JP2019179632A - Luminaire - Google Patents

Luminaire Download PDF

Info

Publication number
JP2019179632A
JP2019179632A JP2018067225A JP2018067225A JP2019179632A JP 2019179632 A JP2019179632 A JP 2019179632A JP 2018067225 A JP2018067225 A JP 2018067225A JP 2018067225 A JP2018067225 A JP 2018067225A JP 2019179632 A JP2019179632 A JP 2019179632A
Authority
JP
Japan
Prior art keywords
light
phosphor
fluorescence
emitted
volume phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018067225A
Other languages
Japanese (ja)
Inventor
笹川 智広
Tomohiro Sasagawa
智広 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018067225A priority Critical patent/JP2019179632A/en
Publication of JP2019179632A publication Critical patent/JP2019179632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

To provide a luminaire which uses a laser light source and a phosphor suppressing color irregularity without any expansion of a light distribution resulting from suppression on generation of color irregularity due to a difference in emission region size between laser light and phosphor emitted light.SOLUTION: A luminaire 100 comprises: a light source 1 which emits light; a phosphor 2 which transmits the light emitted from the light source 1 and is excited with the light to emit fluorescent light; and a volume phase type optical element 5 which equalizes a light distribution angle of the light transmitted through the phosphor 2 to a light distribution angle of the fluorescent light.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光体が用いられた照明装置に関する。   The present invention relates to a lighting device using a phosphor.

従来、蛍光体が用いられた照明装置として、レーザ光源を使用するものが知られている。レーザ光源が用いられた照明装置は、蛍光体面を通過するレーザ光の光出射領域のサイズと、蛍光体から放出される蛍光である蛍光体発光光の光出射領域のサイズとが異なる。このため、レーザ光と蛍光体発光光(蛍光)とが混合された照明光において色むらが発生する。色むらの発生を抑制することを目的として、特許文献1には、蛍光体面付近に光を拡散する光混合層を設けた照明装置が開示されている。特許文献1は、レーザ光と蛍光体発光光とが光混合層内で多重散乱され、レーザ光と蛍光体発光光とが等方的に出射されることにより、色の均一性を向上させようとするものである。   Conventionally, what uses a laser light source is known as an illuminating device using a fluorescent substance. In the illumination device using the laser light source, the size of the light emission region of the laser light passing through the phosphor surface is different from the size of the light emission region of the phosphor emission light that is fluorescence emitted from the phosphor. For this reason, color unevenness occurs in the illumination light in which the laser light and the phosphor emission light (fluorescence) are mixed. For the purpose of suppressing the occurrence of color unevenness, Patent Document 1 discloses an illumination device provided with a light mixing layer that diffuses light in the vicinity of a phosphor surface. In Patent Document 1, laser light and phosphor emission light are multiple-scattered in the light mixing layer, and laser light and phosphor emission light are emitted isotropically, thereby improving color uniformity. It is what.

特開2012−54084号公報JP 2012-54084 A

しかしながら、特許文献1に開示された照明装置は、光混合層の拡散効果により、レーザ光及び蛍光体発光光のいずれも、蛍光体から放出される光出射領域が拡大する。このため、配光分布が拡大してしまう。   However, the illumination device disclosed in Patent Document 1 expands the light emission region of the laser light and the phosphor light emitted from the phosphor due to the diffusion effect of the light mixing layer. For this reason, the light distribution is expanded.

本発明は、上記のような課題を解決するためになされたもので、配光分布が拡大することなく、色むらを抑制する照明装置を提供するものである。   The present invention has been made to solve the above-described problems, and provides an illumination device that suppresses color unevenness without expanding the light distribution.

本発明に係る照明装置は、光を出射する光源と、光源から出射された光を透過すると共に、光で励起して蛍光を放出する蛍光体と、蛍光体を透過した光の配光角と、蛍光の配光角とを一致させる体積位相型光学素子と、を備える。   An illumination device according to the present invention includes a light source that emits light, a phosphor that transmits light emitted from the light source, and that emits fluorescence when excited by light, and a light distribution angle of the light that has passed through the phosphor. And a volume phase optical element that matches the light distribution angle of the fluorescence.

