JP2019178383A - Method for producing metal particle dispersion liquid - Google Patents

Method for producing metal particle dispersion liquid Download PDF

Info

Publication number
JP2019178383A
JP2019178383A JP2018068311A JP2018068311A JP2019178383A JP 2019178383 A JP2019178383 A JP 2019178383A JP 2018068311 A JP2018068311 A JP 2018068311A JP 2018068311 A JP2018068311 A JP 2018068311A JP 2019178383 A JP2019178383 A JP 2019178383A
Authority
JP
Japan
Prior art keywords
metal
particle dispersion
solution
metal particles
metal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018068311A
Other languages
Japanese (ja)
Other versions
JP7032975B2 (en
Inventor
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
良 村口
Makoto Muraguchi
良 村口
小松 通郎
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2018068311A priority Critical patent/JP7032975B2/en
Publication of JP2019178383A publication Critical patent/JP2019178383A/en
Application granted granted Critical
Publication of JP7032975B2 publication Critical patent/JP7032975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a metal particle dispersion liquid with high storage stability.SOLUTION: A method for producing a metal particle dispersion liquid has a particle preparation step of reducing a metal salt in liquid containing fine foam to prepare metal particles, and a cleaning step of cleaning the metal particles prepared in the particle preparation step with cleaning liquid.SELECTED DRAWING: None

Description

本発明は、金属粒子分散液の製造方法に関する。   The present invention relates to a method for producing a metal particle dispersion.

金属粒子は、触媒材料、半導体材料、導電性材料等として各種用途に用いられている。例えば、導電性材料は、各種電子デバイスの電極、回路、帯電防止用透明被膜、電磁波遮蔽用透明被膜、コンデンサ用電極等に用いられている(非特許文献1参照)。   Metal particles are used in various applications as catalyst materials, semiconductor materials, conductive materials, and the like. For example, conductive materials are used for electrodes, circuits, antistatic transparent coatings, electromagnetic shielding transparent coatings, capacitor electrodes, and the like of various electronic devices (see Non-Patent Document 1).

このような金属粒子の製造方法として、有機溶剤中で金属塩を還元して金属粒子を製造する方法が提案されている(例えば、特許文献1及び2参照)。しかしながら、この有機溶剤を用いる方法で得られる金属粒子は、導電性が低いという問題がある。   As a method for producing such metal particles, a method for producing metal particles by reducing a metal salt in an organic solvent has been proposed (see, for example, Patent Documents 1 and 2). However, the metal particles obtained by the method using the organic solvent have a problem of low conductivity.

そこで、導電性のより高い金属粒子を得るべく、水中で金属粒子分散液を製造することも試みられているが、金属粒子の酸化やイオン化が生じやすく、安定した金属粒子分散液を得ることが難しい。   Thus, in order to obtain metal particles having higher conductivity, attempts have been made to produce metal particle dispersions in water. However, metal particles are easily oxidized and ionized, and stable metal particle dispersions can be obtained. difficult.

特開2005−281781号公報JP 2005-281781 A 特開2008−75181号公報JP 2008-75181 A

金属および半導体ナノ粒子の科学」編著者・公益社団法人日本化学会、発行者・曽根良介、発行所・(株)化学同人(2012)Author of Metal and Semiconductor Nanoparticles, Author, The Chemical Society of Japan, Publisher, Ryosuke Sone, Publisher, Kagaku Dojin (2012)

本発明の課題は、保存安定性が高い金属粒子分散液を提供することにある。   An object of the present invention is to provide a metal particle dispersion having high storage stability.

微小気泡を含む液中で金属塩を還元することにより、金属粒子の酸化やイオン化を抑制して、金属粒子分散液の保存安定性が飛躍的に向上(長期化)することを見いだした。
微小気泡を含む液は、従来用いられていたNバブリング水等の不活性ガスによる脱気(脱酸素)処理水よりも溶存酸素濃度が高く、酸化還元電位も高いため、還元反応系に用いることは一般的には好ましくないと考えられる。ところが、意外にも、この微小気泡を含む液を用いて金属塩を還元することにより、製造される金属粒子分散液の保存安定性が向上し、この金属粒子分散液を使用した塗布液のポットライフも向上することを見いだした。
It has been found that by reducing the metal salt in a liquid containing microbubbles, the oxidation and ionization of the metal particles are suppressed, and the storage stability of the metal particle dispersion is dramatically improved (lengthened).
The liquid containing microbubbles has a higher dissolved oxygen concentration and a higher oxidation-reduction potential than conventionally used degassed (deoxygenated) treated water with an inert gas such as N 2 bubbling water, and is therefore used in a reduction reaction system. This is generally considered undesirable. However, surprisingly, by reducing the metal salt using the liquid containing the microbubbles, the storage stability of the produced metal particle dispersion is improved, and a coating liquid pot using the metal particle dispersion is used. I found that my life improved.

すなわち、本発明は、微小気泡を含む液中で金属塩を還元して金属粒子を調製する粒子調製工程と、この粒子調製工程で調製した金属粒子を洗浄液で洗浄する洗浄工程とを含むことを特徴とする金属粒子分散液の製造方法に関する。また、この製造方法により調製された金属粒子を含む被膜形成用塗布液を基材上に塗布することを特徴とする被膜付基材の製造方法に関する。   That is, the present invention includes a particle preparation step of preparing metal particles by reducing a metal salt in a liquid containing microbubbles, and a cleaning step of cleaning the metal particles prepared in this particle preparation step with a cleaning liquid. The present invention relates to a method for producing a featured metal particle dispersion. The present invention also relates to a method for producing a coated substrate, wherein a coating liquid for forming a coating containing metal particles prepared by this production method is applied onto the substrate.

金属粒子の酸化やイオン化が抑制された保存安定性が高い金属粒子分散液を得ることができる。   A metal particle dispersion having high storage stability in which oxidation and ionization of metal particles are suppressed can be obtained.

本発明の金属粒子分散液の製造方法は、微小気泡を含む液(以下、反応液ということがある)中で金属塩を還元して金属粒子を調製する粒子調製工程と、粒子調製工程で調製した金属粒子を洗浄液で洗浄する洗浄工程とを含む。この製造方法は、上記各工程の前後に他の工程を含んでもよい。例えば、洗浄工程の後に、粗大粒子を除去する粗大粒子除去工程を含んでもよい。   The method for producing a metal particle dispersion of the present invention comprises a particle preparation step of preparing metal particles by reducing metal salt in a liquid containing microbubbles (hereinafter sometimes referred to as a reaction solution), and a particle preparation step. And a cleaning step of cleaning the metal particles with a cleaning liquid. This manufacturing method may include other steps before and after the above steps. For example, a coarse particle removing step for removing coarse particles may be included after the cleaning step.

粒子調製工程において微小気泡を含む液を用いることにより、分散液に含まれる金属粒子の酸化やイオン化を抑制して、金属粒子分散液の保存安定性を向上できる。また、この金属粒子分散液を使用した塗布液のポットライフを長期化できる。
この製造方法では、高い収率で合金粒子が得られる。さらに、この金属粒子を用いた被膜は、高い導電性を有する。これらの理由は、よく分からないが、反応液中に含まれる微小気泡によって、金属塩から金属への還元反応が促進されること、及び金属粒子が酸化されずに、金属として存在するための保護作用があることによるものと推察している。
By using a liquid containing microbubbles in the particle preparation step, it is possible to suppress the oxidation and ionization of the metal particles contained in the dispersion and improve the storage stability of the metal particle dispersion. Moreover, the pot life of the coating liquid using this metal particle dispersion can be prolonged.
In this manufacturing method, alloy particles can be obtained with high yield. Furthermore, the film using the metal particles has high conductivity. Although these reasons are not well understood, the microbubbles contained in the reaction solution promote the reduction reaction from the metal salt to the metal, and the protection for the metal particles to exist as a metal without being oxidized. It is assumed that it is due to the action.

[金属粒子分散液の製造方法]
〈粒子調製工程〉
粒子調製工程は、上記のように、微小気泡を含む液中で金属塩を還元して金属粒子を調製する。微小気泡を含む液としては、有機溶媒であっても、水であってもよい。ただし、水の場合に、効果がより発揮される。反応液中に酸素等の酸化性ガスが存在すると、金属が酸化するおそれがある。このため、反応液及び反応液が接する空間において、酸化性ガスを可能な限り減じることが望ましい。本工程は、酸化性ガスの混入を抑制するため、Nガスや希ガス等の不活性ガスによりパージした状態で行うことが好ましい。ただし、本製造法では、不活性ガスでの反応液のバブリングは、必ずしも行う必要はない。
ここで、酸化性ガスとしては、酸素、オゾン、炭酸ガス、一酸化窒素、一酸化二窒素、二酸化窒素、フッ素、塩素、二酸化塩素、三フッ化窒素、三フッ化塩素、四塩化珪素、二フッ化酸素、ペルクロリルフルオリド等が例示される。
[Method for producing metal particle dispersion]
<Particle preparation process>
In the particle preparation step, metal particles are prepared by reducing a metal salt in a liquid containing microbubbles as described above. The liquid containing microbubbles may be an organic solvent or water. However, the effect is more exhibited in the case of water. If an oxidizing gas such as oxygen is present in the reaction solution, the metal may be oxidized. Therefore, it is desirable to reduce the oxidizing gas as much as possible in the space where the reaction solution and the reaction solution are in contact. This step is preferably performed in a state purged with an inert gas such as N 2 gas or a rare gas in order to suppress the mixing of the oxidizing gas. However, in this production method, bubbling of the reaction solution with an inert gas is not necessarily performed.
Here, as the oxidizing gas, oxygen, ozone, carbon dioxide gas, nitrogen monoxide, dinitrogen monoxide, nitrogen dioxide, fluorine, chlorine, chlorine dioxide, nitrogen trifluoride, chlorine trifluoride, silicon tetrachloride, silicon tetrachloride, Examples thereof include oxygen fluoride and perchloryl fluoride.

