JP7083710B2 - Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate - Google Patents

Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate Download PDF

Info

Publication number
JP7083710B2
JP7083710B2 JP2018124875A JP2018124875A JP7083710B2 JP 7083710 B2 JP7083710 B2 JP 7083710B2 JP 2018124875 A JP2018124875 A JP 2018124875A JP 2018124875 A JP2018124875 A JP 2018124875A JP 7083710 B2 JP7083710 B2 JP 7083710B2
Authority
JP
Japan
Prior art keywords
metal
particle dispersion
liquid
metal particle
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124875A
Other languages
Japanese (ja)
Other versions
JP2020002444A (en
Inventor
光章 熊澤
良 村口
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2018124875A priority Critical patent/JP7083710B2/en
Publication of JP2020002444A publication Critical patent/JP2020002444A/en
Application granted granted Critical
Publication of JP7083710B2 publication Critical patent/JP7083710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性材料等に有用な金属粒子分散液の製造方法に関する。 The present invention relates to a method for producing a metal particle dispersion liquid useful for a conductive material or the like.

金属粒子は、触媒材料、半導体材料、導電性材料等として各種用途に用いられている。例えば、導電性材料は、各種電子デバイスの電極、回路、帯電防止用透明被膜、電磁波遮蔽用透明被膜、コンデンサ用電極等に用いられている(非特許文献1参照)。 Metal particles are used for various purposes as catalyst materials, semiconductor materials, conductive materials and the like. For example, the conductive material is used for electrodes, circuits, antistatic transparent coatings, electromagnetic wave shielding transparent coatings, capacitor electrodes and the like of various electronic devices (see Non-Patent Document 1).

このような金属粒子の製造方法として、有機溶剤中で金属塩を還元して金属粒子を製造する方法が提案されている(例えば、特許文献1及び2参照)。しかしながら、この有機溶剤を用いる方法で得られる金属粒子は、導電性が低いという問題がある。 As a method for producing such metal particles, a method for producing metal particles by reducing a metal salt in an organic solvent has been proposed (see, for example, Patent Documents 1 and 2). However, the metal particles obtained by the method using this organic solvent have a problem of low conductivity.

そこで、導電性のより高い金属粒子を得るべく、水中で金属粒子分散液を製造することも試みられている。例えば、溶媒に不活性ガスを流通させながら有機安定化剤を使用して、金属粒子にクエン酸被覆層を設け、耐酸化性能を向上させる方法が提案されている(例えば、特許文献3参照)。しかしながら、金属粒子の酸化やイオン化を抑制するには不充分であり、安定した金属粒子分散液を得ることが難しい。また、有機物で被覆されているため、導電性が低いという問題がある。 Therefore, in order to obtain metal particles having higher conductivity, it is also attempted to produce a metal particle dispersion liquid in water. For example, a method has been proposed in which an organic stabilizer is used while an inert gas is circulated in a solvent to provide a citric acid coating layer on metal particles to improve oxidation resistance (see, for example, Patent Document 3). .. However, it is insufficient to suppress the oxidation and ionization of metal particles, and it is difficult to obtain a stable metal particle dispersion. Further, since it is coated with an organic substance, there is a problem that the conductivity is low.

特開2005-281781号公報Japanese Unexamined Patent Publication No. 2005-281781 特開2008-075181号公報Japanese Unexamined Patent Publication No. 2008-075181 特開2010-189681号公報Japanese Unexamined Patent Publication No. 2010-189681

金属および半導体ナノ粒子の科学」編著者・公益社団法人日本化学会、発行者・曽根良介、発行所・(株)化学同人(2012)"Science of Metals and Semiconductor Nanoparticles" Author / Chemical Society of Japan, Publisher / Ryosuke Sone, Publisher / Kagaku-Dojin (2012)

本発明の課題は、導電性が高く、保存安定性が高い金属粒子分散液を提供することにある。 An object of the present invention is to provide a metal particle dispersion having high conductivity and high storage stability.

平均気泡径が40nm~10μmの微小気泡を含み、かつ有機安定化剤を含まない液中で、金属塩の還元反応(粒子調製工程)を行う。次いで、この金属塩を還元して得た金属粒子を洗浄液で洗浄して塩を除去(洗浄工程)することによって、金属粒子の酸化やイオン化を抑制して、保存安定性が飛躍的に向上(長期化)する金属粒子分散液が得られる。 A metal salt reduction reaction (particle preparation step) is carried out in a liquid containing fine bubbles having an average bubble diameter of 40 nm to 10 μm and not containing an organic stabilizer. Next, the metal particles obtained by reducing the metal salt are washed with a cleaning liquid to remove the salt (cleaning step), thereby suppressing the oxidation and ionization of the metal particles and dramatically improving the storage stability (storing stability). A metal particle dispersion (prolonged) can be obtained.

金属塩の還元反応時において、この微小気泡を含む液を使用することで、有機安定化剤がなくとも金属粒子が凝集せずに、粒子の分散性が高く、保存安定性が高い金属粒子分散液が得られることを見出した。さらに、この液中には有機安定化剤が含まれず、得られた分散液を用いた被膜付基材の金属粒子は有機物で被覆されないため、高い導電性能を示すことを見出した。 By using a liquid containing these fine bubbles during the reduction reaction of the metal salt, the metal particles do not aggregate even without an organic stabilizer, and the dispersibility of the particles is high and the storage stability is high. It was found that a liquid was obtained. Furthermore, it has been found that this liquid does not contain an organic stabilizer, and the metal particles of the coated substrate using the obtained dispersion liquid are not coated with an organic substance, so that they exhibit high conductivity performance.

金属粒子の酸化やイオン化が抑制された保存安定性が高い金属粒子分散液を得られる。また、この金属粒子分散液を用いた被膜付基材は、高い導電性能を示す。 It is possible to obtain a metal particle dispersion having high storage stability in which oxidation and ionization of metal particles are suppressed. Further, the coated base material using this metal particle dispersion liquid exhibits high conductivity performance.

本発明の金属粒子分散液の製造方法は、微小気泡(マイクロナノバブル)を含み、かつ有機安定化剤を含まない液(以下、反応液ということがある)中で金属塩を還元して金属粒子を調製する粒子調製工程と、粒子調製工程で調製した金属粒子を洗浄液で洗浄する洗浄工程とを有する。
この製造方法は、上記各工程の前後に他の工程を有していてもよい。例えば、洗浄工程の後に、粗大粒子を除去する粗大粒子除去工程を有していてもよい。
In the method for producing a metal particle dispersion liquid of the present invention, a metal salt is reduced in a liquid containing fine bubbles (micro-nano bubbles) and not containing an organic stabilizer (hereinafter, may be referred to as a reaction liquid) to reduce the metal particles. It has a particle preparation step for preparing the particles and a cleaning step for cleaning the metal particles prepared in the particle preparation step with a cleaning liquid.
This manufacturing method may have other steps before and after each of the above steps. For example, after the cleaning step, there may be a coarse particle removing step of removing the coarse particles.

本発明に使用する微小気泡を含む液(微小気泡を含むバブリング液を含む)は、従来の不活性ガスによる脱気(脱酸素)処理水よりも溶存酸素濃度が高く、酸化還元電位も高い。このため、微小気泡を含む液の使用は、より酸化されやすい条件となるので、微小気泡を含む液を還元反応に用いることは、一般的には好ましくないと考えられる。また、有機安定化剤については、金属塩や金属粒子に吸着して、分散安定性を高める機能がある。このため、金属塩の還元反応において、有機安定化剤が存在しないと、金属粒子が凝集し、金属粒子分散液の安定性も低下するので、一般的には好ましくないと考えられる。
ところが、意外にも、この微小気泡を含む液を用いて金属塩の還元反応を行うと、有機安定化剤が存在しなくても、金属塩の分散性が高く、製造される金属粒子分散液の金属粒子が高い収率で得られ、金属粒子の分散性や保存安定性が向上することを見出した。また、この金属粒子分散液を使用した塗布液のポットライフも向上することを見出した。さらに、この塗布液を用いて作製した被膜付基材は、高い導電性(低い表面抵抗値)を有することを見出した。この導電性能は、微小気泡存在下、還元反応時に有機安定化剤を使用しない方が高性能であることを見出した。これらの理由は、よく分からないが、反応液中に含まれる微小気泡によって、金属粒子が酸化されずに、金属として存在するための保護作用があるためと推察している。加えて、金属塩の還元反応において、有機安定化剤が存在しないため、有機安定化剤が金属塩や金属粒子に吸着することはない。その結果、得られた金属粒子分散液、それを使用した塗布液および被膜付基材中の金属粒子は、有機安定化剤に由来する有機物で被覆されないため、導電性能が向上していると考えている。
The liquid containing microbubbles (including the bubbling liquid containing microbubbles) used in the present invention has a higher dissolved oxygen concentration and a higher redox potential than the conventional degassed (deoxidized) treated water with an inert gas. For this reason, the use of a liquid containing fine bubbles is a condition for being more easily oxidized, and it is generally considered unfavorable to use the liquid containing fine bubbles in the reduction reaction. Further, the organic stabilizer has a function of adsorbing to a metal salt or metal particles to improve dispersion stability. Therefore, in the reduction reaction of the metal salt, if the organic stabilizer is not present, the metal particles are aggregated and the stability of the metal particle dispersion is also lowered, which is generally considered to be unfavorable.
However, surprisingly, when the reduction reaction of the metal salt is carried out using the liquid containing the fine bubbles, the dispersibility of the metal salt is high even in the absence of the organic stabilizer, and the metal particle dispersion liquid is produced. It was found that the metal particles of the above can be obtained in a high yield, and the dispersibility and storage stability of the metal particles are improved. It was also found that the pot life of the coating liquid using this metal particle dispersion liquid is also improved. Furthermore, it has been found that the coated substrate prepared by using this coating liquid has high conductivity (low surface resistance value). It has been found that this conductivity performance is higher when the organic stabilizer is not used during the reduction reaction in the presence of microbubbles. Although the reason for these is not clear, it is presumed that the microbubbles contained in the reaction solution have a protective effect for the metal particles to exist as a metal without being oxidized. In addition, since the organic stabilizer is not present in the reduction reaction of the metal salt, the organic stabilizer does not adsorb to the metal salt or the metal particles. As a result, it is considered that the conductive performance is improved because the obtained metal particle dispersion liquid, the coating liquid using the same, and the metal particles in the coated base material are not coated with the organic substance derived from the organic stabilizer. ing.

