JP2019177212A - Robotic bed, and intraoperative mri system - Google Patents

Robotic bed, and intraoperative mri system Download PDF

Info

Publication number
JP2019177212A
JP2019177212A JP2019119874A JP2019119874A JP2019177212A JP 2019177212 A JP2019177212 A JP 2019177212A JP 2019119874 A JP2019119874 A JP 2019119874A JP 2019119874 A JP2019119874 A JP 2019119874A JP 2019177212 A JP2019177212 A JP 2019177212A
Authority
JP
Japan
Prior art keywords
robot arm
mri
movable element
patient
robotic bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119874A
Other languages
Japanese (ja)
Other versions
JP6780066B2 (en
Inventor
平塚 充一
Atsuichi Hiratsuka
充一 平塚
徹弥 中西
Tetsuya Nakanishi
徹弥 中西
北野 幸彦
Yukihiko Kitano
幸彦 北野
佑太郎 矢野
Yutaro Yano
佑太郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medicaroid Corp
Original Assignee
Medicaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medicaroid Corp filed Critical Medicaroid Corp
Priority to JP2019119874A priority Critical patent/JP6780066B2/en
Publication of JP2019177212A publication Critical patent/JP2019177212A/en
Application granted granted Critical
Publication of JP6780066B2 publication Critical patent/JP6780066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

To achieve effective and correct transfer of a patient between MRI photographing and MRI surgical operation.SOLUTION: A robotic bed comprises: a table on which a patient is mounted; a robot arm configured to move the table to a plurality of different positions; and a slide mechanism for sliding the table. The plurality of different positions include, a mount position where the patient is mounted on the table, a treatment position where an operator treats the patient, and an MRI photographing preparation position which is separated from an MRI photographing position where the patient is photographed by an MRI device. The robot arm is configured to move the table to the mount position, the treatment position and the MRI photographing preparation position. The slide mechanism is configured to move the table to the MRI photographing preparation position and the MRI photographing position.SELECTED DRAWING: Figure 1

Description

本発明は、術中MRI(Magnetic Resonance Imaging)用のロボティックベッド、及び術中MRIシステムに関する。   The present invention relates to a robotic bed for intraoperative MRI (Magnetic Resonance Imaging) and an intraoperative MRI system.

近年、手術室内にMRI装置を配置し、そのMRI装置で生体情報を撮影した直後に同室内で治療を行う術中MRIのニーズが増えつつある。典型的には、脳腫瘍を摘出するための脳神経外科手術において術中MRIが用いられてきた(非特許文献1参照)。   In recent years, there is an increasing need for intraoperative MRI in which an MRI apparatus is disposed in an operating room and treatment is performed in the same room immediately after biometric information is captured by the MRI apparatus. Typically, intraoperative MRI has been used in neurosurgery to remove brain tumors (see Non-Patent Document 1).

術中MRIを行う方式のひとつとして、旋回スライド式のベッド(患者が載置されるテーブルの下方に旋回機構およびスライド機構が設けられたもの)を用いて、オープン型またはドーナツ型のMRI装置内に患者を頭部側から搬送する方式が用いられている(例えば、特許文献1参照)。この方式では、MRI装置から前方に離れた位置に基点が設定されるとともに、その基点から90度の角度方向に手術スペースが設定されている。そして、旋回スライド式のベッドはキャスター付のベースを含み、このベースが前記基点に固定されたピン回りに旋回されることによって、ベッドが手術スペースとMRI装置の正面との間で移動される。ベッドがMRI装置の正面に移動されると、スライド機構によりテーブルがMRI装置内に挿入され、患者の搬送が完了する。   As one of the methods for performing intraoperative MRI, a swivel slide type bed (with a swivel mechanism and a slide mechanism provided below a table on which a patient is placed) is used in an open type or donut type MRI apparatus. A method of transporting a patient from the head side is used (for example, see Patent Document 1). In this method, a base point is set at a position distant from the MRI apparatus, and a surgical space is set in an angle direction of 90 degrees from the base point. The swivel slide bed includes a base with casters, and the base is swung around a pin fixed to the base point to move the bed between the surgical space and the front of the MRI apparatus. When the bed is moved to the front of the MRI apparatus, the table is inserted into the MRI apparatus by the slide mechanism, and the transportation of the patient is completed.

他に、回転スライド式のベッド(患者が載置されるテーブルの下方に回転機構およびスライド機構が設けられたもの)を用いて、患者の頭部がMRI装置から最も離れた状態(MRI装置から5ガウスラインの外側)で開頭術を行い、その後にベッドを180度回転させるとともにオープン型のMRI装置に向かってスライドさせて、MRI装置内に患者の頭部を搬送する方式もとられていた(例えば、非特許文献2参照)。   In addition, the patient's head is farthest from the MRI apparatus (from the MRI apparatus) by using a rotating slide type bed (with a rotating mechanism and a sliding mechanism provided below the table on which the patient is placed). Craniotomy was performed on the outside of the 5 gauss line, and then the bed was rotated 180 degrees and slid toward the open MRI apparatus to transport the patient's head into the MRI apparatus. (For example, refer nonpatent literature 2).

一方、放射線治療においては、ロボティックベッド(患者が載置されるテーブルがロボットアームにより移動させられるもの)を用いてテーブルの位置及び配向の調整を可能とし、自動患者位置合わせ及び再位置合わせを行って正確な放射線照射位置を決定することが行われている(例えば、特許文献2参照)。また、足の付け根、肘、手首などの動脈からカテーテルという細い管を目的の臓器に誘導し、X線が透過しない造影剤(ヨード造影剤)を血管内に注入した後、蛍光透視法のようなX線を用いた画像処理を行う血管造影法においても、放射線治療と同じような用途でロボティックベッドが用いられている(例えば、特許文献3参照)。   On the other hand, in radiotherapy, a robotic bed (a table on which a patient is placed is moved by a robot arm) can be used to adjust the position and orientation of the table, and automatic patient alignment and repositioning can be performed. It is performed to determine an accurate radiation irradiation position (see, for example, Patent Document 2). In addition, a thin tube called a catheter is guided from the arteries such as the base of the foot, elbow, and wrist to the target organ, and a contrast medium (iodine contrast medium) that does not transmit X-rays is injected into the blood vessel. In angiography that performs image processing using simple X-rays, a robotic bed is used for the same purpose as radiotherapy (for example, see Patent Document 3).

特開2010−94291号公報JP 2010-94291 A 特開2009−131718号公報JP 2009-131718 A 米国特許第8548629号明細書U.S. Pat. No. 8,548,629 特表2007−503237号公報Special table 2007-503237 gazette

「術中MRIガイドライン」、術中MRIガイドライン作成委員会、日本術中画像情報学会、2014年7月“Intraoperative MRI Guidelines”, Committee for Intraoperative MRI Guidelines, Japan Intraoperative Imaging Information Society, July 2014 梶田泰一、外1名、「Brain THEATER:MRI誘導・ニューロナビゲーション一体型脳神経外科手術室と手術支援情報ネットワークシステム」、MEDIX、株式会社日立メディコ、2006年9月、vol. 45、p. 4-9Taiichi Hirota, 1 other person, “Brain THEATER: MRI-guided / neuro-navigation integrated neurosurgery operating room and operation support information network system”, MEDIX, Hitachi Medical, Inc., September 2006, vol. 45, p. 4 -9

特許文献4や非特許文献1に記載しているように、MRI装置は通常強い静磁場を有するため、はさみやメスといった手術器具が影響を受けて(例えば浮揚して)患者を傷つけるといったことがないように5ガウスライン外での手術位置の確保が推奨されるなど、安全面での配慮が必須となっている。また、MRI装置において撮影時に形成される磁界が外部環境によって影響を受け、MRI撮影画像の劣化に繋がらないようにという配慮も必要であった。そのため、術中MRIを行うための手術室を設計するには制限事項が多く、慎重な検討が必要であった。   As described in Patent Document 4 and Non-Patent Document 1, since an MRI apparatus usually has a strong static magnetic field, surgical instruments such as scissors and a scalpel are affected (for example, levitated) to injure a patient. Safety considerations are indispensable, for example, securing a surgical position outside the 5 Gauss line is recommended. In addition, it is necessary to consider that the magnetic field formed during imaging in the MRI apparatus is affected by the external environment and does not lead to deterioration of the MRI image. Therefore, there are many restrictions on designing an operating room for performing intraoperative MRI, and careful examination is required.

この点において、従来用いられていた旋回スライド式のベッドでは、手術スペースをMRI装置から遠くに設定できるものであったが、ベッドを手術スペースとMRI装置の正面との間で移動する際に、ベッドを人力で押して旋回させなければならず、テーブルの移動に時間を要していた。また、人手で移動させるため搬送時の振動がさけられず、搬送位置の正確性も人が担保する必要があった。   In this regard, the swivel slide type bed that has been used conventionally can set the surgical space far from the MRI apparatus, but when moving the bed between the surgical space and the front of the MRI apparatus, The bed had to be pushed manually and swiveled, and it took time to move the table. Moreover, since it is moved manually, vibration during transportation is avoided, and it is necessary for the person to ensure the accuracy of the transportation position.

一方、回転スライド式のベッドでは、手術スペースをMRI装置から十分に離すことができず、用いる手術器具等に制限があるという問題があった。   On the other hand, the rotating slide type bed has a problem that the surgical space cannot be sufficiently separated from the MRI apparatus, and there is a limitation in the surgical instrument to be used.

さらに、患者を動かす必要がなく、MRI装置の静磁場対策も可能なように、MRI装置を移動させて術中MRIを行うMRI移動式(例えば、非特許文献1参照)も存在するが、大型のMRI装置を移動させる仕組みや大きな空間が必要という点、移動速度、コスト等の点で問題があった。   Furthermore, there is an MRI mobile type (for example, see Non-Patent Document 1) in which an MRI apparatus is moved to perform intraoperative MRI so that it is not necessary to move the patient and the MRI apparatus can cope with a static magnetic field. There were problems in terms of the mechanism for moving the MRI apparatus and the need for a large space, moving speed, cost, and the like.

なお、特許文献2,3に開示されたロボティックベッドは、放射線やX線の照射位置を位置決めするものであり、術中MRI等他の用途に特有の要求を満たすようには設計されていない。   Note that the robotic beds disclosed in Patent Documents 2 and 3 are for positioning radiation and X-ray irradiation positions, and are not designed to satisfy specific requirements for other uses such as intraoperative MRI.

そして、医療現場においては、術中MRIの症例増加とともに、効率的かつ正確なMRI撮影−手術間の患者の移送を実現することが求められている。   In the medical field, it is required to realize efficient and accurate transfer of patients between MRI imaging and surgery as the number of intraoperative MRI cases increases.

そこで、本発明は、効率的かつ正確なMRI撮影−手術間の患者の移送を実現することを目的とする。   Accordingly, an object of the present invention is to realize efficient and accurate transfer of a patient between MRI imaging and surgery.

前記課題を解決するために、本発明は、患者を載置するためのテーブルと、ベースと、複数のジョイントによって接続される複数の可動要素と、前記複数のジョイントのそれぞれに割り当てられ前記複数の可動要素を駆動する複数のアクチュエータと、前記複数の可動要素の位置を検出する複数の位置検出器と、を含み、前記テーブルを複数の異なる位置に移動させるように構成されたロボットアームと、前記テーブルをスライドさせるためのスライド機構と、を備えており、前記複数の異なる位置は、患者を前記テーブルに載置する載置位置と、術者が患者を治療するための治療位置と、患者をMRI装置で撮影するためのMRI撮影位置から離れた位置にあるMRI撮影準備位置と、を含み、前記ロボットアームは、前記載置位置、前記治療位置および前記MRI撮影準備位置に前記テーブルを移動させるように構成されており、前記スライド機構は、前記MRI撮影準備位置および前記MRI撮影位置に前記テーブルを移動させるように構成されていることを特徴とするロボティックベッドを提供する。   In order to solve the above problems, the present invention provides a table for placing a patient, a base, a plurality of movable elements connected by a plurality of joints, and the plurality of joints assigned to each of the plurality of joints. A plurality of actuators for driving a movable element; and a plurality of position detectors for detecting positions of the plurality of movable elements; and a robot arm configured to move the table to a plurality of different positions; A slide mechanism for sliding the table, and the plurality of different positions include a placement position for placing the patient on the table, a treatment position for the surgeon to treat the patient, and a patient An MRI imaging preparation position at a position distant from the MRI imaging position for imaging with an MRI apparatus, and the robot arm has the mounting position, The table is configured to move to a treatment position and the MRI imaging preparation position, and the slide mechanism is configured to move the table to the MRI imaging preparation position and the MRI imaging position. Providing a characteristic robotic bed.

上記の構成によれば、ロボットアームの駆動によってテーブルを治療位置とMRI撮影位置またはMRI撮影準備位置との間を移動させることができるので、効率的かつ正確なMRI撮影−手術間の患者の移送を実現できる。   According to the above configuration, since the table can be moved between the treatment position and the MRI imaging position or the MRI imaging preparation position by driving the robot arm, the patient can be efficiently and accurately transferred between the MRI imaging and the operation. Can be realized.

本発明によれば、効率的かつ正確なMRI撮影−手術間の患者の移送を実現することができる。その結果、手術成績向上という際立って優れた効果を促進するのに貢献することができる。   According to the present invention, it is possible to realize efficient and accurate transfer of a patient between MRI imaging and surgery. As a result, it is possible to contribute to promoting a remarkable effect of improving surgical results.

ロボットアームの第1の構成例の側面図である。It is a side view of the 1st example of composition of a robot arm. アクチュエータ、位置決め装置、ブレーキ機構を1ユニット化した場合の概念図である。It is a conceptual diagram at the time of uniting an actuator, a positioning device, and a brake mechanism. ロボットアームの第1の構成例において最少自由度を有する構成の例を示す側面図である。It is a side view which shows the example of a structure which has the minimum freedom degree in the 1st structural example of a robot arm. ロボットアームの第1の構成例が配置された医療室の平面図であり、テーブルが載置位置にある状態を示す。It is a top view of the medical room where the 1st example of composition of a robot arm is arranged, and shows the state where a table exists in a loading position. ロボットアームの第1の構成例が配置された医療室の平面図であり、テーブルが検査準備位置にある状態を示す。It is a top view of the medical room where the 1st example of composition of a robot arm is arranged, and shows the state where a table exists in a test preparation position. ロボットアームの第1の構成例が配置された医療室の平面図であり、テーブルが検査位置にある状態を示す。It is a top view of the medical room where the 1st example of composition of a robot arm is arranged, and shows the state where a table exists in an inspection position. ロボットアームの第2の構成例の側面図である。It is a side view of the 2nd example of composition of a robot arm. ロボットアームの第2の構成例で、テーブルがMRI撮影位置にある状態を示した斜視図である。It is the perspective view which showed the state which has a table in a MRI imaging position in the 2nd structural example of a robot arm. ロボットアームの第3の構成例の斜視図である。It is a perspective view of the 3rd example of composition of a robot arm. ロボットアームの第3の構成例の側面図である。It is a side view of the 3rd example of composition of a robot arm. ロボットアームの第3の構成例の変形例の側面図である。It is a side view of the modification of the 3rd structural example of a robot arm. ロボットアームの第3の構成例の最少自由度を有する構成の例を示す側面図である。It is a side view which shows the example of the structure which has the minimum freedom degree of the 3rd structural example of a robot arm. ロボットアームの第3の構成例が配置された医療室の平面図であり、テーブルが載置位置にある状態を示す。It is a top view of the medical room where the 3rd structural example of a robot arm is arrange | positioned, and shows the state which has a table in a mounting position. ロボットアームの第3の構成例が配置された医療室の平面図であり、テーブルが検査位置へ移動している途中の状態を示す。It is a top view of the medical room by which the 3rd structural example of a robot arm is arrange | positioned, and shows the state in the middle of the table moving to the test | inspection position. ロボットアームの第3の構成例が配置された医療室の平面図であり、テーブルが検査位置にある状態を示す。It is a top view of the medical room where the 3rd example of composition of a robot arm is arranged, and shows the state where a table exists in an inspection position. ロボットアームの第4の構成例の斜視図である。It is a perspective view of the 4th example of composition of a robot arm. ロボットアームの第4の構成例の側面図である。It is a side view of the 4th example of composition of a robot arm. ロボットアームの第4の構成例の最少自由度を有する構成の例を示す側面図である。It is a side view which shows the example of the structure which has the minimum freedom degree of the 4th structural example of a robot arm. ロボットアームの第4の構成例が配置された医療室の平面図であり、テーブルが載置位置にある状態を示す。It is a top view of the medical room by which the 4th structural example of a robot arm is arrange | positioned, and shows the state which has a table in a mounting position. ロボットアームの第4の構成例が配置された医療室の平面図であり、テーブルが検査位置へ移動している途中の状態を示す。It is a top view of the medical room where the 4th example of composition of a robot arm is arranged, and shows the state in the middle of a table moving to an inspection position. ロボットアームの第4の構成例が配置された医療室の平面図であり、テーブルが検査位置にある状態を示す。It is a top view of the medical room where the 4th example of composition of a robot arm is arranged, and shows the state where a table exists in an inspection position. ロボットアームの第5の構成例に用いられるスライド機構の例を示す図である。It is a figure which shows the example of the slide mechanism used for the 5th structural example of a robot arm. ロボットアームの第5の構成例に用いられる、アクチュエータの駆動によりスライドされるように制御可能なスライド機構の例を示す図である。It is a figure which shows the example of the slide mechanism which can be controlled to be slid by the drive of an actuator used for the 5th structural example of a robot arm. ロボットアームの第5の構成例が配置された医療室の平面図であり、テーブルが載置位置にある状態を示す。It is a top view of the medical room where the 5th example of composition of a robot arm is arranged, and shows the state where a table is in a loading position. ロボットアームの第5の構成例が配置された医療室の平面図であり、テーブルが検査準備位置にある状態を示す。It is a top view of the medical room where the 5th example of composition of a robot arm is arranged, and shows the state where a table exists in a test preparation position. ロボットアームの第5の構成例が配置された医療室の平面図であり、スライド板が検査位置にある状態を示す。It is a top view of the medical room where the 5th example of composition of a robot arm is arranged, and shows the state where a slide board is in an inspection position. ロボットアームの第5の構成例の他の例の側面図である。It is a side view of other examples of the 5th example of composition of a robot arm. ロボットアームの第5の構成例の他の例が配置された医療室の平面図であり、テーブルが載置位置にある状態を示す。It is a top view of the medical room by which the other example of the 5th structural example of a robot arm is arrange | positioned, and shows the state which has a table in a mounting position. ロボットアームの第5の構成例の他の例が配置された医療室の平面図であり、テーブルが検査準備位置に移動している途中の状態を示す。It is a top view of the medical room by which the other example of the 5th structural example of a robot arm is arrange | positioned, and shows the state in the middle of the table moving to the test preparation position. ロボットアームの第5の構成例の他の例が配置された医療室の平面図であり、テーブルが検査準備位置に到達した後、スライド機構により検査位置にスライドして到達した状態を示す。It is a top view of the medical room where the other example of the 5th example of composition of a robot arm is arranged, and shows the state where it reached the inspection position by the slide mechanism after the table reached the inspection preparation position. 撓み補正機能によりロボットアームを制御する例を示す図である。It is a figure which shows the example which controls a robot arm by a bending correction function. 撓み補正機能によりロボットアームを制御する他の例を示す図である。It is a figure which shows the other example which controls a robot arm by a bending correction function. MRI装置の斜視図である。It is a perspective view of an MRI apparatus. ロボットアームの第5の構成例の他の例が術中MRIに適用された場合の斜視図でありテーブルが治療位置にある状態を示す。It is a perspective view at the time of other examples of the 5th example of composition of a robot arm being applied to intraoperative MRI, and shows the state where a table is in a treatment position. ロボットアームの第5の構成例の他の例が術中MRIに適用された場合の斜視図であり、テーブルがMRI撮影準備位置にある状態を示す。It is a perspective view at the time of other examples of the 5th example of composition of a robot arm being applied to intraoperative MRI, and shows the state where a table exists in a MRI imaging preparation position. ロボットアームの第5の構成例の他の例が術中MRIに適用された場合の斜視図であり、テーブルがMRI撮影位置にある状態を示す。It is a perspective view at the time of other examples of the 5th example of composition of a robot arm being applied to intraoperative MRI, and shows the state where a table exists in a MRI imaging position. ロボットアームの第4の構成例がアンギオ装置と組み合わされた場合の斜視図であり、テーブルがアンギオ装置のC型アーム内に挿入される前の状態を示す。It is a perspective view at the time of combining the 4th structural example of a robot arm with an angio apparatus, and shows the state before a table is inserted in the C-type arm of an angio apparatus. ロボットアームの第4の構成例がアンギオ装置と組み合わされた場合の斜視図であり、テーブルがアンギオ装置のC型アーム内に挿入された後の状態を示す。It is a perspective view at the time of combining the 4th structural example of a robot arm with an angio apparatus, and shows the state after a table is inserted in the C-type arm of an angio apparatus. ロボットアームの第4の構成例が手術支援ロボットと組み合わされた場合の斜視図である。It is a perspective view at the time of combining the 4th structural example of a robot arm with a surgery assistance robot. 制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a control apparatus.

医療現場においては様々な場面において安全性を保ちながら、効率的かつ精度の高い治療・検査・測定などのために医療現場の改善の試みがなされている。本発明においては、載置対象物を載置するテーブルを、多自由度(3自由度以上)を有するロボットアームによって支持したロボティックベッドを医療現場に導入することにより、これらを促進することを提案する。   In the medical field, attempts are being made to improve the medical field for efficient, highly accurate treatment, inspection, and measurement while maintaining safety in various situations. In the present invention, by introducing a robotic bed in which a table on which an object is placed is supported by a robot arm having multiple degrees of freedom (more than 3 degrees of freedom) to a medical site, these are promoted. suggest.

[ロボティックベッドの構成]
(第1の構成例)
図1に、本発明の第1の構成例に係るロボティックベッドの側面図を示す。ロボティックベッドに用いられるロボットアーム101は、多自由度(3自由度以上)を有し、その先端で載置対象物が載置されるテーブル108を支持する。テーブル108およびロボットアーム101は、ロボティックベッドを構成する。
[Robotic bed configuration]
(First configuration example)
FIG. 1 shows a side view of a robotic bed according to a first configuration example of the present invention. The robot arm 101 used for the robotic bed has multiple degrees of freedom (3 degrees of freedom or more), and supports the table 108 on which the placement target is placed at the tip thereof. The table 108 and the robot arm 101 constitute a robotic bed.