本工程の反応液は、酸化還元電位が、−50mV以下が好ましく、−100mV以下がより好ましい。また、pHが、4.0〜11.0が好ましく、4.5〜7.0がより好ましい。この酸化還元電位及びpHの範囲内で金属塩の還元を行うことにより、金属粒子の生成がスムーズに行われる。また、反応温度としては、10〜80℃が好ましい。   The reaction solution in this step has an oxidation-reduction potential of preferably −50 mV or less, and more preferably −100 mV or less. The pH is preferably 4.0 to 11.0, and more preferably 4.5 to 7.0. By reducing the metal salt within the range of the oxidation-reduction potential and pH, the metal particles are generated smoothly. Moreover, as reaction temperature, 10-80 degreeC is preferable.

《微小気泡》
微小気泡は、好ましくは平均気泡径が40nm〜10μmの微小気泡(マイクロナノバブル)である。かかる微小気泡は、気泡径が40〜100nm(0.1μm)のいわゆるナノバブル、及び気泡径が0.1〜10μmのいわゆるマイクロバブルの少なくとも一方を含んでいるものであり、両者を含むものが好ましい。微小気泡の平均気泡径の上限は、500nmが好ましく、350nmがより好ましく、200nmがさらに好ましい。また、微小気泡の平均気泡径の下限は、50nmが好ましく、60nmがより好ましく、65nmがさらに好ましい。
<Microbubbles>
The microbubbles are preferably microbubbles (micronanobubbles) having an average bubble diameter of 40 nm to 10 μm. Such microbubbles include at least one of so-called nanobubbles having a bubble diameter of 40 to 100 nm (0.1 μm) and so-called microbubbles having a bubble diameter of 0.1 to 10 μm, and preferably include both. . The upper limit of the average bubble diameter of the microbubbles is preferably 500 nm, more preferably 350 nm, and even more preferably 200 nm. Further, the lower limit of the average bubble diameter of the microbubbles is preferably 50 nm, more preferably 60 nm, and even more preferably 65 nm.

微小気泡の含有量は、1.0×10個/mL以上が好ましく、1.0×10個/mL以上がより好ましく、1.0×10個/mL以上がさらに好ましい。その上限は特に制限はないが、1.0×1011個/mLが好ましく、5.0×1010個/mLがより好ましく、1.0×1010個/mLがさらに好ましい。 The content of microbubbles is preferably 1.0 × 10 3 pieces / mL or more, more preferably 1.0 × 10 5 pieces / mL or more, and further preferably 1.0 × 10 8 pieces / mL or more. The upper limit is not particularly limited, but is preferably 1.0 × 10 11 pieces / mL, more preferably 5.0 × 10 10 pieces / mL, and further preferably 1.0 × 10 10 pieces / mL.

微小気泡の平均気泡径及び気泡個数は、液中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法(NTA)で解析して求められる。例えば、Malvern社製「ナノサイト NS300」を用いて測定できる。   The average bubble diameter and the number of bubbles of the microbubbles are obtained by analyzing the Brownian movement speed of the bubbles in the liquid by the nanoparticle tracking analysis method (NTA). For example, it can be measured using “Nanosite NS300” manufactured by Malvern.

微小気泡を形成する気体は、非酸化性ガスが好ましい。具体的には、窒素、水素、及び希ガスの少なくとも1種が好ましい。   The gas that forms the microbubbles is preferably a non-oxidizing gas. Specifically, at least one of nitrogen, hydrogen, and a rare gas is preferable.

《金属塩》
金属粒子の原料となる金属塩は、周期表の4族、5族、6族、8族、9族、10族、11族、13族、14族及び15族から選ばれる1種の金属の塩が用いられる。塩の種類としては、例えば、塩化物塩、硝酸塩、硫酸塩、有機酸塩等が挙げられる。
《Metal salt》
The metal salt that is the raw material of the metal particles is a metal of one kind selected from the groups 4, 5, 6, 8, 9, 10, 11, 13, 13, and 15 of the periodic table. Salt is used. Examples of the salt include chloride salts, nitrates, sulfates, and organic acid salts.

好ましい金属元素は、4族ではTi、5族ではTa、6族ではW、8族ではRu、9族ではCo、Rh、10族ではNi、Pd、Pt、11族ではCu、Ag、Au、13族ではAl、In、14族ではSn、15族ではSbが例示される。とりわけ、AuやAg以外の酸化されやすい金属であっても、酸化を抑制して、高い収率で金属粒子が得られる。   Preferred metal elements are Ti for Group 4, Ta for Group 5, W for Group 6, Ru for Group 8, Co, Rh for Group 9, Ni, Pd, Pt for Group 10, Cu, Ag, Au for Group 11, Group 13 is exemplified by Al, In, group 14 is Sn, and group 15 is exemplified by Sb. In particular, even a metal that is easily oxidized other than Au or Ag can suppress oxidation and obtain metal particles in a high yield.

〈還元剤〉
粒子調製工程の還元反応は、通常、還元剤を用いて行われる。
還元剤は、例えば、硫酸第一鉄、NaBH、ヒドラジン、水素、アルコール、クエン酸3ナトリウム、酒石酸、次亜リン酸ナトリウム、ギ酸、LiBH、LiAlH、ジボランが挙げられる。中でも、クエン酸3ナトリウム、酒石酸、ギ酸が好ましい。これらは、還元剤と安定剤の両方の機能を有している。このため、不純分を除去する際の工程が軽減されるとともに安定性も向上する。
<Reducing agent>
The reduction reaction in the particle preparation step is usually performed using a reducing agent.
Examples of the reducing agent include ferrous sulfate, NaBH 4 , hydrazine, hydrogen, alcohol, trisodium citrate, tartaric acid, sodium hypophosphite, formic acid, LiBH 4 , LiAlH 4 , and diborane. Of these, trisodium citrate, tartaric acid, and formic acid are preferable. These have the functions of both a reducing agent and a stabilizer. For this reason, the process for removing impurities is reduced and the stability is improved.

還元剤の使用量は、金属塩の還元性によっても異なるが、金属塩1モルに対し、0.5〜10モルが好ましく、1〜5モルがより好ましい。ここで、還元剤が金属塩1モルに対し0.5モル未満の場合は、還元が不充分となり、所望の金属粒子が得られない場合がある。還元剤が金属塩1モルに対し10モルを超えると、必要以上に粒子径の大きな金属粒子が生成する場合がある。   Although the usage-amount of a reducing agent changes also with the reducibility of a metal salt, 0.5-10 mol is preferable with respect to 1 mol of metal salts, and 1-5 mol is more preferable. Here, when the reducing agent is less than 0.5 mole relative to 1 mole of the metal salt, the reduction is insufficient and the desired metal particles may not be obtained. When the reducing agent exceeds 10 moles with respect to 1 mole of the metal salt, metal particles having a particle size larger than necessary may be generated.

《有機安定化剤》
粒子調製工程では、有機安定化剤を用いることが好ましい。有機安定化剤の添加により、金属塩に有機安定化剤が吸着され、金属塩の分散性が向上し、金属塩の還元をよりスムーズに行える。また、生成した金属粒子が分散媒中に安定的に分散される。
<Organic stabilizer>
In the particle preparation step, an organic stabilizer is preferably used. By adding the organic stabilizer, the organic stabilizer is adsorbed to the metal salt, the dispersibility of the metal salt is improved, and the metal salt can be reduced more smoothly. Further, the generated metal particles are stably dispersed in the dispersion medium.

有機安定化剤は、金属塩や金属粒子に吸着して分散安定性を高められるものであればよい。例えば、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、酢酸ビニル、ポリアクリル酸、カルボン酸化合物等が適している。中でも、金属塩や金属粒子の表面との相互作用が大きなカルボキシル基を有するカルボン酸化合物が好ましく、多価カルボン酸化合物が特に好ましい。   Any organic stabilizer may be used as long as it can be adsorbed on a metal salt or metal particles to enhance dispersion stability. For example, gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, vinyl acetate, polyacrylic acid, carboxylic acid compounds and the like are suitable. Among these, a carboxylic acid compound having a carboxyl group having a large interaction with the surface of a metal salt or metal particles is preferable, and a polyvalent carboxylic acid compound is particularly preferable.

カルボン酸化合物は、例えば、アンス酸、ヒドロキシアントラセンカルボン酸、ヒドロキシナフトエ酸、没食子酸、クレソチン酸、パラヒドロキシ安息香酸、オルト−アセチルサリチル酸、リンゴ酸、マンデル酸、グルコン酸、クエン酸、酒石酸、乳酸、ベンゼンカルボン酸、ギ酸、酢酸、ブタン酸、プロピオン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、オクタデカン酸、グリコール酸、L−アスコルビン酸、フマル酸、マレイン酸、アジピン酸や、これらの塩が挙げられる。これらは、1種で用いてもよく、2種以上混合して用いてもよい。中でも、クエン酸又はその塩が好ましく、金属塩や金属粒子の表面との相互作用が大きいことから、クエン酸3ナトリウムが特に好ましい。   Carboxylic acid compounds include, for example, anthonic acid, hydroxyanthracenecarboxylic acid, hydroxynaphthoic acid, gallic acid, crestic acid, parahydroxybenzoic acid, ortho-acetylsalicylic acid, malic acid, mandelic acid, gluconic acid, citric acid, tartaric acid, lactic acid Benzenecarboxylic acid, formic acid, acetic acid, butanoic acid, propionic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, 9-hexadecenoic acid, Examples include heptadecanoic acid, octadecanoic acid, glycolic acid, L-ascorbic acid, fumaric acid, maleic acid, adipic acid, and salts thereof. These may be used alone or in combination of two or more. Among these, citric acid or a salt thereof is preferable, and trisodium citrate is particularly preferable because of its large interaction with the metal salt or the surface of the metal particles.