また、上述の金属塩の還元反応(粒子調製工程)での液と、金属塩を還元して得た金属粒子の洗浄(洗浄工程)での洗浄液の両方で微小気泡を含む液を使用することで、より高い収率で金属粒子が得られ、金属粒子分散液の保存安定性が向上し、この金属粒子分散液を使用した塗布液のポットライフがさらに向上することを見出した。
以下に、金属粒子分散液の製造方法について説明する。
In addition, a liquid containing fine particles should be used in both the liquid in the above-mentioned metal salt reduction reaction (particle preparation step) and the cleaning liquid in the cleaning of the metal particles obtained by reducing the metal salt (cleaning step). It has been found that metal particles can be obtained in a higher yield, the storage stability of the metal particle dispersion is improved, and the pot life of the coating liquid using this metal particle dispersion is further improved.
The method for producing the metal particle dispersion liquid will be described below.

[金属粒子分散液の製造方法]
〈粒子調製工程〉
反応液中で、還元剤と金属塩とを混合して金属粒子を調製する。反応液としては、有機安定化剤を含まず、微小気泡を含む液を用いるのであれば、有機溶媒であっても、水であってもよい。ただし、水の場合に、効果がより発揮される。
反応液中に酸素等の酸化性ガスが存在すると、金属が酸化するおそれがある。このため、反応液及び反応液が接する空間において、酸化性ガスを可能な限り減じることが望ましい。本工程は、酸化性ガスの混入を抑制するため、Nガスや希ガス等の不活性ガスによってパージした状態で行うことが好ましい。
ここで、酸化性ガスとしては、酸素、オゾン、炭酸ガス、一酸化窒素、一酸化二窒素、二酸化窒素、フッ素、塩素、二酸化塩素、三フッ化窒素、三フッ化塩素、四塩化珪素、二フッ化酸素、ペルクロリルフルオリド等が例示される。
[Manufacturing method of metal particle dispersion]
<Particle preparation process>
In the reaction solution, the reducing agent and the metal salt are mixed to prepare metal particles. The reaction solution may be an organic solvent or water as long as it does not contain an organic stabilizer and contains microbubbles. However, it is more effective in the case of water.
If an oxidizing gas such as oxygen is present in the reaction solution, the metal may be oxidized. Therefore, it is desirable to reduce the oxidizing gas as much as possible in the space in contact with the reaction solution and the reaction solution. This step is preferably performed in a state of being purged with an inert gas such as N2 gas or a rare gas in order to suppress the mixing of oxidizing gas.
Here, as the oxidizing gas, oxygen, ozone, carbon dioxide gas, nitrogen monoxide, dinitrogen monoxide, nitrogen dioxide, fluorine, chlorine, chlorine dioxide, nitrogen trifluoride, chlorine trifluoride, silicon tetrachloride, difluoride. Examples thereof include oxygen fluoride and perchlorylfluoride.

還元反応において、もし反応液中に有機安定化剤が存在すると、金属塩に有機安定化剤が吸着されるため、金属塩の分散性が向上し、金属塩の還元もスムーズに行われる。また、有機安定化剤は、金属塩が還元されて得られた金属粒子に吸着して、金属粒子分散液の分散性安定性が向上する。このため、この金属粒子分散液を使用した塗布液のポットライフも向上する。ところが、金属粒子表面が有機物に被覆されるため、この金属粒子を使用した被膜の導電性は、有機安定化剤を使用していないものに比べて低下するおそれがある。
この有機安定化剤は、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、酢酸ビニル、ポリアクリル酸、カルボン酸化合物等が例示される。
In the reduction reaction, if the organic stabilizer is present in the reaction solution, the organic stabilizer is adsorbed on the metal salt, so that the dispersibility of the metal salt is improved and the reduction of the metal salt is smoothly performed. Further, the organic stabilizer is adsorbed on the metal particles obtained by reducing the metal salt, and the dispersibility stability of the metal particle dispersion liquid is improved. Therefore, the pot life of the coating liquid using this metal particle dispersion liquid is also improved. However, since the surface of the metal particles is coated with an organic substance, the conductivity of the coating film using the metal particles may be lower than that without the organic stabilizer.
Examples of this organic stabilizer include gelatin, polyvinyl alcohol, polyvinylpyrrolidone, vinyl acetate, polyacrylic acid, and carboxylic acid compounds.

本工程の反応液は、酸化還元電位(ORP)が、-50mV以下が好ましく、-100mV以下がより好ましい。また、pHが、2.5~10.5が好ましく、2.7~10.0がより好ましい。この酸化還元電位及びpHの範囲内で金属塩の還元を行うことにより、金属粒子の生成がスムーズに行われる。また、反応温度は、10~80℃が好ましい。 The reaction solution in this step preferably has an oxidation-reduction potential (ORP) of −50 mV or less, more preferably −100 mV or less. The pH is preferably 2.5 to 10.5, more preferably 2.7 to 10.0. By reducing the metal salt within the range of this redox potential and pH, the formation of metal particles is smoothly performed. The reaction temperature is preferably 10 to 80 ° C.

《微小気泡》
微小気泡は、好ましくは平均気泡径が40nm~10μmの微小気泡(マイクロナノバブル)である。かかる微小気泡は、気泡径が40~100nm(0.1μm)のいわゆるナノバブル、及び気泡径が0.1~10μmのいわゆるマイクロバブルの少なくとも一方を含むものであり、両者を含むものが好ましい。微小気泡の平均気泡径の上限は、500nmが好ましく、350nmがより好ましく、200nmがさらに好ましい。また、微小気泡の平均気泡径の下限は、50nmが好ましく、60nmがより好ましく、65nmがさらに好ましい。
《Micro bubbles》
The microbubbles are preferably microbubbles (micro-nano bubbles) having an average bubble diameter of 40 nm to 10 μm. Such microbubbles include at least one of so-called nanobubbles having a bubble diameter of 40 to 100 nm (0.1 μm) and so-called microbubbles having a bubble diameter of 0.1 to 10 μm, and those containing both are preferable. The upper limit of the average bubble diameter of the fine bubbles is preferably 500 nm, more preferably 350 nm, and even more preferably 200 nm. The lower limit of the average bubble diameter of the fine bubbles is preferably 50 nm, more preferably 60 nm, and even more preferably 65 nm.

微小気泡の含有量は、本発明の効果を有効に発揮すべく、1.0×10個/mL以上が好ましく、1.0×10個/mL以上がより好ましく、1.0×10個/mL以上がさらに好ましい。その上限は特に制限はないが、1.0×1011個/mLが好ましく、5.0×1010個/mLがより好ましく、1.0×1010個/mLがさらに好ましい。 The content of microbubbles is preferably 1.0 × 10 6 cells / mL or more, more preferably 1.0 × 10 7 cells / mL or more, and 1.0 × 10 in order to effectively exert the effect of the present invention. 8 pieces / mL or more is more preferable. The upper limit is not particularly limited, but 1.0 × 10 11 pieces / mL is preferable, 5.0 × 10 10 pieces / mL is more preferable, and 1.0 × 10 10 pieces / mL is further preferable.

微小気泡の平均気泡径及び気泡個数は、液中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法(NTA)で解析して求められる。例えば、Malvern社製「ナノサイト NS300」で測定できる。 The average bubble diameter and the number of bubbles of the fine bubbles are obtained by analyzing the Brownian motion moving speed of the bubbles in the liquid by the nanoparticle tracking analysis method (NTA). For example, it can be measured with "Nanosite NS300" manufactured by Malvern.

微小気泡を形成する気体は、非酸化性ガスが好ましい。具体的には、窒素、水素、及び希ガスの少なくとも1種が好ましい。 The gas forming the fine bubbles is preferably a non-oxidizing gas. Specifically, at least one of nitrogen, hydrogen, and a rare gas is preferable.

《金属塩》
金属粒子の原料となる金属塩は、周期表の4族、5族、6族、8族、9族、10族、11族、13族、14族及び15族から選ばれる金属の塩が用いられる。塩の種類としては、例えば、塩化物塩、硝酸塩、硫酸塩、有機酸塩等が挙げられる。
《Metal salt》
As the metal salt used as the raw material of the metal particles, the metal salt selected from the 4th group, 5th group, 6th group, 8th group, 9th group, 10th group, 11th group, 13th group, 14th group and 15th group in the periodic table is used. Be done. Examples of the type of salt include chloride salt, nitrate, sulfate, organic acid salt and the like.

好ましい金属元素は、4族ではTi、5族ではTa、6族ではW、8族ではRu、9族ではCo、Rh、10族ではNi、Pd、Pt、11族ではCu、Ag、Au、13族ではAl、In、14族ではSn、15族ではSbが例示される。この製造方法は、AuやAg以外の酸化されやすい金属にも適用可能である。 Preferred metal elements are Ti in Group 4, Ta in Group 5, W in Group 6, Ru in Group 8, Co, Rh in Group 9, Ni, Pd, Pt in Group 10, and Cu, Ag, Au in Group 11. Examples are Al and In in the 13th group, Sn in the 14th group, and Sb in the 15th group. This production method is also applicable to easily oxidizable metals other than Au and Ag.

