変化量)が大きくなり、密着性に優れたかしめ継ぎ手を得ることができ、負角構造体を容易に得ることができる。ηp/ηfが3以上で、熱処理及び冷却処理による曲げ角度の閉じ角度(変化量)は0.55°以上になる。   The larger the ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer, the larger the closing angle (change amount) of the bending angle in the cooling process after heat treatment, and the better the adhesion. A joint can be obtained and a negative angle structure can be obtained easily. When ηp / ηf is 3 or more, the bending angle closing angle (change amount) by heat treatment and cooling treatment is 0.55 ° or more.

100 複合積層板
10 金属層
20 樹脂層
30 接着層
40 内板
100 Composite Laminated Plate 10 Metal Layer 20 Resin Layer 30 Adhesive Layer 40 Inner Plate

Claims (6)

(a)接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、
全体の板厚が0.8mm以上である、複合積層板を準備すること、
(b)前記複合積層板に、前記複合積層板に接するように配置した内板と組み合わせるヘミング加工、またはプレス加工を行い、かしめ継ぎ手、または溝形構造体若しくはハット形構造体を得ること、及び
(c)前記かしめ継ぎ手または溝形構造体若しくはハット形構造体を、前記接着層の(融点−20℃)以上且つ前記樹脂層の融点未満で熱処理し、次いで100℃未満に冷却処理して、前記かしめ継ぎ手または前記溝形構造体若しくはハット形構造体の曲げ角度を前記熱処理前よりも低減すること、
を含む、かしめ継ぎ手または負角構造体の成形方法。
(A) including a structure in which a resin layer is sandwiched between metal layers via an adhesive layer;
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
Preparing a composite laminate having a total plate thickness of 0.8 mm or more;
(B) subjecting the composite laminate to hemming or pressing combined with an inner plate arranged in contact with the composite laminate to obtain a caulking joint, or a groove-shaped structure or a hat-shaped structure; and (C) heat-treating the caulking joint or the groove-shaped structure or the hat-shaped structure at a temperature equal to or higher than the melting point of the adhesive layer and less than the melting point of the resin layer; Reducing the bending angle of the caulking joint or the groove-shaped structure or the hat-shaped structure compared to before the heat treatment,
A method for forming a caulking joint or a negative angle structure.
前記曲げ角度の低減角度が0.55°以上である、請求項1に記載の成形方法。   The molding method according to claim 1, wherein a reduction angle of the bending angle is 0.55 ° or more. 前記複合積層板が備える前記金属層の合計厚みに対する前記複合積層板が備える前記樹脂層の合計厚みの比率が1.00より大きい、請求項1または2に記載の成形方法。   The molding method according to claim 1 or 2, wherein a ratio of a total thickness of the resin layer included in the composite laminate to a total thickness of the metal layer included in the composite laminate is larger than 1.00. 前記複合積層板が、金属層/接着層/樹脂層/接着層/金属層の5層構造を有する、請求項1〜3のいずれか一項に記載の成形方法。   The molding method according to claim 1, wherein the composite laminate has a five-layer structure of metal layer / adhesive layer / resin layer / adhesive layer / metal layer. 内板と前記内板に密着するようにヘミング曲げされた複合積層板とを含むかしめ継ぎ手であって、
前記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、
前記複合積層板の全体の板厚が0.8mm以上である、
かしめ継ぎ手。
A caulking joint including an inner plate and a composite laminate plate that is hemmed and bent so as to be in close contact with the inner plate;
The composite laminate includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer,
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
The total thickness of the composite laminate is 0.8 mm or more,
Caulking joint.
複合積層板で構成された且つ溝形またはハット形の断面を有する負角構造体であって、
前記複合積層板が、接着層を介して樹脂層を金属層で挟んだ構造を含み、
前記接着層は、100℃以上225℃以下の融点を有し、
前記樹脂層は、前記接着層の融点よりも高い融点を有し、
前記金属層の線膨張係数ηfに対する前記樹脂層の線膨張係数ηpの比率ηp/ηfが3以上であり、
前記複合積層板の全体の板厚が0.8mm以上である、
負角構造体。
A negative angle structure composed of a composite laminate and having a groove-shaped or hat-shaped cross-section,
The composite laminate includes a structure in which a resin layer is sandwiched between metal layers via an adhesive layer,
The adhesive layer has a melting point of 100 ° C. or higher and 225 ° C. or lower,
The resin layer has a melting point higher than the melting point of the adhesive layer;
The ratio ηp / ηf of the linear expansion coefficient ηp of the resin layer to the linear expansion coefficient ηf of the metal layer is 3 or more,
The total thickness of the composite laminate is 0.8 mm or more,
Negative angle structure.
JP2018072413A 2018-04-04 2018-04-04 Forming method of caulking joint or negative angle structure using composite laminated board, and caulking joint and negative angle structure Active JP6969482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072413A JP6969482B2 (en) 2018-04-04 2018-04-04 Forming method of caulking joint or negative angle structure using composite laminated board, and caulking joint and negative angle structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072413A JP6969482B2 (en) 2018-04-04 2018-04-04 Forming method of caulking joint or negative angle structure using composite laminated board, and caulking joint and negative angle structure