有機安定化剤の使用量は、金属塩1モルに対し、0.5〜10モルが好ましく、1〜5モルがより好ましい。ここで、有機安定化剤が金属塩1モルに対し0.5モル未満の場合は、有機安定化剤の金属塩への吸着量が少なすぎて、金属塩の分散性が不充分となり、金属塩の還元や金属粒子の分散性が不充分となるおそれがある。逆に、有機安定化剤が金属塩1モルに対し10モルを超えると、特に金属塩の分散性や還元性および金属粒子の分散性が向上するわけではなく、後の洗浄工程での有機安定化剤の除去処理や排水処理に余計な労力を要す場合がある。   0.5-10 mol is preferable with respect to 1 mol of metal salts, and, as for the usage-amount of an organic stabilizer, 1-5 mol is more preferable. Here, when the organic stabilizer is less than 0.5 mole relative to 1 mole of the metal salt, the amount of the organic stabilizer adsorbed on the metal salt is too small, and the dispersibility of the metal salt becomes insufficient. There is a possibility that salt reduction and metal particle dispersibility may be insufficient. Conversely, when the organic stabilizer exceeds 10 moles per mole of the metal salt, the dispersibility and reducibility of the metal salt and the dispersibility of the metal particles are not particularly improved, and the organic stability in the subsequent washing step is not improved. Extra work may be required for the removal of the chemical agent and the wastewater treatment.

《pH調整剤》
粒子調製工程の反応液のpHが4.0〜11.0になるように、pH調整剤を用いることができる。pH調整剤は、鉱酸、有機酸が適している。中でもC〜Cの炭素数をもつ有機酸が好ましい。なお、上記有機安定化剤が、pH調整剤の機能を兼ねてもよい。
<< pH adjuster >>
A pH adjuster can be used so that the pH of the reaction solution in the particle preparation step is 4.0 to 11.0. As the pH adjusting agent, a mineral acid or an organic acid is suitable. Of these, organic acids having C 1 to C 3 carbon atoms are preferred. In addition, the said organic stabilizer may serve as the function of a pH adjuster.

〈洗浄工程〉
洗浄工程は、粒子調製工程で調製した金属粒子を洗浄液で洗浄する。本工程で、脱塩が行われ、また、有機安定化剤の除去が行われる。ここで、塩とは、金属塩の還元処理によって生じた金属粒子以外の物質であり、反応液中にイオンとして存在する。具体的には、ナトリウム、鉄等の金属イオンや、ホウ素イオン、塩化物イオン、硝酸イオン、硫酸イオン、有機酸イオン等が例示される。
<Washing process>
In the washing step, the metal particles prepared in the particle preparation step are washed with a washing liquid. In this step, desalting is performed and the organic stabilizer is removed. Here, the salt is a substance other than the metal particles generated by the reduction treatment of the metal salt, and exists as ions in the reaction solution. Specific examples include metal ions such as sodium and iron, boron ions, chloride ions, nitrate ions, sulfate ions, and organic acid ions.

洗浄液は、水やアルコールが適しており、その他の成分を含んでいてもよい。また、この洗浄液は、予め不活性ガスをバブリングして酸素を除去したバブリング液及び微小気泡を含有した液の少なくとも一方を用いることが好ましく、微小気泡を含む液(微小気泡を含むバブリング液を含む)を用いることが特に好ましい。微小気泡を含む液の詳細は、上記粒子調製工程で用いた微小気泡を含む液(反応液)と同様である。また、洗浄後に製造された金属粒子分散液も微小気泡を含むことが好ましい。   The cleaning liquid is suitably water or alcohol, and may contain other components. In addition, it is preferable to use at least one of a bubbling liquid obtained by previously bubbling an inert gas to remove oxygen and a liquid containing microbubbles as the cleaning liquid. ) Is particularly preferred. The details of the liquid containing microbubbles are the same as the liquid (reaction liquid) containing microbubbles used in the particle preparation step. Moreover, it is preferable that the metal particle dispersion manufactured after washing | cleaning also contains a microbubble.

微小気泡を含む洗浄液で金属粒子を洗浄することにより、金属粒子のイオン化や酸化を防止して、金属粒子分散液の保存安定性及びこの金属粒子分散液を使用した塗布液のポットライフを飛躍的に向上できる。また、製造される金属粒子の分散性が向上し、最終的な分散液中の有機安定化剤の量を低減できる。したがって、被膜にした際、金属粒子同士がより直接的に接触し、粒子境界の抵抗が小さくなり、結果として、高い導電性を有する被膜を形成できる。   By washing metal particles with a cleaning solution containing microbubbles, the metal particles are prevented from ionization and oxidation, and the storage stability of the metal particle dispersion and the pot life of the coating solution using this metal particle dispersion are dramatically improved. Can be improved. Further, the dispersibility of the produced metal particles is improved, and the amount of the organic stabilizer in the final dispersion can be reduced. Therefore, when the coating film is formed, the metal particles come into direct contact with each other, the resistance at the particle boundary is reduced, and as a result, a coating film having high conductivity can be formed.

洗浄方法は、デカンテーションによる方法や、限外膜やセラミック膜を使用した洗浄方法が例示される。デカンテーションによる方法は、例えば、上記粒子調製工程にて調製した金属粒子分散液から金属粒子を回収し、かかる回収した金属粒子を洗浄液中に浸漬して洗浄(脱塩)を行う。この洗浄液は、高濃度の有機安定化剤を含むものが好ましい。これにより、金属粒子を適度に凝集させると共に、上澄み液に、硝酸イオン、硫酸イオン等の不純分を溶出させて、この不純分を除去できる。さらに、イオン交換樹脂を用いて精製することが好ましい。なお、洗浄工程で用いる有機安定化剤は、粒子調製工程で用いるものと同一であってもよいし、異なっていてもよい。   Examples of the cleaning method include a decantation method and a cleaning method using an ultra-thin film or a ceramic film. In the method by decantation, for example, metal particles are recovered from the metal particle dispersion prepared in the particle preparation step, and the recovered metal particles are immersed in a cleaning solution for cleaning (desalting). The cleaning liquid preferably contains a high concentration organic stabilizer. As a result, the metal particles are appropriately aggregated, and impurities such as nitrate ions and sulfate ions are eluted in the supernatant to remove the impurities. Furthermore, it is preferable to refine | purify using an ion exchange resin. Note that the organic stabilizer used in the washing step may be the same as or different from that used in the particle preparation step.

本発明では、有機安定化剤の濃度が比較的低い洗浄液を用いた場合でも十分に不純分を除去でき、後のイオン交換樹脂による処理の簡略化(樹脂量の低減)を図れるため、効率的に金属粒子を製造できる。また、洗浄回数を減らすことも可能となり、これによっても効率的に金属粒子を製造できる。洗浄工程の簡略化により、金属粒子のロスが少なくなり、収率を向上できる。さらに、洗浄工程の簡略化により、金属粒子の酸化の誘発が抑制されるので、この金属粒子を用いて形成した被膜は導電性が高くなる。   In the present invention, even when a cleaning solution having a relatively low concentration of the organic stabilizer is used, impurities can be sufficiently removed, and the subsequent treatment with an ion exchange resin can be simplified (reduction in the amount of resin). Metal particles can be produced. In addition, it is possible to reduce the number of times of washing, and this can also efficiently produce metal particles. By simplifying the cleaning process, loss of metal particles is reduced and the yield can be improved. Furthermore, since the induction of oxidation of the metal particles is suppressed by simplifying the cleaning process, the film formed using the metal particles has high conductivity.

〈粗大粒子除去工程〉
洗浄工程の後、遠心分離等により、粗大粒子を除去することが好ましい。
<Coarse particle removal process>
After the washing step, it is preferable to remove coarse particles by centrifugation or the like.

[金属粒子分散液]
本発明の金属粒子分散液は、微小気泡を含む液中に金属粒子が分散していることを特徴とする。微小気泡を含む液の詳細は、上記粒子調製工程で用いた微小気泡を含む液(反応液)と同様である。また、金属粒子としては、周期表の4族、5族、6族、8族、9族、10族、11族、13族、14族、15族の金属の粒子が挙げられる。金属粒子は、複数種を混合して用いてもよい。この金属粒子分散液は、上記の製造方法により製造できる。
分散媒は、水や有機溶媒が適している。ここで、有機溶媒は、特に種類を選ばないが、塗布液としての加工のしやすさや被膜付基材の製造のしやすさからアルコール類が好ましい。中でも、メタノールやエタノールが好ましい。
[Metal particle dispersion]
The metal particle dispersion liquid of the present invention is characterized in that metal particles are dispersed in a liquid containing microbubbles. The details of the liquid containing microbubbles are the same as the liquid (reaction liquid) containing microbubbles used in the particle preparation step. Further, examples of the metal particles include metal particles of Group 4, Group 5, Group 6, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14 and Group 15 of the Periodic Table. A plurality of kinds of metal particles may be mixed and used. This metal particle dispersion can be produced by the production method described above.
As the dispersion medium, water or an organic solvent is suitable. Here, the organic solvent is not particularly limited, but alcohols are preferable from the viewpoint of ease of processing as a coating solution and ease of production of a coated substrate. Of these, methanol and ethanol are preferable.