《還元剤》
粒子調製工程における還元反応は、通常、還元剤を用いる。
還元剤は、例えば、硫酸第一鉄、NaBH、ヒドラジン、水素、アルコール、次亜リン酸ナトリウム、LiBH、LiAlH、ジボランが挙げられる。
《Reducing agent》
A reducing agent is usually used for the reduction reaction in the particle preparation step.
Examples of the reducing agent include ferrous sulfate, NaBH 4 , hydrazine, hydrogen, alcohol, sodium hypophosphite, LiBH 4 , LiAlH 4 , and diborane.

還元剤の使用量は、金属塩の還元性によっても異なるが、金属塩1モルに対し、0.5~10モルが好ましく、1~5モルがより好ましい。ここで、還元剤が金属塩1モルに対し0.5モル未満の場合は、還元が不充分となり、所望の金属粒子が得られない場合がある。逆に、還元剤が金属塩1モルに対し10モルを超えると、必要以上に粒子径の大きな金属粒子が生成する場合がある。 The amount of the reducing agent used varies depending on the reducing property of the metal salt, but is preferably 0.5 to 10 mol, more preferably 1 to 5 mol, with respect to 1 mol of the metal salt. Here, if the reducing agent is less than 0.5 mol with respect to 1 mol of the metal salt, the reduction may be insufficient and the desired metal particles may not be obtained. On the contrary, if the reducing agent exceeds 10 mol with respect to 1 mol of the metal salt, metal particles having a larger particle diameter than necessary may be generated.

《pH調整剤》
粒子調製工程の反応液は、上記のように、pHが2.5~10.5になるように、pH調整剤を用いて調整しても良い。pH調整剤は、鉱酸、有機酸が適している。
ここで、有機酸を使用する場合、その分子量が大きいものは、金属粒子への有機物被覆のおそれがあるため、炭素数が1~3の低分子量のものが好ましい。その使用量は、金属塩1モルに対して0.5モル未満が好ましい。
<< pH adjuster >>
The reaction solution in the particle preparation step may be adjusted with a pH adjuster so that the pH becomes 2.5 to 10.5 as described above. A mineral acid or an organic acid is suitable as the pH adjuster.
Here, when an organic acid is used, the one having a large molecular weight has a possibility of coating the metal particles with an organic substance, and therefore, the one having a low molecular weight having 1 to 3 carbon atoms is preferable. The amount used is preferably less than 0.5 mol per 1 mol of the metal salt.

〈洗浄工程〉
洗浄工程では、粒子調製工程で調製した金属粒子を洗浄液で洗浄する。ここで、脱塩が行われる。この塩とは、金属塩の還元処理によって生じた金属粒子以外の物質であり、反応液中にイオンとして存在する。具体的には、ナトリウム、鉄等の金属イオンや、ホウ素イオン、塩化物イオン、硝酸イオン、硫酸イオン、有機酸イオン等が例示される。この洗浄工程では、カルボン酸化合物等の金属イオンと錯体を形成する有機安定化剤を使用しても構わない。それは、例えば、還元剤として硫酸第一鉄のような金属を含む還元剤を使用した場合、この還元剤の金属イオンと有機安定化剤とが錯体を形成して、効率よく還元剤を除去できるためである。
<Washing process>
In the cleaning step, the metal particles prepared in the particle preparation step are washed with a cleaning liquid. Here, desalination is performed. This salt is a substance other than the metal particles generated by the reduction treatment of the metal salt, and exists as an ion in the reaction solution. Specific examples thereof include metal ions such as sodium and iron, boron ions, chloride ions, nitrate ions, sulfate ions, and organic acid ions. In this cleaning step, an organic stabilizer that forms a complex with a metal ion such as a carboxylic acid compound may be used. For example, when a reducing agent containing a metal such as ferrous sulfate is used as the reducing agent, the metal ion of the reducing agent and the organic stabilizer form a complex, and the reducing agent can be efficiently removed. Because.

洗浄液は、水やアルコールが適しており、その他の成分を含んでいてもよい。この洗浄液は、予め不活性ガスをバブリングして酸素を除去したバブリング液及び微小気泡を含有した液の少なくとも一方を用いることが好ましい。特に、微小気泡を含む液を用いることが好ましい。微小気泡を含む液の詳細は、上記粒子調製工程で用いた微小気泡を含む液(反応液)と同様である。また、洗浄後に製造された金属粒子分散液も微小気泡を含むことが好ましい。 The cleaning liquid is suitable for water or alcohol, and may contain other components. As this cleaning liquid, it is preferable to use at least one of a bubbling liquid from which oxygen has been removed by bubbling an inert gas in advance and a liquid containing microbubbles. In particular, it is preferable to use a liquid containing fine bubbles. The details of the liquid containing fine bubbles are the same as the liquid containing fine bubbles (reaction liquid) used in the particle preparation step. Further, it is preferable that the metal particle dispersion liquid produced after cleaning also contains fine bubbles.

微小気泡を含む洗浄液で金属粒子を洗浄することにより、金属粒子のイオン化や酸化を防止して、金属粒子分散液の保存安定性及びこの金属粒子分散液を使用した塗布液のポットライフを飛躍的に向上できる。また、製造される金属粒子の分散性が向上し、最終的な分散液中の塩や有機安定化剤に由来する有機物の量を低減できる。したがって、被膜にした際、金属粒子同士がより直接的に接触し、粒子境界の抵抗が小さくなり、結果として、高い導電性を有する被膜を形成できる。 By cleaning the metal particles with a cleaning liquid containing fine bubbles, ionization and oxidation of the metal particles are prevented, and the storage stability of the metal particle dispersion liquid and the pot life of the coating liquid using this metal particle dispersion liquid are dramatically improved. Can be improved. In addition, the dispersibility of the produced metal particles is improved, and the amount of organic substances derived from salts and organic stabilizers in the final dispersion can be reduced. Therefore, when the film is formed, the metal particles come into direct contact with each other, the resistance at the particle boundary is reduced, and as a result, a film having high conductivity can be formed.

洗浄方法は、限外ろ過膜法やデカンテーション法が例示される。洗浄によって、硝酸イオン、硫酸イオン等の不純分を除去できる。さらに、イオン交換樹脂を用いて精製することが好ましい。 Examples of the cleaning method include an ultrafiltration membrane method and a decantation method. Impure components such as nitrate ion and sulfate ion can be removed by washing. Further, it is preferable to purify using an ion exchange resin.

微小気泡を含む液を用いると、十分に不純分を除去でき、後のイオン交換樹脂による処理の簡略化(樹脂量の低減)も図れるため、効率的に金属粒子を製造できる。また、洗浄回数を減らすことも可能であり、これによっても効率的に金属粒子を製造できる。このような洗浄工程の簡略化により、金属粒子のロスが少なくなり、収率を向上できる。さらに、洗浄工程の簡略化によって、金属粒子の酸化の誘発が抑制されるので、この金属粒子を用いて形成した被膜は導電性が高くなる。 When a liquid containing fine bubbles is used, the impure component can be sufficiently removed, and the subsequent treatment with an ion exchange resin can be simplified (reduction of the amount of resin), so that metal particles can be efficiently produced. It is also possible to reduce the number of washings, which also enables efficient production of metal particles. By simplifying the cleaning process as described above, the loss of metal particles can be reduced and the yield can be improved. Further, since the induction of oxidation of the metal particles is suppressed by the simplification of the cleaning step, the coating film formed by using the metal particles has high conductivity.

〈粗大粒子除去工程〉
洗浄工程の後、遠心分離等により、粗大粒子を除去することが好ましい。
<Coarse particle removal process>
After the washing step, it is preferable to remove the coarse particles by centrifugation or the like.

また、本発明は、上述の製造方法により調製された金属粒子分散液に関する。以下に、これについて説明をする。
[金属粒子分散液]
本発明の金属粒子分散液は、微小気泡を含む液中に金属粒子が分散していることを特徴とする。微小気泡を含む液の詳細は、上記粒子調製工程で用いた微小気泡を含む液(反応液)と同様である。また、金属粒子としては、周期表の4族、5族、6族、8族、9族、10族、11族、13族、14族、15族の金属粒子が挙げられる。金属粒子は、複数種を混合して用いてもよい。この金属粒子分散液は、上記の製造方法により製造できる。
分散媒は、水や有機溶媒が適している。ここで、有機溶媒は、特に種類を選ばないが、塗布液としての加工のしやすさや被膜付基材の製造のしやすさからアルコール類が好ましく、メタノールやエタノールがより好ましい。
The present invention also relates to a metal particle dispersion prepared by the above-mentioned production method. This will be described below.
[Metal particle dispersion]
The metal particle dispersion liquid of the present invention is characterized in that metal particles are dispersed in a liquid containing fine bubbles. The details of the liquid containing fine bubbles are the same as the liquid containing fine bubbles (reaction liquid) used in the particle preparation step. Examples of the metal particles include metal particles of groups 4, 5, 6, 8, 9, 10, 11, 11, 13, 14, and 15 of the periodic table. A plurality of types of metal particles may be mixed and used. This metal particle dispersion can be produced by the above-mentioned production method.
Water or an organic solvent is suitable as the dispersion medium. Here, the organic solvent is not particularly limited in type, but alcohols are preferable, and methanol and ethanol are more preferable because of the ease of processing as a coating liquid and the ease of producing a coated substrate.

金属粒子分散液の保存安定性は、不活性ガスでバブリングした溶媒のみを使用して製造された場合、その金属種にもよるが、通常、数時間~1ヶ月程度である。これに対し、本発明の金属粒子分散液の保存安定性は3ヶ月を超える。これは、単に気泡が存在する場合の作用とは異なり、微小気泡と金属粒子との間で何らかの作用が働いているためと考えられる。 The storage stability of the metal particle dispersion is usually about several hours to one month, although it depends on the metal species when it is produced using only a solvent bubbled with an inert gas. On the other hand, the storage stability of the metal particle dispersion of the present invention exceeds 3 months. It is considered that this is because some action is acting between the fine bubbles and the metal particles, which is different from the action when the bubbles are simply present.