図1に示すように、ロボットアーム101は、ベース121と、複数の可動要素(本構成例では、第1〜第4可動要素122〜125)と、複数のジョイント(本構成例では、第1〜第6ジョイント131〜136)を含む。   As shown in FIG. 1, the robot arm 101 includes a base 121, a plurality of movable elements (first to fourth movable elements 122 to 125 in this configuration example), and a plurality of joints (first configuration in this configuration example). -6th joints 131-136).

ベース121と第1可動要素122の一端部は鉛直直進ジョイントである第1ジョイント131によって連結されており、可動要素122は第1軸方向(鉛直方向)に移動することができる。第1可動要素122の他端部と第2可動要素123の一端部は水平回転ジョイントで連結されており、第2軸(鉛直方向)まわりに可動要素123が回転することができる。第2可動要素123の他端部と第3可動要素124の一端部は水平回転ジョイントで連結されており、第3軸(鉛直方向)まわりに第3可動要素124が回転することができる。第3可動要素124と第4可動要素125の間の第4〜第6ジョイント134〜136は、それぞれ、第4〜第6軸回りの回転ジョイントである。第4軸は第3可動要素124の延びる方向であり、第5軸は第4ジョイント134によって回転される、第4軸と直交する方向であり、第6軸は、第5ジョイント135によって回転される、第5軸と直交する方向である。なお、図1では、第1〜第6ジョイント131〜136の作動方向を矢印JT1〜JT6で表している。   One end of the base 121 and the first movable element 122 is connected by a first joint 131 that is a vertical rectilinear joint, and the movable element 122 can move in the first axial direction (vertical direction). The other end of the first movable element 122 and one end of the second movable element 123 are connected by a horizontal rotary joint, and the movable element 123 can rotate around the second axis (vertical direction). The other end of the second movable element 123 and one end of the third movable element 124 are connected by a horizontal rotary joint, and the third movable element 124 can rotate about the third axis (vertical direction). The fourth to sixth joints 134 to 136 between the third movable element 124 and the fourth movable element 125 are rotary joints around the fourth to sixth axes, respectively. The fourth axis is a direction in which the third movable element 124 extends, the fifth axis is a direction orthogonal to the fourth axis rotated by the fourth joint 134, and the sixth axis is rotated by the fifth joint 135. The direction is perpendicular to the fifth axis. In FIG. 1, the operating directions of the first to sixth joints 131 to 136 are represented by arrows JT1 to JT6.

第2可動要素123と第3可動要素124は特定方向に延びる棒状となっており、長さはロボットアーム101の必要な可動範囲に応じて適宜設計される。特定方向に延びる可動要素の「一端部」とは、可動要素を特定方向(長手方向)に三等分したときの両側2つの領域のどちらかをいい、特定方向に延びる可動要素の「他端部」とは、可動要素を特定方向(長手方向)に三等分したときの両側2つの領域の一端部とは反対側の端部をいう。単に「端部」という場合には、一端部又は他端部のどちらかをいう。両端部の間にある部分は「中央部」という。   The second movable element 123 and the third movable element 124 have rod shapes extending in a specific direction, and the length is appropriately designed according to the necessary movable range of the robot arm 101. The “one end” of the movable element extending in a specific direction refers to one of two regions on both sides when the movable element is divided into three equal parts in the specific direction (longitudinal direction). “Part” means an end on the opposite side to one end of two regions on both sides when the movable element is divided into three equal parts in a specific direction (longitudinal direction). When it is simply referred to as “end part”, it means either one end part or the other end part. The part between both ends is called “central part”.

第4可動要素125は、ロボットアーム101の先端に位置している。本構成例では、ロボットアーム101の先端が、特定方向に延びるテーブル108の一端部の下面に固定されている。   The fourth movable element 125 is located at the tip of the robot arm 101. In this configuration example, the tip of the robot arm 101 is fixed to the lower surface of one end of the table 108 extending in a specific direction.

ロボットアーム101は、第1〜第6ジョイント131〜136に対応して、第1〜第4可動要素122〜125を移動又は回転させる複数のアクチュエータ(本構成例では、第1〜第6アクチュエータ141〜146)と、それぞれのジョイントに組み込まれそれぞれの可動要素の位置を検出する複数の位置検出器(本構成例では、第1〜第6位置検出器151〜156)と、それぞれのアクチュエータの駆動を制御する制御装置107(図1参照)を含む。制御装置107はベース121内に位置しているが、例えば外部の独立した装置としてもよい。   The robot arm 101 includes a plurality of actuators (in this configuration example, the first to sixth actuators 141 that move or rotate the first to fourth movable elements 122 to 125 corresponding to the first to sixth joints 131 to 136. 146), a plurality of position detectors (in the present configuration example, first to sixth position detectors 151 to 156) that are incorporated in the respective joints and detect the positions of the respective movable elements, and driving of the respective actuators The control apparatus 107 (refer FIG. 1) which controls is included. The control device 107 is located in the base 121, but may be an external independent device, for example.

第1〜第6アクチュエータ141〜146は、例えばサーボモータである。位置検出器としてはモータの回転角や方向を検出するエンコーダを用いるのが一般的であるが、レゾルバやポテンショメータを用いても構わない。   The first to sixth actuators 141 to 146 are, for example, servo motors. As a position detector, an encoder that detects the rotation angle and direction of a motor is generally used, but a resolver or a potentiometer may be used.

ロボットアーム101はまた、第1〜第6ジョイント131〜136に対応して、それぞれ、第1〜第6電磁ブレーキ161〜166を含むことが望ましい。電磁ブレーキを備えていない場合は、複数のアクチュエータ141〜146の駆動によりロボットアーム101の姿勢を一定に保つことになるが、電磁ブレーキを含んでいると、ある部分のアクチュエータの駆動をオフにしても電磁ブレーキ機能をオンとすることにより、ロボットアーム101の姿勢を一定に保つことができる。   The robot arm 101 preferably includes first to sixth electromagnetic brakes 161 to 166 corresponding to the first to sixth joints 131 to 136, respectively. When the electromagnetic brake is not provided, the posture of the robot arm 101 is kept constant by driving the plurality of actuators 141 to 146. However, if the electromagnetic brake is included, the driving of the actuator of a certain part is turned off. Also, by turning on the electromagnetic brake function, the posture of the robot arm 101 can be kept constant.

電磁ブレーキが設けられる場合の第1〜第6電磁ブレーキ161〜166それぞれは、アクチュエータへ駆動電流が供給されないときにブレーキ機能をオンにし、アクチュエータへ駆動電流が供給されたときにブレーキ機能をオフにするように構成されている。   When the electromagnetic brake is provided, each of the first to sixth electromagnetic brakes 161 to 166 turns on the brake function when the drive current is not supplied to the actuator, and turns off the brake function when the drive current is supplied to the actuator. Is configured to do.

アクチュエータとしてのモータ、位置検出器としてのエンコーダ、及びブレーキは、図2に示すように一体化したユニットとして構成されることが多い。さらに、第1〜第6アクチュエータ141〜146のそれぞれには、動力伝達用の減速機構およびカップリングなどが設けられる。   The motor as the actuator, the encoder as the position detector, and the brake are often configured as an integrated unit as shown in FIG. Further, each of the first to sixth actuators 141 to 146 is provided with a power transmission speed reduction mechanism and a coupling.

以上、図1に示したロボットアーム101は、自由度が6であるが、本発明のロボットアームの自由度は、必ずしも6である必要はなく、5以下であってもよいし7以上であってもよい。しかしながら、ロボットアームの自由度は、テーブル108を少なくとも空間内で直線的に移動できるように3以上であることが望ましい。図3に自由度が3であるロボティックベッドの例を示す。図3において、ロボットアーム301はベース321と2つの可動要素322及び323から構成され、ベース321と第1可動要素322の一端部は鉛直直進ジョイントである第1ジョイント331によって連結されており、第1可動要素322は第1軸方向(鉛直方向)に移動することができる。第1可動要素322の他端部と第2可動要素323の一端部は水平回転ジョイントで連結されており、第2軸(鉛直方向)まわりに第2可動要素323が回転することができる。第2可動要素323の他端部がロボットアーム301の先端を構成し、テーブル308の一端部と水平回転ジョイントで連結されている。   As described above, the robot arm 101 shown in FIG. 1 has six degrees of freedom. However, the degree of freedom of the robot arm of the present invention does not necessarily have to be 6, and may be 5 or less, or 7 or more. May be. However, the degree of freedom of the robot arm is preferably 3 or more so that the table 108 can be moved linearly at least in the space. FIG. 3 shows an example of a robotic bed having 3 degrees of freedom. In FIG. 3, the robot arm 301 includes a base 321 and two movable elements 322 and 323. One end of the base 321 and the first movable element 322 is connected by a first joint 331 that is a vertical rectilinear joint. The one movable element 322 can move in the first axial direction (vertical direction). The other end of the first movable element 322 and one end of the second movable element 323 are connected by a horizontal rotary joint, and the second movable element 323 can rotate around the second axis (vertical direction). The other end of the second movable element 323 constitutes the tip of the robot arm 301 and is connected to one end of the table 308 by a horizontal rotary joint.

以上のように構成されたロボティックベッドを用いれば、テーブル上に載置対象物を載置した後、テーブルを検査位置や治療位置といった目的とする位置に正確かつ迅速に移動させることができ、医療現場における検査や治療の効率を格段に向上させることができる。例えば、キャスター付きのテーブルにより患者を移動させるのと比較して、患者に大きな振動を与えることなくテーブルをスムーズに移動させることができる他、医療室の床上に多数存在する医療機器に付随するコード類や医療器具に付随するチューブ類との絡まりやこれらを跨ぐことによるテーブルのがたつき回避することができ、安全性と移動効率を高めることができる。   By using the robotic bed configured as described above, after placing the placement object on the table, the table can be accurately and quickly moved to a target position such as an inspection position or a treatment position, The efficiency of examination and treatment in the medical field can be greatly improved. For example, compared to moving a patient with a table with casters, the table can be moved smoothly without giving a large vibration to the patient, and a code associated with many medical devices existing on the floor of a medical room It is possible to avoid tangles with tubes and tubes attached to medical devices and table rattling caused by straddling them, and safety and movement efficiency can be improved.

ロボティックベッドが目標とすべき位置としては、人体や動物などの載置対象を載置するための載置位置、特定の検査機器や測定機器によって検査を行うための検査位置、CT/MRI/血管造影などで載置対象物の特定部位を撮影する撮影位置、看護師などが治療前に手当てを施すための治療準備位置、医師や助手が治療(手術を含む)を行う治療位置(手術位置を含む)などである。例えば、異なる治療を複数か所で行う場合など、同じ目的でも異なる位置に移動させることもありえる。具体的には、テーブルをMRI撮影位置に移動させる前にMRI撮影に影響を与えるインプラントなどが載置対象物に含まれていないかを検査装置により検査するための検査位置に移動させたり、載置対象となる患者を手術位置に移動させる前に、放射線物質の付着量を検出装置により検出するための検査位置にテーブルを移動させたり、載置対象である患者に皮膚手術を行うために手術位置に移動させる前に、皮膚状態を検査するために検査位置に移動させたり、脳腫瘍摘出手術のために手術位置に移動させる前に、脳の断層撮影を行うためにMRI装置による撮影位置にテーブルを移動させたり、といった用途が考えられる。   The target position of the robotic bed includes a mounting position for mounting a mounting target such as a human body or an animal, an inspection position for performing an inspection by a specific inspection device or measuring device, CT / MRI / An imaging position for imaging a specific part of an object to be placed by angiography, a treatment preparation position for nurses to give care before treatment, a treatment position (operating position) where a doctor or assistant performs treatment (including surgery) Etc.). For example, when different treatments are performed at a plurality of places, the same purpose may be moved to different positions. Specifically, before moving the table to the MRI imaging position, the table is moved to an inspection position for inspecting by the inspection apparatus whether an implant or the like that affects MRI imaging is included in the mounting object. Before moving the patient to be placed to the surgical position, the table is moved to the examination position for detecting the amount of radioactive substance attached by the detection device, or surgery is performed to perform skin surgery on the patient to be placed. Before moving to a position, a table is placed at the imaging position by the MRI apparatus to perform tomographic imaging of the brain before moving to an examination position for examining the skin condition or to moving to an operating position for brain tumor extraction surgery. It can be used for moving.

本実施例に係るロボットアーム101に支持されたテーブル108を複数の位置の間で移動させる動作を図4〜図6に説明する。   The operation of moving the table 108 supported by the robot arm 101 according to this embodiment between a plurality of positions will be described with reference to FIGS.

図4は、ある載置対象である被験者を、載置位置からある検査装置により検査を行う検査位置へ移動させる際に、テーブル108が載置位置に位置している様子を示している。図5は、制御装置107によって第2可動要素123及び第3可動要素124が矢印の如く動いて、また第6軸まわりの回転によりテーブル108が矢印の如く動いて(場合によっては、第1可動要素122も鉛直方向に動いて高さが調節され、また第4軸又は/及び第5軸まわりの回転によりテーブルの傾きが微調整され)被験者の頭部が検査装置414の方向に向けられた様子を示している。図6はテーブル108が検査装置414の内部に挿入され、被験者が検査位置に到達した様子を示している。なお、図4におけるテーブル108の位置は治療位置でもあり得、テーブル108が図6の検査位置から図4の位置まで各可動要素が逆方向に動いて元の位置に戻り、検査直後に検査結果を判断して医師412が治療を行うことができる。   FIG. 4 shows a state in which the table 108 is positioned at the mounting position when a subject to be mounted is moved from the mounting position to an inspection position for inspection by a certain inspection apparatus. In FIG. 5, the second movable element 123 and the third movable element 124 are moved as indicated by arrows by the control device 107, and the table 108 is moved as indicated by the arrows by rotation around the sixth axis (in some cases, the first movable element is movable). The height of the element 122 is adjusted by moving in the vertical direction, and the tilt of the table is finely adjusted by rotation around the fourth axis and / or the fifth axis). The subject's head is directed toward the inspection device 414. It shows a state. FIG. 6 shows a state where the table 108 is inserted into the inspection apparatus 414 and the subject reaches the inspection position. The position of the table 108 in FIG. 4 can also be a treatment position, and the table 108 moves back from the inspection position in FIG. 6 to the position in FIG. 4 to return to the original position. Thus, the doctor 412 can perform treatment.

ロボットアーム101による各位置間でのテーブル108の移動は、例えばティーチペンダントによって制御装置107に指令を与え、ロボットアーム101の可動要素を動かすことによって行うことができる。また、治療位置および検査位置などの各位置を予め制御装置107に記憶させておけば、例えば前進指令を制御装置に与えるだけで目標とする位置に最短で移動するように可動要素が動作するので、目標とする位置へのテーブル108の移動をより早くかつスムーズに行うことができる。さらに、目標位置と移動させたい経路上のいくつかの位置を指定しておくと、例えば制御装置107に移動開始指令を与えるだけで、自動的に望む経路を辿って目標位置に到達することができる。各位置を記録させるには、ティーチペンダントによってロボットアーム101を実際に目標とする位置に移動させることによって直接的に記憶させてもよいし、x,y,z座標を入力することによって指定してもよい。   The movement of the table 108 between the positions by the robot arm 101 can be performed by giving a command to the control device 107 by, for example, a teach pendant and moving the movable element of the robot arm 101. Further, if each position such as the treatment position and the examination position is stored in the control device 107 in advance, for example, the movable element operates to move to the target position in the shortest time only by giving a forward command to the control device. The table 108 can be moved to the target position more quickly and smoothly. Furthermore, if the target position and some positions on the route to be moved are designated, for example, it is possible to automatically reach the target position along the desired route only by giving a movement start command to the control device 107. it can. In order to record each position, the robot arm 101 may be directly stored by moving the robot arm 101 to the target position by the teach pendant, or specified by inputting x, y, z coordinates. Also good.

(第2の構成例)
図7に、本発明の第2の構成例に係るロボティックベッドの側面図を示す。ロボティックベッドに用いられるロボットアーム701はいわゆる垂直多関節のロボットアームで、多自由度(3自由度以上)を有し、その先端で載置対象物が載置されるテーブル708を支持する。テーブル708およびロボットアーム701は、ロボティックベッドを構成する。
(Second configuration example)
In FIG. 7, the side view of the robotic bed which concerns on the 2nd structural example of this invention is shown. The robot arm 701 used for the robotic bed is a so-called vertical articulated robot arm, which has multiple degrees of freedom (3 degrees of freedom or more), and supports the table 708 on which the object to be placed is placed at the tip. The table 708 and the robot arm 701 constitute a robotic bed.

図7に示すように、ロボットアーム701は、複数の可動要素(本実施形態では、第1〜第3可動要素722〜724)と、複数のジョイント(本実施形態では、第1〜第6ジョイント731〜736)を含む。   As shown in FIG. 7, the robot arm 701 includes a plurality of movable elements (first to third movable elements 722 to 724 in the present embodiment) and a plurality of joints (first to sixth joints in the present embodiment). 731-736).

ベース721は第1軸(鉛直方向)まわりに回転する水平回転ジョイントを有する。ベース721と第1可動要素722の一端部は、第1軸と直交する第2軸まわりに回転する垂直回転ジョイント732によって連結されている。第1可動要素722の他端部と第2可動要素723の一端部は、第2軸によって回転され第2軸と平行な第3軸まわりに回転する垂直回転ジョイントによって連結されている。第2可動要素723は特定方向に延びる棒状であり、第3軸によって回転され当該特定方向を軸とする第4軸まわりに回転可能な回転ジョイント734を有する。第2可動要素723の他端部は第3可動要素724の一端部と第4軸によって回転され第4軸と直交する第5軸まわりに回転する垂直回転ジョイント735によって連結されている。第3可動要素724はさらに第5軸によって回転され第5軸と直交する第6軸まわりに回転可能な回転ジョイント736を有する。   The base 721 has a horizontal rotation joint that rotates around a first axis (vertical direction). One end of the base 721 and the first movable element 722 is connected by a vertical rotary joint 732 that rotates about a second axis orthogonal to the first axis. The other end of the first movable element 722 and one end of the second movable element 723 are connected by a vertical rotary joint that rotates about the third axis that is rotated by the second axis and parallel to the second axis. The second movable element 723 has a rod shape extending in a specific direction, and includes a rotary joint 734 that is rotated by a third axis and is rotatable around a fourth axis with the specific direction as an axis. The other end of the second movable element 723 is connected to one end of the third movable element 724 by a vertical rotation joint 735 that rotates about the fifth axis that is rotated by the fourth axis and orthogonal to the fourth axis. The third movable element 724 further includes a rotary joint 736 that is rotated by the fifth axis and is rotatable about a sixth axis that is orthogonal to the fifth axis.

第1可動要素722も第2可動要素723と同様に、特定方向に延びる棒状となっており、これら可動要素の長さはロボットアーム701の必要な可動範囲に応じて適宜設計される。   Similarly to the second movable element 723, the first movable element 722 has a rod shape extending in a specific direction, and the length of these movable elements is appropriately designed according to the necessary movable range of the robot arm 701.

第3可動要素724は、ロボットアーム701の先端に位置している。本構成例では、ロボットアーム701の先端が、特定方向に延びるテーブル708の一端部の下面に固定されている。ロボットアームの先端がテーブル708を支える位置は、テーブル708の端部でもよいし、中央部でもよい。「一端部」「他端部」「端部」「中央部」の定義は第1の構成例と同様である。   The third movable element 724 is located at the tip of the robot arm 701. In this configuration example, the tip of the robot arm 701 is fixed to the lower surface of one end of a table 708 extending in a specific direction. The position where the tip of the robot arm supports the table 708 may be the end of the table 708 or the center. The definitions of “one end”, “other end”, “end”, and “center” are the same as in the first configuration example.

ロボットアーム701は、第1〜第6ジョイント731〜736に対応して、第1〜第3可動要素722〜724を移動又は回転させる複数のアクチュエータ(本構成例では、第1〜第6アクチュエータ741〜746)と、それぞれのジョイントに組み込まれそれぞれの可動要素の位置を検出する複数の位置検出器(本構成例では、第1〜第6位置検出器751〜756)と、それぞれのアクチュエータの駆動を制御する制御装置707(図7参照)を含む。制御装置707はベース721内に位置しているが、例えば外部の独立した装置としてもよい。   The robot arm 701 includes a plurality of actuators that move or rotate the first to third movable elements 722 to 724 corresponding to the first to sixth joints 731 to 736 (in the present configuration example, the first to sixth actuators 741). 746), a plurality of position detectors (in the present configuration example, first to sixth position detectors 751 to 756) that are incorporated in the respective joints and detect the positions of the respective movable elements, and driving of the respective actuators Including a control device 707 (see FIG. 7). The control device 707 is located in the base 721, but may be an external independent device, for example.

第1〜第6アクチュエータ741〜746は、例えばサーボモータである。第1の構成例と同様、位置検出器としてはエンコーダやレゾルバ、ポテンショメータを用いることができる。   The first to sixth actuators 741 to 746 are, for example, servo motors. As in the first configuration example, an encoder, a resolver, or a potentiometer can be used as the position detector.

ロボットアーム701はまた、第1〜第6ジョイント731〜736に対応して、それぞれ、第1〜第6電磁ブレーキ761〜766を含むことが望ましい。電磁ブレーキを備えていない場合は、複数のアクチュエータ741〜746の駆動によりロボットアーム701の姿勢を一定に保つことになるが、電磁ブレーキを含んでいると、ある部分のアクチュエータの駆動をオフにしても電磁ブレーキ機能をオンとすることにより、ロボットアーム701の姿勢を一定に保つことができる。   The robot arm 701 also preferably includes first to sixth electromagnetic brakes 761 to 766 corresponding to the first to sixth joints 731 to 736, respectively. When the electromagnetic brake is not provided, the posture of the robot arm 701 is kept constant by driving the plurality of actuators 741 to 746. However, if the electromagnetic brake is included, the driving of the actuator of a certain part is turned off. Also, by turning on the electromagnetic brake function, the posture of the robot arm 701 can be kept constant.

電磁ブレーキが設けられる場合、第1〜第6電磁ブレーキ761〜766それぞれは、アクチュエータへ駆動電流が供給されないときにブレーキ機能をオンにし、アクチュエータへ駆動電流が供給されたときにブレーキ機能をオフにするように構成されている。   When the electromagnetic brake is provided, each of the first to sixth electromagnetic brakes 761 to 766 turns on the brake function when the drive current is not supplied to the actuator, and turns off the brake function when the drive current is supplied to the actuator. Is configured to do.