金属粒子分散液の保存安定性は、不活性ガスでバブリングした溶媒のみを使用して製造された場合、その金属種にもよるが、通常、数時間〜1ヶ月程度である。これに対し、本発明の金属粒子分散液の保存安定性は3ヶ月を超える。これは、単に気泡が存在する場合の作用とは異なり、微小気泡と金属粒子との間で何らかの作用が働いていると考えられる。   The storage stability of the metal particle dispersion is usually from several hours to one month, although it depends on the metal species when produced using only a solvent bubbled with an inert gas. In contrast, the storage stability of the metal particle dispersion of the present invention exceeds 3 months. This is considered to be due to some action acting between the microbubbles and the metal particles, unlike the action when the bubbles simply exist.

なお、現状の技術では、金属粒子と微小気泡が共存している分散液のまま、微小気泡の平均気泡径や気泡個数を測定することは困難である。このため、金属粒子を限外濾過膜で取り除き、この濾液に含まれる微小気泡を測定することにより、微小気泡の平均気泡径及び気泡個数を求める。すなわち、本発明の平均気泡径及び気泡個数は、分画分子量4000の限外濾過膜を通過した濾液を測定したものをいう。   In the current technology, it is difficult to measure the average bubble diameter and the number of bubbles in a dispersion in which metal particles and microbubbles coexist. Therefore, the average bubble diameter and the number of bubbles are determined by removing metal particles with an ultrafiltration membrane and measuring the minute bubbles contained in the filtrate. That is, the average bubble diameter and the number of bubbles in the present invention are those obtained by measuring a filtrate that has passed through an ultrafiltration membrane having a molecular weight cut-off of 4000.

金属粒子分散液の酸化還元電位(ORP)は、0〜300mVが好ましく、100〜250mVがより好ましい。ここで、ORPが0mV未満の場合は、還元場にあるため金属粒子の分散性が不安定になる場合がある。逆に、ORPが300mVを超える場合は、金属粒子が酸化される場合がある。
また、pHは、通常、4.0〜7.0であり、4.5〜6.5が好ましい。ここで、pHが4.0未満の場合は、イオンの状態で存在し、金属粒子が得られない場合がある。逆に、pHが7.0を超える場合は、塩濃度が高いため、金属粒子が凝集する場合がある。
The redox potential (ORP) of the metal particle dispersion is preferably 0 to 300 mV, more preferably 100 to 250 mV. Here, when the ORP is less than 0 mV, the dispersibility of the metal particles may become unstable due to the reduction field. Conversely, when the ORP exceeds 300 mV, the metal particles may be oxidized.
Moreover, pH is 4.0-7.0 normally, and 4.5-6.5 are preferable. Here, when pH is less than 4.0, it exists in the state of an ion and a metal particle may not be obtained. Conversely, when the pH exceeds 7.0, the metal particles may aggregate due to the high salt concentration.

金属粒子分散液の電気伝導度は、10〜500μS/cmが好ましく、50〜300μS/cmがより好ましい。ここで、電気伝導度が10μS/cm未満の場合は、分散剤が少なく保存安定性が低下する(寿命が短い)場合がある。逆に、電気伝導度が500μS/cmを超える場合は、塩濃度が高くなるため、保存安定性が低下する場合がある。また、導電膜を形成しても導電性が悪化する場合がある。   The electric conductivity of the metal particle dispersion is preferably 10 to 500 μS / cm, more preferably 50 to 300 μS / cm. Here, when the electrical conductivity is less than 10 μS / cm, there are cases where the amount of the dispersant is small and the storage stability is lowered (life is short). On the other hand, when the electrical conductivity exceeds 500 μS / cm, the salt concentration increases, so that the storage stability may be lowered. Moreover, even if a conductive film is formed, the conductivity may deteriorate.

金属粒子分散液の不純分の各々の含有量は、金属粒子に対して、100ppm以下が好ましく、80ppm以下がより好ましく、50ppm以下がさらに好ましい。ここで、100ppmを超えると、塩濃度が高くなるため、保存安定性が低下する場合がある。また、導電膜を形成しても導電性が悪化する場合がある。金属粒子分散液の不純分は、金属粒子、分散媒、有機安定化剤、及び各種添加剤以外の物質である。これは、金属塩の還元処理によって生じた金属粒子以外の物質で、反応液中にイオンとして存在する。具体的には、ナトリウムや鉄等の金属イオンやホウ素イオン、塩化物イオン、硝酸イオン、硫酸イオン等が例示される。   The content of each impurity in the metal particle dispersion is preferably 100 ppm or less, more preferably 80 ppm or less, and even more preferably 50 ppm or less with respect to the metal particles. Here, if it exceeds 100 ppm, the salt concentration increases, so that the storage stability may decrease. Moreover, even if a conductive film is formed, the conductivity may deteriorate. The impurities in the metal particle dispersion are substances other than metal particles, a dispersion medium, an organic stabilizer, and various additives. This is a substance other than the metal particles generated by the reduction treatment of the metal salt and exists as ions in the reaction solution. Specific examples include metal ions such as sodium and iron, boron ions, chloride ions, nitrate ions, sulfate ions, and the like.

また、金属粒子分散液中の有機安定化剤量は、金属粒子に対して0.1〜5質量%が好ましく、0.2〜3質量%がより好ましい。ここで、有機安定化剤が金属粒子に対して0.1質量%未満の場合は、有機安定化剤の金属粒子への吸着量が少なすぎて、金属粒子の分散性が不充分となるおそれがある。逆に、有機安定化剤が金属粒子に対して5質量%を超えると、洗浄が不充分であり、金属粒子の分散性が向上せず、むしろ粒子同士が凝集するおそれがある。この金属粒子分散液に含まれる有機安定化剤の含有量は、有機安定化剤に由来するC(カーボン)量を分析することで求めることができる。   Moreover, 0.1-5 mass% is preferable with respect to a metal particle, and, as for the amount of organic stabilizers in a metal particle dispersion liquid, 0.2-3 mass% is more preferable. Here, when the organic stabilizer is less than 0.1% by mass with respect to the metal particles, the amount of adsorption of the organic stabilizer to the metal particles is too small, and the dispersibility of the metal particles may be insufficient. There is. On the other hand, when the organic stabilizer exceeds 5% by mass with respect to the metal particles, the cleaning is insufficient, the dispersibility of the metal particles is not improved, and the particles may rather aggregate. The content of the organic stabilizer contained in the metal particle dispersion can be determined by analyzing the amount of C (carbon) derived from the organic stabilizer.

この金属粒子分散液に含まれる金属粒子の平均粒子径は、3〜200nmが好ましく、5〜70nmがより好ましい。平均粒子径が3〜200nmであれば、透明性の高い導電性被膜が得られる。
金属粒子の平均粒子径は、電子顕微鏡写真を撮影し、任意の500個の粒子について、粒子径を測定し、その平均値として得る。
The average particle diameter of the metal particles contained in this metal particle dispersion is preferably 3 to 200 nm, more preferably 5 to 70 nm. When the average particle diameter is 3 to 200 nm, a highly transparent conductive film can be obtained.
The average particle diameter of the metal particles is obtained as an average value obtained by taking an electron micrograph and measuring the particle diameter of any 500 particles.

本発明の金属粒子分散液は、金属粒子の酸化やイオン化を抑制できる。したがって、水系においても、従来実現できなかったような長期の保存安定性が実現できる。また、この金属粒子分散液を使用した塗布液でも従来実現できなかった長期のポットライフが実現できる。さらに、本発明の金属粒子分散液は、酸化物粒子の含有量が非常に少なく、導電性の高い被膜の製造が可能である。ここで、金属酸化物はX線回折で検出されないことが好ましい。その含有量は、粒子に対して、500ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下がさらに好ましい。もし、金属酸化物の含有量が500ppmを超えると、分散液の保存安定性が低下し、粒子が凝集して析出するおそれがある。また、金属粒子がイオン化してしまうと、液中で粒子として存在せず、これを塗布液として使用しても所望の被膜は得られない。   The metal particle dispersion of the present invention can suppress oxidation and ionization of metal particles. Therefore, even in an aqueous system, long-term storage stability that could not be realized conventionally can be realized. In addition, a long pot life that could not be realized with a coating solution using this metal particle dispersion can be realized. Furthermore, the metal particle dispersion of the present invention has a very low content of oxide particles and can produce a highly conductive coating. Here, the metal oxide is preferably not detected by X-ray diffraction. The content thereof is preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less with respect to the particles. If the content of the metal oxide exceeds 500 ppm, the storage stability of the dispersion is lowered, and the particles may aggregate and precipitate. Further, when the metal particles are ionized, they do not exist as particles in the liquid, and a desired film cannot be obtained even if this is used as a coating liquid.

[被膜形成用塗布液]
本発明の金属粒子分散液に含まれる金属粒子を用いて被膜形成用塗布液が製造できる。被膜形成用塗布液には、従来公知の各種添加剤を添加することができる。
[Coating liquid for film formation]
A coating liquid for forming a film can be produced using the metal particles contained in the metal particle dispersion of the present invention. Various conventionally known additives can be added to the coating liquid for forming a film.

被膜付基材の製造は、この被膜形成用塗布液を基材上に塗布した後、乾燥し、必要に応じて焼成を行う。   In the production of a substrate with a film, the coating liquid for forming a film is coated on the substrate, dried, and fired as necessary.

基材は、ガラス、プラスチック、セラミック、金属等からなるフィルム状、シート状等の基材が例示される。塗布液の塗布方法は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法等が挙げられる。被膜の膜厚は、30〜300nm程度が好ましく、50〜200nm程度がより好ましい。   Examples of the base material include base materials such as films and sheets made of glass, plastic, ceramic, metal and the like. Examples of the application method of the coating liquid include a dipping method, a spinner method, a spray method, a roll coater method, and a flexographic printing method. The film thickness is preferably about 30 to 300 nm, more preferably about 50 to 200 nm.