なお、現状の技術では、金属粒子と微小気泡が共存している分散液のまま、微小気泡の平均気泡径や気泡個数を測定することは困難である。このため、金属粒子を限外濾過膜で取り除き、この濾液に含まれる微小気泡を測定することにより、微小気泡の平均気泡径及び気泡個数を求める。すなわち、本発明の平均気泡径及び気泡個数は、分画分子量4000の限外濾過膜を通過した濾液を測定したものをいう。 With the current technique, it is difficult to measure the average bubble diameter and the number of bubbles of the fine bubbles in the dispersion liquid in which the metal particles and the fine bubbles coexist. Therefore, the metal particles are removed with an ultrafiltration membrane, and the fine bubbles contained in this filtrate are measured to obtain the average bubble diameter and the number of fine bubbles. That is, the average bubble diameter and the number of bubbles of the present invention refer to those obtained by measuring a filtrate that has passed through an ultrafiltration membrane having a molecular weight cut-off of 4000.

金属粒子分散液の酸化還元電位(ORP)は、0~300mVが好ましく、100~250mVがより好ましい。ここで、ORPが0mV未満の場合は、還元場にあるため金属粒子の分散性が不安定になる場合がある。逆に、ORPが300mVを超える場合は、金属粒子が酸化される場合がある。
また、pHは、通常、4.0~7.0であり、4.5~6.5が好ましい。ここで、pHが4.0未満の場合は、イオンの状態で存在し、金属粒子が得られない場合がある。逆に、pHが7.0を超える場合は、塩濃度が高いため、金属粒子が凝集する場合がある。
The redox potential (ORP) of the metal particle dispersion is preferably 0 to 300 mV, more preferably 100 to 250 mV. Here, when the ORP is less than 0 mV, the dispersibility of the metal particles may become unstable because it is in the reducing field. On the contrary, when the ORP exceeds 300 mV, the metal particles may be oxidized.
The pH is usually 4.0 to 7.0, preferably 4.5 to 6.5. Here, when the pH is less than 4.0, it exists in an ionic state, and metal particles may not be obtained. On the contrary, when the pH exceeds 7.0, the metal particles may aggregate due to the high salt concentration.

金属粒子分散液の電気伝導度は、10~500μS/cmが好ましく、50~300μS/cmがより好ましい。ここで、電気伝導度が10μS/cm未満の場合は、分散剤が少なく保存安定性が低下する(寿命が短い)場合がある。逆に、電気伝導度が500μS/cmを超える場合は、塩濃度が高くなるため、保存安定性が低下する場合がある。また、導電膜を形成しても導電性が悪化する場合がある。 The electrical conductivity of the metal particle dispersion is preferably 10 to 500 μS / cm, more preferably 50 to 300 μS / cm. Here, when the electric conductivity is less than 10 μS / cm, the amount of the dispersant may be small and the storage stability may be lowered (the life may be short). On the contrary, when the electric conductivity exceeds 500 μS / cm, the salt concentration becomes high, so that the storage stability may decrease. Further, even if a conductive film is formed, the conductivity may deteriorate.

金属粒子分散液の不純分の各々の含有量は、金属粒子に対して、100ppm以下が好ましく、80ppm以下がより好ましく、50ppm以下がさらに好ましい。ここで、100ppmを超えると、塩濃度が高くなるため、保存安定性が低下する場合がある。また、導電膜を形成しても導電性が悪化する場合がある。金属粒子分散液の不純分は、金属粒子と分散媒および有機安定化剤以外の物質である。これは、金属塩の還元処理によって生じた金属粒子以外の物質で、反応液中にイオンとして存在する。具体的には、ナトリウムや鉄等の金属イオンやホウ素イオン、塩化物イオン、硝酸イオン、硫酸イオン等が例示される。特に、ナトリウムと鉄の金属イオンは、導電性から見て、ナトリウムが10ppm以下、鉄が50ppm以下の両方を満足することが好ましい。 The content of each of the impure components of the metal particle dispersion is preferably 100 ppm or less, more preferably 80 ppm or less, still more preferably 50 ppm or less, based on the metal particles. Here, if it exceeds 100 ppm, the salt concentration becomes high, so that the storage stability may decrease. Further, even if a conductive film is formed, the conductivity may deteriorate. The impure content of the metal particle dispersion is a substance other than the metal particles, the dispersion medium and the organic stabilizer. This is a substance other than the metal particles generated by the reduction treatment of the metal salt, and exists as an ion in the reaction solution. Specifically, metal ions such as sodium and iron, boron ions, chloride ions, nitrate ions, sulfate ions and the like are exemplified. In particular, the metal ions of sodium and iron preferably satisfy both sodium of 10 ppm or less and iron of 50 ppm or less in terms of conductivity.

また、金属粒子分散液に含まれる金属粒子の炭素含有量は、金属粒子に対して0.1質量%以下が好ましく、0.05質量%以下がより好ましい。
この金属粒子に含有される炭素は、金属塩、還元剤、pH調整剤、洗浄液、溶媒等の有機化合物に由来する。これには、金属粒子分散液の製造のために、意図的に添加されたものの他、原料等に不可避的に存在するものも含まれる。特に、金属粒子分散液に、前述の有機安定化剤が含まれていると、金属粒子表面が有機物で被覆されるため、被膜にした場合、導電性が低下するおそれがある。このような有機物に由来する炭素含有量は、後述のように、C(カーボン)量を分析することで求めることができる。
The carbon content of the metal particles contained in the metal particle dispersion is preferably 0.1% by mass or less, more preferably 0.05% by mass or less with respect to the metal particles.
The carbon contained in the metal particles is derived from an organic compound such as a metal salt, a reducing agent, a pH adjuster, a cleaning solution, or a solvent. This includes those intentionally added for the production of metal particle dispersions, as well as those inevitably present in raw materials and the like. In particular, if the metal particle dispersion liquid contains the above-mentioned organic stabilizer, the surface of the metal particles is coated with an organic substance, and therefore, when the metal particle dispersion liquid is formed into a film, the conductivity may decrease. The carbon content derived from such an organic substance can be determined by analyzing the C (carbon) content as described later.

この金属粒子分散液に含まれる金属粒子の平均粒子径は、3~200nmが好ましく、5~70nmがより好ましい。平均粒子径が3~200nmであれば、透明性の高い導電性被膜を得ることができる。
金属粒子の平均粒子径は、電子顕微鏡写真を撮影し、任意の500個の粒子について、粒子径を測定し、その平均値として得る。
The average particle size of the metal particles contained in this metal particle dispersion is preferably 3 to 200 nm, more preferably 5 to 70 nm. When the average particle size is 3 to 200 nm, a highly transparent conductive film can be obtained.
The average particle size of the metal particles is obtained by taking an electron micrograph, measuring the particle size of any 500 particles, and obtaining the average value thereof.

本発明の金属粒子分散液は、金属粒子の酸化やイオン化を抑制できる。したがって、水系においても、従来実現できなかった長期の保存安定性が実現できる。また、この金属粒子分散液を使用した塗布液でも従来実現できなかった長期のポットライフが実現できる。さらに、この金属粒子分散液は、酸化物粒子の含有量が非常に少なく、導電性の高い被膜の製造が可能である。ここで、金属粒子分散液中の金属酸化物は、X線回折で確認することができる。この金属酸化物はX線回折で検出されないことが好ましい。その含有量は、粒子に対して、500ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下がさらに好ましい。もし、金属酸化物の含有量が500ppmを超えると、分散液の保存安定性が低下し、粒子が凝集して析出するおそれがある。また、金属粒子がイオン化してしまうと、液中で粒子として存在せず、これを塗布液として使用しても所望の被膜は得られない。 The metal particle dispersion liquid of the present invention can suppress oxidation and ionization of metal particles. Therefore, even in an aqueous system, long-term storage stability that could not be realized in the past can be realized. In addition, a long-term pot life that could not be realized in the past can be realized even with a coating liquid using this metal particle dispersion liquid. Further, this metal particle dispersion liquid has a very low content of oxide particles, and can produce a highly conductive film. Here, the metal oxide in the metal particle dispersion can be confirmed by X-ray diffraction. It is preferable that this metal oxide is not detected by X-ray diffraction. The content thereof is preferably 500 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less with respect to the particles. If the content of the metal oxide exceeds 500 ppm, the storage stability of the dispersion liquid is lowered, and the particles may aggregate and precipitate. Further, when the metal particles are ionized, they do not exist as particles in the liquid, and even if they are used as a coating liquid, a desired film cannot be obtained.

また、本発明は、上述の金属粒子分散液を用いた塗布液を基材上に塗布することを特徴とする被膜付基材の製造方法に関する。以下に、これらについて説明をする。
[塗布液の製造方法]
本発明の金属粒子分散液に含まれる金属粒子を用いて被膜形成用塗布液が製造できる。被膜形成用塗布液には、従来公知の各種添加剤を添加することができる。
The present invention also relates to a method for producing a coated base material, which comprises applying a coating liquid using the above-mentioned metal particle dispersion liquid onto a base material. These will be described below.
[Manufacturing method of coating liquid]
A coating liquid for forming a film can be produced using the metal particles contained in the metal particle dispersion liquid of the present invention. Various conventionally known additives can be added to the coating liquid for film formation.

[被膜付基材の製造方法]
被膜付基材の製造は、この塗布液を基材上に塗布した後、乾燥し、必要に応じて焼成を行う。
[Manufacturing method of coated substrate]
In the production of a coated base material, this coating liquid is applied onto the base material, dried, and fired if necessary.

基材は、ガラス、プラスチック、セラミック、金属等からなるフィルム状、シート状等の基材が例示される。塗布液の塗布方法は、ディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法等が例示される。被膜の膜厚は、30~300nm程度が好ましく、50~200nm程度がより好ましい。 Examples of the base material include film-like and sheet-like base materials made of glass, plastic, ceramic, metal and the like. Examples of the coating method of the coating liquid include a dipping method, a spinner method, a spray method, a roll coater method, and a flexographic printing method. The film thickness of the film is preferably about 30 to 300 nm, more preferably about 50 to 200 nm.