第1の構成例と同様、アクチュエータとしてのモータ、位置検出器としてのエンコーダ、及びブレーキは、図2に示すように一体化したユニットとして構成されることが多い。さらに、第1〜第6アクチュエータ741〜746のそれぞれには、動力伝達用の減速機構およびカップリングなどが設けられる。   As in the first configuration example, the motor as the actuator, the encoder as the position detector, and the brake are often configured as an integrated unit as shown in FIG. Further, each of the first to sixth actuators 741 to 746 is provided with a power transmission speed reduction mechanism and a coupling.

図7に示したロボットアーム701は、自由度が6であるが、本発明のロボットアームの自由度は、必ずしも6である必要はなく、5以下であってもよいし7以上であってもよい。しかしながら、ロボットアームの自由度は、テーブル708を少なくとも空間内を直線的に移動できるように3以上であることが望ましい。   The robot arm 701 shown in FIG. 7 has six degrees of freedom, but the degree of freedom of the robot arm of the present invention does not necessarily have to be 6, and may be 5 or less, or 7 or more. Good. However, the degree of freedom of the robot arm is desirably 3 or more so that the table 708 can move at least linearly in the space.

以上のように構成されたロボティックベッドを用いれば、テーブル上に載置対象物を載置した後、テーブルを検査位置や治療位置といった目的とする位置に正確かつ迅速に移動させることができ、医療現場における検査や治療の効率を格段に向上させることができる。例えば、キャスター付きのテーブルにより載置対象としての患者を移動させるのと比較して、患者に大きな振動を与えることなくテーブル708をスムーズに移動させることができる他、医療室の床上に多数存在する医療機器に付随するコード類や医療器具に付随するチューブ類との絡まりやこれらを跨ぐことによるテーブルのがたつき回避することができ、安全性と移動効率を高めることができる。   By using the robotic bed configured as described above, after placing the placement object on the table, the table can be accurately and quickly moved to a target position such as an inspection position or a treatment position, The efficiency of examination and treatment in the medical field can be greatly improved. For example, the table 708 can be moved smoothly without giving a large vibration to the patient as compared with the case where the patient as a placement target is moved by a table with casters, and there are many on the floor of the medical room. It is possible to avoid entanglement with cords attached to medical devices and tubes attached to medical devices and rattling of the table by straddling them, and safety and movement efficiency can be improved.

ロボティックベッドが目標とすべき位置の例に関しては、第1の構成例と同様なのでここでは説明を省略する。   The example of the position where the robotic bed should be targeted is the same as in the first configuration example, and the description thereof is omitted here.

本構成例に係るロボットアーム701によっても可動範囲であればテーブルを複数の位置の間を自由なルートで移動させることができるので、テーブルを第1の構成例で説明した図4〜図6と同じ軌跡で検査装置等に移動させることができる。参考までに、載置対象として被撮影者、目標移動位置としてMRI撮影位置とした場合にテーブルが載置位置から移動してMRI撮影位置に到達した場合の斜視図を図8に示す。   The robot arm 701 according to this configuration example can also move the table between a plurality of positions by a free route as long as it is in a movable range, and therefore the table is the same as FIGS. 4 to 6 described in the first configuration example. It can be moved to the inspection device or the like along the same locus. For reference, FIG. 8 shows a perspective view when the table is moved from the placement position and reaches the MRI photographing position when the subject is the subject to be placed and the target moving position is the MRI photographing position.

(第3の構成例)
本発明の第3の構成例に係るロボティックベッドの外観図を図9に、側面図を図10に示す。ロボティックベッドに用いられるロボットアーム1001は、多自由度(3自由度以上)を有し、その先端で載置対象物が載置されるテーブル1008を支持する。テーブル1008およびロボットアーム1001は、ロボティックベッドを構成する。
(Third configuration example)
FIG. 9 is an external view of a robotic bed according to a third configuration example of the present invention, and FIG. 10 is a side view thereof. The robot arm 1001 used for the robotic bed has multiple degrees of freedom (three degrees of freedom or more), and supports the table 1008 on which the placement target is placed at the tip thereof. The table 1008 and the robot arm 1001 constitute a robotic bed.

図10に示すように、ロボットアーム1001は、ベース1021と、複数の可動要素(本構成例では、第1〜第3可動要素1022〜1024)と、複数のジョイント(本構成例では、第1〜第5ジョイント1031〜1035)を含む。   As shown in FIG. 10, the robot arm 1001 includes a base 1021, a plurality of movable elements (first to third movable elements 1022 to 1024 in the present configuration example), and a plurality of joints (first configuration in the present configuration example). -5th joints 1031-1035).

ベース1021と第1可動要素1022の一端部は鉛直直進ジョイントである第1ジョイント1031によって連結されており、第1可動要素1022は第1軸方向(鉛直方向)に移動することができる。第1可動要素1022の他端部と第2可動要素1023の一端部は水平回転ジョイントで連結されており、第2軸(鉛直方向)まわりに第2可動要素1023が回転することができる。第2可動要素1023と第3可動要素1024の間の第3〜第5ジョイント1033〜1035は、それぞれ、第3〜第5軸回りの回転ジョイントである。第3軸は第2可動要素1023の延びる方向であり、第4軸は第3ジョイント1033によって回転される、第3軸と直交する方向であり、第5軸は、第4ジョイント1034によって回転される、第4軸と直交する方向である。   One end of the base 1021 and the first movable element 1022 is connected by a first joint 1031 which is a vertical rectilinear joint, and the first movable element 1022 can move in the first axial direction (vertical direction). The other end of the first movable element 1022 and one end of the second movable element 1023 are connected by a horizontal rotary joint, and the second movable element 1023 can rotate around the second axis (vertical direction). The third to fifth joints 1033 to 1035 between the second movable element 1023 and the third movable element 1024 are rotary joints around the third to fifth axes, respectively. The third axis is a direction in which the second movable element 1023 extends, the fourth axis is a direction orthogonal to the third axis rotated by the third joint 1033, and the fifth axis is rotated by the fourth joint 1034. The direction perpendicular to the fourth axis.

第1可動要素1022と第2可動要素1023は特定方向に延びる棒状となっており、長さはロボットアーム1001の必要な可動範囲に応じて適宜設計される。そして、第1可動要素1022は水平面に平行な状態を維持して上下移動し、第2可動要素1023は第1可動要素1022と平行な状態を維持して第2軸まわりに回転する構成となっている。このような構成であれば、第2アクチュエータ1042において鉛直方向の重力補償を行う必要がないためモータを小さくすることができる。これは、ロボットアーム1001の小型化に有利な構成であり、限られたスペースしか確保できない医療現場に導入する場合や、治療や手術により多くのスペースを充てるのに有利な構成である。   The first movable element 1022 and the second movable element 1023 have a rod shape extending in a specific direction, and the length is appropriately designed according to the necessary movable range of the robot arm 1001. The first movable element 1022 moves up and down while maintaining a state parallel to the horizontal plane, and the second movable element 1023 rotates around the second axis while maintaining a state parallel to the first movable element 1022. ing. With such a configuration, it is not necessary to perform gravity compensation in the vertical direction in the second actuator 1042, and the motor can be made small. This is an advantageous configuration for reducing the size of the robot arm 1001, and is advantageous for introducing the robot arm 1001 into a medical site where only a limited space can be secured, or for providing more space for treatment and surgery.

また、本構成例のロボティックベッドは、鉛直方向上側から見下ろした場合に端部同士が水平回転ジョイントで連結された第1可動要素1022と第2可動要素1023を特定方向(長手方向)が平行となる状態において、テーブル1008を水平面に平行な状態を維持しながらどのように回転させても(例えば360度回転させても)、テーブル1008がロボットアーム1001と接触することがないように構成されている。具体的には、端部同士が水平回転ジョイントで連結された第1可動要素1022と第2可動要素1023とテーブル1008を水平面に平行な状態とした場合、テーブル1008が他の可動要素と高さが被らずに最も上方に位置するように構成している。つまり、ロボットアーム1001の先端が取りうる位置のうちで最も低い位置をとり、テーブル1008が水平面に平行な姿勢とした場合において、ロボットアーム1001の第1〜第2可動要素がテーブル1008の下面よりも低い位置となるようにしている。そして、本構成例においてはテーブル1008の高さ方向の調整幅を大きくとるため、ベース1021については、ロボットアーム1001の先端が取りうる位置のうちで最も低い位置をとり、テーブル1008が水平面に平行な姿勢とした場合においてもテーブル1008の下面よりも高くしている。以上のような構成とすれば、ロボットアーム1001の各可動要素がテーブル1008の下方に位置して収納される形となり、鉛直方向の移動幅を確保しながらも医療現場の限られたスペースを有効活用するのに有効である。   Further, the robotic bed of this configuration example has a specific direction (longitudinal direction) parallel to the first movable element 1022 and the second movable element 1023 whose ends are connected by a horizontal rotary joint when looking down from the upper side in the vertical direction. In such a state, the table 1008 does not come into contact with the robot arm 1001 regardless of how the table 1008 is rotated (for example, rotated 360 degrees) while maintaining a state parallel to the horizontal plane. ing. Specifically, when the first movable element 1022, the second movable element 1023, and the table 1008, whose ends are connected by a horizontal rotary joint, are in a state parallel to the horizontal plane, the table 1008 has a height different from that of the other movable elements. It is comprised so that it may be located in the uppermost part without covering. That is, when the robot arm 1001 has the lowest position that can be taken by the tip of the robot arm 1001 and the table 1008 is in a posture parallel to the horizontal plane, the first and second movable elements of the robot arm 1001 are moved from the lower surface of the table 1008. The position is also low. In this configuration example, since the adjustment width in the height direction of the table 1008 is increased, the base 1021 takes the lowest position among the positions that the tip of the robot arm 1001 can take, and the table 1008 is parallel to the horizontal plane. Even in the case of a proper posture, it is higher than the lower surface of the table 1008. With the configuration as described above, each movable element of the robot arm 1001 is stored below the table 1008, so that a limited space in the medical field is available while ensuring a vertical movement width. It is effective to utilize.

このメリットは第3の構成例に係るロボティックベッドの動作を示した図13〜図15を参照すれば明らかである。図13から理解できる通り、本構成例におけるロボティックベッドはそれぞれの可動要素とテーブル1008を垂直方向上側から見下ろした場合に重ね合わさるような位置をとることができるのに対して、第1の構成例や第2の構成例において例えば治療スペースを確保するためにテーブルをできるだけベースに近くに位置する図13と同様なポジションとしようとすると、第1の構成例では図4のように第2可動要素123及び第3可動要素124がテーブル108の下に位置させることができず邪魔となり、第2の構成例ではテーブル708の位置をとても高くするとテーブル708の位置を各可動要素よりも上方に位置させることが理論的には可能であるが、治療や検査、載置対象物の載置においてそれほど高い位置にテーブル708を位置させることは不便であり現実的にはあり得ない。上述した通り、垂直多関節ロボットアームの場合は重力補償が必要であるため、大きなアクチュエータが必要となり、図8の概念図からも分かるように、テーブル708を下の方で支えながらテーブル708の下方に各可動要素を位置させるようにすることは困難である。   This advantage is apparent with reference to FIGS. 13 to 15 showing the operation of the robotic bed according to the third configuration example. As can be understood from FIG. 13, the robotic bed in this configuration example can take a position where each movable element and the table 1008 overlap each other when looking down from the upper side in the vertical direction. In the example and the second configuration example, for example, in order to secure a treatment space, if the table is positioned as close to the base as possible, the second movable as shown in FIG. 4 in the first configuration example. The element 123 and the third movable element 124 cannot be positioned under the table 108, which is obstructive. In the second configuration example, if the position of the table 708 is very high, the position of the table 708 is positioned higher than each movable element. Although it is theoretically possible, the table 708 is placed at a very high position in the treatment, examination, and placement of the placement object. Is inconvenient impossible in practice be located. As described above, in the case of a vertical articulated robot arm, gravity compensation is necessary, so a large actuator is required, and as can be seen from the conceptual diagram of FIG. 8, the table 708 is supported below while supporting the table 708 below. It is difficult to position each movable element in the position.

そして、テーブル1008の幅はロボットアーム1001の各可動要素の幅よりも大きい方が好ましい。例えば、鉛直方向上側から見下ろした場合に端部同士が水平回転ジョイントで連結された第1可動要素1022と第2可動要素1023の特定方向(長手方向)及びテーブル1008の特定方向(長手方向)が平行となる状態において、鉛直方向上側から見下ろした場合にテーブル1008が特定方向(長手方向)で第1可動要素1022と第2可動要素1023と被る部分において、特定方向(第1可動要素1022、第2可動要素1023、及びテーブル1008が延びている長手方向を平行とした方向)と直交する方向において第1可動要素1022と第2可動要素1023がテーブル1008に隠れることが望ましい。このような構成であれば、少なくともテーブル1008の幅方向(延びている特定方向と直交する方向)においてテーブル1008の長さ方向で被っているロボットアーム1001の部分(図10の例では、第1可動要素1022の一端部以外と、第2可動要素1023及び第3可動要素1024の全体)はテーブル1008の下に収納されることになる(例えば、図13を参照)。   The width of the table 1008 is preferably larger than the width of each movable element of the robot arm 1001. For example, when looking down from the upper side in the vertical direction, the specific direction (longitudinal direction) of the first movable element 1022 and the second movable element 1023 whose ends are connected by a horizontal rotary joint and the specific direction (longitudinal direction) of the table 1008 are defined. In a parallel state, when the table 1008 covers the first movable element 1022 and the second movable element 1023 in the specific direction (longitudinal direction) when looking down from the upper side in the vertical direction, the specific direction (the first movable element 1022, the first movable element 1022, It is desirable that the first movable element 1022 and the second movable element 1023 are hidden by the table 1008 in a direction orthogonal to the second movable element 1023 and the direction in which the longitudinal direction in which the table 1008 extends is parallel. With such a configuration, at least the portion of the robot arm 1001 covered in the length direction of the table 1008 in the width direction of the table 1008 (direction orthogonal to the extending specific direction) (in the example of FIG. All of the second movable element 1023 and the third movable element 1024 other than one end of the movable element 1022 are housed under the table 1008 (see, for example, FIG. 13).

図9及び図10の例では互いの端部同士が水平回転ジョイントで接続された2つの可動要素(第1可動要素1022と第2可動要素1023)のひとつ(第1可動要素1022)がベース1021に直接連結されているが、例えばさらなる水平回転ジョイントや垂直回転ジョイントを介して間接的にベースに連結されていてもよく、この場合でも上述の位置関係が担保されて複数の可動要素がテーブル1008の下に収納される限りスペース確保及びコンパクトという効果を得ることができる。   9 and 10, one of the two movable elements (the first movable element 1022 and the second movable element 1023) whose end portions are connected by a horizontal rotary joint (the first movable element 1022) is the base 1021. However, it may be indirectly connected to the base via, for example, a further horizontal rotary joint or a vertical rotary joint. In this case as well, the above-described positional relationship is ensured, and a plurality of movable elements can be connected to the table 1008. As long as it is stored under the space, it is possible to obtain the effects of securing space and compactness.

第3可動要素1024は、ロボットアーム1001の先端に位置している。本構成例では、ロボットアーム1001の先端が、特定方向に延びるテーブル1008の一端部の下面に固定されている。このような構成であれば、テーブル1008の他端部をベース1021よりできるだけ遠くに位置させるように動作させることができる。テーブル1008を一端部で支持する方がテーブル1008の移動範囲が広くなるが、支持強度を優先する場合にはテーブル1008を中央部で支えてもよい。   The third movable element 1024 is located at the tip of the robot arm 1001. In this configuration example, the tip of the robot arm 1001 is fixed to the lower surface of one end of a table 1008 extending in a specific direction. With such a configuration, the other end of the table 1008 can be operated so as to be positioned as far as possible from the base 1021. The range of movement of the table 1008 is wider when the table 1008 is supported at one end, but the table 1008 may be supported at the center when priority is given to the support strength.

なお、上記説明における「一端部」「他端部」「端部」「中央部」の定義については、
第1及び第2の構成例と同様である。
For the definitions of “one end”, “other end”, “end”, and “center” in the above description,
This is the same as the first and second configuration examples.

ロボットアーム1001は、第1〜第5ジョイント1031〜1035に対応して、第1〜第3可動要素1022〜1024を移動又は回転させる複数のアクチュエータ(本構成例では、第1〜第5アクチュエータ1041〜1045)と、それぞれのジョイントに組み込まれそれぞれの可動要素の位置を検出する複数の位置検出器(本構成例では第1〜第5位置検出器1051〜1055)と、それぞれのアクチュエータの駆動を制御する制御装置1007(図10参照)を含む。制御装置1007はベース1021内に位置しているが、例えば外部の独立した装置としてもよい。   The robot arm 1001 corresponds to the first to fifth joints 1031 to 1035, and includes a plurality of actuators (in this configuration example, the first to fifth actuators 1041 that move or rotate the first to third movable elements 1022 to 1024). 1045), a plurality of position detectors (first to fifth position detectors 1051 to 1055 in the present configuration example) that are incorporated in the respective joints and detect the positions of the respective movable elements, and drive the respective actuators. A control device 1007 (see FIG. 10) for controlling is included. The control device 1007 is located in the base 1021, but may be an external independent device, for example.

第1〜第5アクチュエータ1041〜1045は、例えばサーボモータである。位置検出器としては第1及び第2の構成例と同様、エンコーダやレゾルバ、ポテンショメータを用いることができる。   The first to fifth actuators 1041 to 1045 are, for example, servo motors. As the position detector, an encoder, a resolver, and a potentiometer can be used as in the first and second configuration examples.

ロボットアーム1001はまた、第1〜第5ジョイント1031〜1035に対応して、それぞれ、第1〜第5電磁ブレーキ1061〜1065を含むことが望ましい。電磁ブレーキを備えていない場合は、複数のアクチュエータ1041〜1045の駆動によりロボットアーム1001の姿勢を一定に保つことになるが、電磁ブレーキを含んでいると、ある部分のアクチュエータの駆動をオフにしても電磁ブレーキ機能をオンとすることにより、ロボットアーム1001の姿勢を一定に保つことができる。   The robot arm 1001 also preferably includes first to fifth electromagnetic brakes 1061 to 1065 corresponding to the first to fifth joints 1031 to 1035, respectively. When the electromagnetic brake is not provided, the posture of the robot arm 1001 is kept constant by driving the plurality of actuators 1041 to 1045. However, if the electromagnetic brake is included, the driving of the actuator of a certain part is turned off. Also, by turning on the electromagnetic brake function, the posture of the robot arm 1001 can be kept constant.

電磁ブレーキが設けられる場合の第1〜第5電磁ブレーキ1061〜1065それぞれは、アクチュエータへ駆動電流が供給されないときにブレーキ機能をオンにし、アクチュエータへ駆動電流が供給されたときにブレーキ機能をオフにするように構成されている。   When the electromagnetic brake is provided, each of the first to fifth electromagnetic brakes 1061 to 1065 turns on the brake function when the drive current is not supplied to the actuator, and turns off the brake function when the drive current is supplied to the actuator. Is configured to do.

第1及び第2の構成例と同様、アクチュエータとしてのモータ、位置検出器としてのエンコーダ、及びブレーキは、図2に示すように一体化したユニットとして構成されることが多い。さらに、第1〜第5アクチュエータ1041〜1045のそれぞれには、動力伝達用の減速機構およびカップリングなどが設けられる。   As in the first and second configuration examples, the motor as the actuator, the encoder as the position detector, and the brake are often configured as an integrated unit as shown in FIG. Furthermore, each of the first to fifth actuators 1041 to 1045 is provided with a power transmission speed reduction mechanism and a coupling.

図10に示した例では、第1可動要素1022が第2可動要素1023の上側に位置するように水平回転ジョイント1032によって連結されているが、本構成例の変形例として、第1可動要素1122が第2可動要素1123の下方に位置するように水平回転ジョイント1132によって連結したロボットアーム1101を図11に示す。   In the example shown in FIG. 10, the first movable element 1022 is connected by the horizontal rotary joint 1032 so as to be positioned above the second movable element 1023. However, as a modification of this configuration example, the first movable element 1122 is connected. FIG. 11 shows a robot arm 1101 connected by a horizontal rotary joint 1132 so that is positioned below the second movable element 1123.

本変形例は、ベース1121と第1可動要素1122の一端部は鉛直直進ジョイントである第1ジョイント1131によって連結されており、第1可動要素1122は第1軸方向(鉛直方向)に移動することができる。第1可動要素1122の他端部と第2可動要素1123の一端部は水平回転ジョイントで連結されており、第2可動要素1123が第1可動要素1122の上方で第2軸(鉛直方向)まわりに回転することができる。第2可動要素1123と第3可動要素1124の間の第3〜第5ジョイント1133〜1135は、それぞれ、第3〜第5軸回りの回転ジョイントである。第3軸は第2可動要素1123の延びる方向であり、第4軸は第3ジョイント1133によって回転される、第3軸と直交する方向であり、第5軸は、第4ジョイント1134によって回転される、第4軸と直交する方向である。   In this modification, one end of the base 1121 and the first movable element 1122 is connected by a first joint 1131 that is a vertical rectilinear joint, and the first movable element 1122 moves in the first axial direction (vertical direction). Can do. The other end of the first movable element 1122 and one end of the second movable element 1123 are connected by a horizontal rotary joint, and the second movable element 1123 is above the first movable element 1122 around the second axis (vertical direction). Can be rotated. The third to fifth joints 1133 to 1135 between the second movable element 1123 and the third movable element 1124 are rotary joints around the third to fifth axes, respectively. The third axis is a direction in which the second movable element 1123 extends, the fourth axis is a direction orthogonal to the third axis rotated by the third joint 1133, and the fifth axis is rotated by the fourth joint 1134. The direction perpendicular to the fourth axis.

第3可動要素1124は、ロボットアーム1101の先端に位置している。本構成例では、ロボットアーム1101の先端が、特定方向に延びるテーブル1108の下面に中央部で固定されている。このような構成であれば、支持強度を優先してテーブル1108を支持することができる。もちろん、テーブル1108の移動範囲を優先してテーブル1108を一端部で支持してもよい。ただし、その場合は、テーブル1108を水平面に平行な状態を維持しながら自由に回転させてもロボットアーム1101と接触しないように、各可動要素1122〜1124やテーブル1108の長さを適宜設計することが必要である。   The third movable element 1124 is located at the tip of the robot arm 1101. In this configuration example, the tip of the robot arm 1101 is fixed at the center to the lower surface of the table 1108 extending in a specific direction. With such a configuration, the table 1108 can be supported with priority on the support strength. Of course, the table 1108 may be supported at one end portion with priority given to the movement range of the table 1108. However, in that case, the lengths of the movable elements 1122 to 1124 and the table 1108 should be appropriately designed so that the table 1108 does not come into contact with the robot arm 1101 even if the table 1108 is freely rotated while maintaining a state parallel to the horizontal plane. is required.