乾燥温度は、例えば常温〜90℃程度の温度である。焼成温度は、例えば120〜900℃程度であり、150〜350℃程度であってもよい。本発明の分散液に含まれる金属粒子は有機安定化剤等の有機物の付着が少ないため、例えば400℃以上といった高温で焼成して有機物を除去する必要がない。これにより、高温焼成による金属粒子の凝集、融着を防止できるとともに、得られる被膜のへーズの劣化を抑制できる。   The drying temperature is, for example, room temperature to about 90 ° C. The firing temperature is, for example, about 120 to 900 ° C, and may be about 150 to 350 ° C. Since the metal particles contained in the dispersion of the present invention have little adhesion of organic substances such as organic stabilizers, it is not necessary to remove the organic substances by baking at a high temperature such as 400 ° C. or higher. Thereby, aggregation and fusion of metal particles due to high-temperature firing can be prevented, and deterioration of haze of the resulting coating can be suppressed.

[実施例1]
〈粒子調製工程〉
旋回流方式のバブル発生装置(株式会社Ligaric製 HYK−20−SD)で超純水とNを接触させて、Nマイクロナノバブル水(平均気泡径70nm、気泡個数2.4億個/mL、pH5.79(25℃、以下同じ)、電気伝導度1.17μS/cm、溶存酸素濃度(DO)1.70ppm、酸化還元電位(ORP)330mV)を準備した。
マイクロナノバブル水930gにクエン酸3ナトリウム2水和物(有機安定化剤)400gを溶解し、溶液(S1−1)を調製した。
マイクロナノバブル水600gに硫酸第一鉄7水和物(還元剤)180gを溶解し、溶液(S1−2)を調製した。
溶液(S1−1)と溶液(S1−2)とを混合して30分間攪拌し、溶液A1を調製した。
[Example 1]
<Particle preparation process>
Ultra pure water and N 2 are brought into contact with a swirling flow type bubble generator (HYK-20-SD manufactured by Ligalic Co., Ltd.), and N 2 micro-nano bubble water (average bubble diameter 70 nm, number of bubbles 240 million / mL). , PH 5.79 (25 ° C., the same applies hereinafter), electric conductivity 1.17 μS / cm, dissolved oxygen concentration (DO) 1.70 ppm, redox potential (ORP) 330 mV).
400 g of trisodium citrate dihydrate (organic stabilizer) was dissolved in 930 g of N 2 micro / nano bubble water to prepare a solution (S1-1).
180 g of ferrous sulfate heptahydrate (reducing agent) was dissolved in 600 g of N 2 micro / nano bubble water to prepare a solution (S1-2).
The solution (S1-1) and the solution (S1-2) were mixed and stirred for 30 minutes to prepare a solution A1.

マイクロナノバブル水600gに硝酸銅(II)3水和物76gを溶解し、溶液B1を調製した。その後、溶液B1に溶液A1を添加し10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 A solution B1 was prepared by dissolving 76 g of copper (II) nitrate trihydrate in 600 g of N 2 micro / nano bubble water. Thereafter, metal particles were separated and collected by a centrifuge from the dispersion obtained by adding the solution A1 to the solution B1 and stirring for 10 hours.

〈洗浄工程〉
超純水(pH6.32、電気伝導度0.05μS/cm、DO6.17ppm、ORP350mV)をNにてバブリングを1時間行い、溶存酸素を除去したNバブリング水(pH6.6、電気伝導度0.6μS/cm、DO0.6ppm、ORP260mV)を準備した。Nバブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
Ultra pure water (pH 6.32, electric conductivity 0.05 μS / cm, DO 6.17 ppm, ORP 350 mV) was bubbled with N 2 for 1 hour, and dissolved oxygen was removed from N 2 bubbling water (pH 6.6, electric conductivity). Degree 0.6 μS / cm, DO 0.6 ppm, ORP 260 mV). The separated and recovered metal particles were immersed in 200 g of a trisodium citrate aqueous solution having a concentration of 20% by mass prepared using N 2 bubbling water and washed (desalted), and then separated and recovered by centrifugation again.

ICP分析で金属濃度を定量し、Nバブリング水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液(P−1)を得た。 The metal concentration was quantified by ICP analysis, and a metal particle aqueous dispersion having a concentration of 2.5% by mass in terms of metal was prepared using N 2 bubbling water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black-brown metal particle dispersion (P-1) having a concentration of 2.5% by mass in terms of metal.

[微小気泡の平均気泡径と気泡個数]
金属粒子分散液(P−1)中の微小気泡については、この金属粒子分散液を限外濾過膜(旭化成製SEP−1013分画分子量4000)で濾過して金属粒子を取り除き、濾液中の微小気泡の平均気泡径と気泡個数を測定した。微小気泡の平均気泡径及び気泡個数は、液中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した。具体的には、測定試料(溶液A1、溶液B1又は金属粒子分散液(P−1)の濾液)約20mLを吸引させながら測定機器(Malvern社製「ナノサイト NS300」)に注入し、ナノ粒子トラッキング解析法にて測定した。なお、マイクロナノバブル水は、濾過処理をせずに、そのまま上記方法で測定した。
[Average bubble diameter and number of bubbles]
For the fine bubbles in the metal particle dispersion (P-1), the metal particle dispersion is filtered through an ultrafiltration membrane (SEP-1013 molecular weight 4000, manufactured by Asahi Kasei) to remove the metal particles, and the microbubbles in the filtrate are removed. The average bubble diameter and the number of bubbles were measured. The average bubble diameter and the number of bubbles in the microbubbles were measured using the nanoparticle tracking analysis method for the Brownian movement speed of the bubbles in the liquid. Specifically, about 20 mL of a measurement sample (solution A1, solution B1 or metal particle dispersion (P-1) filtrate) is sucked into a measurement device (“Nanosite NS300” manufactured by Malvern), and nanoparticle Measured by tracking analysis method. In addition, the micro nano bubble water was measured by the said method as it was, without carrying out the filtration process.

粒子調製工程で還元後の溶液の物性(pH、ORP)、最終的に得られた金属粒子分散液の物性(微小気泡の平均気泡径と気泡個数、pH、ORP、金属粒子の含有量及び収率、一次粒子の平均粒子径、二次粒子の平均粒子径、金属酸化物の有無、不純分(Fe,Na,B,SO,NO)含有量、C(カーボン)量、保存安定性)を表1に示した(以下の実施例、比較例も同様)。 Physical properties of the solution after reduction in the particle preparation step (pH, ORP), physical properties of the finally obtained metal particle dispersion (average bubble diameter and number of bubbles, pH, ORP, metal particle content and yield) Ratio, average particle size of primary particles, average particle size of secondary particles, presence or absence of metal oxides, content of impurities (Fe, Na, B, SO 4 , NO 3 ), amount of C (carbon), storage stability ) Is shown in Table 1 (the same applies to the following examples and comparative examples).

[電気伝導度]
電気伝導度は、交流2電極法によって測定した。具体的には、pHメーター(堀場製作所製F−74 、電極型番3551−10D)を導電率測定モードにて、測定する液に電極を浸漬させて求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[Electric conductivity]
The electrical conductivity was measured by the AC two-electrode method. Specifically, the pH meter (Horiba, Ltd. F-74, electrode model number 3551-10D) was obtained by immersing the electrode in the liquid to be measured in the conductivity measurement mode. In addition, each liquid temperature of bubbling water, micro nano bubble water, and a metal particle dispersion was adjusted to 25 degreeC.

[酸化還元電位(ORP)]
酸化還元電位(Oxidation Reduction Potential)は、pHメーター(堀場製作所製F−74、電極型番9300−10D)の設定をORP測定モードにて、電極を測定する液に電極を浸漬させて求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[Redox potential (ORP)]
The oxidation reduction potential (Oxidation Reduction Potential) was determined by immersing the electrode in a solution for measuring the electrode in the ORP measurement mode in the pH meter (F-74, manufactured by Horiba, Ltd., electrode model number 9300-10D). In addition, each liquid temperature of bubbling water, micro nano bubble water, and a metal particle dispersion was adjusted to 25 degreeC.

[溶存酸素濃度(DO)]
溶存酸素(Dissolved Oxygen)濃度は、隔膜式ガルバニ電池法によって測定した。具体的には、pHメーター(堀場製作所製OM−51 、電極型番9520−10D)を導電率測定モードにて、測定する液に電極を浸漬させて大気圧下で求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[粒子の収率]
金属粒子の収率は、金属粒子分散液中の金属量をICPで測定した金属分散液中の金属濃度から算出し、これを仕込みの金属塩から計算される理論上の金属量で割ったものに100を乗じて求めた。
[Dissolved oxygen concentration (DO)]
The dissolved oxygen concentration was measured by the diaphragm type galvanic cell method. Specifically, a pH meter (Horiba Seisakusho OM-51, electrode model number 9520-10D) was measured in the conductivity measurement mode, and the electrode was immersed in the liquid to be measured and obtained under atmospheric pressure. In addition, each liquid temperature of bubbling water, micro nano bubble water, and a metal particle dispersion was adjusted to 25 degreeC.
[Yield of particles]
The yield of metal particles is calculated from the metal concentration in the metal dispersion measured by ICP for the amount of metal in the metal particle dispersion, and divided by the theoretical amount of metal calculated from the charged metal salt. Multiplied by 100.