本発明によれば、体積位相型光学素子が、蛍光体を透過した光の配光角と、蛍光の配光角とを一致させる。このため、配光角は、蛍光よりも広がらず、色むらの発生を抑制することができる。従って、配光分布が拡大することなく、色むらを抑制することができる。   According to the present invention, the volume phase optical element makes the light distribution angle of the light transmitted through the phosphor coincide with the light distribution angle of the fluorescence. For this reason, the light distribution angle is not wider than the fluorescence, and the occurrence of color unevenness can be suppressed. Therefore, color unevenness can be suppressed without expanding the light distribution.

本発明の実施の形態1に係る照明装置100を示す模式図である。It is a schematic diagram which shows the illuminating device 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る蛍光体2に入射した光の光路を示す図である。It is a figure which shows the optical path of the light which injected into the fluorescent substance 2 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る蛍光体2出射面上の光の発光領域を示す図である。It is a figure which shows the light emission area | region of the light on the fluorescent substance 2 output surface which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明レンズ4を出射した光の光路を示す図である。It is a figure which shows the optical path of the light radiate | emitted from the illumination lens 4 which concerns on Embodiment 1 of this invention. 比較例に係る照明装置200を示す模式図である。It is a schematic diagram which shows the illuminating device 200 which concerns on a comparative example.

実施の形態1.
以下、本発明に係る照明装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る照明装置100を示す模式図である。図1に示すように、照明装置100は、光源1と、集光レンズ3と、蛍光体2と、照明レンズ4と、体積位相型光学素子5とを備えている。光源1は、例えば半導体レーザダイオードからなり、青色に発光する。集光レンズ3は、光源1から出射する光の出射方向に設けられ、光学部材からなり、光源1から出射された光を蛍光体2上に集光する。なお、図1において、実線矢印が蛍光を示し、破線矢印が透過した光を示す。
Embodiment 1 FIG.
Hereinafter, embodiments of a lighting device according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an illumination device 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the illumination device 100 includes a light source 1, a condenser lens 3, a phosphor 2, an illumination lens 4, and a volume phase optical element 5. The light source 1 is made of, for example, a semiconductor laser diode and emits blue light. The condenser lens 3 is provided in the emission direction of the light emitted from the light source 1 and is made of an optical member, and condenses the light emitted from the light source 1 on the phosphor 2. In FIG. 1, a solid line arrow indicates fluorescence and a broken line arrow indicates transmitted light.

図2は、本発明の実施の形態1に係る蛍光体2に入射した光の光路を示す図である。蛍光体2は、集光レンズ3から出射する光の出射方向に設けられ、光源1から出射されて集光レンズ3によって集光された光を透過すると共に、光で励起して蛍光(蛍光体発光光)を放出する。蛍光体2は、例えばYAGからなり、青色の光によって励起されて黄色の蛍光を発生する。蛍光体2に吸収されずに透過した一部の青色の光と、黄色の蛍光とが混合して、照明レンズ4に入射する。青色の光と黄色の蛍光とが混合することによって、疑似白色の光となる。図2に示すように、蛍光体2に入射した光は、蛍光体2内部で拡散され、蛍光体2内部を伝播し、励起する。一方、蛍光体2に入射した光の一部は、拡散されずにそのまま透過する。   FIG. 2 is a diagram showing an optical path of light incident on the phosphor 2 according to Embodiment 1 of the present invention. The phosphor 2 is provided in the emission direction of the light emitted from the condensing lens 3, transmits the light emitted from the light source 1 and collected by the condensing lens 3, and is excited by the light to give fluorescence (phosphor Emission light). The phosphor 2 is made of, for example, YAG and is excited by blue light to generate yellow fluorescence. A part of blue light transmitted without being absorbed by the phosphor 2 and yellow fluorescence are mixed and incident on the illumination lens 4. A mixture of blue light and yellow fluorescence results in pseudo white light. As shown in FIG. 2, the light incident on the phosphor 2 is diffused inside the phosphor 2, propagates inside the phosphor 2, and is excited. On the other hand, a part of the light incident on the phosphor 2 is transmitted without being diffused.

図3は、本発明の実施の形態1に係る蛍光体2出射面上の光の発光領域を示す図である。蛍光体2内部を伝播して励起した蛍光は、蛍光体2内部で拡散されているため、蛍光体2から放出されるときの発光領域が広い。一方、蛍光体2を透過した光は、拡散されていないため、発光領域が蛍光よりも狭い。このため、図3に示すように、蛍光体2の出射面上の蛍光の発光領域は、透過した光の発光領域よりも広い範囲を有する。   FIG. 3 is a diagram showing a light emission region of light on the emission surface of phosphor 2 according to the first embodiment of the present invention. Since the fluorescence that has been propagated and excited inside the phosphor 2 is diffused inside the phosphor 2, the emission region when emitted from the phosphor 2 is wide. On the other hand, since the light transmitted through the phosphor 2 is not diffused, the light emitting region is narrower than the fluorescence. For this reason, as shown in FIG. 3, the fluorescence emission region on the emission surface of the phosphor 2 has a wider range than the emission region of the transmitted light.