以上、図10及び11に示したロボットアーム1001・1101は、自由度が5であるが、本発明のロボットアームの自由度は、必ずしも5である必要はなく、4以下であってもよいし6以上であってもよい。しかしながら、ロボットアームの自由度は、テーブル1008・1108を少なくとも空間内を直線的に移動できるように3以上であることが望ましい。図12に自由度が3であるロボティックベッドの例を示す。図12において、ロボットアーム1201はベース1221と2つの可動要素1222及び1223から構成され、ベース1221と第1可動要素1222の一端部は鉛直直進ジョイントである第1ジョイント1231によって連結されており、可動要素1222は第1軸方向(鉛直方向)に移動することができる。第1可動要素1222の他端部と第2可動要素1223の一端部は水平回転ジョイントである第2ジョイント1232で連結されており、第2軸(鉛直方向)まわりに可動要素1223が回転することができる。第2可動要素1223の他端部がロボットアーム1201の先端を構成し、テーブル1208の一端部と水平回転ジョイントである第3ジョイント1233で連結されている。   As described above, the robot arms 1001 and 1101 shown in FIGS. 10 and 11 have five degrees of freedom. However, the degree of freedom of the robot arm of the present invention does not necessarily have to be five, and may be four or less. It may be 6 or more. However, the degree of freedom of the robot arm is preferably 3 or more so that the tables 1008 and 1108 can move at least linearly in the space. FIG. 12 shows an example of a robotic bed having 3 degrees of freedom. In FIG. 12, the robot arm 1201 includes a base 1221 and two movable elements 1222 and 1223, and one end of the base 1221 and the first movable element 1222 is connected by a first joint 1231 that is a vertical rectilinear joint. The element 1222 can move in the first axial direction (vertical direction). The other end of the first movable element 1222 and one end of the second movable element 1223 are connected by a second joint 1232 that is a horizontal rotary joint, and the movable element 1223 rotates around the second axis (vertical direction). Can do. The other end of the second movable element 1223 constitutes the tip of the robot arm 1201 and is connected to one end of the table 1208 by a third joint 1233 that is a horizontal rotary joint.

以上のように構成されたロボティックベッドを用いれば、テーブル上に載置対象物を載置した後、テーブル1008・1108・1208を検査位置や治療位置といった目的とする位置に正確かつ迅速に移動させることができ、医療現場における検査や治療の効率を格段に向上させることができる。例えば、キャスター付きのテーブルにより患者を移動させるのと比較して、患者に大きな振動を与えることなくテーブル1008・1108・1208をスムーズに移動させることができる他、医療室の床上に多数存在する医療機器に付随するコード類や医療器具に付随するチューブ類との絡まりやこれらを跨ぐことによるテーブルのがたつき回避することができ、安全性と移動効率を高めることができる。   If the robotic bed configured as described above is used, after placing an object to be placed on the table, the tables 1008, 1108, and 1208 are accurately and quickly moved to the target positions such as the examination position and the treatment position. It is possible to improve the efficiency of examinations and treatments in the medical field. For example, the table 1008, 1108, 1208 can be moved smoothly without giving a large vibration to the patient as compared with the case where the patient is moved by a table with casters. It is possible to avoid tangles with cords attached to devices and tubes attached to medical devices and table rattling caused by straddling the cords, and safety and movement efficiency can be improved.

また、本構成例に係るロボティックベッドは、参照符号1032・1132・1232・1233で示されるジョイントが、参照符号1023、1123、1223で示される可動要素、及び参照符号1208で示されるテーブルを常に水平面と平行な状態で回転することを可能とする水平回転ジョイントによって連結されているため、これを垂直回転ジョイントで連結されているのと比べて剛性を高くすることができる。すなわち、垂直回転ジョイントで連結されている場合は、テーブルの移動中、又はある姿勢の維持中、載置対象物の重量などが原因でアクチュエータの制御だけでは姿勢を完全に維持しきれず、撓みを生じさせることがあるが、水平回転ジョイントの場合は垂直方向に回転することがないため、そのような事態はほとんど生じない。さらに、常に水平面と平行な状態で回転することを可能とする水平回転ジョイントが設けられている個所では垂直方向の回転を考えなくてよいので、電源をオフしたときのことを想定したとしても電磁ブレーキを省略することができる。なお、これは第1の構成例にかかるロボティックベッドにおける、参照符号132、133、332、333で表されている水平回転ジョイントに関しても同じことが言えるが、本構成例は、剛性を高めながら、さらに治療スペース確保にも貢献する構成となっており、より医療室に導入するのに適したデザインとなっている。   In addition, the robotic bed according to this configuration example always has a joint indicated by reference numerals 1032, 1132, 1232, and 1233, a movable element indicated by reference numerals 1023, 1123, and 1223, and a table indicated by reference numeral 1208. Since it is connected by a horizontal rotary joint that allows it to rotate in a state parallel to the horizontal plane, it can have higher rigidity than that connected by a vertical rotary joint. In other words, when connected by a vertical rotary joint, while the table is moving or maintaining a certain posture, the posture cannot be completely maintained by controlling the actuator alone due to the weight of the object to be placed, etc. However, in the case of a horizontal rotary joint, it does not rotate in the vertical direction, so such a situation hardly occurs. In addition, it is not necessary to consider vertical rotation at locations where horizontal rotation joints that allow rotation in a state that is always parallel to the horizontal plane, so even if the power is turned off, the electromagnetic The brake can be omitted. The same can be said for the horizontal rotary joints denoted by reference numerals 132, 133, 332, and 333 in the robotic bed according to the first configuration example, but this configuration example increases the rigidity. Furthermore, it has a structure that contributes to securing a treatment space, and is more suitable for introduction into a medical room.

ロボティックベッドが目標とすべき位置の例に関しては、第1及び第2の構成例と同様なのでここでは説明を省略する。   Since the example of the position where the robotic bed should be targeted is the same as the first and second configuration examples, the description thereof is omitted here.

本構成例に係るロボットアーム1001に支持されたテーブル1008を複数の位置の間で移動させる動作を図13〜図15に説明する。   The operation of moving the table 1008 supported by the robot arm 1001 according to this configuration example between a plurality of positions will be described with reference to FIGS.

図13は、ある載置対象である被験者を載置位置からある検査位置へ移動させる際に、テーブル1008が載置位置に位置している様子を示している。図14は、制御装置1007による制御によって第2可動要素1023及びテーブル1008が矢印の如く動いて(場合によっては、第1可動要素も鉛直方向に動いて高さが調節され、またテーブル1008が第3軸又は/及び第4軸まわりの回転により傾きが微調整され)被験者の頭部が検査装置1314に対して斜めから移動してゆく様子を示している。図15はテーブル1008が検査装置1314の内部に挿入され、被験者が検査位置に到達した様子を示している。なお、図13におけるテーブル1008の位置は治療位置でもあり得、テーブル1008が図15の検査位置から図13の位置まで各可動要素が逆方向に動いて元の位置に戻り、検査直後に検査結果を判断して医師1312が治療を行うことができる。   FIG. 13 shows a state in which the table 1008 is located at the placement position when a subject who is a placement target is moved from the placement position to a certain inspection position. FIG. 14 shows that the second movable element 1023 and the table 1008 move as shown by the arrows under the control of the control device 1007 (in some cases, the first movable element also moves in the vertical direction to adjust the height, and the table 1008 The inclination of the subject is finely adjusted by rotation around the third axis and / or the fourth axis), and the subject's head moves from the oblique direction with respect to the inspection device 1314. FIG. 15 shows a state where the table 1008 is inserted into the inspection apparatus 1314 and the subject reaches the inspection position. The position of the table 1008 in FIG. 13 may also be a treatment position, and the table 1008 moves back from the inspection position in FIG. 15 to the position in FIG. 13 to return to the original position. Thus, the doctor 1312 can perform treatment.

図12に示したロボットアーム1201でも同じような軌跡を辿ってテーブル1208が移動することができる。図11に示したロボットアーム1101は、第2可動要素1123とテーブル1108が図14に示した矢印とは逆回転しながら移動して(場合によっては第1可動要素1122も鉛直方向に動いて高さが調節され)、検査位置まで到達することができる。   In the robot arm 1201 shown in FIG. 12, the table 1208 can move following a similar locus. The robot arm 1101 shown in FIG. 11 moves while the second movable element 1123 and the table 1108 rotate in the direction opposite to the arrow shown in FIG. 14 (in some cases, the first movable element 1122 also moves in the vertical direction to increase the height. The test position can be reached.

ロボットアームを動作させる指令の与え方、及びテーブルを移動させる目標位置の設定方法については、第1及び第2の構成例と同様である。   The method for giving a command to operate the robot arm and the method for setting the target position for moving the table are the same as in the first and second configuration examples.

(第4の構成例)
本発明の第4の構成例に係るロボティックベッドの斜視図を図16に、側面図を図17に示す。ロボティックベッドに用いられるロボットアーム1701は、多自由度(3自由度以上)を有し、その先端で載置対象物が載置されるテーブル1708を支持する。テーブル1708およびロボットアーム1701は、ロボティックベッドを構成する。
(Fourth configuration example)
A perspective view of a robotic bed according to a fourth configuration example of the present invention is shown in FIG. 16, and a side view thereof is shown in FIG. A robot arm 1701 used for the robotic bed has multiple degrees of freedom (three degrees of freedom or more), and supports a table 1708 on which a placement target is placed at the tip thereof. The table 1708 and the robot arm 1701 constitute a robotic bed.

図17に示すように、ロボットアーム1701は、ベース1721と、複数の可動要素
(本構成例では、第1〜第4可動要素1722〜1725)と、複数のジョイント(本構
成例では、第1〜第6ジョイント1731〜1736)を含む。
As shown in FIG. 17, the robot arm 1701 includes a base 1721, a plurality of movable elements (first to fourth movable elements 1722 to 1725 in the present configuration example), and a plurality of joints (first configuration in the present configuration example). To sixth joints 1731 to 1736).

ベース1721と第1可動要素1722の一端部は鉛直直進ジョイントである第1ジョイント1731によって連結されており、第1可動要素1722は第1軸方向(鉛直方向)に移動することができる。第1可動要素1722の他端部と第2可動要素1723の一端部は水平回転ジョイントで連結されており、第2可動要素1723は第2軸(鉛直方向)まわりに回転することができる。第2可動要素1723の他端部と第3可動要素1724の一端部は水平回転ジョイントで連結されており、第2軸によって回転され、第2軸と平行な第3軸(鉛直方向)まわりに第3可動要素1724が回転することができる。第3可動要素と第4可動要素の間の第4〜第6ジョイント1734〜1736は、それぞれ、第4〜第6軸回りの回転ジョイントである。第4軸は第3可動要素1724の延びる方向であり、第5軸は第4ジョイント1734によって回転される、第4軸と直交する方向であり、第6軸は、第5ジョイント1735によって回転される、第5軸と直交する方向である。   One end of the base 1721 and the first movable element 1722 are connected by a first joint 1731 which is a vertical rectilinear joint, and the first movable element 1722 can move in the first axial direction (vertical direction). The other end of the first movable element 1722 and one end of the second movable element 1723 are connected by a horizontal rotary joint, and the second movable element 1723 can rotate around the second axis (vertical direction). The other end of the second movable element 1723 and one end of the third movable element 1724 are connected by a horizontal rotary joint, rotated by the second axis, and around a third axis (vertical direction) parallel to the second axis. The third movable element 1724 can rotate. The fourth to sixth joints 1734 to 1736 between the third movable element and the fourth movable element are rotary joints around the fourth to sixth axes, respectively. The fourth axis is a direction in which the third movable element 1724 extends, the fifth axis is a direction orthogonal to the fourth axis rotated by the fourth joint 1734, and the sixth axis is rotated by the fifth joint 1735. The direction is perpendicular to the fifth axis.

第2可動要素1723と第3可動要素1724は特定方向に延びる棒状となっており、これらの可動要素の長さはロボットアーム1701の必要な可動範囲に応じて適宜設計される。そして、第1可動要素1722は水平面に平行な状態を維持して上下移動し、第2可動要素1723及び第3可動要素1724は第1可動要素1722と平行な状態を維持して回転する構成となっている。このような構成であれば、第2及び第3のアクチュエータ1742、1743において鉛直方向の重力補償を行う必要がないためモータを小さくすることができる。これは、ロボットアーム1701の小型化に有利な構成であり、限られたスペースしか確保できない医療現場に導入する場合や、治療や手術でより多くのスペースを確保するのに有利である。   The second movable element 1723 and the third movable element 1724 have a rod shape extending in a specific direction, and the lengths of these movable elements are appropriately designed according to the necessary movable range of the robot arm 1701. The first movable element 1722 moves up and down while maintaining a state parallel to the horizontal plane, and the second movable element 1723 and the third movable element 1724 rotate while maintaining a state parallel to the first movable element 1722. It has become. With such a configuration, it is not necessary to perform gravity compensation in the vertical direction in the second and third actuators 1742 and 1743, so that the motor can be made small. This is an advantageous configuration for reducing the size of the robot arm 1701, and is advantageous for introduction to a medical site where only a limited space can be secured, and for securing more space for treatment and surgery.

また、本構成例のロボティックベッドは、第1のジョイントによる第1可動要素1722の鉛直方向への移動量を制限する代わりに、ベース1721の高さを低くすることにより、テーブル1708が水平面に平行な状態を保ったまま第1可動要素1722を上下に(鉛直方向に)移動させても、またテーブル1708をどのように回転させても(例えば、360度回転させても)ロボットアーム1701に接触しないように構成されている。よって、本構成例においては、ロボットアームがどのような任意の姿勢をとっても、テーブル1708が水平面に平行な状態にあることが維持されていれば、テーブル1708をどのように回転させても、テーブルとロボットアームとが接触することはない。具体的には、端部同士が水平回転ジョイントで連結された第2可動要素1723と第3可動要素1724とテーブル1708が水平面に平行な状態とした場合に第1可動要素1722を一番下まで移動させても、さらにロボットアームの先端が最も低い位置をとったとしても、テーブル1708が他の可動要素ともベース1721とも高さで被らずに最も上方に位置するように構成している。このような構成とすれば、ロボットアーム1701の可動要素及びベース1721がテーブル1708の下方に位置して収納される形となり、医療現場の限られたスペースを活用するのに有効である。   In addition, the robotic bed of this configuration example reduces the height of the base 1721 in place of limiting the amount of movement of the first movable element 1722 in the vertical direction by the first joint, so that the table 1708 becomes a horizontal plane. Even if the first movable element 1722 is moved up and down (in the vertical direction) while maintaining the parallel state, and the table 1708 is rotated in any manner (for example, rotated 360 degrees), the robot arm 1701 It is configured not to touch. Therefore, in this configuration example, no matter what posture the robot arm takes, as long as the table 1708 is maintained in a state parallel to the horizontal plane, no matter how the table 1708 is rotated, the table There is no contact between the robot arm and the robot arm. Specifically, when the second movable element 1723, the third movable element 1724, and the table 1708 whose ends are connected to each other by a horizontal rotary joint are in a state parallel to the horizontal plane, the first movable element 1722 is moved to the bottom. Even if the robot arm is moved, even if the tip of the robot arm is at the lowest position, the table 1708 is configured to be positioned at the uppermost position without covering the other movable elements and the base 1721 at the height. With such a configuration, the movable element of the robot arm 1701 and the base 1721 are stored below the table 1708, which is effective for utilizing a limited space in the medical field.

そして、テーブル1708の幅はロボットアーム1701の各可動要素の幅よりも大きい方が好ましい。例えば、鉛直方向上側から見下ろした場合に端部同士が水平回転ジョイントで連結された第2可動要素1723と第3可動要素1724の特定方向を平行となる状態において、鉛直方向上側から見下ろした場合に全ての可動要素がテーブル1708に隠れることが可能であることが望ましい。さらに、本構成例においては、テーブル1708の長さもロボットアーム1701の各可動要素の長さよりも大きい方が好ましい。例えば、鉛直方向上側から見下ろした場合に端部同士が水平回転ジョイントで連結された第2可動要素1723と第3可動要素1724を特定方向が平行で第2可動要素と第3可動要素の中央部が被る状態において、鉛直方向上側から見下ろした場合にベース1721がテーブル1708に隠れることが望ましい。   The width of the table 1708 is preferably larger than the width of each movable element of the robot arm 1701. For example, when looking down from the upper side in the vertical direction in a state where the specific directions of the second movable element 1723 and the third movable element 1724 whose ends are connected by a horizontal rotary joint are parallel when looking down from the upper side in the vertical direction It is desirable that all moving elements can be hidden behind the table 1708. Further, in the present configuration example, it is preferable that the length of the table 1708 is larger than the length of each movable element of the robot arm 1701. For example, when looking down from the upper side in the vertical direction, the second movable element 1723 and the third movable element 1724 whose ends are connected to each other by a horizontal rotary joint are parallel to each other in the specific direction, and the central part of the second movable element and the third movable element. It is desirable that the base 1721 is hidden by the table 1708 when looking down from the upper side in the vertical direction.

図16及び図17の例では互いの端部同士が水平回転ジョイントで接続された2つの可動要素(第2可動要素1723と第3可動要素1724)のひとつ(第2可動要素1723)がベース1721に間接的に(第1可動要素1731を介して)連結されているが、例えば第2可動要素1723を直接鉛直直進ジョイントである第1ジョイント1731に連結されるようにしてもよい。また、さらなる水平回転ジョイントや垂直回転ジョイントを介してさらに間接的にベースに連結されていてもよい。この場合でも上述した位置関係が担保されている限り、スペース確保及びコンパクトという効果を得ることができる。   In the example of FIGS. 16 and 17, one of the two movable elements (second movable element 1723 and third movable element 1724) whose end portions are connected by a horizontal rotary joint (second movable element 1723) is the base 1721. However, the second movable element 1723 may be directly coupled to the first joint 1731 which is a vertical rectilinear joint, for example. Moreover, it may be further indirectly connected to the base via a further horizontal rotary joint or a vertical rotary joint. Even in this case, as long as the above-described positional relationship is secured, it is possible to obtain the effects of space securing and compactness.

第4可動要素1725は、ロボットアーム1701の先端に位置している。本構成例では、ロボットアーム1701の先端が、特定方向に延びるテーブル1708の中央部の下面に固定されている。このような構成であれば、大きな支持強度でテーブル1708を支持することができ、また、テーブル1708の下にロボットアーム1701の可動要素及びベースを収納しやすくなる。ただし、例えば第3可動要素1724の長さを短くし、テーブル1708の支持位置を一端部とするようにしてもよく、この場合であってもスペース確保及びコンパクト化という効果を得られることに違いはない。   The fourth movable element 1725 is located at the tip of the robot arm 1701. In this configuration example, the tip of the robot arm 1701 is fixed to the lower surface of the center portion of the table 1708 extending in a specific direction. With such a configuration, the table 1708 can be supported with high support strength, and the movable element and base of the robot arm 1701 can be easily stored under the table 1708. However, for example, the length of the third movable element 1724 may be shortened and the support position of the table 1708 may be one end, and even in this case, the effect of securing space and downsizing can be obtained. There is no.

なお、上記説明における「一端部」「他端部」「端部」「中央部」の定義については、第1及び第2の構成例と同様である。   The definitions of “one end”, “other end”, “end”, and “center” in the above description are the same as in the first and second configuration examples.

ロボットアーム1701は、第1〜第6ジョイント1731〜1736に対応して、第1〜第4可動要素1722〜1725を移動又は回転させる複数のアクチュエータ(本構成例では、第1〜第6アクチュエータ1741〜1746)と、それぞれのジョイントに組み込まれそれぞれの可動要素の位置を検出する複数の位置検出器(本構成例では第1〜第6位置検出器1751〜1756)と、それぞれのアクチュエータの駆動を制御する制御装置1707(図17参照)を含む。制御装置1707はベース1721内に位置しているが、例えば外部の独立した装置としてもよい。   The robot arm 1701 has a plurality of actuators (in this configuration example, first to sixth actuators 1741 corresponding to the first to sixth joints 1731 to 1736 for moving or rotating the first to fourth movable elements 1722 to 1725. -1746), a plurality of position detectors (first to sixth position detectors 1751 to 1756 in the present configuration example) that are incorporated in the respective joints and detect the positions of the respective movable elements, and drive the respective actuators. A control device 1707 (see FIG. 17) for controlling is included. The control device 1707 is located in the base 1721, but may be an external independent device, for example.

第1〜第6アクチュエータ1741〜1746は、例えばサーボモータである。位置検出器としては第1及び第2の構成例と同様、エンコーダを用いてもよいしレゾルバやポテンショメータを用いても構わない。   The first to sixth actuators 1741 to 1746 are, for example, servo motors. As the position detector, as in the first and second configuration examples, an encoder may be used, or a resolver or a potentiometer may be used.

ロボットアーム1701はまた、第1〜第6ジョイント1731〜1736に対応して、それぞれ、第1〜第6電磁ブレーキ1761〜1766を含むことが望ましい。電磁ブレーキを備えていない場合は、複数のアクチュエータ1741〜1746の駆動によりロボットアーム1701の姿勢を一定に保つことになるが、電磁ブレーキを含んでいると、ある部分のアクチュエータの駆動をオフにしても電磁ブレーキ機能をオンとすることにより、ロボットアーム1701の姿勢を一定に保つことができる。   The robot arm 1701 also preferably includes first to sixth electromagnetic brakes 1761 to 1766 corresponding to the first to sixth joints 1731 to 1736, respectively. When the electromagnetic brake is not provided, the posture of the robot arm 1701 is kept constant by driving the plurality of actuators 1741 to 1746. However, when the electromagnetic brake is included, the driving of the actuator of a certain part is turned off. Also, by turning on the electromagnetic brake function, the posture of the robot arm 1701 can be kept constant.