[一次粒子の平均粒子径]
金属粒子の平均粒子径は、画像解析法により測定した。具体的には、透過型電子顕微鏡(株式会社日立製作所製、H−800)により、金属粒子分散液を電子顕微鏡用銅セルのコロジオン膜上で乾燥して、倍率25万倍で写真撮影して得られる写真投影図における、任意の500個の粒子について、その粒子径を測定し、その平均値を金属粒子の平均粒子径とした。
[Average particle size of primary particles]
The average particle diameter of the metal particles was measured by an image analysis method. Specifically, using a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.), the metal particle dispersion was dried on a collodion film of a copper cell for an electron microscope and photographed at a magnification of 250,000 times. The particle diameter of any 500 particles in the resulting photographic projection was measured, and the average value was taken as the average particle diameter of the metal particles.

[二次粒子の平均粒子径]
金属粒子分散液をそのままセルに入れ、マイクロトラック法にて測定し、その平均値(D50)を金属粒子の平均粒子径とした。
[Average particle size of secondary particles]
The metal particle dispersion was directly put into a cell and measured by the microtrack method, and the average value (D50) was taken as the average particle diameter of the metal particles.

[X線回折による金属酸化物の有無の確認]
金属粒子分散液を溶液のまま、X線回折による解析を行い、金属酸化物の存在の有無を確認した。試料のX線回折による定性分析は、RIGAKU(株)製X−RAY DIFFRACT METER(SmartLab)にて行った。具体的には、試料をセルに入れ装置にセットし、管電圧45.0kV、管電流200.0mA、対陰極Cu、測定範囲:開始角度〜終了角度(2θ)5.000°〜70.000°、スキャンスピード5.000°/minにて測定した。
金属酸化物のピークが観察されなかった場合:○
金属酸化物のピークが観察された場合 :×
[Confirmation of presence or absence of metal oxide by X-ray diffraction]
The metal particle dispersion was kept in solution and analyzed by X-ray diffraction to confirm the presence or absence of metal oxide. The qualitative analysis of the sample by X-ray diffraction was performed with X-RAY DIFFRACT METER (SmartLab) manufactured by RIGAKU Corporation. Specifically, the sample is put in a cell and set in an apparatus, and the tube voltage is 45.0 kV, the tube current is 200.0 mA, the counter cathode Cu, the measurement range: start angle to end angle (2θ) from 5.000 ° to 70.000. The measurement was performed at a scan speed of 5.000 ° / min.
When no metal oxide peak is observed:
When a metal oxide peak is observed: ×

[ICP分析]
各元素の質量分析は、誘導結合プラズマ分光分析装置にて化学分析を行った。具体的には、金属粒子分散液を濃硝酸に溶解して、水で濃度10〜100質量ppmに調整した溶液を島津製作所(株)製 SEQUENTIAL PLASMA SPECTROMETER(ICPS−8100)にて分析した。
[ICP analysis]
For mass analysis of each element, chemical analysis was performed with an inductively coupled plasma spectrometer. Specifically, a metal particle dispersion was dissolved in concentrated nitric acid, and a solution adjusted to a concentration of 10 to 100 mass ppm with water was analyzed with SEQUENTIAL PLASMA SPECTROMETER (ICPS-8100) manufactured by Shimadzu Corporation.

[イオンクロマト分析]
金属粒子分散液を超純水を用いて100倍希釈してイオン交換クロマトグラフ(東ソー製 TSKgel SuperQ−5PW)を用いて、SO、Cl、NO、の濃度を測定した。
[Ion chromatographic analysis]
The metal particle dispersion using ion exchange chromatography were diluted 100-fold with ultrapure water (manufactured by Tosoh TSKgel SuperQ-5PW), were measured SO 4, Cl, NO 3, the concentration of.

[C(カーボン)量測定]
金属粒子中の炭素含有量は、金属粒子分散液を100℃で乾燥させ、炭素硫黄分析装置(HORIBA製 EMIA−320V)を用いて測定した。
[C (carbon) content measurement]
The carbon content in the metal particles was measured by drying the metal particle dispersion at 100 ° C. and using a carbon sulfur analyzer (EMIA-320V manufactured by HORIBA).

[保存安定性]
25℃で保管した金属粒子分散液のX線回折(XRD)による金属粒子の酸化の有無および導電性の変化を確認した。
[Storage stability]
The presence or absence of oxidation of the metal particles and the change in conductivity were confirmed by X-ray diffraction (XRD) of the metal particle dispersion stored at 25 ° C.

〈被膜形成用塗布液および被膜付基材の作製〉
得られた金属粒子分散液(P−1)をエタノールで0.5質量%に希釈し、被膜形成用塗布液を作製した。これをスピンコート法でガラスに塗布し、ついで窒素雰囲気下で、200℃で30分間焼成し、被膜付基材を作製した。この被膜付基材の導電性をローレスタ(三菱化学製 NSCPプローブ)で測定した。また、被膜の一部をカッターナイフで剥離させ段差をつくり、レーザー顕微鏡でこの段差を測定し、これを膜厚とした。これらの結果を表−1に示した(以下の実施例、比較例も同様)。
<Preparation of coating solution for coating formation and substrate with coating>
The obtained metal particle dispersion (P-1) was diluted to 0.5% by mass with ethanol to prepare a coating liquid for film formation. This was applied to glass by a spin coat method, and then baked at 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a coated substrate. The conductivity of this coated substrate was measured with a Loresta (NSCP probe manufactured by Mitsubishi Chemical Corporation). Moreover, a part of the coating was peeled off with a cutter knife to create a step, and this step was measured with a laser microscope to obtain a film thickness. These results are shown in Table 1 (the same applies to the following Examples and Comparative Examples).

[実施例2]
〈粒子調製工程〉
旋回流方式のバブル発生装置(株式会社Ligaric製 HYK−20−SD)で超純水とArを接触させて、Arマイクロナノバブル水(平均気泡径70nm、気泡個数2.4億個/mL、pH6.25、電気伝導度0.95μS/cm、酸化還元電位300mV、溶存酸素濃度(DO)1.52ppm、ORP300mV)を準備した。このArマイクロナノバブル水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(S2−1)を調製した。
Arマイクロナノバブル水600gに硫酸第一鉄7水和物180gを溶解し、溶液(S2−2)を調製した。
溶液(S2−1)と溶液(S2−2)とを混合して30分間攪拌し、溶液A2を調製した。
[Example 2]
<Particle preparation process>
Ultra-pure water and Ar are brought into contact with a swirling flow type bubble generator (HYK-20-SD manufactured by Ligalic Co., Ltd.), and Ar micro-nano bubble water (average bubble diameter: 70 nm, number of bubbles: 240 million / mL, pH 6) .25, electric conductivity 0.95 μS / cm, redox potential 300 mV, dissolved oxygen concentration (DO) 1.52 ppm, ORP 300 mV). 400 g of trisodium citrate dihydrate was dissolved in 930 g of this Ar micro / nano bubble water to prepare a solution (S2-1).
180 g of ferrous sulfate heptahydrate was dissolved in 600 g of Ar micro / nano bubble water to prepare a solution (S2-2).
The solution (S2-1) and the solution (S2-2) were mixed and stirred for 30 minutes to prepare a solution A2.

Arマイクロナノバブル水600gに硝酸銅(II)3水和物76gを溶解し、溶液B2を調製した。その後、溶液B2に溶液A2を添加し、10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。   A solution B2 was prepared by dissolving 76 g of copper (II) nitrate trihydrate in 600 g of Ar micro / nano bubble water. Thereafter, the solution A2 was added to the solution B2, and the metal particles were separated and recovered from the dispersion obtained by stirring for 10 hours using a centrifuge.

〈洗浄工程〉
超純水(pH6.32、電気伝導度0.05μS/cm、DO6.17ppm、ORP350mV)をArにてバブリングを1時間行い、溶存酸素を除去したArバブリング水(pH6.64、電気伝導度0.8μS/cm、DO0.51ppm、ORP260mV)を準備した。
分離回収した金属粒子をArバブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
Ultra-pure water (pH 6.32, electric conductivity 0.05 μS / cm, DO 6.17 ppm, ORP 350 mV) was bubbled with Ar for 1 hour to remove dissolved oxygen, and Ar bubbling water (pH 6.64, electric conductivity 0). 0.8 μS / cm, DO 0.51 ppm, ORP 260 mV).
The separated and recovered metal particles are immersed in 200 g of an aqueous solution of trisodium citrate having a concentration of 20% by mass prepared using Ar bubbling water and washed (desalted) by immersing the separated and recovered metal particles, and then separated by centrifugation again. It was collected.

ICP分析で金属濃度を定量し、Arバブリング水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液(P−2)を得た。   The metal concentration was quantified by ICP analysis, and an aqueous metal particle dispersion having a concentration of 2.5 mass% in terms of metal was prepared using Ar bubbling water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black-brown metal particle dispersion (P-2) having a concentration of 2.5% by mass in terms of metal.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(P−2)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (P-2) was used.

[実施例3]
〈粒子調製工程〉
実施例1と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(S3−1)を調製した。
マイクロナノバブル水500gに硫酸第一鉄7水和物100gを溶解し、溶液(S3−2)を調製した。
溶液(S3−1)と溶液(S3−2)とを混合して30分間攪拌し、溶液A3を調製した。
[Example 3]
<Particle preparation process>
In the same manner as in Example 1, N 2 micro-nano bubble water was prepared.
400 g of trisodium citrate dihydrate was dissolved in 930 g of N 2 micro / nano bubble water to prepare a solution (S3-1).
100 g of ferrous sulfate heptahydrate was dissolved in 500 g of N 2 micro / nano bubble water to prepare a solution (S3-2).
The solution (S3-1) and the solution (S3-2) were mixed and stirred for 30 minutes to prepare a solution A3.

マイクロナノバブル水300gに硝酸銀(I)57gを溶解し、溶液B3を調製した。その後、溶液B3に溶液A3を添加し10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 A solution B3 was prepared by dissolving 57 g of silver nitrate (I) in 300 g of N 2 micro / nano bubble water. Thereafter, metal particles were separated and collected by a centrifuge from the dispersion obtained by adding the solution A3 to the solution B3 and stirring for 10 hours.