Publications (2)

Publication Number Publication Date
JP2019181494A true JP2019181494A (en) 2019-10-24
JP6969482B2 JP6969482B2 (en) 2021-11-24

Family

ID=68338799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072413A Active JP6969482B2 (en) 2018-04-04 2018-04-04 Forming method of caulking joint or negative angle structure using composite laminated board, and caulking joint and negative angle structure

Country Status (1)

Country Link
JP (1) JP6969482B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124826A (en) * 1973-04-02 1974-11-29
JPS5464728A (en) * 1977-10-31 1979-05-24 Matsushita Electric Works Ltd Eaves trough
JPS62138241A (en) * 1985-12-11 1987-06-22 ダイセル化学工業株式会社 Vibration-damping plate
US20100006212A1 (en) * 2006-08-02 2010-01-14 Schaeffler Kg Method for connecting shell parts
JP2017185534A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Three-dimensional molding method of aluminum resin composite laminate plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124826A (en) * 1973-04-02 1974-11-29
JPS5464728A (en) * 1977-10-31 1979-05-24 Matsushita Electric Works Ltd Eaves trough
JPS62138241A (en) * 1985-12-11 1987-06-22 ダイセル化学工業株式会社 Vibration-damping plate
US20100006212A1 (en) * 2006-08-02 2010-01-14 Schaeffler Kg Method for connecting shell parts
JP2017185534A (en) * 2016-04-07 2017-10-12 三菱アルミニウム株式会社 Three-dimensional molding method of aluminum resin composite laminate plate

Also Published As

Publication number Publication date
JP6969482B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP5908052B2 (en) Dissimilar panel structure
JP7136625B2 (en) Design features of dissimilar material reinforced blanks and extrudates for molding
US6460240B1 (en) Method of manufacturing a profile member of a hybrid composite material
US10758959B2 (en) Panel-like formed product and manufacturing method thereof
DE102011006032A1 (en) Process for producing a structural component and structural component
Aghchai et al. Theoretical and experimental formability study of two-layer metallic sheet (Al1100/St12)
JP2017221957A (en) Bending processing method of aluminum resin composite laminate plate
JP2019181731A (en) Composite laminate
JP2019181494A (en) Forming method of caulking joint or negative angle structure body using composite laminate plate, and caulking joint and negative angle structure body
JP5555504B2 (en) Method for manufacturing article having boss
JP2017185534A (en) Three-dimensional molding method of aluminum resin composite laminate plate
JP6127669B2 (en) Manufacturing method of hot stamping molded product and manufacturing method of blank material
TW201726407A (en) Composite steel
JP2011212712A (en) Hem joining method of automobile panel and hem joining structure of automobile panel
JP7006466B2 (en) Shearing method and shearing equipment for composite laminated boards
EP0938963B1 (en) Method of forming a cassette from a metal-thermoplastic-metal laminate
JP7028033B2 (en) Shearing method and shearing equipment for composite laminated boards
JP6752412B2 (en) Aluminum resin composite laminate
CN107249771A (en) For the component for manufacturing the method for the component being made up of sandwich material and being made up of sandwich material
JP3510166B2 (en) Multi-layer laminated metal sheet and method for producing the same
US20190291502A1 (en) Forming a non-planar composite
JP7389336B2 (en) Method for manufacturing a joined body of metal material and resin material
TWI824190B (en) Molding method of metal-resin composite material, metal-resin composite parts and manufacturing method thereof
TWI480110B (en) Method for manufacturing closed structure parts and apparatus for the same
RU2381093C2 (en) Package for manufacturing of bimetals by rolling and method of its manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R151 Written notification of patent or utility model registration

Ref document number: 6969482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151