電磁ブレーキが設けられる場合の第1〜第6電磁ブレーキ1761〜1766それぞれは、アクチュエータへ駆動電流が供給されないときにブレーキ機能をオンにし、アクチュエータへ駆動電流が供給されたときにブレーキ機能をオフにするように構成されている。   When the electromagnetic brake is provided, each of the first to sixth electromagnetic brakes 1761 to 1766 turns on the brake function when the drive current is not supplied to the actuator, and turns off the brake function when the drive current is supplied to the actuator. Is configured to do.

第1〜第3の構成例と同様、アクチュエータとしてのモータ、位置検出器としてのエンコーダ、及びブレーキは、図2に示すように一体化したユニットとして構成されることが多い。さらに、第1〜第6アクチュエータ1741〜1746のそれぞれには、動力伝達用の減速機構およびカップリングなどが設けられる。   As in the first to third configuration examples, the motor as the actuator, the encoder as the position detector, and the brake are often configured as an integrated unit as shown in FIG. Further, each of the first to sixth actuators 1741 to 1746 is provided with a power transmission speed reduction mechanism and a coupling.

図17に示した例では、第1可動要素1722が第2可動要素1723の上側に位置するように水平回転ジョイント1732によって連結されているが、第1可動要素1722が第2可動要素1723の下側に位置するように水平回転ジョイント1732によって連結されるように構成してもよい。このようにすれば、ベース1721を低くしたことによる高さの補償をすることができる。   In the example shown in FIG. 17, the first movable element 1722 is connected by the horizontal rotary joint 1732 so as to be positioned above the second movable element 1723, but the first movable element 1722 is below the second movable element 1723. You may comprise so that it may be connected by the horizontal rotation joint 1732 so that it may be located in the side. In this way, the height can be compensated for by lowering the base 1721.

以上、図16及び17に示したロボットアーム1701は、自由度が6であるが、本発明のロボットアームの自由度は、必ずしも6である必要はなく、5以下であってもよいし7以上であってもよい。しかしながら、ロボットアームの自由度は、テーブル1708を少なくとも空間内で直線的に移動できるように3以上であることが望ましい。図18に自由度が3である本構成に係るロボティックベッドの例を示す。図18において、ロボットアーム1801はベース1821と2つの可動要素1822及び1823から構成され、ベース1821と第1可動要素1822の一端部は鉛直直進ジョイントである第1ジョイント1831によって連結されており、第1可動要素1822は第1軸方向(鉛直方向)に移動することができる。第1可動要素1822の他端部と第2可動要素1823の一端部は水平回転ジョイントである第2ジョイント1832で連結されており、第2軸(鉛直方向)まわりに第2可動要素1823が回転することができる。第2可動要素1823の他端部がロボットアーム1801の先端を構成し、テーブル1808の中央部の下面と水平回転ジョイントである第3ジョイント1833で連結されている。   As described above, the robot arm 1701 shown in FIGS. 16 and 17 has six degrees of freedom, but the degree of freedom of the robot arm of the present invention does not necessarily have to be 6, and may be 5 or less, or 7 or more. It may be. However, the degree of freedom of the robot arm is desirably 3 or more so that the table 1708 can move at least linearly in space. FIG. 18 shows an example of a robotic bed according to this configuration having 3 degrees of freedom. In FIG. 18, the robot arm 1801 is composed of a base 1821 and two movable elements 1822 and 1823, and one end of the base 1821 and the first movable element 1822 is connected by a first joint 1831 which is a vertical rectilinear joint. One movable element 1822 can move in the first axial direction (vertical direction). The other end of the first movable element 1822 and one end of the second movable element 1823 are connected by a second joint 1832 that is a horizontal rotary joint, and the second movable element 1823 rotates around the second axis (vertical direction). can do. The other end of the second movable element 1823 constitutes the tip of the robot arm 1801 and is connected to the lower surface of the central portion of the table 1808 by a third joint 1833 that is a horizontal rotation joint.

以上のように構成されたロボティックベッドを用いれば、テーブル上に載置対象物を載置した後、テーブル1708・1808を検査位置や治療位置といった目的とする位置に正確かつ迅速に移動させることができ、医療現場における検査や治療の効率を格段に向上させることができる。例えば、キャスター付きのテーブルにより載置対象としての患者を移動させるのと比較して、患者に大きな振動を与えることなくテーブル1708・1808をスムーズに移動させることができる他、医療室の床上に多数存在する医療機器に付随するコード類や医療器具に付随するチューブ類との絡まりやこれらを跨ぐことによるテーブルのがたつき回避することができ、安全性と移動効率を高めることができる。   By using the robotic bed configured as described above, after placing the placement object on the table, the tables 1708 and 1808 can be accurately and quickly moved to the target positions such as the examination position and the treatment position. It is possible to greatly improve the efficiency of inspection and treatment in the medical field. For example, the table 1708 and 1808 can be moved smoothly without giving a large vibration to the patient as compared with the case where the patient to be placed is moved by a table with casters, and there are many on the floor of the medical room. It is possible to avoid entanglement with cords associated with existing medical devices and tubes associated with medical devices, and rattling of the table by straddling them, and safety and movement efficiency can be improved.

ロボティックベッドが目標とすべき位置の例に関しては、第1〜第3の構成例と同様なのでここでは説明を省略する。   Since the example of the position where the robotic bed should be targeted is the same as the first to third configuration examples, the description is omitted here.

本構成例に係るロボットアームに支持されたテーブルを複数の位置の間で移動させる動作を、図17に示した6自由度のロボットアーム1701を用いた場合を例にして、図19〜図21に説明する。   The operation of moving the table supported by the robot arm according to this configuration example between a plurality of positions is shown in the case of using the robot arm 1701 having 6 degrees of freedom shown in FIG. 17 as an example. Explained.

図19は、ある載置対象である被験者を載置位置からある検査位置へ移動させる際に、テーブル1708が載置位置に位置している様子を示している。図20は、制御装置1707による制御によって第2可動要素1723及び第3可動要素1724が矢印の如く動き、またテーブル1708が第6軸まわりに回転して矢印の如く動いて(場合によっては、第1可動要素1722も鉛直方向に動いて高さが調節され、また第4軸又は/及び第5軸まわりにテーブル1708が回転して傾きが微調整され)被験者の頭部が検査装置1914に対して斜めから移動してゆく様子を示している。図21はテーブル1708が検査装置1914の内部に挿入され、被験者が検査位置に到達した様子を示している。なお、図19におけるテーブル1708の位置は治療位置でもあり得、テーブル1708が図21の検査位置から図19の位置まで各可動要素が逆方向に動いて元の位置に戻り、検査直後に検査結果を判断して医師1912が治療を行うことができる。   FIG. 19 shows a state in which the table 1708 is located at the placement position when a subject as a placement target is moved from the placement position to a certain inspection position. In FIG. 20, the second movable element 1723 and the third movable element 1724 move as indicated by arrows under the control of the controller 1707, and the table 1708 rotates around the sixth axis and moves as indicated by arrows (in some cases, the first (1) the movable element 1722 is also moved in the vertical direction to adjust its height, and the table 1708 is rotated around the fourth axis and / or the fifth axis to finely adjust the tilt). It shows how it moves from an angle. FIG. 21 shows a state where the table 1708 is inserted into the inspection device 1914 and the subject reaches the inspection position. Note that the position of the table 1708 in FIG. 19 may also be a treatment position, and the table 1708 moves back from the inspection position in FIG. 21 to the position in FIG. 19 to return to the original position. Thus, the doctor 1912 can perform treatment.

図18に示したロボットアーム1801でも同じような軌跡を辿ってテーブル1808が移動することができる。   The robot arm 1801 shown in FIG. 18 can also move the table 1808 following a similar locus.

なお、被験者の頭の向きはテーブル1708・1808の長手方向において反対側でもよく、その場合はテーブル1708・1808の回転方向が図20に示したテーブルの移動方向とは逆に回りながら検査装置1914に移動することになる。このように、ベース1721・1821がテーブル1708・1808の下に収納されると、載置対象物の向きがどちらであってもよく、図19のテーブル1708・1808の位置が治療位置だとすると、術者1912はテーブル1708・1808のどちら側からでも手術を行うことができ、助手も含めてテーブルを取り囲んで手術にあたることができるという優れたメリットがある。ベース1721・1821が邪魔となることもないので、医師1912は座った状態で治療にあたることができる。   The head direction of the subject may be the opposite side in the longitudinal direction of the tables 1708 and 1808. In this case, the inspection apparatus 1914 rotates while the rotation direction of the tables 1708 and 1808 is opposite to the moving direction of the table shown in FIG. Will be moved to. As described above, when the bases 1721 and 1821 are stored under the tables 1708 and 1808, the orientation of the object to be placed may be either. If the positions of the tables 1708 and 1808 in FIG. The person 1912 can perform the operation from either side of the tables 1708 and 1808, and has an excellent merit that the operator can be operated by surrounding the table including the assistant. Since the bases 1721 and 1821 do not get in the way, the doctor 1912 can perform treatment while sitting.

(第5の構成例)
本構成例に係るロボティックベッドは、第1〜第4の構成例のロボティックベッドにおけるテーブルにおいて、スライド機構を備えていることを特徴としている。
(Fifth configuration example)
The robotic bed according to this configuration example is characterized in that the table in the robotic bed according to the first to fourth configuration examples includes a slide mechanism.

図22は、テーブル2208がレールを有する本体2281とレールの溝に嵌まり込むスライド板2282から構成されていることを示す図である。ロボティックベッドにおけるテーブルがこのような構成を備えていると、例えばロボティックアームによりテーブルを検査準備位置まで移動させた後、スライド板2282を人手でスライドさせることにより、載置対象物をさらに遠くの検査位置まで移動させることができる。   FIG. 22 is a diagram showing that the table 2208 includes a main body 2281 having a rail and a slide plate 2282 that fits into a groove of the rail. When the table in the robotic bed has such a configuration, for example, after the table is moved to the inspection preparation position by the robotic arm, the slide plate 2282 is manually slid to move the placement object further away. It can be moved to the inspection position.

図23は、テーブル2308の下面にはスライド機構2309が嵌まり込む溝2383が形成されており、溝2383の両側には、複数の歯を有するラック2384が設けられていることを示す図である。スライド機構2309はロボットアームの先端と連結される本体2391と、本体2391に回転可能に支持された、ラック2384と噛み合う一対のピニオン2392と、ピニオン2392を回転させるアクチュエータ(図示せず)を含む。ロボティックベッドにおけるテーブル2308がこのような構成を備えていると、例えばロボティックアームによりテーブルを検査準備位置まで移動させた後、テーブル2308をアクチュエータの駆動によってスライドさせることにより、載置対象物をさらに遠くまで移動させることができる。アクチュエータは例えばサーボモータである。   FIG. 23 is a view showing that a groove 2383 into which the slide mechanism 2309 is fitted is formed on the lower surface of the table 2308, and racks 2384 having a plurality of teeth are provided on both sides of the groove 2383. . The slide mechanism 2309 includes a main body 2391 connected to the tip of the robot arm, a pair of pinions 2392 that are rotatably supported by the main body 2391 and mesh with the rack 2384, and an actuator (not shown) that rotates the pinion 2392. When the table 2308 in the robotic bed has such a configuration, for example, after the table is moved to the inspection preparation position by the robotic arm, the table 2308 is slid by driving of the actuator, so that the placement object is moved. It can be moved further. The actuator is, for example, a servo motor.

なお、スライド機構を備えると、各構成例における自由度は1つ増えることになる。また、アクチュエータにより駆動可能な構成であれば、各構成例に係るロボットアームの複数のアクチュエータと同時に駆動させることにより、ロボットアームの可動要素とスライド機構が同時に動作して効率的に目的位置にテーブルを搬送することができる。   If the slide mechanism is provided, the degree of freedom in each configuration example is increased by one. In addition, if the configuration can be driven by an actuator, the robot arm movable element and the slide mechanism are operated simultaneously by driving simultaneously with a plurality of actuators of the robot arm according to each configuration example, so that the table can be efficiently placed at the target position. Can be transported.

図24〜図26に、第1の構成例に係るロボティックベッドにおいて、手動のスライド機構を採用した場合に載置対象を移動させる例を示す。   FIGS. 24 to 26 show examples in which the placement target is moved when a manual slide mechanism is adopted in the robotic bed according to the first configuration example.

図24に示す載置対象物の載置位置は図4の位置と同じであり、図25に示す検査装置に頭が向けられた位置(検査準備位置)は図5の位置と同じである。第1の構成例ではそのままロボットアーム101の可動要素を動かしてテーブル108を検査装置414内に搬送したが、本構成例においてスライド板を手動操作によりスライドさせることにより、検査装置414内へと移動させている。   The placement position of the placement object shown in FIG. 24 is the same as the position of FIG. 4, and the position where the head is directed to the inspection apparatus shown in FIG. 25 (inspection preparation position) is the same as the position of FIG. In the first configuration example, the movable element of the robot arm 101 is moved as it is to transport the table 108 into the inspection apparatus 414. However, in this configuration example, the slide plate is manually slid to move into the inspection apparatus 414. I am letting.

このような構成によればロボットアームを検査準備位置までしか延長する必要がないため、ロボットアームの可動範囲が小さくて済み、各可動要素を小さくできるというメリットがある。それに伴い、医療現場の限られたスペースを有効活用することができる。例えば、図5から図6への移行では、第2可動要素123及び第3可動要素124をそれぞれ検査装置414側へ移動させているが、図25から図26への移行ではロボットアームを動かしておらず、従ってその分第1可動要素123と第3可動要素124は短くて済むことになる。   According to such a configuration, since the robot arm only needs to be extended to the inspection preparation position, there is an advantage that the movable range of the robot arm is small and each movable element can be made small. Along with this, it is possible to effectively utilize the limited space in the medical field. For example, in the transition from FIG. 5 to FIG. 6, the second movable element 123 and the third movable element 124 are respectively moved to the inspection device 414 side, but in the transition from FIG. 25 to FIG. Accordingly, the first movable element 123 and the third movable element 124 can be shortened accordingly.

次に、第3の構成例に係るロボティックベッドおいてアクチュエータ駆動のスライド機構を採用した場合に載置対象を移動させる例を説明する。   Next, an example in which the placement target is moved when an actuator-driven slide mechanism is employed in the robotic bed according to the third configuration example will be described.

図27に第3の構成例においてスライド機構を設けたロボティックベッドの側面図を示す。
ロボティックベッドに用いられるロボットアーム2701は、多自由度(3自由度以上)を有し、その先端で載置対象物が載置されるテーブル2708を支持する。テーブル2708およびロボットアーム2701は、ロボティックベッドを構成する。
FIG. 27 shows a side view of a robotic bed provided with a slide mechanism in the third configuration example.
The robot arm 2701 used for the robotic bed has multiple degrees of freedom (three degrees of freedom or more), and supports a table 2708 on which a placement target is placed at the tip thereof. The table 2708 and the robot arm 2701 constitute a robotic bed.

ロボットアーム2701は、ベース2721と、複数の可動要素(本構成例では、第1〜第3可動要素2722〜2724)と、複数のジョイント(本構成例では、第1〜第5ジョイント2731〜2735)を含む。   The robot arm 2701 includes a base 2721, a plurality of movable elements (first to third movable elements 2722 to 2724 in the present configuration example), and a plurality of joints (first to fifth joints 2731 to 2735 in the present configuration example). )including.

ベース2721と第1可動要素2722の一端部は鉛直直進ジョイントである第1ジョイント2731によって連結されており、第1可動要素2722は第1軸方向(鉛直方向)に移動することができる。第1可動要素2722の他端部と第2可動要素2723の一端部は水平回転ジョイントで連結されており、第2軸(鉛直方向)まわりに第2可動要素2723が回転することができる。第2可動要素2723と第3可動要素2724の間の第3〜第5ジョイント2733〜2735は、それぞれ、第3〜第5軸回りの回転ジョイントである。第3軸は第2可動要素2723の延びる方向であり、第4軸は第3ジョイント2733によって回転される、第3軸と直交する方向であり、第5軸は、第4ジョイント2734によって回転される、第4軸と直交する方向である。   One end of the base 2721 and the first movable element 2722 is connected by a first joint 2731 which is a vertical rectilinear joint, and the first movable element 2722 can move in the first axial direction (vertical direction). The other end of the first movable element 2722 and one end of the second movable element 2723 are connected by a horizontal rotary joint, and the second movable element 2723 can rotate around the second axis (vertical direction). The third to fifth joints 2733 to 2735 between the second movable element 2723 and the third movable element 2724 are rotary joints around the third to fifth axes, respectively. The third axis is a direction in which the second movable element 2723 extends, the fourth axis is a direction orthogonal to the third axis rotated by the third joint 2733, and the fifth axis is rotated by the fourth joint 2734. The direction perpendicular to the fourth axis.

第1可動要素2722と第2可動要素2723は特定方向に延びる棒状となっており、長さはロボットアーム2701の必要な可動範囲に応じて適宜設計される。そして、第1可動要素2722は水平面に平行な状態を維持して上下移動し、第2可動要素2723は第1可動要素と平行な状態を維持して第2軸まわりに回転する構成となっている。このような構成であれば、第2のアクチュエータ2742において鉛直方向の重力補償を行う必要がないためモータを小さくすることができる。これは、ロボットアーム2701の小型化に有利な構成であり、限られたスペースしか確保できない医療現場に導入する場合や、治療や手術でより多くのスペースを確保するのに有利である。   The first movable element 2722 and the second movable element 2723 have a rod shape extending in a specific direction, and the length is appropriately designed according to the necessary movable range of the robot arm 2701. The first movable element 2722 is moved up and down while maintaining a state parallel to the horizontal plane, and the second movable element 2723 is rotated around the second axis while maintaining a state parallel to the first movable element. Yes. With such a configuration, it is not necessary to perform gravity compensation in the vertical direction in the second actuator 2742, so that the motor can be made small. This is an advantageous configuration for reducing the size of the robot arm 2701, and is advantageous for introduction to a medical site where only a limited space can be secured or for securing more space for treatment or surgery.

第3可動要素2724は、ロボットアーム2701の先端に位置している。本構成例では、ロボットアーム2701の先端が、テーブル2708のスライド機構2709に連結されている。   The third movable element 2724 is located at the tip of the robot arm 2701. In this configuration example, the tip of the robot arm 2701 is connected to the slide mechanism 2709 of the table 2708.

ロボットアーム2701は、第1〜第5ジョイント2731〜2735及びスライド機構2709に対応して、第1〜第3可動要素2722〜2724及びスライド機構2709を移動又は回転させる複数のアクチュエータ(本構成例では、第1〜第5アクチュエータ2741〜2745及びスライド機構用アクチュエータ2749)と、それぞれのジョイントに組み込まれそれぞれの可動要素の位置を検出する複数の位置検出器(本構成例では第1〜第5位置検出器2751〜2755及びスライド機構用位置検出器2759)と、それぞれのアクチュエータの駆動を制御する制御装置2707を含む。制御装置2707はベース2721内に位置しているが、例えば外部の独立した装置としてもよい。   The robot arm 2701 corresponds to the first to fifth joints 2731 to 2735 and the slide mechanism 2709, and includes a plurality of actuators (in this configuration example) that move or rotate the first to third movable elements 2722 to 2724 and the slide mechanism 2709. , First to fifth actuators 2741 to 2745 and slide mechanism actuator 2749) and a plurality of position detectors (first to fifth positions in the present configuration example) that detect the positions of the respective movable elements. Detectors 2751 to 2755 and a slide mechanism position detector 2759), and a control device 2707 for controlling the driving of each actuator. The control device 2707 is located in the base 2721, but may be an external independent device, for example.

第1〜第5アクチュエータ2741〜2745及びスライド機構用アクチュエータ2749は、例えばサーボモータである。位置検出器としては第1及び第2の構成例と同様、エンコーダやレゾルバ、ポテンショメータを用いることができる。   The first to fifth actuators 2741 to 2745 and the slide mechanism actuator 2749 are, for example, servo motors. As the position detector, an encoder, a resolver, and a potentiometer can be used as in the first and second configuration examples.

ロボットアーム2701はまた、第1〜第5ジョイント2731〜2735及びスライド機構2709に対応して、それぞれ、第1〜第5電磁ブレーキ2761〜2765及びスライド機構用電磁ブレーキ2769を含むことが望ましい。電磁ブレーキを備えていない場合は、複数のアクチュエータ2741〜2745及びスライド機構用アクチュエータ2749の駆動によりロボットアーム2701の姿勢を一定に保つことになるが、電磁ブレーキを含んでいると、ある部分のアクチュエータの駆動をオフにしても電磁ブレーキ機能をオンとすることにより、ロボットアーム2701の姿勢を一定に保つことができる。   The robot arm 2701 preferably includes first to fifth electromagnetic brakes 2761 to 2765 and a slide mechanism electromagnetic brake 2769 corresponding to the first to fifth joints 2731 to 2735 and the slide mechanism 2709, respectively. When the electromagnetic brake is not provided, the posture of the robot arm 2701 is kept constant by driving a plurality of actuators 2741 to 2745 and the slide mechanism actuator 2749. By turning on the electromagnetic brake function even if the drive of is turned off, the posture of the robot arm 2701 can be kept constant.

電磁ブレーキが設けられる場合の第1〜第5電磁ブレーキ2761〜2765それぞれは、アクチュエータへ駆動電流が供給されないときにブレーキ機能をオンにし、アクチュエータへ駆動電流が供給されたときにブレーキ機能をオフにするように構成されている。   When the electromagnetic brake is provided, each of the first to fifth electromagnetic brakes 2761 to 2765 turns on the brake function when the drive current is not supplied to the actuator, and turns off the brake function when the drive current is supplied to the actuator. Is configured to do.

図28に示す載置対象物の載置位置は図13と同じである。しかし、スライド機構を有するロボティックベッドにおいて検査装置2814へ挿入するテーブル2708方向は逆である。すなわち、図13〜図15においてテーブル1008を検査装置1314にテーブル1008の一端側から挿入していると表現すると、図28〜30においては検査装置2814へテーブル2708の他端側から挿入する構成となる。   The placement position of the placement object shown in FIG. 28 is the same as FIG. However, the direction of the table 2708 inserted into the inspection device 2814 in the robotic bed having the slide mechanism is reversed. That is, if it expresses that the table 1008 is inserted in the inspection apparatus 1314 from the one end side of the table 1008 in FIGS. 13-15, it will be inserted in the inspection apparatus 2814 from the other end side of the table 2708 in FIGS. Become.