〈洗浄工程〉
実施例1と同様にして、Nバブリング水を準備した。
バブリング水を用いて調製した濃度30質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、遠心分離により分離回収した。同様に、Nバブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
N 2 bubbling water was prepared in the same manner as in Example 1.
The separated and recovered metal particles were immersed in 200 g of an aqueous solution of trisodium citrate having a concentration of 30% by mass prepared using N 2 bubbling water, washed (desalted), and then separated and collected by centrifugation. Similarly, the separated and recovered metal particles were immersed in 200 g of an aqueous solution of trisodium citrate having a concentration of 20% by mass prepared using N 2 bubbling water and washed (desalted), and then separated and recovered by centrifugation again. .

ICP分析で金属濃度を定量し、Nバブリング水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液(P−3)を得た。 The metal concentration was quantified by ICP analysis, and a metal particle aqueous dispersion having a concentration of 2.5% by mass in terms of metal was prepared using N 2 bubbling water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black-brown metal particle dispersion (P-3) having a concentration of 2.5% by mass in terms of metal.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(P−3)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (P-3) was used.

[実施例4]
〈粒子調製工程〉
実施例1と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水450gに、硝酸ニッケル六水和物(Ni(NO6HO)(関東化学(株)製)50g、クエン酸水和物(有機安定化剤)(キシダ化学(株)製)0.5gを溶解し、溶液A4を調製した。
[Example 4]
<Particle preparation process>
In the same manner as in Example 1, N 2 micro-nano bubble water was prepared.
450 g of N 2 micronano bubble water, 50 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 6H 2 O) (manufactured by Kanto Chemical Co., Ltd.), citric acid hydrate (organic stabilizer) (Kishida Chemical ( 0.5 g) was dissolved to prepare a solution A4.

マイクロナノバブル水1000gに水素化ホウ素ナトリウム(還元剤)50gを溶解し、溶液B4を調製した。溶液A4を撹拌しながら、溶液B4を添加し、1時間攪拌した。このとき、液が緑色から黒色に変化した。得られた分散液から金属粒子を遠心分離機により分離回収した。 50 g of sodium borohydride (reducing agent) was dissolved in 1000 g of N 2 micro / nano bubble water to prepare a solution B4. While stirring the solution A4, the solution B4 was added and stirred for 1 hour. At this time, the liquid changed from green to black. Metal particles were separated and recovered from the obtained dispersion using a centrifuge.

〈洗浄工程〉
実施例1と同様にして、Nバブリング水を準備した。
バブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
N 2 bubbling water was prepared in the same manner as in Example 1.
The separated and recovered metal particles were immersed in 200 g of a trisodium citrate aqueous solution having a concentration of 20% by mass prepared using N 2 bubbling water and washed (desalted), and then separated and recovered by centrifugation again.

ICP分析で金属濃度を定量し、Nバブリング水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒色の金属粒子分散液(P−4)を得た。
〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(P−4)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
The metal concentration was quantified by ICP analysis, and a metal particle aqueous dispersion having a concentration of 2.5% by mass in terms of metal was prepared using N 2 bubbling water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black metal particle dispersion (P-4) having a concentration of 2.5% by mass in terms of metal.
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (P-4) was used.

[実施例5]
〈粒子調製工程〉
実施例1と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(S5−1)を調製した。
マイクロナノバブル水500gに硫酸第一鉄7水和物100gを溶解し、溶液(S5−2)を調製した。
溶液(S5−1)と溶液(S5−2)とを混合して30分間攪拌し、溶液A5を調製した。
[Example 5]
<Particle preparation process>
In the same manner as in Example 1, N 2 micro-nano bubble water was prepared.
400 g of trisodium citrate dihydrate was dissolved in 930 g of N 2 micronanobubble water to prepare a solution (S5-1).
100 g of ferrous sulfate heptahydrate was dissolved in 500 g of N 2 micro / nano bubble water to prepare a solution (S5-2).
Solution (S5-1) and solution (S5-2) were mixed and stirred for 30 minutes to prepare Solution A5.

マイクロナノバブル水300gに硝酸銀(I)57gを溶解し、溶液B5を調製した。その後、溶液B5に溶液A5を添加し、10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 A solution B5 was prepared by dissolving 57 g of silver nitrate (I) in 300 g of N 2 micro / nano bubble water. Thereafter, the solution A5 was added to the solution B5, and the metal particles were separated and recovered from the dispersion obtained by stirring for 10 hours using a centrifuge.

〈洗浄工程〉
実施例1と同様にして、Nバブリング水を準備した。
バブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
N 2 bubbling water was prepared in the same manner as in Example 1.
The separated and recovered metal particles were immersed in 200 g of a trisodium citrate aqueous solution having a concentration of 20% by mass prepared using N 2 bubbling water and washed (desalted), and then separated and recovered by centrifugation again.

ICP分析で金属濃度を定量し、Nバブリング水を用いて金属換算で濃度が2.5質量量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液(P−5)を得た。 The metal concentration was quantified by ICP analysis, and a metal particle aqueous dispersion having a concentration of 2.5% by mass in terms of metal was prepared using N 2 bubbling water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black-brown metal particle dispersion (P-5) having a concentration of 2.5% by mass in terms of metal.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(P−5)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (P-5) was used.

[実施例6]
〈粒子調製工程〉
実施例1と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(S6−1)を調製した。
マイクロナノバブル水600gに硫酸第一鉄7水和物180gを溶解し、溶液(S6−2)を調製した。
溶液(S6−1)と溶液(S6−2)とを混合して30分間攪拌し、溶液A6を調製した。
[Example 6]
<Particle preparation process>
In the same manner as in Example 1, N 2 micro-nano bubble water was prepared.
400 g of trisodium citrate dihydrate was dissolved in 930 g of N 2 micro-nano bubble water to prepare a solution (S6-1).
180 g of ferrous sulfate heptahydrate was dissolved in 600 g of N 2 micro / nano bubble water to prepare a solution (S6-2).
The solution (S6-1) and the solution (S6-2) were mixed and stirred for 30 minutes to prepare a solution A6.

マイクロナノバブル水600gに硝酸銅(II)3水和物76gを溶解し、溶液B6を調製した。その後、溶液B6に溶液A6を添加し、10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 A solution B6 was prepared by dissolving 76 g of copper (II) nitrate trihydrate in 600 g of N 2 micro / nano bubble water. Thereafter, the solution A6 was added to the solution B6, and the metal particles were separated and recovered from the dispersion obtained by stirring for 10 hours using a centrifuge.

〈洗浄工程〉
マイクロナノバブル水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
The metal particles separated and recovered were immersed in 200 g of a 20% strength by weight trisodium citrate aqueous solution prepared using N 2 micro / nano bubble water, washed (desalted), and then separated and recovered by centrifugation again.

ICP分析で金属濃度を定量し、Nマイクロナノバブル水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液(P−6)を得た。 The metal concentration was quantified by ICP analysis, and an aqueous metal particle dispersion having a concentration of 2.5% by mass in terms of metal was prepared using N 2 micro-nano bubble water. Thereafter, deionization was performed using 10 g of the amphoteric ion exchange resin to obtain a black-brown metal particle dispersion (P-6) having a concentration of 2.5% by mass in terms of metal.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(P−6)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (P-6) was used.

[比較例1]
〈粒子調製および洗浄工程〉
実施例1と同様にして、Nバブリング水を準備した。
このNバブリング水を溶液A1及び溶液B1の調製、洗浄、並びに金属粒子分散液の分散媒に使用する以外は、実施例1と同様にして、金属粒子分散液(RP−1)を得た。
[Comparative Example 1]
<Particle preparation and washing process>
N 2 bubbling water was prepared in the same manner as in Example 1.
A metal particle dispersion (RP-1) was obtained in the same manner as in Example 1 except that this N 2 bubbling water was used as a dispersion medium for the preparation and washing of the solution A1 and the solution B1, and the metal particle dispersion. .

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−1)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-1) was used.

[比較例2]
〈粒子調製および洗浄工程〉
比較例1で用いたNバブリング水を溶液A3及び溶液B3の調製、洗浄、並びに金属粒子分散液の分散媒に使用する以外は、実施例3と同様にして、金属粒子分散液(RP−2)を得た。
[Comparative Example 2]
<Particle preparation and washing process>
In the same manner as in Example 3 except that the N 2 bubbling water used in Comparative Example 1 was used as a dispersion medium for the preparation and washing of the solution A3 and the solution B3 and the metal particle dispersion, the metal particle dispersion (RP- 2) was obtained.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−2)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-2) was used.

[比較例3]
〈粒子調製および洗浄工程〉
比較例1で用いたNバブリング水を溶液A4及び溶液B4の調製、洗浄、並びに金属粒子分散液の分散媒に使用する以外は、実施例4と同様にして、金属粒子分散液(RP−3)を得た。
[Comparative Example 3]
<Particle preparation and washing process>
In the same manner as in Example 4 except that the N 2 bubbling water used in Comparative Example 1 was used as a dispersion medium for the preparation and washing of the solution A4 and the solution B4, and the metal particle dispersion, the metal particle dispersion (RP- 3) was obtained.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−3)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-3) was used.

[比較例4]
〈粒子調製および洗浄工程〉
比較例1で用いたNバブリング水を溶液A3及び溶液B3の調製、洗浄、並びに金属粒子分散液の分散媒に使用する以外は、実施例1と同様にして、金属粒子分散液(RP−4)を得た。
[Comparative Example 4]
<Particle preparation and washing process>
In the same manner as in Example 1 except that the N 2 bubbling water used in Comparative Example 1 was used as a dispersion medium for the preparation and washing of the solution A3 and the solution B3, and the metal particle dispersion, the metal particle dispersion (RP- 4) was obtained.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−4)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-4) was used.