乾燥温度は、例えば常温~90℃程度の温度である。焼成温度は、例えば120~900℃程度であり、150~350℃程度であってもよい。本発明の分散液に含まれる金属粒子は有機安定化剤等の有機物の付着が、金属粒子に対して炭素含有量が0.1質量%以下と、少ないため、例えば400℃以上といった高温で焼成して有機物を除去する必要がない。これにより、高温焼成による金属粒子の凝集、融着を防止できるとともに、得られる被膜のへーズの劣化を抑制できる。 The drying temperature is, for example, a temperature of about room temperature to 90 ° C. The firing temperature is, for example, about 120 to 900 ° C., and may be about 150 to 350 ° C. Since the metal particles contained in the dispersion liquid of the present invention have a low carbon content of 0.1% by mass or less with respect to the metal particles, the adhesion of organic substances such as an organic stabilizer is small, so that they are fired at a high temperature such as 400 ° C. or higher. There is no need to remove organic matter. As a result, it is possible to prevent aggregation and fusion of metal particles due to high-temperature firing, and it is possible to suppress deterioration of the haze of the obtained film.

次に、実施例および比較例を挙げて本発明の金属粒子分散液の製造方法について説明するが、本発明はこれら実施例によって何ら限定されるものではない。 Next, a method for producing the metal particle dispersion liquid of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

[実施例1]
〈粒子調製工程〉
旋回流方式のバブル発生装置(株式会社Ligaric製 HYK-20-SD)で超純水とNを接触させて、Nマイクロナノバブル水(平均気泡径70nm、気泡個数2.4億個/mL、pH5.79、電気伝導度1.17μS/cm、DO1.70ppm、ORP330mV)を準備した。
マイクロナノバブル水600gに硫酸第一鉄7水和物180gを溶解し、溶液A1を調製した。
[Example 1]
<Particle preparation process>
N 2 micro - nano bubble water (average bubble diameter 70 nm, number of bubbles 240 million cells / mL) is brought into contact with ultrapure water using a swirling flow type bubble generator (HYK-20-SD manufactured by Ligaric Co., Ltd.). , PH 5.79, electrical conductivity 1.17 μS / cm, DO 1.70 ppm, ORP330 mV).
180 g of ferrous sulfate heptahydrate was dissolved in 600 g of N2 micro-nano bubble water to prepare a solution A1.

マイクロナノバブル水600gに硝酸銅(II)3水和物76gを溶解し、溶液B1を調製した。その後、溶液B1に溶液A1を添加し、10時間攪拌して得られた分散液から金属粒子を遠心分離機により分離回収した。 76 g of copper (II) nitrate trihydrate was dissolved in 600 g of N2 micro-nano bubble water to prepare a solution B1. Then, the solution A1 was added to the solution B1 and stirred for 10 hours, and the metal particles were separated and recovered from the obtained dispersion by a centrifuge.

〈洗浄工程〉
粒子調製工程と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
N2 micro-nano bubble water was prepared in the same manner as in the particle preparation step.
The metal particles separated and recovered were immersed in 200 g of N2 micro-nano bubble water, washed (demineralized), and then separated and recovered by centrifugation again.

〈金属粒子分散液の調製〉
ICP分析で上記分離回収した金属粒子の金属濃度を定量し、Nマイクロナノバブル水を用いて金属換算で濃度が2.5質量%の金属粒子水分散液を調製した。その後、両性イオン交換樹脂10gを用いて脱イオンを行い、金属換算で濃度が2.5質量%の黒茶色の金属粒子分散液P1を得た。
<Preparation of metal particle dispersion>
The metal concentration of the separated and recovered metal particles was quantified by ICP analysis, and an aqueous dispersion of metal particles having a concentration of 2.5% by mass in terms of metal was prepared using N 2 micro-nano bubble water. Then, deionization was performed using 10 g of an amphoteric ion exchange resin to obtain a black-brown metal particle dispersion P1 having a concentration of 2.5% by mass in terms of metal.

[微小気泡の平均気泡径と気泡個数]
金属粒子分散液P1中の微小気泡については、この金属粒子分散液を限外濾過膜(旭化成製SEP-1013分画分子量4000)で濾過して金属粒子を取り除き、濾液中の微小気泡の平均気泡径と気泡個数を測定した。微小気泡の平均気泡径及び気泡個数は、液中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した。具体的には、測定試料(溶液A1、溶液B1又は金属粒子分散液P1の濾液)約20mLを吸引させながら測定機器(Malvern社製「ナノサイト NS300」)に注入し、ナノ粒子トラッキング解析法にて測定した。なお、マイクロナノバブル水は、濾過処理をせずに、そのまま上記方法で測定した。
[Average bubble diameter and number of microbubbles]
For the fine particles in the metal particle dispersion P1, the metal particle dispersion is filtered through an ultrafiltration membrane (SEP-1013 fractional molecular weight 4000 manufactured by Asahi Kasei) to remove the metal particles, and the average bubbles of the fine particles in the filtrate are averaged. The diameter and the number of bubbles were measured. The average bubble diameter and the number of bubbles of the fine bubbles were measured by measuring the Brownian motion moving speed of the bubbles in the liquid by using the nanoparticle tracking analysis method. Specifically, about 20 mL of the measurement sample (solution A1, solution B1 or metal particle dispersion P1 filtrate) is sucked and injected into a measuring instrument (“Nanosite NS300” manufactured by Malvern) for nanoparticle tracking analysis method. Was measured. The micro-nano bubble water was measured by the above method as it was without filtration treatment.

粒子調製工程で還元後の溶液の物性(pH、ORP)、最終的に得られた金属粒子分散液の物性(pH、ORP、金属粒子の収率、微小気泡の平均気泡径と気泡個数、金属の一次粒子の平均粒子径、金属の二次粒子の平均粒子径、金属粒子の含有量(金属濃度)、C(カーボン)量、不純分(Na、Fe、Na、B、SO、NO)含有量)を表1に示した。また、金属粒子分散液中の金属および金属酸化物の有無、金属粒子分散液の保存安定性を表2に示した(以下の実施例、比較例も同様)。 Physical characteristics of the solution after reduction in the particle preparation step (pH, ORP), physical properties of the finally obtained metal particle dispersion (pH, ORP, yield of metal particles, average bubble diameter and number of fine bubbles, metal Average particle size of primary particles, average particle size of secondary metal particles, content of metal particles (metal concentration), amount of C (carbon), impure content (Na, Fe, Na, B, SO 4 , NO 3 ) ) Content) is shown in Table 1. Table 2 shows the presence or absence of metals and metal oxides in the metal particle dispersion and the storage stability of the metal particle dispersion (the same applies to the following Examples and Comparative Examples).

[電気伝導度]
電気伝導度は、交流2電極法によって測定した。具体的には、pHメーター(堀場製作所製F-74 、電極型番3551-10D)を導電率測定モードにて、測定する液に電極を浸漬させて求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[Electrical conductivity]
The electrical conductivity was measured by the AC two-electrode method. Specifically, a pH meter (F-74 manufactured by HORIBA, Ltd., electrode model number 3551-10D) was obtained by immersing the electrode in the liquid to be measured in the conductivity measurement mode. The temperatures of the bubbling water, the micro-nano bubble water, and the metal particle dispersion were adjusted to 25 ° C.

[酸化還元電位(ORP)]
酸化還元電位(Oxidation Reduction Potential)は、pHメーター(堀場製作所製F-74、電極型番9300-10D)の設定をORP測定モードにて、電極を測定する液に電極を浸漬させて求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[Redox potential (ORP)]
The oxidation-reduction potential (Oxidation Reduction Potential) was determined by immersing the electrode in a liquid for measuring the electrode in the ORP measurement mode for setting the pH meter (F-74 manufactured by Horiba Seisakusho, electrode model number 9300-10D). The temperatures of the bubbling water, the micro-nano bubble water, and the metal particle dispersion were adjusted to 25 ° C.

[溶存酸素濃度 (DO)]
溶存酸素(Dissolved Oxygen)濃度は、隔膜式ガルバニ電池法によって測定した。具体的には、pHメーター(堀場製作所製OM-51 、電極型番9520-10D)を導電率測定モードにて、測定する液に電極を浸漬させて大気圧下で求めた。なお、バブリング水、マイクロナノバブル水、金属粒子分散液の各液温は25℃に調整した。
[粒子の収率]
金属粒子の収率は、金属粒子分散液中の金属量をICPで測定した金属分散液中の金属濃度から算出し、これを仕込みの金属塩から計算される理論上の金属量で割ったものに100を乗じて求めた。
[Dissolved oxygen concentration (DO)]
Dissolved Oxygen concentration was measured by the septal galvanic cell method. Specifically, a pH meter (OM-51 manufactured by HORIBA, Ltd., electrode model number 9520-10D) was obtained by immersing the electrode in the liquid to be measured in the conductivity measurement mode under atmospheric pressure. The temperatures of the bubbling water, the micro-nano bubble water, and the metal particle dispersion were adjusted to 25 ° C.
[Particle yield]
The yield of metal particles is calculated by calculating the amount of metal in the metal particle dispersion from the metal concentration in the metal dispersion measured by ICP, and dividing this by the theoretical amount of metal calculated from the charged metal salt. Was multiplied by 100.

[一次粒子の平均粒子径]
金属粒子の平均粒子径は、画像解析法により測定した。具体的には、透過型電子顕微鏡(株式会社日立製作所製、H-800)により、金属粒子分散液を電子顕微鏡用銅セルのコロジオン膜上で乾燥して、倍率25万倍で写真撮影して得られる写真投影図における、任意の500個の粒子について、その粒子径を測定し、その平均値を金属粒子の平均粒子径とした。
[Average particle size of primary particles]
The average particle size of the metal particles was measured by an image analysis method. Specifically, the metal particle dispersion is dried on a collodion film of a copper cell for an electron microscope by a transmission electron microscope (H-800 manufactured by Hitachi, Ltd.), and a photograph is taken at a magnification of 250,000 times. The particle size of any 500 particles in the obtained photographic projection was measured, and the average value was taken as the average particle size of the metal particles.