図15に示す検査装置1314に頭から挿入された位置(検査位置)は図30の位置と同じである。第1の構成例ではそのままロボットアーム1001の可動要素を動かしてテーブル1008を斜めから検査装置1314内に搬送したが、本構成例においてはテーブル2708が一旦検査装置2814に向くように配置したあと、テーブル2708をアクチュエータ駆動によりスライドさせることにより、検査装置2814内へと移動させている。   The position (inspection position) inserted from the head into the inspection apparatus 1314 shown in FIG. 15 is the same as the position in FIG. In the first configuration example, the movable element of the robot arm 1001 is moved as it is to convey the table 1008 into the inspection apparatus 1314 from an oblique direction. In this configuration example, after the table 2708 is once arranged to face the inspection apparatus 2814, The table 2708 is moved into the inspection apparatus 2814 by sliding by the actuator drive.

以上のように、スライド機構を設けると、ロボットアームのサイズを小型化できるというメリットがある他、図10に示すような(ロボットアーム1001がテーブル1008の一端部を支持している)第3の構成例においては、載置位置において載置対象をどちらの方向に向けるかを変更できるという効果がある。後者については、例えば載置位置が脳や歯の手術を行う手術位置である場合、図10のように患者が検査装置1314より戻ってきた場合に頭部がベース1021の方を向いていると、術者1312はベース1021が邪魔となって手術がしにくいが、図27のように患者が検査装置2814より戻ってきた場合に頭部がベース2721と逆の方を向いていると、頭部側の手術がしやすいといった効果がある。ベース2721が邪魔となることもないので、医師2812は座った状態で治療にあたることができる。   As described above, the provision of the slide mechanism has an advantage that the size of the robot arm can be reduced, and the third type as shown in FIG. 10 (the robot arm 1001 supports one end of the table 1008). In the configuration example, there is an effect that it is possible to change in which direction the mounting target is directed at the mounting position. As for the latter, for example, when the placement position is a surgical position where brain or tooth surgery is performed, the head is directed toward the base 1021 when the patient returns from the inspection apparatus 1314 as shown in FIG. The surgeon 1312 is difficult to perform the operation because the base 1021 is in the way. However, when the patient returns from the inspection apparatus 2814 as shown in FIG. There is an effect that the operation on the side is easy. Since the base 2721 does not get in the way, the doctor 2812 can perform treatment while sitting.

なお、ここで紹介した2つの例ではロボットアームの先端がテーブルの端部を支持しているが、ロボットアームの先端がテーブルの中央部を支持している構成において手動スライド機構を採用してもよい。また、アクチュエータ駆動のスライド機構2709が嵌まり込むテーブルの溝2783の長さを中央部分だけに制限してもよく、この場合はスライド幅が短くなるが、スライド幅が大きい場合と比べて、テーブルの撓みは発生しにくくなる。   In the two examples introduced here, the tip of the robot arm supports the end of the table, but a manual slide mechanism may be adopted in a configuration in which the tip of the robot arm supports the center of the table. Good. Further, the length of the table groove 2783 into which the actuator-driven slide mechanism 2709 is fitted may be limited to only the central portion. In this case, the slide width is shortened, but the table is smaller than the case where the slide width is large. Is less likely to occur.

また、上述の例では、第1の構成例及び第3の構成例に対し、手動操作のスライド機構及びアクチュエータ駆動のスライド機構をそれぞれ適用する例を示したが、各構成例においてどちらのスライド機構を適用してもよい。   In the above-described example, an example in which a manually operated slide mechanism and an actuator-driven slide mechanism are applied to the first configuration example and the third configuration example, respectively. May be applied.

そして、スライド機構を新たに設けることで、第3の構成例と第4の構成例におけるコンパクトサイズのロボティックベッドの設計も見直しておく必要がある。第4構成例についてはスライド機構によりテーブルの位置がどれだけ変更していようと、テーブルが水平面に平行な状態を維持していれば、テーブルをどのように回転してもテーブルとロボットアームが接触しないように構成していればよい。第3の構成例については、鉛直方向上側から見下ろした場合に、端部同士が水平回転ジョイントによって連結された2つの可動要素の特定方向が平行となる状態において、テーブル位置がスライド方向で移動することなくスライド機構を有するテーブルが最もベースに近づいた状態からテーブルを水平面に平行な状態でどのように回転させても(例えば360度回転させても)ロボットアームと接触しないように設計する。このような設計により、第3の構成例及び第4の構成例におけるロボティックベッドのメリットを維持しつつ、スライド機構を付加したメリットも得ることができる。   Then, it is necessary to review the design of the compact size robotic bed in the third configuration example and the fourth configuration example by newly providing a slide mechanism. For the fourth configuration example, no matter how much the position of the table is changed by the slide mechanism, the table and the robot arm are in contact with each other no matter how the table is rotated as long as the table remains parallel to the horizontal plane. What is necessary is just to comprise so that it may not. As for the third configuration example, when looking down from the upper side in the vertical direction, the table position moves in the slide direction in a state where the specific directions of the two movable elements whose ends are connected by the horizontal rotary joint are parallel to each other. Even when the table having the slide mechanism is closest to the base and is rotated in a state parallel to the horizontal plane (for example, rotated 360 degrees), it is designed not to contact the robot arm. With such a design, it is possible to obtain the merit of adding the slide mechanism while maintaining the merit of the robotic bed in the third configuration example and the fourth configuration example.

[各構成例に係るロボットアームに共通する特徴]
以下には、第1〜第5の構成例全てに適用可能な追加の特徴を記す。
[Characteristics common to robot arms according to each configuration example]
In the following, additional features applicable to all the first to fifth configuration examples will be described.

(チューブ類/コード類の固定具)
各構成例におけるテーブルへの載置対象が患者である場合、その患者が生命維持装置や点滴、その他治療に必要な装置を装着していることがある。
(Fixtures for tubes / cords)
When the object to be placed on the table in each configuration example is a patient, the patient may be equipped with a life support device, infusion, or other devices necessary for treatment.

上述の通り、キャスター付きのテーブルを移動させることと比較すると、上記第1〜第5の構成例に係るロボティックテーブルを導入することにより、載置対象の移動時にこのようなチューブ類(チューブおよび/またはケーブル)との絡まりやこれを跨ぐことによるがたつきを回避することができるが、さらに安全性を確保するために、本発明に係るロボティックベッドにおいては、テーブル、ロボットアームのベース、または可動要素の少なくとも1つには、これらの装置から延びているチューブ類を結束するための固定具171・371・771・1071・1171・1271・1771・1871・2771が取り付けられていることが望ましい。これにより、ロボットアームの動作時にチューブ類が絡まってしまうといった事態をさらに確実に回避することができる。医師や助手がチューブ類に足を引っ掛けてしまうということも予防し、さらに安全性を高めることができる。絡まり防止の対策が必要なチューブ類としては生命時装置などに接続されているものに限らず、医療機器やディスプレイなどの電気系コードなど(コード類)も同様の固定具で固定することが望ましい。また、テーブルを移動させる位置が決まっていれば、ロボットアームのだいたいの動きを予測して、余らせるチューブ類/コード類の長さとチューブ類/コード類側の固定具に嵌められる位置を決めておくことが望ましい。   As described above, compared to moving a table with casters, by introducing the robotic table according to the first to fifth configuration examples, such tubes (tubes and (Or cable) can be avoided, and rattling caused by straddling this can be avoided, but in order to further ensure safety, in the robotic bed according to the present invention, the table, the base of the robot arm, Alternatively, at least one of the movable elements may be provided with fixtures 171, 371, 771, 1071, 1171, 1271, 1771, 1871, and 2771 for binding tubes extending from these devices. desirable. As a result, it is possible to more reliably avoid a situation where the tubes are tangled during the operation of the robot arm. It is possible to prevent doctors and assistants from getting their feet on the tubes, and to further improve safety. Tubes that require measures to prevent tangling are not limited to those connected to life-time devices, but electrical cords (cords) such as medical devices and displays are also preferably fixed with similar fixtures. . Also, if the position to move the table is decided, predict the approximate movement of the robot arm and decide the length of the remaining tubes / cords and the position to be fitted to the fixture on the tubes / cords side. It is desirable to keep it.

(手動ブレーキオフ機能)
水平回転ジョイントに対応する電磁ブレーキが設けられている場合、アクチュエータへ駆動電流が供給されていないときに手動でブレーキ機能をオフとするスイッチやレバーが設けられていてもよい。図1に示すロボットアーム101の場合、第1〜第6の電磁ブレーキ161〜166のうちの、水平回転ジョイントである第2、第3、及び第6ジョイント132、133、及び136に対応する第2、第3、及び第6の電磁ブレーキ162、163、及び166が手動でブレーキ機能をオフすることができる構成としてもよい。図3に示すロボットアーム301の場合、第1〜第3の電磁ブレーキ361〜363のうちの、水平回転ジョイントである第2、第3ジョイント332、333に対応する第2、第3の電磁ブレーキ362、363が手動でブレーキ機能をオフすることができる構成としてもよい。図7に示すロボットアーム701の場合、第1〜第6の電磁ブレーキ761〜766のうちの、水平回転ジョイントである第1ジョイント731に対応する第1の電磁ブレーキ761が手動でブレーキ機能をオフすることができる構成としてもよい。図10に示すロボットアーム1001の場合、第1〜第5の電磁ブレーキ1061〜1065のうちの、水平回転ジョイントである第2、及び第5ジョイント1032、及び1035に対応する第2、及び第5の電磁ブレーキ1062、及び1065が手動でブレーキ機能をオフすることができる構成としてもよい。図11に示すロボットアーム1101の場合、第1〜第5の電磁ブレーキ1161〜1165のうちの、水平回転ジョイントである第2、及び第5ジョイント1132、及び1135に対応する第2、及び第5の電磁ブレーキ1162、及び1165が手動でブレーキ機能をオフすることができる構成としてもよい。図12に示すロボットアーム1201の場合、第1〜第3の電磁ブレーキ1261〜1263のうちの、水平回転ジョイントである第2、第3ジョイント1232、1233に対応する第2、第3の電磁ブレーキ1262、1263が手動でブレーキ機能をオフすることができる構成としてもよい。図17に示すロボットアーム1701の場合、第1〜第6の電磁ブレーキ1761〜1766のうちの、水平回転ジョイントである第2、第3、及び第6ジョイント1732、1733、及び1736に対応する第2、第3、及び第6の電磁ブレーキ1762、1763、及び1766が手動でブレーキ機能をオフすることができる構成としてもよい。図18に示すロボットアーム1801の場合、第1〜第3の電磁ブレーキ1861〜1863のうちの、水平回転ジョイントである第2、第3ジョイント1832、1833に対応する第2、第3の電磁ブレーキ1862、1863が手動でブレーキ機能をオフすることができる構成としてもよい。さらに、図27のようにモータで駆動されるスライド機構を有するロボティックベッドの場合、スライド機構を駆動するモータにも電磁ブレーキを設け、当該電磁ブレーキのブレーキ機能を手動でオフとする構成としてもよい。
(Manual brake-off function)
When an electromagnetic brake corresponding to the horizontal rotary joint is provided, a switch or a lever that manually turns off the brake function when the drive current is not supplied to the actuator may be provided. In the case of the robot arm 101 shown in FIG. 1, among the first to sixth electromagnetic brakes 161 to 166, the second corresponding to the second, third, and sixth joints 132, 133, and 136 that are horizontal rotation joints. The second, third, and sixth electromagnetic brakes 162, 163, and 166 may be configured to manually turn off the brake function. In the case of the robot arm 301 shown in FIG. 3, the second and third electromagnetic brakes corresponding to the second and third joints 332 and 333 that are horizontal rotation joints among the first to third electromagnetic brakes 361 to 363. 362 and 363 may be configured to manually turn off the brake function. In the case of the robot arm 701 shown in FIG. 7, the first electromagnetic brake 761 corresponding to the first joint 731 which is a horizontal rotation joint among the first to sixth electromagnetic brakes 761 to 766 is manually turned off. It is good also as a structure which can do. In the case of the robot arm 1001 shown in FIG. 10, the second and fifth of the first to fifth electromagnetic brakes 1061 to 1065 corresponding to the second and fifth joints 1032 and 1035 that are horizontal rotation joints. The electromagnetic brakes 1062 and 1065 may be configured to manually turn off the brake function. In the case of the robot arm 1101 shown in FIG. 11, the second and fifth of the first to fifth electromagnetic brakes 1161 to 1165 corresponding to the second and fifth joints 1132 and 1135 which are horizontal rotation joints. The electromagnetic brakes 1162 and 1165 may be configured to manually turn off the brake function. In the case of the robot arm 1201 shown in FIG. 12, the second and third electromagnetic brakes corresponding to the second and third joints 1232 and 1233 which are horizontal rotation joints among the first to third electromagnetic brakes 1261 to 1263. 1262 and 1263 may be configured to manually turn off the brake function. In the case of the robot arm 1701 shown in FIG. 17, among the first to sixth electromagnetic brakes 1761 to 1766, the second, third, and sixth joints 1732, 1733, and 1736 corresponding to the horizontal rotation joints. The second, third, and sixth electromagnetic brakes 1762, 1762, and 1766 may be configured to manually turn off the brake function. In the case of the robot arm 1801 shown in FIG. 18, the second and third electromagnetic brakes corresponding to the second and third joints 1832 and 1833 which are horizontal rotation joints among the first to third electromagnetic brakes 1861 to 1863. 1862 and 1863 may be configured to manually turn off the brake function. Further, in the case of a robotic bed having a slide mechanism driven by a motor as shown in FIG. 27, an electromagnetic brake is also provided in the motor that drives the slide mechanism, and the brake function of the electromagnetic brake is manually turned off. Good.

この構成によれば、万が一停電の場合でも、ブレーキ機能をオフしてロボットアームの可動要素を動かすことにより、医療従事者が例えば載置対象である患者を安全な場所に移動することができる。   According to this configuration, even in the event of a power failure, by turning off the brake function and moving the movable element of the robot arm, a medical worker can move a patient who is a placement target to a safe place, for example.

なお、上記列挙した手動ブレーキオフ機能の適用個所全てに適用する必要はなく、少なくとも一部に設けたり、水平面に平行な状態にしか動くことがない個所に限定して適用したりしてもよいことはもちろんである。   In addition, it is not necessary to apply to all the application parts of the manual brake-off function listed above, and it may be applied to at least a part or limited to a part that can move only in a state parallel to a horizontal plane. Of course.

(距離センサ)
各構成例におけるロボットアームには、ロボティックベッドの可動範囲を走査する距離センサ173・373・773・1073・1173・1273・1773・1873・2773が設けられていることが望ましい。図1において、ロボットアーム101の可動範囲は、第2ジョイント132の回転中心である第2軸を中心とする、ロボットアーム101とテーブル108を最大に伸長させたときのテーブル108の末端までを半径とする扇状の範囲である。図3において、ロボットアーム301の可動範囲は、第2ジョイント332の回転中心である第2軸を中心とする、ロボットアーム301とテーブル308を最大に伸長させたときのテーブル308の末端までを半径とする扇状の範囲である。図7において、ロボットアーム701の可動範囲は、第1ジョイント731の回転中心である第1軸を中心とする、ロボットアーム701とテーブル708を最大に伸長させたときのテーブル708の末端までを半径とする扇状の範囲である。図10において、ロボットアーム1001の可動範囲は、第2ジョイント1032の回転中心である第2軸を中心とする、ロボットアーム1001とテーブル1008を最大に伸長させたときのテーブル1008の末端までを半径とする扇状の範囲である。図11において、ロボットアーム1101の可動範囲は、第2ジョイント1132の回転中心である第2軸を中心とする、ロボットアーム1101とテーブル1108を最大に伸長させたときのテーブル1108の末端までを半径とする扇状の範囲である。図12において、ロボットアーム1201の可動範囲は、第2ジョイント1232の回転中心である第2軸を中心とする、ロボットアーム1201とテーブル1208を最大に伸長させたときのテーブル1208の末端までを半径とする扇状の範囲である。図17において、ロボットアーム1701の可動範囲は、第2ジョイント1732の回転中心である第2軸を中心とする、ロボットアーム1701とテーブル1708を最大に伸長させたときのテーブル1708の末端までを半径とする扇状の範囲である。図18において、ロボットアーム1801の可動範囲は、第2ジョイント1832の回転中心である第2軸を中心とする、ロボットアーム1801とテーブル1808を最大に伸長させたときのテーブル1808の末端までを半径とする扇状の範囲である。図27において、ロボットアーム2701の可動範囲は、第2ジョイント2732の回転中心である第2軸を中心とする、ロボットアーム2701とスライド機構でテーブル2708を一端側に寄せて最大に伸長させたときのテーブル2708の末端までを半径とする扇状の範囲である。
(Distance sensor)
The robot arm in each configuration example is preferably provided with distance sensors 173, 373, 773, 1073, 1173, 1273, 1773, 1873, and 2773 that scan the movable range of the robotic bed. In FIG. 1, the movable range of the robot arm 101 is a radius from the end of the table 108 to the end of the table 108 when the robot arm 101 and the table 108 are extended to the maximum centered on the second axis that is the rotation center of the second joint 132. Is a fan-shaped range. In FIG. 3, the movable range of the robot arm 301 is a radius from the second axis that is the rotation center of the second joint 332 to the end of the table 308 when the robot arm 301 and the table 308 are extended to the maximum. Is a fan-shaped range. In FIG. 7, the movable range of the robot arm 701 is a radius from the first axis that is the rotation center of the first joint 731 to the end of the table 708 when the robot arm 701 and the table 708 are extended to the maximum. Is a fan-shaped range. In FIG. 10, the movable range of the robot arm 1001 is a radius from the second axis that is the rotation center of the second joint 1032 to the end of the table 1008 when the robot arm 1001 and the table 1008 are extended to the maximum. Is a fan-shaped range. In FIG. 11, the movable range of the robot arm 1101 has a radius from the second axis that is the rotation center of the second joint 1132 to the end of the table 1108 when the robot arm 1101 and the table 1108 are extended to the maximum. Is a fan-shaped range. In FIG. 12, the movable range of the robot arm 1201 is a radius from the second axis that is the rotation center of the second joint 1232 to the end of the table 1208 when the robot arm 1201 and the table 1208 are extended to the maximum. Is a fan-shaped range. In FIG. 17, the movable range of the robot arm 1701 is a radius from the second axis that is the rotation center of the second joint 1732 to the end of the table 1708 when the robot arm 1701 and the table 1708 are extended to the maximum. Is a fan-shaped range. In FIG. 18, the movable range of the robot arm 1801 is a radius from the second axis that is the rotation center of the second joint 1832 to the end of the table 1808 when the robot arm 1801 and the table 1808 are extended to the maximum. Is a fan-shaped range. In FIG. 27, the movable range of the robot arm 2701 is when the table 2708 is moved toward one end and extended to the maximum by the robot arm 2701 and the slide mechanism around the second axis that is the rotation center of the second joint 2732. This is a fan-shaped range having a radius extending to the end of the table 2708.

以上のような距離センサ173・373・773・1073・1173・1273・1773・1873・2773を設けていると、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、距離センサによりロボットアームの可動範囲内に異物(人や物体)が検出された場合には、全てのアクチュエータの作動を停止または禁止する。この構成によれば、医療従事者のようなロボットの操作に熟達しておらず、ロボットアームの動作の予測が困難な人がロボティックベッドの近傍にいる場合であっても、人のロボットアームまたはテーブルへの接触および衝突などの危険が回避される。また、ロボットアームの医療機器への接触および衝突などの危険も回避される。   When the distance sensors 173, 373, 773, 1073, 1173, 1273, 1773, 1873, 2773 as described above are provided, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 When a foreign object (a person or an object) is detected within the movable range of the robot arm by the distance sensor, the operation of all actuators is stopped or prohibited. According to this configuration, even when a person who is not proficient in the operation of a robot such as a medical worker and who is difficult to predict the operation of the robot arm is in the vicinity of the robotic bed, the human robot arm Or dangers such as contact and collision with the table are avoided. Also, dangers such as contact and collision of the robot arm with the medical device are avoided.

なお、例えばテーブルが治療位置に到達した場合には、治療にあたる医師や助手がテーブルを取り囲んでも反応しないように、テーブルの位置に応じて距離センサをアクティブとするか非アクティブとするかを制御するようにしておくことが好ましい。ただし、距離センサのアクティブ/非アクティブを手動で切り替える切り替えスイッチなどの手段を設けておくべきである。あるいは、距離センサのアクティブ/非アクティブの切り替えは、制御装置により行われてもよい。   For example, when the table reaches the treatment position, it controls whether the distance sensor is activated or deactivated according to the position of the table so that a doctor or assistant who treats does not react even if the table surrounds the table. It is preferable to do so. However, a means such as a changeover switch for manually switching between active / inactive of the distance sensor should be provided. Alternatively, switching between active / inactive of the distance sensor may be performed by the control device.

(高さセンサ)
テーブルまたはロボットアームには、テーブル108・308・708・1008・1108・1208・1708・1808・2708の高さを検出する高さセンサ174・374・774・1074・1174・1274・1774・1874・2774が設けられていることが望ましい。この場合、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、テーブル108・308・708・1008・1108・1208・1708・1808・2708を検査装置内へ移動する前に、高さセンサ174・374・774・1074・1174・1274・1774・1874・2774により検出されるテーブル108・308・708・1008・1108・1208・1708・1808・2708の高さが所定範囲内にあるか否かを判定し、所定範囲内にない場合には、テーブル108・308・708・1008・1108・1208・1708・1808・2708を検査装置内へ移動しないように制御する。この構成によれば、テーブルまたは被験者の検査装置との接触や衝突の危険が回避される。なお、上記においては移動目標位置として検査位置を例に挙げたが、これが測定装置による測定位置、撮影装置による撮影位置など、医療に関連する装置内に挿入される場合であっても同様である。
(Height sensor)
For the table or robot arm, height sensors 174, 374, 774, 1074, 1174, 1274, 1774, 1874, which detect the height of the table 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708, are used. 2774 is preferably provided. In this case, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, and 2707 are moved before the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, and 2708 are moved into the inspection device. Further, the heights of the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 detected by the height sensors 174, 374, 774, 1074, 1174, 1274, 1774, 1874, 2774 are within a predetermined range. If it is not within the predetermined range, the table 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 is controlled not to move into the inspection apparatus. According to this configuration, the risk of contact or collision with the table or the test apparatus of the subject is avoided. In the above description, the inspection position is taken as an example of the movement target position, but the same applies even when this is inserted into a medical device such as a measurement position by a measurement device or a photographing position by an imaging device. .