[比較例5]
〈粒子調製および洗浄工程〉
CuCl粉末、溶媒として水、分散剤としてCTAB、銅ナノ粒子の酸化を抑制する保護剤としてクエン酸を用いた。容積100mlのビーカーに水を入れ、水中に窒素を流し、攪拌した状態で、1.0×10−2Mの塩化銅、0.0364gのCTAB、1.5×10−3Mのクエン酸を水に混合した後、還元剤として0.4Mのヒドラジンを加えて銅ナノ粒子の作製を行った。このとき加えた試薬と水は全体で20mlとなるように水の量を調整した。3時間室温で攪拌した後、得られた粒子に遠心洗浄を3回行った後、純水を用いて金属換算で濃度が2.5質量%の金属粒子分散液(RP−5)水分散液を調製した。
[Comparative Example 5]
<Particle preparation and washing process>
CuCl 2 powder, water as a solvent, CTAB as a dispersant, and citric acid as a protective agent that suppresses oxidation of copper nanoparticles were used. In a beaker with a volume of 100 ml, nitrogen was poured into the water, and with stirring, 1.0 × 10 −2 M copper chloride, 0.0364 g CTAB, 1.5 × 10 −3 M citric acid were added. After mixing with water, 0.4M hydrazine was added as a reducing agent to prepare copper nanoparticles. The amount of water was adjusted so that the total amount of reagent and water added at this time was 20 ml. After stirring at room temperature for 3 hours, the obtained particles were subjected to centrifugal washing three times, and then a metal particle dispersion (RP-5) aqueous dispersion having a concentration of 2.5% by mass in terms of metal using pure water. Was prepared.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−5)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-5) was used.

[比較例6]
〈粒子調製および洗浄工程〉
硫酸銅0.1モル、次亜リン酸ナトリウム0.4モル、PVP1モル及びエチレングリコール500mlをビーカーで混合して40℃に昇温した後、撹拌機を用いて溶解させて混合溶液を製造した。製造した混合溶液をマイクロ波オーブンに投入して3分間マイクロ波を照射した。還元反応により黒褐色の反応物が得られたらマイクロ波の照射を止め、前記混合溶液に予め冷却した蒸留水500mlを投入して急冷した。遠心分離により黒褐色の銅ナノ粒子を回収し、アセトンと蒸留水とを用いて3回洗浄した後、エチレングリコールを用いて金属換算で濃度が2.5質量%の金属粒子エチレングリコール分散液(RP−6)を調製した。
[Comparative Example 6]
<Particle preparation and washing process>
After mixing 0.1 mol of copper sulfate, 0.4 mol of sodium hypophosphite, 1 mol of PVP and 500 ml of ethylene glycol in a beaker and raising the temperature to 40 ° C., the mixture was dissolved using a stirrer to produce a mixed solution. . The prepared mixed solution was put into a microwave oven and irradiated with microwaves for 3 minutes. When a blackish brown reaction product was obtained by the reduction reaction, microwave irradiation was stopped, and 500 ml of distilled water cooled in advance was added to the mixed solution to quench it. After collecting black-brown copper nanoparticles by centrifugation and washing three times with acetone and distilled water, a metal particle ethylene glycol dispersion (RP) having a concentration of 2.5% by mass in terms of metal using ethylene glycol. -6) was prepared.

〈被膜形成用塗布液および被膜付基材の作製〉
金属粒子分散液(RP−6)を用いた以外は実施例1と同様にして、被膜形成用塗布液および被膜付基材を作製し、評価した。
<Preparation of coating solution for coating formation and substrate with coating>
A coating liquid for forming a film and a substrate with a film were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion (RP-6) was used.

本発明の金属粒子分散液は、導電性被膜の形成等に用いることができることから、産業上有用である。   The metal particle dispersion of the present invention is industrially useful because it can be used for forming a conductive film.

Claims (7)

微小気泡を含む液中で金属塩を還元して金属粒子を調製する粒子調製工程と、
前記金属粒子を洗浄液で洗浄する洗浄工程と、
を含むことを特徴とする金属粒子分散液の製造方法。
A particle preparation step of preparing metal particles by reducing a metal salt in a liquid containing microbubbles;
A cleaning step of cleaning the metal particles with a cleaning liquid;
A method for producing a metal particle dispersion, comprising:
前記金属塩が、4族、5族、6族、8族、9族、10族、11族、13族、14族及び15族から選ばれる1種の金属の塩であることを特徴とする請求項1に記載の金属粒子分散液の製造方法。   The metal salt is a salt of one metal selected from Group 4, Group 5, Group 8, Group 8, Group 10, Group 10, Group 11, Group 13, Group 14 and Group 15. The method for producing a metal particle dispersion according to claim 1. 前記微小気泡を含む液が、微小気泡を含む水であることを特徴とする請求項1又は2に記載の金属粒子分散液の製造方法。   The method for producing a metal particle dispersion according to claim 1 or 2, wherein the liquid containing microbubbles is water containing microbubbles. 前記微小気泡を含む液が、有機安定化剤を含むことを特徴とする請求項1〜3のいずれかに記載の金属粒子分散液の製造方法。   The method for producing a metal particle dispersion according to claim 1, wherein the liquid containing microbubbles contains an organic stabilizer. 前記微小気泡が、非酸化性ガスを含む気泡であることを特徴とする請求項1〜4のいずれかに記載の金属粒子分散液の製造方法。   The method for producing a metal particle dispersion according to claim 1, wherein the microbubbles are bubbles containing a non-oxidizing gas. 前記洗浄液が、微小気泡を含むことを特徴とする請求項1〜5のいずれかに記載の金属粒子分散液の製造方法。   The method for producing a metal particle dispersion according to any one of claims 1 to 5, wherein the cleaning liquid contains microbubbles. 請求項1〜6のいずれかに記載の方法により調製された金属粒子を含む被膜形成用塗布液を基材上に塗布することを特徴とする被膜付基材の製造方法。   A method for producing a coated substrate, comprising: coating a coating solution for forming a coating containing metal particles prepared by the method according to claim 1 on the substrate.
JP2018068311A 2018-03-30 2018-03-30 Method for manufacturing metal particle dispersion Active JP7032975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068311A JP7032975B2 (en) 2018-03-30 2018-03-30 Method for manufacturing metal particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068311A JP7032975B2 (en) 2018-03-30 2018-03-30 Method for manufacturing metal particle dispersion

Publications (2)

Publication Number Publication Date
JP2019178383A true JP2019178383A (en) 2019-10-17
JP7032975B2 JP7032975B2 (en) 2022-03-09

Family

ID=68277986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068311A Active JP7032975B2 (en) 2018-03-30 2018-03-30 Method for manufacturing metal particle dispersion

Country Status (1)

Country Link
JP (1) JP7032975B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036815A (en) * 2009-08-13 2011-02-24 Mitsubishi Electric Engineering Co Ltd Washing apparatus
JP2012067333A (en) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd Metal fine particle dispersion, metal fine particle, and method for producing metal fine particle dispersion or the like
JP2017206750A (en) * 2016-05-20 2017-11-24 Hack Japan ホールディングス株式会社 Method for producing metal nanoparticle
JP2018068312A (en) * 2011-09-25 2018-05-10 セラノス アイピー カンパニー エルエルシー System and method for multiple analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036815A (en) * 2009-08-13 2011-02-24 Mitsubishi Electric Engineering Co Ltd Washing apparatus
JP2012067333A (en) * 2010-09-21 2012-04-05 Jgc Catalysts & Chemicals Ltd Metal fine particle dispersion, metal fine particle, and method for producing metal fine particle dispersion or the like
JP2018068312A (en) * 2011-09-25 2018-05-10 セラノス アイピー カンパニー エルエルシー System and method for multiple analysis
JP2017206750A (en) * 2016-05-20 2017-11-24 Hack Japan ホールディングス株式会社 Method for producing metal nanoparticle

Also Published As

Publication number Publication date
JP7032975B2 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
JP6616287B2 (en) Ferromagnetic metal nanowire dispersion and method for producing the same
JP5451083B2 (en) Platinum black powder, colloid of platinum black and process for producing them
JP5828408B2 (en) Method and apparatus for producing metal nanoparticles using AC electrolysis
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2007321215A5 (en)
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP2017029967A (en) Method for producing platinum catalyst and fuel cell using the same
JP2004162164A (en) Copper powder for conductive paste and its production method
JP2005281781A (en) Method for producing copper nanoparticle
JP2010150619A (en) Method for producing copper nanoparticle
KR100820038B1 (en) Fabrication of copper nano particle for metal ink on ink-jet technology
JP7014663B2 (en) Method for manufacturing alloy particle dispersion
JP7014664B2 (en) Alloy particle dispersion and its manufacturing method
JP7032976B2 (en) Metal particle dispersion and its manufacturing method
JP7032975B2 (en) Method for manufacturing metal particle dispersion
JP5828448B2 (en) Method for producing gold colloid
JP2005206931A (en) Method for producing metal powder
JP6956970B2 (en) Method for producing silver nanoparticle-supported powder
JP7083710B2 (en) Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate
JP4485174B2 (en) Composite metal fine particle dispersion and method for producing the same
JP7083711B2 (en) Method for manufacturing alloy particle dispersion, alloy particle dispersion, and method for manufacturing coated substrate
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
JP2021147684A (en) Copper and copper oxide-containing fine particle and manufacturing method thereof
WO2020203076A1 (en) Silver-palladium alloy powder and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220225

R150 Certificate of patent or registration of utility model

Ref document number: 7032975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150