[二次粒子の平均粒子径]
金属粒子分散液をそのままセルに入れ、マイクロトラック法にて測定し、その平均値(D50)を金属粒子の平均粒子径とした。
[Average particle size of secondary particles]
The metal particle dispersion was placed in the cell as it was, measured by the microtrac method, and the average value (D50) was taken as the average particle diameter of the metal particles.

[ICP分析]
各元素の質量分析は、誘導結合プラズマ分光分析装置にて化学分析を行った。具体的には、金属粒子分散液を濃硝酸に溶解して、水で濃度10~100質量ppmに調整した溶液を島津製作所(株)製 SEQUENTIAL PLASMA SPECTROMETER(ICPS-8100)にて分析した。
[ICP analysis]
Mass spectrometry of each element was performed by chemical analysis using an inductively coupled plasma spectrophotometer. Specifically, a solution prepared by dissolving a metal particle dispersion in concentrated nitric acid and adjusting the concentration to 10 to 100 mass ppm with water was analyzed by SEQUENTIAL PLASMA SPECTROMETER (ICPS-8100) manufactured by Shimadzu Corporation.

[C(カーボン)量測定]
金属粒子中の炭素含有量は、金属粒子分散液を100℃で乾燥させ、炭素硫黄分析装置(HORIBA製 EMIA-320V)を用いて測定した。
[Measurement of C (carbon) amount]
The carbon content in the metal particles was measured by drying the metal particle dispersion at 100 ° C. and using a carbon sulfur analyzer (EMIA-320V manufactured by HORIBA).

[イオンクロマト分析]
金属粒子分散液を、超純水を用いて100倍希釈して、イオン交換クロマトグラフ(東ソー製 TSKgel SuperQ-5PW)を用いて、SO、NOの濃度を測定した。
[Ion chromatographic analysis]
The metal particle dispersion was diluted 100-fold with ultrapure water, and the concentrations of SO 4 and NO 3 were measured using an ion exchange chromatograph (TSKgel SuperQ-5PW manufactured by Tosoh).

[X線回折による金属酸化物の有無の確認]
金属粒子分散液を溶液のまま、X線回折による解析を行い、金属酸化物の存在の有無を確認した。試料のX線回折による定性分析は、RIGAKU(株)製X-RAY DIFFRACT METER(SmartLab)にて行った。具体的には、試料をセルに入れ装置にセットし、管電圧45.0kV、管電流200.0mA、対陰極Cu、測定範囲:開始角度~終了角度(2θ)5.000°~70.000°、スキャンスピード5.000°/minにて測定した。
金属酸化物のピークが観察されなかった場合:○
金属酸化物のピークが観察された場合 :×
[Confirmation of the presence or absence of metal oxides by X-ray diffraction]
The metal particle dispersion was analyzed by X-ray diffraction with the solution as it was, and the presence or absence of the metal oxide was confirmed. The qualitative analysis of the sample by X-ray diffraction was performed by X-RAY DIFFRACT METER (SmartLab) manufactured by RIGAKU Co., Ltd. Specifically, the sample is placed in a cell, set in a device, tube voltage 45.0 kV, tube current 200.0 mA, anti-cathode Cu, measurement range: start angle to end angle (2θ) 5.000 ° to 70.000. The measurement was performed at ° and a scan speed of 5.000 ° / min.
If no metal oxide peak is observed: ○
When a peak of metal oxide is observed: ×

[保存安定性]
25℃で保管した金属粒子分散液のX線回折(XRD)による金属粒子の酸化の有無および導電性の変化を確認した。
[Storage stability]
The presence or absence of oxidation of the metal particles and the change in conductivity by X-ray diffraction (XRD) of the metal particle dispersion stored at 25 ° C. were confirmed.

〈塗布液および被膜付基材の作製〉
得られた金属粒子分散液P1をエタノールで0.5質量%に希釈し、塗布液を作製した。これをスピンコート法でガラスに塗布し、ついで窒素雰囲気下で、200℃で30分間焼成し、被膜付基材を作製した。この被膜付基材の導電性(表面抵抗)をローレスタ(三菱化学製 NSCPプローブ)で測定した。また、被膜の一部をカッターナイフで剥離させ段差をつくり、レーザー顕微鏡でこの段差を測定し、これを膜厚とした。これらの結果を表2に示した(以下の実施例、比較例も同様)。
<Preparation of coating liquid and coated base material>
The obtained metal particle dispersion P1 was diluted with ethanol to 0.5% by mass to prepare a coating liquid. This was applied to glass by a spin coating method, and then fired at 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a coated substrate. The conductivity (surface resistance) of this coated substrate was measured with a low resta (NSCP probe manufactured by Mitsubishi Chemical Corporation). In addition, a part of the coating film was peeled off with a cutter knife to create a step, and this step was measured with a laser microscope, and this was used as the film thickness. These results are shown in Table 2 (the same applies to the following examples and comparative examples).

[実施例2]
〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
実施例1の洗浄工程で、Nマイクロナノバブル水の代わりに、Nマイクロナノバブル水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gを使用した以外は実施例1と同様にして、黒茶色の金属粒子分散液P2を得た。
金属粒子分散液P1の代わりに金属粒子分散液P2を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
[Example 2]
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
In the washing step of Example 1, 200 g of a 20 mass% 3 sodium citrate aqueous solution prepared using N 2 micro-nano bubble water was used instead of N 2 micro-nano bubble water in the same manner as in Example 1. , A black-brown metal particle dispersion P2 was obtained.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid P2 was used instead of the metal particle dispersion liquid P1.

[実施例3]
〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
超純水(pH(25℃、以下同じ)6.32、電気伝導度0.05μS/cm、溶存酸素量(DO)6.17ppm、酸化還元電位(ORP)350mV)をNにてバブリングを1時間行い、溶存酸素を除去したNバブリング水(pH6.6、電気伝導度0.6μS/cm、DO0.6ppm、ORP260mV)を準備した。
実施例1の洗浄工程で、Nマイクロナノバブル水の代わりに、Nバブリング水を使用した以外は実施例1と同様にして、黒茶色の金属粒子分散液P3を得た。
金属粒子分散液P1の代わりに金属粒子分散液P3を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
[Example 3]
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
Bubbling ultrapure water (pH (25 ° C., same hereafter) 6.32, electrical conductivity 0.05 μS / cm, dissolved oxygen amount (DO) 6.17 ppm, redox potential (ORP) 350 mV) with N2 . After 1 hour, N 2 bubbling water (pH 6.6, electrical conductivity 0.6 μS / cm, DO 0.6 ppm, ORP 260 mV) from which dissolved oxygen was removed was prepared.
In the washing step of Example 1, a black-brown metal particle dispersion P3 was obtained in the same manner as in Example 1 except that N 2 bubbling water was used instead of N 2 micro-nano bubble water.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid P3 was used instead of the metal particle dispersion liquid P1.

[実施例4]
〈粒子調製工程〉
マイクロナノバブル水500gに硫酸第一鉄7水和物100gを溶解し、溶液A4を調製した。
[Example 4]
<Particle preparation process>
100 g of ferrous sulfate heptahydrate was dissolved in 500 g of N 2 micro-nano bubble water to prepare a solution A4.

マイクロナノバブル水300gに硝酸銀(I)57gを溶解し、溶液B4を調製した。その後、溶液B4に溶液A4を添加し、10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 57 g of silver nitrate (I) was dissolved in 300 g of N2 micro-nano bubble water to prepare a solution B4. Then, the solution A4 was added to the solution B4, and the metal particles were separated and recovered from the dispersion obtained by stirring for 10 hours by a centrifuge.

〈洗浄工程〉
マイクロナノバブル水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
The metal particles separated and recovered were immersed in 200 g of an aqueous solution of 3 sodium citrate having a concentration of 20% by mass prepared using N2 micro-nanobubble water, washed (demineralized), and then separated and recovered by centrifugation again.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
実施例1と同様にして、黒茶色の金属粒子分散液P4を得た。
金属粒子分散液P1の代わりに金属粒子分散液P4を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion P4 was obtained in the same manner as in Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid P4 was used instead of the metal particle dispersion liquid P1.

[実施例5]
〈粒子調製工程〉
マイクロナノバブル水450gに硝酸ニッケル六水和物(Ni(NO6HO)(関東化学(株)製)50gを溶解し、溶液A5を調製した。
[Example 5]
<Particle preparation process>
50 g of nickel nitrate hexahydrate (Ni (NO 3 ) 26H 2 O ) (manufactured by Kanto Chemical Co., Ltd.) was dissolved in 450 g of N 2 micro-nano bubble water to prepare a solution A5.

マイクロナノバブル水1000gに水素化ホウ素ナトリウム(還元剤)50gを溶解し、溶液B5を調製した。溶液A5を撹拌しながら、溶液B5を添加し、1時間攪拌した。このとき、液が緑色から黒色に変化した。得られた分散液から金属粒子を遠心分離機により分離回収した。 50 g of sodium borohydride (reducing agent) was dissolved in 1000 g of N 2 micro-nano bubble water to prepare a solution B5. While stirring the solution A5, the solution B5 was added and stirred for 1 hour. At this time, the liquid changed from green to black. Metal particles were separated and recovered from the obtained dispersion by a centrifuge.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
実施例1の洗浄工程以降同様にして、黒色の金属粒子分散液P5を得た。
金属粒子分散液P1の代わりに金属粒子分散液P5を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black metal particle dispersion P5 was obtained in the same manner as after the washing step of Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid P5 was used instead of the metal particle dispersion liquid P1.