(撓み補償)
また、各構成例におけるロボットアームは、テーブルやロボットアームの撓みに応じて制御装置によってロボットアームを制御することによりこれを補償する機能を有している。載置対象物の重量などが原因でテーブル3108が撓んだ場合にこれを補正する例を図31に示す。例えば載置対象としての患者の頭部の1点をトラッキングのための目標点と定める場合、ロボットアーム3101の先端(テーブル3108の固定部分)からのx、y、z座標を指定する等により目標点3190を記憶させることができる(図31(a))。そして、図31(b)のようにテーブルが撓んだ場合、目標点3190が例えば右下の方へ移動するため、座標値のズレをロボットアームの制御装置で検知し、制御装置はこのズレを補正するために予め記憶させた目標点3190に戻すようにアクチュエータの少なくともひとつを制御する。図31(c)の例では、ロボットアームのある可動要素を左側へ移動させるとともに、垂直回転ジョイントを時計回りに回転させて補正している。
(Bend compensation)
In addition, the robot arm in each configuration example has a function of compensating for this by controlling the robot arm with a control device in accordance with the bending of the table or the robot arm. FIG. 31 shows an example of correcting this when the table 3108 is bent due to the weight of the object to be placed. For example, when one point of the patient's head as a placement target is determined as a target point for tracking, the target is specified by specifying x, y, z coordinates from the tip of the robot arm 3101 (fixed portion of the table 3108). The point 3190 can be stored (FIG. 31A). When the table is bent as shown in FIG. 31 (b), the target point 3190 moves, for example, to the lower right, so that the deviation of the coordinate values is detected by the robot arm control device, and the control device detects this deviation. At least one of the actuators is controlled so as to return to the target point 3190 stored in advance in order to correct. In the example of FIG. 31C, the movable element with the robot arm is moved to the left side, and the vertical rotation joint is rotated clockwise to correct.

図32に撓み補償の他の例を示す。例えば図31の場合と同様に、載置対象としての患者の頭部の1点をトラッキングのための目標点と定める場合、ロボットアーム3201の先端(テーブル3208の固定部分)からのx、y、z座標を指定する等により目標点3290を記憶させることができる(図32(a))。そして、図32(b)のようにテーブルが撓んで目標点3190が例えば下方へ移動する場合、座標値のズレをロボットアームの制御装置で検知し、制御装置はこのズレを補正するために予め記憶させた目標点3290に戻すようにアクチュエータの少なくともひとつを制御する。図32(c)の例では、ロボットアームのある垂直回転ジョイントを時計回りに回転させて補正している。   FIG. 32 shows another example of deflection compensation. For example, as in the case of FIG. 31, when one point on the patient's head as the placement target is determined as a target point for tracking, x, y, and the like from the tip of the robot arm 3201 (fixed portion of the table 3208) The target point 3290 can be stored by designating the z coordinate or the like (FIG. 32A). When the table is bent and the target point 3190 moves downward, for example, as shown in FIG. 32 (b), a coordinate value shift is detected by the robot arm control device, and the control device corrects the shift in advance. At least one of the actuators is controlled so as to return to the stored target point 3290. In the example of FIG. 32C, the vertical rotation joint with the robot arm is rotated clockwise for correction.

このような構成によれば、目標とする点の正確な位置合わせが常に可能となる。従って、例えば載置対象物の正確な移送が達成されるとともに、テーブルまたは載置対象物の検査装置、測定装置、撮影装置等への接触および衝突などの危険も回避される。   According to such a configuration, it is always possible to accurately align the target point. Accordingly, for example, accurate transfer of the placement object is achieved, and dangers such as contact and collision of the table or the placement object with the inspection device, measurement device, imaging device, and the like are also avoided.

(重量センサ)
また、テーブルまたはロボットアームには、載置対象物の重量を計測する重量センサ175・375・775・1075・1175・1275・1775・1875・2775が設けられていることが望ましい。これは、例えば載置対象としての患者の体重を常に監視することを可能とする。この構成によれば、載置対象としての患者を体重面からモニタすることができ、例えば手術開始前の体重を記憶しつつ、出血により減った重量をモニタし、手術時の対応、方針変更の参考とすることができる。そのため、重量センサで検出した数値を表示するための表示部(例えば、表示窓、ディスプレイ)をテーブル又はロボットアームに設けておくことが好ましい。そして、この表示部には複数個の記録した値(例えば手術前と出血を伴う手術を行った直後)や記憶した値と現在の値の差(例えば手術前の値と現在の値の差)を表示できるようにしておくことが好ましい。そのために、メモリなどの記憶手段を設け、この記憶手段にある時点での載置対象物の重量を記憶するようにし、重量センサによって検出した載置対象物の現在の重量と記憶された重量との差を計算するCPUなどの計算部を備えておくことが好ましい。さらに、このような管理を載置対象としての患者ごとにするために、記憶手段は患者IDと対応付けて患者を選択できるようにし、患者ごとにある時点の重量を記憶し、現在の重量との差を計算して表示部に表示できるようにしておくことが好ましい。
(Weight sensor)
Further, it is desirable that weight sensors 175, 375, 775, 1075, 1175, 1275, 1775, 1875, and 2775 for measuring the weight of the object to be placed are provided on the table or the robot arm. This makes it possible to always monitor the weight of a patient as a placement target, for example. According to this configuration, it is possible to monitor the patient as a placement target from the body weight side. For example, while storing the body weight before the start of the operation, the weight decreased due to bleeding is monitored, and the response at the time of surgery and policy change It can be used as a reference. For this reason, it is preferable to provide a display unit (for example, a display window or a display) for displaying the numerical value detected by the weight sensor on the table or the robot arm. In this display section, a plurality of recorded values (for example, immediately before surgery and immediately after surgery with bleeding) or a difference between a stored value and a current value (for example, a difference between the value before the operation and the current value) It is preferable that can be displayed. For this purpose, storage means such as a memory is provided, and the weight of the placement object at a certain point in time is stored in the storage means. The current weight of the placement object detected by the weight sensor and the stored weight It is preferable to provide a calculation unit such as a CPU for calculating the difference between the two. Further, in order to perform such management for each patient as a placement target, the storage means can select a patient in association with the patient ID, stores the weight at a certain point for each patient, It is preferable to calculate the difference so that it can be displayed on the display unit.

(温度センサ)
また、テーブルには、載置対象物の温度を計測する温度センサ172・372・772・1072・1172・1272・1772・1882・2772が設けられていることが望ましい。これは、例えば載置対象としての患者の温度を常に監視することを可能とする。この構成によれば、載置対象としての患者を体温面からモニタすることができ、例えば手術開始前、手術開始待機中、手術中、手術後の体温をモニタすることができる。そのため、温度センサで検出した数値を表示するための表示部をテーブル又はロボットアームに設けておくことが好ましい。
(Temperature sensor)
The table is preferably provided with temperature sensors 172, 372, 772, 1072, 1172, 1272, 1772, 1882 and 2772 for measuring the temperature of the object to be placed. This makes it possible, for example, to constantly monitor the temperature of a patient as a placement target. According to this configuration, the patient as the placement target can be monitored from the body temperature surface. For example, the body temperature can be monitored before surgery, during surgery standby, during surgery, and after surgery. Therefore, it is preferable to provide a display unit for displaying the numerical value detected by the temperature sensor on the table or the robot arm.

そして、患者の体温が低くなりすぎている、若しくは高くなりすぎている場合には、テーブル108・308・708・1008・1108・1208・1708・1808・2708の表面温度を上昇させるための昇温手段(ヒーターなど)、若しくは下降させるための降温手段(冷却装置など)を設けておくことが好ましい。これにより、患者を望ましい体温に保つことができる。   If the patient's body temperature is too low or too high, the temperature rises to increase the surface temperature of the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708. It is preferable to provide means (such as a heater) or a temperature lowering means (such as a cooling device) for lowering. Thereby, a patient can be kept at a desirable body temperature.

なお、図1、図3、図7、図10、図11、図12、図17、図18、図27において各温度センサはテーブル108・308・708・1008・1108・1208・1708・1808・2708の側面に配置されているが、埋め込まれていてもよい。   1, 3, 7, 10, 11, 12, 17, 18, and 27, each temperature sensor has a table 108 308 708 1008 1108 1208 1708 1808. Although it is arranged on the side surface of 2708, it may be embedded.

また、テーブルの周囲の温度を検出する別の温度センサを設け、手術開始待機中や手術後安静中において患者の体温を望ましい状態に保つために、周囲温度が高い場合にはテーブルの位置を温度が低いエリア(例えば低い位置や冷房装置の近く)に移動させたり、周囲温度が低い場合にはテーブルの位置を温度が高いエリア(例えば高い位置や暖房装置の近く)に移動させるようにロボットアームを制御するようにしてもよい。これらを自動的な移動を行うのは、手術後に患者が安静にしている場合や、治療前の待機中である場合が考えられ、テーブルの移動は載置されている者が移動を感じないくらいゆっくりと移動することが好ましい。ただし、手術中などにロボットアームが自動的に動いてしまうことは好ましくないため、テーブルの位置が治療位置にある場合は非アクティブとなるように設定したり、テーブルの位置するエリアに応じてセンサのアクティブ/非アクティブを切り替えるようにしてもよい。   In addition, another temperature sensor that detects the ambient temperature of the table is provided to maintain the patient's body temperature in the desired state while waiting for the start of surgery or resting after surgery. Move the robot arm to an area with a low temperature (for example, a low position or near a cooling device) or move the table position to a high temperature area (for example, near a high position or a heating device) when the ambient temperature is low May be controlled. The automatic movement of these may occur when the patient is resting after surgery or when waiting before treatment, and the table is moved so that the person who is placed does not feel the movement. It is preferable to move slowly. However, it is not desirable that the robot arm automatically moves during surgery, etc., so if the table position is in the treatment position, it can be set to be inactive, or the sensor can be set according to the area where the table is located. The active / inactive mode may be switched.

なお、温度センサ/周囲温度センサについても、当該センサ機能のアクティブ/非アクティブを手動で切り替えられるようにしておくことが好ましい。   In addition, it is preferable that the temperature sensor / ambient temperature sensor can be manually switched between active / inactive of the sensor function.

(物体センサ)
また、テーブルには、テーブルの周囲の物体を検出するための物体センサを1つ以上設け、ロボットアームの動作中に物体センサにより物体を検知した場合には、ロボットアームを駆動するアクチュエータの動作を停止又は禁止することが好ましい。第1〜第5の構成例で示したようなロボティックベッドを医療室に導入するに際しては、安全性の確保が極めて重要な位置づけを占めることから、このような手段により患者及び医療従事者の安全を確保することが好ましい。
(Object sensor)
In addition, the table is provided with one or more object sensors for detecting objects around the table, and when the object is detected by the object sensor during the operation of the robot arm, the operation of the actuator for driving the robot arm is performed. It is preferable to stop or prohibit. When introducing a robotic bed as shown in the first to fifth configuration examples into a medical room, ensuring safety is an extremely important position. It is preferable to ensure safety.

なお、テーブルの位置が治療位置にある場合は非アクティブとなるように設定したり、載置対象物の載置位置から検査位置までの間だけでアクティブとなるようにしたり、テーブルの位置するエリアに応じて物体センサのアクティブ/非アクティブを切り替えるようにしてもよい。物体センサのアクティブ/非アクティブの切り替えは、制御装置により行われても良いし、物体センサに設けられた手動用の切り替え手段によって行われてもよい。   In addition, when the position of the table is in the treatment position, it is set so as to become inactive, or it is made active only between the placement position of the placement object and the examination position, or the area where the table is located The active / inactive state of the object sensor may be switched according to the above. The active / inactive switching of the object sensor may be performed by a control device, or may be performed by a manual switching unit provided in the object sensor.

なお、温度センサ/周囲温度センサについても、当該センサ機能のアクティブ/非アクティブを手動で切り替えられるようにしておくことが好ましい。   In addition, it is preferable that the temperature sensor / ambient temperature sensor can be manually switched between active / inactive of the sensor function.

(制御装置の構成)
制御装置107・307・707・1007・1107・1207・1707・1807・2707は、図40に示すように、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701のアクチュエータ、電磁ブレーキおよび位置検出器と接続される。また、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、上述した距離センサ173・373・773・1073・1173・1273・1773・1873・2773、高さセンサ174・374・774・1074・1174・1274・1774・1874・2774、重量センサ175・375・775・1075・1175・1275・1775・1875・2775、および温度センサ172・372・772・1072・1172・1272・1772・1882・2772と接続され得る。また、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、記憶手段を含むとともに、上述した撓み補償を実現するための構成として、目標点の位置を定める設定手段と、当該目標点をトラッキングするトラッキング手段を含んでもよい。
(Configuration of control device)
As shown in FIG. 40, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 are actuators of robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701, Connected with electromagnetic brake and position detector. The control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 include the above-described distance sensors 173, 373, 773, 1073, 1173, 1273, 1773, 1873, 2773, and height sensors 174, 374, 774, 1074, 1174, 1274, 1774, 1874, 2774, weight sensors 175, 375, 775, 1075, 1175, 1275, 1775, 1875, 2775, and temperature sensors 172, 372, 772, 1072, 1172, 1272 Can be connected to 1772, 1882, 2772. The control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, and 2707 include storage means and, as a configuration for realizing the above-described deflection compensation, setting means for determining the position of the target point; A tracking means for tracking the target point may be included.

また、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、上述した記憶手段および計算部を含んでもよいし、上述した表示部と接続されてもよい。表示部は、ロボットアームのベースに組み込まれていてもよいし、ロボットアームとは独立したものであってもよい。また、制御装置の記憶手段に複数の異なる載置対象物の重量が記憶される場合には、制御装置が、図40に示すように、特定の載置対象物を選択する選択手段を含んでもよい。   Further, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 may include the storage means and the calculation unit described above, or may be connected to the display unit described above. The display unit may be incorporated in the base of the robot arm or may be independent from the robot arm. Further, when the weights of a plurality of different placement objects are stored in the storage means of the control device, the control device may include selection means for selecting a specific placement object as shown in FIG. Good.

また、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、上述した昇温手段および降温手段と接続され得る。さらに、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、上述した物体センサと接続され得る。   Further, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 can be connected to the temperature raising means and the temperature lowering means described above. Further, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 can be connected to the above-described object sensors.

[術中MRIへの適用]
以上説明したロボティックベッドは、術中MRIにおいて用いることにより大きな効果を発揮することが期待できる。脳腫瘍摘出の術中MRIの場合、患者を移動させてMRI装置で脳を撮影する回数は2〜4回、平均3回とされており(「最先端の脳腫瘍完全摘出システムが可能にする生存率向上と術後QOL確保」、日立メディコ、月刊インナービジョン 2012年9月号参照)、手術中に患者を正確かつ迅速にMRI装置による撮影位置と治療位置を往復させる必要性が高い。
[Application to intraoperative MRI]
The robotic bed described above can be expected to exert a great effect when used in intraoperative MRI. In the case of intraoperative MRI for brain tumor removal, the number of times the patient is moved and the brain is imaged with an MRI device is 2 to 4 times, an average of 3 times. Securing postoperative QOL ", Hitachi Medical, Monthly Inner Vision September 2012 issue), there is a high need to reciprocate the patient's imaging position and treatment position accurately and quickly during surgery.

以下では、第1〜第5の構成例で示したようなロボティックベッド(場合によっては上述の共通の特徴を付加したロボティックベッド)を、MRI装置で載置対象である患者の特定部位を撮影し、その後治療位置(手術位置を含む)に移動させて直ちに手術に移行する術中MRIに適用する手法を説明する。   In the following, a robotic bed as shown in the first to fifth configuration examples (in some cases, a robotic bed to which the above-mentioned common features are added) is used as a specific part of a patient to be placed by the MRI apparatus. A technique applied to intraoperative MRI in which an image is taken and then moved to a treatment position (including a surgical position) and immediately transferred to surgery will be described.

以下では、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701を駆動することにより、テーブル108、308、708、1008、1108、1208、1708、1808、2708を治療位置とMRI撮影位置との間で移動させる様子を、図面を参照しながら説明する。   In the following, by driving the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701, the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 are set as treatment positions. A state of moving between the MRI imaging positions will be described with reference to the drawings.

各構成例のロボティックベッドを術中MRIに適用する場合、各構成例のテーブルの移動の説明において医療室に置かれた装置414、1314、1914、2814はMRI装置である。   When the robotic bed of each configuration example is applied to intraoperative MRI, the devices 414, 1314, 1914, and 2814 placed in the medical room in the description of the movement of the table of each configuration example are MRI devices.

図33にオープン型MRI装置3314を示す。当該オープン型MRI装置3314は、前方および側方に開口するオープン型である。具体的には、中央部が前方に張り出すような略T字状の上側検査部(上部磁石)3315および下側検査部(下部磁石)3316を含み、これらの検査部3315,3316の間に患者が載置されたテーブルが挿入される空間が形成されている。上側検査部3315および下側検査部3316の両端部同士は、一対の支柱3317によって連結されている。MRI装置3314はドーナツ型であってもよいが、患者を斜めからMRI装置に挿入しやすいようなケース(図14のような場合)に適用する場合には、ドーナツ内側の空洞の正面にテーブルを位置させてから空洞内部へ挿入することとなるため、ロボットアームの動きが少し窮屈になる場合がある。   FIG. 33 shows an open type MRI apparatus 3314. The open type MRI apparatus 3314 is an open type that opens forward and laterally. Specifically, it includes a substantially T-shaped upper inspection portion (upper magnet) 3315 and lower inspection portion (lower magnet) 3316 whose center portion projects forward, and between these inspection portions 3315 and 3316. A space for inserting a table on which a patient is placed is formed. Both ends of the upper inspection unit 3315 and the lower inspection unit 3316 are connected by a pair of support columns 3317. The MRI apparatus 3314 may be a donut shape. However, when applying to a case where the patient can be easily inserted into the MRI apparatus obliquely (as shown in FIG. 14), a table is placed in front of the cavity inside the donut. Since it is inserted into the cavity after being positioned, the movement of the robot arm may be a little cramped.

上側検査部(上部磁石)3315および下側検査部(下部磁石)3316で挟まれる空間で形成される部分が撮影空間である。テーブル108、308、708、1008、1108、1208、1708、1808、2708の少なくとも一部が当該撮影空間とオーバーラップする場合において、テーブル108、308、708、1008、1108、1208、1708、1808、2708がMRI撮影位置にあるということができる。撮影空間内でのテーブル108、308、708、1008、1108、1208、1708、1808、2708の位置は、患者の撮影部位や患者の身長・大きさによって異なるため、常に一定であるとは限らない。   A portion formed by a space sandwiched between the upper inspection unit (upper magnet) 3315 and the lower inspection unit (lower magnet) 3316 is an imaging space. When at least part of the table 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 overlaps with the imaging space, the table 108, 308, 708, 1008, 1108, 1208, 1708, 1808, It can be said that 2708 is at the MRI imaging position. The positions of the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, and 2708 in the imaging space differ depending on the imaging region of the patient and the height and size of the patient, and are not always constant. .

図4は、第1の構成例に係るロボティックベッドを用いて載置対象である患者を載置位置からMRI撮影位置へ移動させる場合の、テーブル108が載置位置に位置している様子を示している。図5は、制御装置107による制御によって第2可動要素123及び第3可動要素124が矢印の如く動いて、また第6軸の回転によりテーブル108が矢印の如く動いて(場合によっては、第1可動要素122も鉛直方向に動いて高さが調節され、また第4軸又は/及び第5軸まわりの回転によりテーブルの傾きが微調整され)患者の頭部がMRI装置414の方向に向けられた様子(MRI撮影準備位置に位置している様子)を示している。図6はテーブル108がMRI装置414の内部に挿入され、テーブル108がMRI撮影位置に到達した様子を示している。MRI装置414による撮影後、術者412が患者に手術を施すためにテーブル108を治療位置に位置させる場合には、テーブル108が図6のMRI撮影位置から図4の位置まで各可動要素及びテーブルが逆方向に動いて元の位置に戻り、MRI撮影画像を見ながら術者412が直ちに手術に移行することができる。   FIG. 4 shows a state where the table 108 is located at the placement position when the patient to be placed is moved from the placement position to the MRI imaging position using the robotic bed according to the first configuration example. Show. FIG. 5 shows that the second movable element 123 and the third movable element 124 move as indicated by arrows by the control of the control device 107, and the table 108 moves as indicated by arrows by the rotation of the sixth axis (in some cases, the first The movable element 122 is also moved in the vertical direction to adjust the height, and the tilt of the table is finely adjusted by rotation around the fourth axis and / or the fifth axis). The patient's head is directed toward the MRI apparatus 414. (State of being located at the MRI imaging preparation position). FIG. 6 shows a state where the table 108 is inserted into the MRI apparatus 414 and the table 108 has reached the MRI imaging position. After imaging by the MRI apparatus 414, when the operator 412 positions the table 108 at the treatment position in order to perform surgery on the patient, the table 108 moves from the MRI imaging position of FIG. 6 to the position of FIG. Moves in the opposite direction and returns to the original position, and the operator 412 can immediately shift to the operation while viewing the MRI image.

図13は、第3の構成例に係るロボティックベッドを用いてある載置対象である患者を載置位置からMRI撮影位置へ移動させる際に、テーブル1008が載置位置に位置している様子を示している。図14は、制御装置1007による制御によって第2可動要素1023及びテーブル1008が矢印の如く動いて(場合によっては、第1可動要素も鉛直方向に動いて高さが調節され、またテーブル1008が第3軸又は/及び第4軸まわりの回転により傾きが微調整され)患者の頭部がMRI装置1314に対して斜めから移動してゆく様子を示している。図15はテーブル1008がMRI装置1314の内部に挿入され、患者が検査位置に到達した様子を示している。MRI装置1314による撮影後、術者1312が患者に手術を施すためにテーブル1008を治療位置に位置させる場合には、テーブル1008が図15のMRI撮影位置から図13の位置まで各可動要素及びテーブルが逆方向に動いて元の位置に戻り、MRI撮影画像を見ながら術者1312が直ちに手術に移行することができる。   FIG. 13 shows a state where the table 1008 is positioned at the mounting position when the patient as a mounting target is moved from the mounting position to the MRI imaging position using the robotic bed according to the third configuration example. Is shown. FIG. 14 shows that the second movable element 1023 and the table 1008 move as shown by the arrows under the control of the control device 1007 (in some cases, the first movable element also moves in the vertical direction to adjust the height, and the table 1008 The inclination of the patient is finely adjusted by rotation around the third axis and / or the fourth axis), and the patient's head moves from the oblique direction with respect to the MRI apparatus 1314. FIG. 15 shows a state where the table 1008 is inserted into the MRI apparatus 1314 and the patient has reached the examination position. After the imaging by the MRI apparatus 1314, when the operator 1312 places the table 1008 in the treatment position so as to perform an operation on the patient, the table 1008 moves from the MRI imaging position of FIG. 15 to the position of FIG. Moves in the reverse direction and returns to the original position, and the surgeon 1312 can immediately shift to the operation while viewing the MRI image.