図4は、本発明の実施の形態1に係る照明レンズ4を出射した光の光路を示す図である。照明レンズ4は、蛍光体2から出射する光の出射方向に設けられ、蛍光体2に吸収されずに透過した一部の光と、蛍光とが混合した光の配光を制御する。図4に示すように、照明レンズ4は、蛍光体2の光出射面に焦点が位置するように配置されている。このため、蛍光体2の出射面上の任意の一点から出射した光は、平行光となって照明レンズ4から出射する。蛍光体2の出射面上の発光領域は、光源1から出射される光の照射スポットサイズに依存するため、点とはならず、広がりを有している。発光領域内の各点から出射する光は、照明レンズ4によって平行光となった光の合成光として、全体として発光領域の面積に依存した配光角(発散角)を有する出射光となって、照明レンズ4から出射する。   FIG. 4 is a diagram showing an optical path of light emitted from the illumination lens 4 according to Embodiment 1 of the present invention. The illumination lens 4 is provided in the emission direction of the light emitted from the phosphor 2, and controls the light distribution of the light in which a part of the light transmitted without being absorbed by the phosphor 2 and the fluorescence are mixed. As shown in FIG. 4, the illumination lens 4 is arranged so that the focal point is located on the light emitting surface of the phosphor 2. For this reason, light emitted from an arbitrary point on the emission surface of the phosphor 2 is emitted from the illumination lens 4 as parallel light. Since the light emitting region on the emission surface of the phosphor 2 depends on the irradiation spot size of the light emitted from the light source 1, it does not become a point but has a spread. The light emitted from each point in the light emitting region becomes the outgoing light having a light distribution angle (divergence angle) depending on the area of the light emitting region as a whole, as the combined light of the light that has become parallel light by the illumination lens 4. The light is emitted from the illumination lens 4.

体積位相型光学素子5は、照明レンズ4から出射する光の出射方向に設けられ、蛍光体2を透過した光の配光角と、蛍光の配光角とを一致させる。体積位相型光学素子5は、光源1から出射される波長の光の配光を制御する。本実施の形態1では、体積位相型光学素子5は、青色の光に最適化されており、青色の光のみの配光角を制御し、蛍光の配光角と一致させる体積位相型回折レンズである。   The volume phase type optical element 5 is provided in the emission direction of the light emitted from the illumination lens 4 and matches the light distribution angle of the light transmitted through the phosphor 2 with the light distribution angle of the fluorescence. The volume phase optical element 5 controls the light distribution of light having a wavelength emitted from the light source 1. In the first embodiment, the volume phase optical element 5 is optimized for blue light, controls the light distribution angle of only blue light, and matches the fluorescence light distribution angle. It is.