[実施例6]
〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
マイクロナノバブル水600gに硝酸パラジウム(II)2水和物9.1gを溶解し、溶液B6を調製した。
溶液B1の代わりに溶液B6を使用した以外は実施例1と同様にして、黒茶色の金属粒子分散液P6を得た。
金属粒子分散液P1の代わりに金属粒子分散液P6を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
[Example 6]
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
Solution B6 was prepared by dissolving 9.1 g of palladium (II) nitrate dihydrate in 600 g of N 2 micro-nano bubble water.
A black-brown metal particle dispersion P6 was obtained in the same manner as in Example 1 except that solution B6 was used instead of solution B1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid P6 was used instead of the metal particle dispersion liquid P1.

[比較例1]
〈粒子調製工程〉
実施例3の洗浄工程に記載の方法と同様にして、Nバブリング水を準備した。
バブリング水930gにクエン酸3ナトリウム2水和物(有機安定化剤)400gを溶解し、溶液(RS1-1)を調製した。
バブリング水600gに硫酸第一鉄7水和物(還元剤)180gを溶解し、溶液(RS1-2)を調製した。
溶液(RS1-1)と溶液(RS1-2)とを混合して30分間攪拌し、溶液RA1を調製した。
[Comparative Example 1]
<Particle preparation process>
N2 bubbling water was prepared in the same manner as described in the washing step of Example 3.
400 g of trisodium citrate dihydrate (organic stabilizer) was dissolved in 930 g of N2 bubbling water to prepare a solution (RS1-1).
180 g of ferrous sulfate heptahydrate (reducing agent) was dissolved in 600 g of N2 bubbling water to prepare a solution (RS1-2).
The solution (RS1-1) and the solution (RS1-2) were mixed and stirred for 30 minutes to prepare solution RA1.

バブリング水600gに硝酸銅(II)3水和物76gを溶解し、溶液RB1を調製した。その後、溶液RB1に溶液RA1を添加し、10時間攪拌して得られた分散液から、金属粒子を遠心分離機により分離回収した。 76 g of copper (II) nitrate trihydrate was dissolved in 600 g of N2 bubbling water to prepare a solution RB1. Then, the solution RA1 was added to the solution RB1 and stirred for 10 hours, and the metal particles were separated and recovered from the obtained dispersion by a centrifuge.

〈洗浄工程〉
バブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
The metal particles separated and recovered were immersed in 200 g of an aqueous solution of 3 sodium citrate having a concentration of 20% by mass prepared using N2 bubbling water, washed (demineralized), and then separated and recovered by centrifugation again.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
マイクロナノバブル水の代わりに、Nバブリング水を使用した以外は実施例1と同様にして、黒茶色の金属粒子分散液RP1を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP1を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion RP1 was obtained in the same manner as in Example 1 except that N 2 bubbling water was used instead of N 2 micro-nano bubble water.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP1 was used instead of the metal particle dispersion liquid P1.

[比較例2]
〈粒子調製工程〉
マイクロナノバブル水の代わりにNバブリング水を使用した以外は、実施例1と同様にして得られた分散液から、金属粒子を遠心分離機により分離回収した。
[Comparative Example 2]
<Particle preparation process>
Metal particles were separated and recovered from the dispersion obtained in the same manner as in Example 1 except that N 2 bubbling water was used instead of N 2 micro-nano bubble water by a centrifuge.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、比較例1と同様にして、黒茶色の金属粒子分散液RP2を得た。
しかしながら、この分散液はすぐに沈殿を生じ、塗布液および被膜付基材の作製は出来なかった。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black-brown metal particle dispersion RP2 was obtained in the same manner as in Comparative Example 1.
However, this dispersion immediately settled, and it was not possible to prepare a coating liquid and a coated base material.

[比較例3]
〈粒子調製工程〉
バブリング水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(RS3-1)を調製した。
バブリング水500gに硫酸第一鉄7水和物100gを溶解し、溶液(RS3-2)を調製した。
溶液(RS3-1)と溶液(RS3-2)とを混合して30分間攪拌し、溶液RA3を調製した。
[Comparative Example 3]
<Particle preparation process>
400 g of trisodium citrate dihydrate was dissolved in 930 g of N2 bubbling water to prepare a solution (RS3-1).
A solution (RS3-2) was prepared by dissolving 100 g of ferrous sulfate heptahydrate in 500 g of N2 bubbling water.
The solution (RS3-1) and the solution (RS3-2) were mixed and stirred for 30 minutes to prepare solution RA3.

溶液A4の代わりに溶液RA3を使用し、Nマイクロナノバブル水の代わりにNバブリング水を使用した以外は実施例4と同様にして得られた分散液から、金属粒子を遠心分離機により分離回収した。 Metal particles were separated from the dispersion obtained in the same manner as in Example 4 except that solution RA3 was used instead of solution A4 and N 2 bubbling water was used instead of N 2 micro-nano bubble water by a centrifuge. Collected.

〈洗浄工程〉
バブリング水を用いて調製した濃度30質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、遠心分離により分離回収した。次いで、同様にNバブリング水を用いて調製した濃度20質量%のクエン酸3ナトリウム水溶液200gに、上記分離回収した金属粒子を浸漬して洗浄(脱塩)した後、再度遠心分離により分離回収した。
<Washing process>
The metal particles separated and recovered were immersed in 200 g of an aqueous solution of 3 sodium citrate having a concentration of 30% by mass prepared using N2 bubbling water, washed (demineralized), and then separated and recovered by centrifugation. Next, the metal particles separated and recovered were immersed in 200 g of an aqueous solution of 3 sodium citrate having a concentration of 20% by mass, which was similarly prepared using N2 bubbling water, washed (demineralized), and then separated and recovered by centrifugation again. did.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
比較例1と同様にして、黒茶色の金属粒子分散液RP3を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP3を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion RP3 was obtained in the same manner as in Comparative Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP3 was used instead of the metal particle dispersion liquid P1.

[比較例4]
〈粒子調製工程〉
バブリング水450gに硝酸ニッケル六水和物(Ni(NO6HO)(関東化学(株)製)50gと、クエン酸水和物(有機安定化剤)(キシダ化学(株)製)0.5gを溶解し、溶液RA4を調製した。
[Comparative Example 4]
<Particle preparation process>
N 2 bubbling water 450 g, nickel nitrate hexahydrate (Ni (NO 3 ) 26H 2 O ) (manufactured by Kanto Chemical Co., Ltd.) 50 g, citric acid hydrate (organic stabilizer) (Kishida Chemical Co., Ltd.) )) 0.5 g was dissolved to prepare a solution RA4.

溶液A5の代わりに溶液RA4を使用し、Nマイクロナノバブル水の代わりにNバブリング水を使用した以外は、実施例5と同様にした。このとき、液が緑色から黒色に変化した。得られた分散液から金属粒子を遠心分離機により分離回収した。 The same procedure as in Example 5 was carried out except that solution RA4 was used instead of solution A5 and N2 bubbling water was used instead of N2 micro-nano bubble water. At this time, the liquid changed from green to black. Metal particles were separated and recovered from the obtained dispersion by a centrifuge.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、比較例1と同様にして、黒色の金属粒子分散液RP4を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP4を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black metal particle dispersion RP4 was obtained in the same manner as in Comparative Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP4 was used instead of the metal particle dispersion liquid P1.

[比較例5]
〈粒子調製工程〉
比較例1の溶液RA1と同様にして、溶液RA5を調製した。
[Comparative Example 5]
<Particle preparation process>
A solution RA5 was prepared in the same manner as the solution RA1 of Comparative Example 1.

溶液A6の代わりに溶液RA5を使用し、Nマイクロナノバブル水の代わりにNバブリング水を使用した以外は、実施例6と同様にして得られた分散液から、金属粒子を遠心分離機により分離回収した。 Metal particles were centrifuged from the dispersion obtained in the same manner as in Example 6 except that solution RA5 was used instead of solution A6 and N 2 bubbling water was used instead of N 2 micro-nano bubble water. Separated and recovered.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、比較例1と同様にして、黒茶色の金属粒子分散液RP5を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP5を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black-brown metal particle dispersion RP5 was obtained in the same manner as in Comparative Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP5 was used instead of the metal particle dispersion liquid P1.

[比較例6]
〈粒子調製工程〉
バブリング水の代わりにNマイクロナノバブル水を使用する以外は、比較例1と同様にして、粒子調製を行った。
[Comparative Example 6]
<Particle preparation process>
Particles were prepared in the same manner as in Comparative Example 1 except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、実施例1と同様にして、黒茶色の金属粒子分散液RP6を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP6を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black-brown metal particle dispersion RP6 was obtained in the same manner as in Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP6 was used instead of the metal particle dispersion liquid P1.

[比較例7]
〈粒子調製工程〉
バブリング水の代わりにNマイクロナノバブル水を使用する以外は、比較例1と同様にして、粒子調製を行った。
[Comparative Example 7]
<Particle preparation process>
Particles were prepared in the same manner as in Comparative Example 1 except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈洗浄工程〉
比較例1と同様にした。
<Washing process>
The same as in Comparative Example 1.

〈金属粒子分散液の調製、および被膜付基材の作製〉
実施例1と同様にして、黒茶色の金属粒子分散液RP7を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP7を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion and preparation of coated substrate>
A black-brown metal particle dispersion RP7 was obtained in the same manner as in Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP7 was used instead of the metal particle dispersion liquid P1.

[比較例8]
〈粒子調製〉
比較例1と同様にして、粒子調製を行った。
[Comparative Example 8]
<Particle preparation>
Particles were prepared in the same manner as in Comparative Example 1.

〈洗浄工程〉
バブリング水の代わりにNマイクロナノバブル水を用いた以外は、比較例1と同様にした。
<Washing process>
The same procedure as in Comparative Example 1 was carried out except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
比較例1と同様にして、黒茶色の金属粒子分散液RP8を得た。金属粒子分散液P1の代わりに金属粒子分散液RP8を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion RP8 was obtained in the same manner as in Comparative Example 1. A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP8 was used instead of the metal particle dispersion liquid P1.