体積位相型回折レンズは、レーザ光等の可干渉性が高い2つの光束をホログラム感材に照射し、干渉状態をホログラム感材内の屈折率濃淡の干渉縞としてホログラム記録することによって作製される。ホログラム感材としては、銀塩乳剤、重クロム酸ゼラチン、フォトポリマー等が挙げられる。作製時に与えた一方の光束が体積位相型回折レンズに照射されると、他方の光束がホログラム再生される。体積位相型回折レンズは、多数の干渉縞面からの光波干渉であるブラッグ回折によって光が回折するため、回折効率が高い。体積位相型回折レンズは、作製時に用いた波長に近い波長の光のみを回折し、異なる波長の光には回折作用を及ぼさない。即ち、体積位相型回折レンズは、作製時に用いた波長の光に最適化されている。レーザ光は、概して波長範囲が狭いが、体積位相型回折レンズは、波長範囲が狭いレーザ光であっても、例えば青色のレーザ光のみの配光角を選択的に制御することができる。本実施の形態1では、体積位相型光学素子5は、照明レンズ4を透過したあとの青色の光に相当する青色光束と、照明レンズ4を透過したあとの黄色の蛍光と同じ配光角を有する青色光束とを干渉させてホログラム記録することによって作製されている。   The volume phase type diffractive lens is manufactured by irradiating a hologram light sensitive material with two light beams having high coherence such as laser light and recording the interference state as interference fringes of refractive index in the hologram light sensitive material. . Examples of the hologram sensitive material include silver salt emulsion, dichromated gelatin, and photopolymer. When one volume of light beam applied at the time of fabrication is applied to the volume phase diffraction lens, the other beam is reproduced as a hologram. The volume phase type diffractive lens has high diffraction efficiency because light is diffracted by Bragg diffraction, which is light wave interference from many interference fringe surfaces. The volume phase type diffractive lens diffracts only light having a wavelength close to the wavelength used at the time of manufacture, and does not exert a diffractive action on light having a different wavelength. That is, the volume phase type diffractive lens is optimized for the light having the wavelength used in the production. Laser light generally has a narrow wavelength range, but the volume phase type diffractive lens can selectively control the light distribution angle of only blue laser light, for example, even if the wavelength range is narrow. In the first embodiment, the volume phase optical element 5 has the same light distribution angle as the blue luminous flux corresponding to the blue light after passing through the illumination lens 4 and the yellow fluorescence after passing through the illumination lens 4. The hologram recording is performed by causing the blue light beam to interfere with the hologram recording.

次に、図1を用いて、照明装置100の光の配光について説明する。光源1から出射した青色の光は、集光レンズ3によって蛍光体2上に集光及び照射される。蛍光体2に入射した青色の光は、一部が蛍光体2に蛍光として吸収され、蛍光体2から放出される蛍光である黄色の発光光が蛍光体2から放出される。蛍光体2に吸収されなかった残りの青色の光は、蛍光体2を透過して、蛍光体2から放出される黄色の蛍光と混合して疑似白色となる。   Next, the light distribution of the illumination device 100 will be described with reference to FIG. Blue light emitted from the light source 1 is condensed and irradiated on the phosphor 2 by the condenser lens 3. A part of the blue light incident on the phosphor 2 is absorbed by the phosphor 2 as fluorescence, and yellow emission light that is fluorescence emitted from the phosphor 2 is emitted from the phosphor 2. The remaining blue light that has not been absorbed by the phosphor 2 is transmitted through the phosphor 2 and mixed with the yellow fluorescence emitted from the phosphor 2 to become pseudo white.

前述の如く、蛍光体2の出射面上の蛍光の発光領域は、蛍光体2を透過した光の発光領域よりも広い範囲を有する。蛍光と蛍光体2を透過した光とは、照明レンズ4によって平行光となる。ここで、平行光のうち、蛍光の配光角は、蛍光体2を透過した光よりも発光領域が広いため、蛍光体2を透過した光の配光角よりも広い。   As described above, the fluorescence emission region on the emission surface of the phosphor 2 has a wider range than the light emission region of the light transmitted through the phosphor 2. The fluorescence and the light transmitted through the phosphor 2 are converted into parallel light by the illumination lens 4. Here, among the parallel lights, the light distribution angle of the fluorescence is wider than the light distribution angle of the light transmitted through the phosphor 2 because the emission region is wider than the light transmitted through the phosphor 2.

体積位相型光学素子5は、照明レンズ4を透過したあとの青色の光に相当する青色光束と、照明レンズ4を透過したあとの黄色の蛍光と同じ配光角を有する青色光束とを干渉させてホログラム記録することによって作製されている。これにより、記録時の光束の一方と同じ光束である照明レンズ4透過後の青色の光が入射すると、他方の光束である照明レンズ4透過後の黄色の蛍光と同じ配光角を有する青色光束が再生される。その後、照明レンズ4透過後の青色の光の配光角は、黄色の蛍光の配光角と同じになる。   The volume phase optical element 5 causes the blue luminous flux corresponding to the blue light after passing through the illumination lens 4 to interfere with the blue luminous flux having the same light distribution angle as the yellow fluorescence after passing through the illumination lens 4. It is manufactured by recording a hologram. Thus, when blue light after passing through the illumination lens 4 that is the same light flux as one of the light fluxes at the time of recording is incident, a blue light flux having the same light distribution angle as yellow fluorescence after passing through the illumination lens 4 as the other light flux. Is played. Thereafter, the light distribution angle of the blue light after passing through the illumination lens 4 becomes the same as the light distribution angle of the yellow fluorescence.

一方、体積位相型光学素子5は、黄色の蛍光と記録された光との波長が異なるため、黄色の蛍光体2の配光角を変化させない。即ち、体積位相型光学素子5を通過したあとの青色の光と黄色の蛍光とは、同じ配光角を有する光束となる。このように、照明装置100は、体積位相型光学素子5によって青色の光を選択的に制御し、黄色の蛍光の配光角と一致させているため、照明装置100から照射された光の配光角は、黄色の蛍光の配光角以上に広がらない。また、青色の光の配光角を黄色の蛍光の配光角と一致させているため、照明装置100の照射面における色むらの発生を抑制することができる。   On the other hand, the volume phase optical element 5 does not change the light distribution angle of the yellow phosphor 2 because the wavelengths of the yellow fluorescence and the recorded light are different. That is, the blue light and the yellow fluorescence after passing through the volume phase optical element 5 become light beams having the same light distribution angle. Thus, the illumination device 100 selectively controls the blue light by the volume phase optical element 5 and matches the light distribution angle of the yellow fluorescence, so that the distribution of the light emitted from the illumination device 100 is the same. The light angle does not spread beyond the light distribution angle of yellow fluorescence. In addition, since the light distribution angle of blue light is matched with the light distribution angle of yellow fluorescence, it is possible to suppress the occurrence of color unevenness on the irradiation surface of the illumination device 100.

図5は、比較例に係る照明装置200を示す模式図である。比較例に係る照明装置200は、体積位相型光学素子5を有していない。蛍光の配光角は、蛍光体2を透過した光よりも発光領域が広いため、蛍光体2を透過した光の配光角よりも広い。このため、照明光が照射対象に照射されると、中央部が青色となり、周辺部が黄色となる色むらが発生する。これに対し、本実施の形態1は、体積位相型光学素子5を有しているため、青色の光の配光角が黄色の蛍光の配光角と一致する。よって、照明装置100の照射面における色むらの発生を抑制することができる。   FIG. 5 is a schematic diagram showing an illumination device 200 according to a comparative example. The illumination device 200 according to the comparative example does not have the volume phase optical element 5. The light distribution angle of the fluorescence is wider than the light distribution angle of the light transmitted through the phosphor 2 because the emission region is wider than the light transmitted through the phosphor 2. For this reason, when illumination light is irradiated to the irradiation target, color unevenness occurs in which the central portion is blue and the peripheral portion is yellow. On the other hand, since the first embodiment includes the volume phase optical element 5, the light distribution angle of blue light coincides with the light distribution angle of yellow fluorescence. Therefore, the occurrence of color unevenness on the irradiation surface of the illumination device 100 can be suppressed.

以上説明したように、本実施の形態1によれば、体積位相型光学素子5が、蛍光体2を透過した光の配光と、蛍光の配光とを一致させる。このため、配光角は、蛍光よりも広がらず、色むらの発生を抑制することができる。従って、配光分布が拡大することなく、色むらを抑制することができる。   As described above, according to the first embodiment, the volume phase optical element 5 matches the light distribution of the light transmitted through the phosphor 2 and the light distribution of the fluorescence. For this reason, the light distribution angle is not wider than the fluorescence, and the occurrence of color unevenness can be suppressed. Therefore, color unevenness can be suppressed without expanding the light distribution.

なお、本実施の形態1では、体積位相型光学素子5が照明レンズ4と別体である場合について例示しているが、体積位相型光学素子5と照明レンズ4とが一体的であってもよい。この場合、体積位相型光学素子5は、照明レンズ4の入射面又は出射面上に形成される。このように、体積位相型光学素子5と照明レンズ4とを一体化することによって、光が透過する光学素子の数が減少するため、光の透過率の向上が見込まれる。よって、体積位相型光学素子5を有していない照明装置100と同等の光効率を得ることができる。また、照明装置100が組み立てられる際、照明レンズ4と体積位相型光学素子5との光軸合わせ及び距離合わせを調整する手間が省ける。   In the first embodiment, the case where the volume phase optical element 5 is separate from the illumination lens 4 is illustrated, but the volume phase optical element 5 and the illumination lens 4 may be integrated. Good. In this case, the volume phase optical element 5 is formed on the entrance surface or the exit surface of the illumination lens 4. Thus, by integrating the volume phase optical element 5 and the illumination lens 4, the number of optical elements through which light passes is reduced, so that the light transmittance can be improved. Therefore, the light efficiency equivalent to that of the illumination device 100 that does not have the volume phase optical element 5 can be obtained. Further, when the lighting device 100 is assembled, the labor of adjusting the optical axis alignment and distance alignment between the illumination lens 4 and the volume phase optical element 5 can be saved.