[比較例9]
〈粒子調製〉
比較例2と同様にして、粒子調製を行った。
[Comparative Example 9]
<Particle preparation>
Particles were prepared in the same manner as in Comparative Example 2.

〈洗浄工程〉
バブリング水の代わりにNマイクロナノバブル水を用いた以外は、比較例1と同様にした。
<Washing process>
The same procedure as in Comparative Example 1 was carried out except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
実施例1と同様にして、黒茶色の金属粒子分散液RP9を得た。
しかしながら、この分散液はすぐに沈殿を生じ、塗布液および被膜付基材の作製は出来なかった。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion RP9 was obtained in the same manner as in Example 1.
However, this dispersion immediately settled, and it was not possible to prepare a coating liquid and a coated base material.

[比較例10]
〈粒子調製工程〉
実施例1と同様にして、Nマイクロナノバブル水を準備した。
マイクロナノバブル水930gにクエン酸3ナトリウム2水和物400gを溶解し、溶液(RS10-1)を調製した。
マイクロナノバブル水500gに硫酸第一鉄7水和物100gを溶解し、溶液(RS10-2)を調製した。
溶液(RS10-1)と溶液(RS10-2)とを混合して30分間攪拌し、溶液RA10を調製した。
溶液A4の代わりに溶液RA10を使用した以外は、実施例4と同様にして得られた分散液から、金属粒子を遠心分離機により分離回収した。
[Comparative Example 10]
<Particle preparation process>
N2 micro-nano bubble water was prepared in the same manner as in Example 1.
400 g of trisodium citrate dihydrate was dissolved in 930 g of N 2 micro-nano bubble water to prepare a solution (RS10-1).
A solution (RS10-2) was prepared by dissolving 100 g of ferrous sulfate heptahydrate in 500 g of N2 micro-nanobubble water.
The solution (RS10-1) and the solution (RS10-2) were mixed and stirred for 30 minutes to prepare a solution RA10.
Metal particles were separated and recovered by a centrifuge from the dispersion obtained in the same manner as in Example 4 except that the solution RA10 was used instead of the solution A4.

〈洗浄工程〉
バブリング水の代わりにNマイクロナノバブル水を使用した以外は、比較例3と同様にした。
<Washing process>
The same procedure as in Comparative Example 3 was carried out except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
実施例1と同様にして、黒茶色の金属粒子分散液RP10を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP10を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
A black-brown metal particle dispersion RP10 was obtained in the same manner as in Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP10 was used instead of the metal particle dispersion liquid P1.

[比較例11]
〈粒子調製工程〉
バブリング水の代わりにNマイクロナノバブル水を使用した以外は、比較例4と同様にした。このとき、液が緑色から黒色に変化した。得られた分散液から金属粒子を遠心分離機により分離回収した。
[Comparative Example 11]
<Particle preparation process>
The same procedure as in Comparative Example 4 was carried out except that N 2 micro-nano bubble water was used instead of N 2 bubbling water. At this time, the liquid changed from green to black. Metal particles were separated and recovered from the obtained dispersion by a centrifuge.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、実施例1と同様にして、黒色の金属粒子分散液RP11を得た。金属粒子分散液P1の代わりに金属粒子分散液RP11を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black metal particle dispersion RP11 was obtained in the same manner as in Example 1. A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP11 was used instead of the metal particle dispersion liquid P1.

[比較例12]
〈粒子調製工程〉
バブリング水の代わりにNマイクロナノバブル水を使用した以外は、比較例5と同様にして得られた分散液から、金属粒子を遠心分離機により分離回収した。
[Comparative Example 12]
<Particle preparation process>
Metal particles were separated and recovered from the dispersion obtained in the same manner as in Comparative Example 5 by a centrifuge, except that N 2 micro-nano bubble water was used instead of N 2 bubbling water.

〈金属粒子分散液の調製、塗布液および被膜付基材の作製〉
洗浄工程以降、実施例1と同様にして、黒茶色の金属粒子分散液RP12を得た。
金属粒子分散液P1の代わりに金属粒子分散液RP12を用いた以外は、実施例1と同様にして、塗布液および被膜付基材を作製し、評価した。
<Preparation of metal particle dispersion liquid, preparation of coating liquid and coated substrate>
After the washing step, a black-brown metal particle dispersion RP12 was obtained in the same manner as in Example 1.
A coating liquid and a coated base material were prepared and evaluated in the same manner as in Example 1 except that the metal particle dispersion liquid RP12 was used instead of the metal particle dispersion liquid P1.

Figure 0007083710000001
Figure 0007083710000001

Figure 0007083710000002
Figure 0007083710000002

本発明の金属粒子分散液は、導電性被膜の形成等に用いることができることから、産業上有用である。 Since the metal particle dispersion liquid of the present invention can be used for forming a conductive film or the like, it is industrially useful.

Claims (5)

有機安定化剤を含まない液の中で金属塩を還元して金属粒子を調製する工程と、
前記金属粒子を洗浄する工程と、
を有し、
平均気泡径が40nm~10μmの、窒素及び希ガスの少なくとも1種の非酸化性ガスからなる微小気泡が、前記液に含まれることを特徴とする金属粒子分散液の製造方法。
The process of reducing metal salts in a liquid that does not contain an organic stabilizer to prepare metal particles, and
The step of cleaning the metal particles and
Have,
A method for producing a metal particle dispersion liquid, which comprises microbubbles having an average bubble diameter of 40 nm to 10 μm and made of at least one non-oxidizing gas of nitrogen and a rare gas in the liquid.
前記洗浄に使用する洗浄液が、予め不活性ガスをバブリングして酸素を除去したバブリング液、及び、前記微小気泡を含む液の少なくとも一方であることを特徴とする請求項1に記載の金属粒子分散液の製造方法。 The metal particle dispersion according to claim 1 , wherein the cleaning liquid used for the cleaning is at least one of a bubbling liquid from which oxygen has been removed by bubbling an inert gas in advance and a liquid containing the fine bubbles. Liquid manufacturing method. 前記金属塩が、4族、5族、6族、8族、9族、10族、11族、13族、14族及び15族から選ばれる金属の塩であることを特徴とする請求項1または2に記載の金属粒子分散液の製造方法。 Claim 1 characterized in that the metal salt is a metal salt selected from Group 4, Group 5, Group 6, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Alternatively, the method for producing a metal particle dispersion liquid according to 2. 請求項1~3のいずれか一項に記載の方法により調製された金属粒子分散液を用いて、金属粒子を含む塗布液を作製する工程と、
基材上に前記塗布液を塗布して、被膜を形成する工程と、
を有することを特徴とする被膜付基材の製造方法。
A step of preparing a coating liquid containing metal particles by using the metal particle dispersion liquid prepared by the method according to any one of claims 1 to 3.
The process of applying the coating liquid on the substrate to form a film, and
A method for producing a coated base material, which comprises.
平均気泡径が40nm~10μmの、窒素及び希ガスの少なくとも1種の非酸化性ガスからなる微小気泡を含む液中に金属粒子が分散し、酸化還元電位が0~300mVであり、前記金属粒子の炭素含有量が、0.1質量%以下であることを特徴とする金属粒子分散液。
The metal particles are dispersed in a liquid containing microbubbles composed of at least one non-oxidizing gas of nitrogen and a rare gas having an average bubble diameter of 40 nm to 10 μm, and have a redox potential of 0 to 300 mV. A metal particle dispersion having a carbon content of 0.1% by mass or less.
JP2018124875A 2018-06-29 2018-06-29 Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate Active JP7083710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124875A JP7083710B2 (en) 2018-06-29 2018-06-29 Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124875A JP7083710B2 (en) 2018-06-29 2018-06-29 Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate

Publications (2)

Publication Number Publication Date
JP2020002444A JP2020002444A (en) 2020-01-09
JP7083710B2 true JP7083710B2 (en) 2022-06-13

Family

ID=69098826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124875A Active JP7083710B2 (en) 2018-06-29 2018-06-29 Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate

Country Status (1)

Country Link
JP (1) JP7083710B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JP2017206750A (en) 2016-05-20 2017-11-24 Hack Japan ホールディングス株式会社 Method for producing metal nanoparticle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080662A1 (en) 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JP2017206750A (en) 2016-05-20 2017-11-24 Hack Japan ホールディングス株式会社 Method for producing metal nanoparticle

Also Published As

Publication number Publication date
JP2020002444A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
WO2010082443A1 (en) Platinum black powder, platinum black colloid, method for producing platinum black powder, and method for producing platinum black colloid
EP3269449A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
TW201631603A (en) Silver-coated copper powder and method for producing same
WO2006126808A1 (en) A manufacturing method of metal-micro particles using pulse-type energy
JP2010150619A (en) Method for producing copper nanoparticle
JP7083710B2 (en) Method for manufacturing metal particle dispersion, metal particle dispersion, and method for manufacturing coated substrate
JP7014663B2 (en) Method for manufacturing alloy particle dispersion
JP7014664B2 (en) Alloy particle dispersion and its manufacturing method
JP7032976B2 (en) Metal particle dispersion and its manufacturing method
JP4244883B2 (en) Method for producing nickel powder
CN108025358B (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
JP7083711B2 (en) Method for manufacturing alloy particle dispersion, alloy particle dispersion, and method for manufacturing coated substrate
JP5828448B2 (en) Method for producing gold colloid
WO2014069208A1 (en) Platinum core shell catalyst, manufacturing method for same, and fuel cell using same
JP7032975B2 (en) Method for manufacturing metal particle dispersion
WO2022209558A1 (en) Copper particles and method for producing same
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP2012240006A (en) Method for manufacturing catalyst
JP2009215503A (en) Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent
JP6100563B2 (en) Method for producing nickel nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220601

R150 Certificate of patent or registration of utility model

Ref document number: 7083710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150