1 光源、2 蛍光体、3 集光レンズ、4 照明レンズ、5 体積位相型光学素子、100 照明装置、200 照明装置。   DESCRIPTION OF SYMBOLS 1 Light source, 2 Phosphor, 3 Condensing lens, 4 Illumination lens, 5 Volume phase type optical element, 100 Illumination device, 200 Illumination device.

Claims (4)

光を出射する光源と、
前記光源から出射された光を透過すると共に、光で励起して蛍光を放出する蛍光体と、
前記蛍光体を透過した光の配光角と、前記蛍光の配光角とを一致させる体積位相型光学素子と、
を備える照明装置。
A light source that emits light;
A phosphor that transmits light emitted from the light source and emits fluorescence when excited by the light; and
A volume phase optical element that matches the light distribution angle of the light transmitted through the phosphor and the light distribution angle of the fluorescence;
A lighting device comprising:
前記体積位相型光学素子は、
前記光源から出射される波長の光の配光を制御する
請求項1記載の照明装置。
The volume phase optical element is
The illumination device according to claim 1, wherein the light distribution of light having a wavelength emitted from the light source is controlled.
前記蛍光体から放出された蛍光と、前記蛍光体を透過した光との配光を制御する照明レンズを更に備える
請求項1又は2記載の照明装置。
The illumination device according to claim 1, further comprising an illumination lens that controls light distribution between the fluorescence emitted from the phosphor and the light transmitted through the phosphor.
前記体積位相型光学素子は、
前記照明レンズの入射面又は出射面上に形成されている
請求項3記載の照明装置。
The volume phase optical element is
The illumination device according to claim 3, wherein the illumination device is formed on an incident surface or an exit surface of the illumination lens.
JP2018067225A 2018-03-30 2018-03-30 Luminaire Pending JP2019179632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018067225A JP2019179632A (en) 2018-03-30 2018-03-30 Luminaire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018067225A JP2019179632A (en) 2018-03-30 2018-03-30 Luminaire

Publications (1)

Publication Number Publication Date
JP2019179632A true JP2019179632A (en) 2019-10-17

Family

ID=68278769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018067225A Pending JP2019179632A (en) 2018-03-30 2018-03-30 Luminaire

Country Status (1)

Country Link
JP (1) JP2019179632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412299B1 (en) 2021-03-09 2022-06-24 (주)쓰리디머티리얼즈 Inkjet type 3D printing process using urea interaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412299B1 (en) 2021-03-09 2022-06-24 (주)쓰리디머티리얼즈 Inkjet type 3D printing process using urea interaction

Similar Documents

Publication Publication Date Title
JP6090875B2 (en) Illumination optical system and projector
JP6176642B2 (en) Light emitting device and related light source system
JP4813484B2 (en) High performance LED lamp system
JP4670876B2 (en) Illumination optical system and image display device
US20150267880A1 (en) Lighting Device Comprising A Wavelength Conversion Arrangement
JP4859311B2 (en) Laser illumination optical system, exposure apparatus using the optical system, laser processing machine, and projection apparatus
JP6844220B2 (en) Light source device and projector
JP2011065979A (en) Light source device
US10599024B2 (en) Light source apparatus including multiple light sources and optical characteristic conversion element, and image projection apparatus using light source apparatus
JP2011128634A (en) Lighting optical system and image display apparatus
JP2017107776A (en) Light emitting device and luminaire
JPWO2018168429A1 (en) Lighting equipment
JP2012009872A (en) Illuminating optical system, exposure equipment, and projector
JP2006032937A5 (en)
JP2019179632A (en) Luminaire
JP7564950B2 (en) Projection optical path and projection device
JP2017083907A (en) Projector and method for irradiating image forming element with illumination light
JP2008078034A (en) Vehicular lighting tool
JP2018010294A (en) Light source device for photolithography exposure system and photolithography exposure system
JP6575580B2 (en) Lighting device
JP2012047872A (en) Light source device
JP6662460B2 (en) Light emitting device
JP2016173941A (en) Fluorescent member, light source device, and projector
JP2019096381A (en) Vehicular lighting fixture
JP2015102866A (en) Light source device and projection device