図19は、第4の構成例に係るロボティックベッドを用いてある載置対象である患者を載置位置からMRI撮影位置へ移動させる際に、テーブル1708が載置位置に位置している様子を示している。図20は、制御装置1707によって第2可動要素1723及び第3可動要素1724が矢印の如く動き、またテーブル1708が第6軸まわりに回転して矢印の如く動いて(場合によっては、第1可動要素1722も鉛直方向に動いて高さが調節され、また第4軸又は/及び第5軸まわりにテーブル1708が回転して傾きが微調整され)患者の頭部がMRI撮影装置1914に対して斜めから移動してゆく様子を示している。図21はテーブル1708がMRI装置1914の内部に挿入され、テーブル1708がMRI撮影位置に到達した様子を示している。MRI装置1914による撮影後、術者1912が患者に手術を施すためにテーブル1708を治療位置に位置させる場合には、テーブル1708が図21のMRI撮影位置から図19の位置まで各可動要素及びテーブルが逆方向に動いて元の位置に戻り、MRI撮影画像を見ながら術者1912が直ちに手術に移行することができる。   FIG. 19 shows a state in which the table 1708 is located at the placement position when the patient as a placement target is moved from the placement position to the MRI imaging position using the robotic bed according to the fourth configuration example. Is shown. In FIG. 20, the control unit 1707 moves the second movable element 1723 and the third movable element 1724 as indicated by the arrows, and the table 1708 rotates around the sixth axis and moves as indicated by the arrows (in some cases, the first movable element The height of the element 1722 is adjusted by moving in the vertical direction, and the table 1708 is rotated around the fourth axis and / or the fifth axis, and the tilt is finely adjusted). It shows how it moves from an angle. FIG. 21 shows a state in which the table 1708 has been inserted into the MRI apparatus 1914 and the table 1708 has reached the MRI imaging position. After the imaging by the MRI apparatus 1914, when the operator 1912 places the table 1708 in the treatment position so as to perform an operation on the patient, the table 1708 moves from the MRI imaging position in FIG. 21 to the position in FIG. Moves in the reverse direction and returns to the original position, and the operator 1912 can immediately shift to the operation while viewing the MRI image.

図24〜図26に、第1の構成例に係るロボティックベッドにおいて手動のスライド機構を採用した場合の第5の構成例を術中MRIに適用した例を示す。   FIGS. 24 to 26 show an example in which the fifth configuration example is applied to intraoperative MRI when a manual slide mechanism is adopted in the robotic bed according to the first configuration example.

図24に示す載置対象物の載置位置は図4の位置と同じであり、図25に示すMRI装置414に頭が向けられた位置(MRI撮影準備位置)は図5の位置と同じである。第1の構成例に係るロボティックベッドを用いた場合はそのままロボットアーム101の各可動要素を動かしてテーブル108をMRI装置414内に搬送したが、第5の構成例に係るロボティックベッドを用いた場合においては、MRI撮影準備位置においてスライド板2481を手動操作によりスライドさせることにより、MRI装置414内へと移動させている。   The placement position of the placement object shown in FIG. 24 is the same as the position of FIG. 4, and the position where the head is directed to the MRI apparatus 414 shown in FIG. 25 (MRI imaging preparation position) is the same as the position of FIG. is there. When the robotic bed according to the first configuration example is used, each movable element of the robot arm 101 is moved as it is to transport the table 108 into the MRI apparatus 414. However, the robotic bed according to the fifth configuration example is used. In this case, the slide plate 2481 is manually moved at the MRI imaging preparation position to be moved into the MRI apparatus 414.

図28〜図30に、第3の構成例に係るロボティックベッドにおいて、アクチュエータ駆動のスライド機構を採用した場合の第5の構成例を術中MRIに適用した例を示す。   FIGS. 28 to 30 show an example in which the fifth configuration example in the case of adopting the actuator-driven slide mechanism in the robotic bed according to the third configuration example is applied to intraoperative MRI.

図28に示す患者の載置位置は図13と同じである。しかし、スライド機構を有するロボティックベッドにおいてMRI装置2814へ挿入するテーブル2708の回転方向は逆である。すなわち、図13〜図15においてテーブル1008を検査装置1314にテーブル1008の一端側から挿入していると表現すると、図28〜30においてはMRI装置2814へテーブル2708の他端側から挿入する構成となる。   The patient placement position shown in FIG. 28 is the same as in FIG. However, the rotation direction of the table 2708 inserted into the MRI apparatus 2814 in the robotic bed having the slide mechanism is reverse. That is, if it expresses that the table 1008 is inserted in the inspection apparatus 1314 from one end side of the table 1008 in FIGS. 13-15, it will be inserted in the MRI apparatus 2814 from the other end side of the table 2708 in FIGS. Become.

図15に示すMRI装置1314に頭から挿入された位置(MRI撮影位置)は図30の位置と同じである。第3の構成例に係るロボティックベッドを用いた場合はそのままロボットアーム1001の可動要素を動かしてテーブル1008を斜めからMRI撮影装置1314内に搬送したが、第5の構成例に係るロボティックベッドを用いた場合においてはテーブル2708が一旦MRI装置2814に向くように配置したあと、テーブル2708をアクチュエータ駆動によりスライドさせることにより、MRI装置2814内へと移動させている。   The position (MRI imaging position) inserted from the head into the MRI apparatus 1314 shown in FIG. 15 is the same as the position shown in FIG. When the robotic bed according to the third configuration example is used, the movable element of the robot arm 1001 is moved as it is to convey the table 1008 into the MRI imaging apparatus 1314 obliquely. The robotic bed according to the fifth configuration example When the table 2708 is once arranged so as to face the MRI apparatus 2814, the table 2708 is slid by actuator driving to be moved into the MRI apparatus 2814.

図34〜36に、第3の構成例に係るロボティックベッドにおいて、アクチュエータ駆動のスライド機構を採用した場合の第5の構成例を術中MRIに適用した場合のロボティックベッドの動きを斜視図を用いて示す。図34は患者の載置位置及び手術位置であり、第2の可動要素2723が水平回転し、同時にテーブル2708が第5軸まわりに軸回転して、図35に示すMRI撮影準備位置に移動する。そして、テーブル2708がアクチュエータ駆動によりMRI装置の撮影空間とオーバーラップする位置までスライドし、テーブル2708のMRI撮影位置への移動が完了する。   FIGS. 34 to 36 are perspective views showing the movement of the robotic bed when the fifth configuration example is applied to intraoperative MRI in the case of adopting the actuator-driven slide mechanism in the robotic bed according to the third configuration example. Used to show. FIG. 34 shows the placement position and the surgical position of the patient. The second movable element 2723 rotates horizontally, and at the same time, the table 2708 rotates about the fifth axis and moves to the MRI imaging preparation position shown in FIG. . Then, the table 2708 slides to a position where it overlaps with the imaging space of the MRI apparatus by driving the actuator, and the movement of the table 2708 to the MRI imaging position is completed.

なお、図35のMRI撮影準備位置における第2可動要素2723は、図29から図30に遷移する間のMRI撮影準備位置にある場合とは向きが異なっている(図29と図30の間の場合は、第2可動要素2723がMRI装置2814に垂直に向いているが、図35の場合は第2可動要素2723がMRI装置2814に対して斜めを向いている)が、MRI装置の配置位置や各可動要素の寸法によってロボットアームの動きは異なる。   Note that the second movable element 2723 in the MRI imaging preparation position in FIG. 35 has a different orientation from that in the MRI imaging preparation position during the transition from FIG. 29 to FIG. 30 (between FIGS. 29 and 30). In this case, the second movable element 2723 is oriented perpendicularly to the MRI apparatus 2814, but in the case of FIG. 35, the second movable element 2723 is oriented obliquely with respect to the MRI apparatus 2814). The movement of the robot arm varies depending on the dimensions of each movable element.

第5の構成例に係るロボティックベッドを用いた場合、スライド機構が設けられているので、ロボットアームのサイズを小型化できるというメリットがある他、図10に示すような(ロボットアーム1001がテーブル1008の一端部を支持している)第3の構成例に係るロボティックベッドおいては、治療位置において患者の頭部をどちらの方向に向けるかを変更できるという効果がある。後者のメリットについては、例えば術中MRIを用いる目的が脳腫瘍摘出手術や歯の手術である場合、図10のように患者がMRI装置1314より戻ってきた場合に頭部がベース1021の方を向いていると、術者1312はベース1021が邪魔となって手術がしにくいが、図27のように患者がMRI撮影位置より戻ってきた場合に頭部がベース2721と逆の方を向いていると、頭部側の手術がしやすいといった効果がある。手術時に頭部側においてベース2721が邪魔となることもないので、術者2812は座った状態で治療にあたることもできる。   When the robotic bed according to the fifth configuration example is used, since the slide mechanism is provided, there is an advantage that the size of the robot arm can be reduced, and as shown in FIG. 10 (the robot arm 1001 is a table). In the robotic bed according to the third configuration example (supporting one end of 1008), there is an effect that it is possible to change which direction the patient's head is directed at the treatment position. Regarding the advantage of the latter, for example, when the purpose of using intraoperative MRI is brain tumor extraction surgery or dental surgery, the head is directed toward the base 1021 when the patient returns from the MRI apparatus 1314 as shown in FIG. If the patient is returned from the MRI imaging position as shown in FIG. 27, the head 1312 is facing away from the base 2721. The head side operation is easy to perform. Since the base 2721 does not get in the way on the head side at the time of surgery, the operator 2812 can perform treatment while sitting.

なお、図5及び図25で示したMRI撮影準備位置とは、テーブル108・2408がMRI装置の撮影空間とオーバーラップしない位置であって、当該撮影空間の近辺(撮影空間との距離が一定距離以下)に位置する場合である。この位置において一旦移動を止め、例えば助手がMRI撮影のための準備(金属物がないことの確認や患者の位置・姿勢の修正)をし、その後MRI装置にテーブル108・2408を搬送するようにしてもよい。もちろん、MRI撮影準備位置は単なる経由で、テーブルをこの位置で一旦止めることなくスムーズにMRI撮影位置に移動させるようにしてもよい。また、MRI撮影準備位置は必ずしも患者の頭部がMRI装置の方を直接向いている必要はなく、例えば撮影空間近辺に位置する図14のテーブル1008の位置をMRI撮影準備位置としてもよい。   The MRI imaging preparation positions shown in FIGS. 5 and 25 are positions where the tables 108 and 2408 do not overlap with the imaging space of the MRI apparatus, and the vicinity of the imaging space (the distance from the imaging space is a fixed distance). In the following). At this position, the movement is temporarily stopped. For example, the assistant prepares for MRI imaging (confirms that there is no metal object and corrects the position and posture of the patient), and then transports the tables 108 and 2408 to the MRI apparatus. May be. Of course, the MRI imaging preparation position may be simply passed, and the table may be smoothly moved to the MRI imaging position without temporarily stopping at this position. Further, the MRI imaging preparation position does not necessarily have the patient's head directly facing the MRI apparatus. For example, the position of the table 1008 in FIG. 14 located in the vicinity of the imaging space may be set as the MRI imaging preparation position.

また、上記説明では患者を載置位置からMRI撮影位置へ移動させて治療位置として載置位置と同じ場所に戻ってくる例を示したが、治療位置を患者の載置位置は異なるとなるようにしてもよい。   In the above description, the patient is moved from the placement position to the MRI imaging position and returned to the same place as the placement position as the treatment position. However, the treatment position is different from the placement position of the patient. It may be.

なお、術中MRIにおける治療位置とは、テーブルが撮影空間の近辺にない、すなわち撮影空間と一定距離以上離れた位置である。そして、上記の例において、治療位置の近傍には、術者412・1312・1912・2812が使用する手術器具を置くための手術器具台413・1313・1913・2813が設置されており、これら手術器具がMRI装置の近くに配置されていると、MRI装置の永久磁石の影響を受けて(例えば浮揚して)患者や取り扱う者を傷つける恐れがあるため、治療位置はMRI装置より十分離れた位置に確保し、5ガウスラインLよりも離れていることが望ましい。   The treatment position in the intraoperative MRI is a position where the table is not in the vicinity of the imaging space, that is, a position separated from the imaging space by a certain distance or more. In the above example, surgical instrument tables 413, 1313, 1913, and 2813 for placing surgical instruments used by the surgeons 412, 1312, 1912, and 2812 are installed in the vicinity of the treatment position. If the instrument is placed near the MRI apparatus, the treatment position may be far away from the MRI apparatus because it may be affected by the permanent magnet of the MRI apparatus (for example, levitating) and injure the patient or the person handling it. It is desirable that the distance is more than 5 gauss lines.

さらに、ロボットアームのベース121、321、721、1021、1121、1221、1721、1821、2721は、5ガウスラインLの外側に配置されていることが好ましい。ロボットアームのベース121、321、721、1021、1121、1221、1721、1821、2721には大きなモータが設けられており、これがMRI装置の近くに位置していると、MRI装置の撮影空間に形成された磁界が歪められ、撮影画像の劣化に繋がるためである。   Furthermore, it is preferable that the bases 121, 321, 721, 1021, 1121, 1221, 1721, 1821, and 2721 of the robot arm are disposed outside the 5 gauss line L. The robot arm bases 121, 321, 721, 1021, 1121, 1221, 1721, 1821, and 2721 are provided with large motors. If they are located near the MRI apparatus, they are formed in the imaging space of the MRI apparatus. This is because the applied magnetic field is distorted, leading to deterioration of the captured image.

なお、第1〜第5の構成例に係るロボットアームを用いれば、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701の長さ分だけ、テーブル108、308、708、1008、1108、1208、1708、1808、2708をMRI装置414・1314・1914・2814から離すことができる。これにより、治療位置は、最大でMRI装置414・1314・1914・2814からロボットアーム101、301、701、1001、1101、1201、1701、1801、2701の長さの2倍分だけ離すことができる。つまり、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701を用いることによって、治療位置を5ガウスラインLの外側に容易に設定することができる。その結果、術者412・1312・1912・2812への磁場の影響による負担を少なくすることができる。また、術者12が思い通りの立ち位置をとることができる。   If the robot arms according to the first to fifth configuration examples are used, the tables 108, 308, 708, the length of the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701 are the same. 1008, 1108, 1208, 1708, 1808, 2708 can be separated from the MRI apparatus 414, 1314, 1914, 2814. Thereby, the treatment position can be separated from the MRI apparatuses 414, 1314, 1914, and 2814 at a maximum by twice the length of the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, and 2701. . That is, the treatment position can be easily set outside the 5 Gauss line L by using the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701. As a result, the burden caused by the influence of the magnetic field on the surgeons 412, 1312, 1912, and 2812 can be reduced. In addition, the surgeon 12 can take the desired standing position.

以上説明したように、第1乃至第5の構成例で示したロボティックベッドを術中MRIに導入することにより、ロボットアームの駆動によりテーブルに載置された患者を治療位置とMRI撮影位置との間で迅速かつ正確に移動させることができる。これにより、手術成績向上という際立って優れた効果を促進するのに貢献することができる。前出の文献(「最先端の脳腫瘍完全摘出システムが可能にする生存率向上と術後QOL確保」、日立メディコ、月刊インナービジョン 2012年9月号)によれば、これまで別室でMRI撮影と手術を別室で行っていた脳腫瘍摘出手術に対し、同室内でMRI撮影と手術を行う術中MRIを適用し(さらに情報誘導手術を適用し)たところ、別室手術では5年生存率がグレード3で約25%、グレード4で約7%であったのが、グレード3で78%、グレード4で19%と従来平均の約3倍の生存率が達成されている。第1乃至第5の構成例で示したロボティックベッドを術中MRIに導入することにより、これまで説明したような患者を載置したテーブルの搬送を迅速かつ正確に行い、MRI撮影と脳腫瘍摘出手術とを効率的に行うことができ、生存率のさらなる向上にも貢献することが大いに期待できる。特に、先に説明した通り、脳腫瘍摘出手術については、MRI撮影と脳腫瘍摘出手術は一度きりではなく、何度か往復させることになるので、患者を治療位置とMRI撮影位置との間で迅速かつ正確に移動させることへの期待は大きい。   As described above, by introducing the robotic bed shown in the first to fifth configuration examples into the intraoperative MRI, the patient placed on the table by driving the robot arm can be set between the treatment position and the MRI imaging position. Can be moved quickly and accurately between. Thereby, it can contribute to promoting a remarkably excellent effect of improving surgical results. According to the above-mentioned literature ("survival improvement and postoperative QOL secured by state-of-the-art brain tumor complete excision system", Hitachi Medical, Monthly Inner Vision September 2012 issue) In contrast to brain tumor removal surgery that had been performed in a separate room, intraoperative MRI was performed in the same room, and intraoperative MRI was applied (and information-guided surgery was applied). The survival rate was about 25%, grade 7 was 7%, grade 3 was 78%, grade 4 was 19%, about 3 times the conventional average. By introducing the robotic bed shown in the first to fifth configuration examples into the intraoperative MRI, the table on which the patient is placed as described above can be transported quickly and accurately, and MRI imaging and brain tumor removal surgery are performed. Can be performed efficiently, and it can be greatly expected to contribute to further improvement of the survival rate. In particular, as described above, for brain tumor extraction surgery, MRI imaging and brain tumor extraction surgery are not performed once, but are reciprocated several times, so that the patient can be quickly and easily moved between the treatment position and the MRI imaging position. The expectation of moving accurately is great.

そして、第1乃至第5の構成例で示したロボティックベッドを術中MRIに導入する際には、テーブル108、308、708、1008、1108、1208、1708、1808、2708がMRI撮影位置に到達した後、テーブルに載置した撮影対象物の撮影を開始するまでに、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701に搭載された複数のアクチュエータへの駆動電流の供給を停止するとともに、アクチュエータに対応して設けられた複数の電磁ブレーキの機能をオンとするように、制御装置107・307・707・1007・1107・1207・1707・1807・2707により制御することが好ましい。これは、MRI装置が静磁場を作用させて画像撮影することから、アクチュエータ駆動時に生じている磁界の影響によりMRI撮影画像が劣化することを防止するためである。この制御はテーブルがMRI撮影位置に到達して一定時間静止したことを検知して自動的に行われても、手動で指令を与えてもよいが、MRI撮影の開始時(例えばMRI装置に主電源を投入したり、アクティブ状態とした時点)でロボットアームのアクチュエータの動作状態をチェックするように連動させ、アクチュエータが動作していれば強制的にオフしてブレーキ機能オンに切り替えるように制御することが好ましい。このため、制御装置107・307・707・1007・1107・1207・1707・1807・2707は、MRI稼動監視手段を備えるようにし、MRI装置に主電源が投入されたか、アクティブ状態にあるか、などを監視することが望ましい。   When the robotic bed shown in the first to fifth configuration examples is introduced into the intraoperative MRI, the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 reach the MRI imaging position. After that, before starting to shoot the object to be photographed placed on the table, the drive current to the plurality of actuators mounted on the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701 Control is performed by the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, and 2707 so that the functions of a plurality of electromagnetic brakes provided corresponding to the actuators are turned on while the supply is stopped. Is preferred. This is because the MRI apparatus captures an image by applying a static magnetic field, so that the MRI image is prevented from being deteriorated by the influence of the magnetic field generated when the actuator is driven. This control may be performed automatically upon detecting that the table has reached the MRI imaging position and has been stationary for a certain period of time, or may be manually given, but at the start of MRI imaging (for example, the main When the power is turned on or when the actuator is in the active state, the robot arm actuator is checked to check the operating state, and if the actuator is operating, it is controlled to forcibly turn off and switch on the brake function. It is preferable. For this reason, the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, and 2707 are provided with MRI operation monitoring means, whether the main power supply is turned on to the MRI apparatus, whether it is in an active state, etc. It is desirable to monitor.

なお、第5の構成例に係るロボットアームでは、手動のスライド機構を備えることがあるため、テーブル108、308、708、1008、1108、1208、1708、1808、2708がMRI撮影準備位置に到達した時点で、ロボットアーム101、301、701、1001、1101、1201、1701、1801、2701に搭載された複数のアクチュエータへの駆動電流の供給を停止するとともに、アクチュエータに対応して設けられた複数の電磁ブレーキの機能をオンとするように、制御装置107・307・707・1007・1107・1207・1707・1807・2707により制御することもできる。アクチュエータの駆動をオフとし、電磁ブレーキの機能をオンとした後は、スライド板をスライドさせることにより、患者をMRI撮影位置に移動させる。   The robot arm according to the fifth configuration example may be provided with a manual slide mechanism, so that the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 have reached the MRI imaging preparation position. At this time, the supply of drive current to the plurality of actuators mounted on the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, 2701 is stopped, and a plurality of corresponding actuators are provided. Control can also be performed by the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, and 2707 so that the electromagnetic brake function is turned on. After the actuator is turned off and the electromagnetic brake function is turned on, the patient is moved to the MRI imaging position by sliding the slide plate.

ロボットアームによる手術位置とMRI撮影位置との間でのテーブルの移動は、ティーチペンダントによってロボットアーム101、301、701、1001、1101、1201、1701、1801、2701を操作することによって行ってもよい。しかしながら、手術位置およびMRI撮影位置を予め制御装置107・307・707・1007・1107・1207・1707・1807・2707に記憶させておけば、手術位置とMRI撮影位置との間でのテーブル108、308、708、1008、1108、1208、1708、1808、2708の移動をより素早くかつスムーズに行うことができる。   The movement of the table between the surgical position and the MRI imaging position by the robot arm may be performed by operating the robot arms 101, 301, 701, 1001, 1101, 1201, 1701, 1801, and 2701 with the teach pendant. . However, if the operation position and the MRI imaging position are stored in the control devices 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707 in advance, the table 108 between the operation position and the MRI imaging position, Movement of 308, 708, 1008, 1108, 1208, 1708, 1808, 2708 can be performed more quickly and smoothly.

ロボットアームがテーブルを手術位置とMRI撮影位置との間で自動的に移動する場合は、ロボットアームの位置決めの正確さによって、MRI撮影後も確実に術野が同じ場所に戻される。また、ロボットアームを用いることの利点としては、手術中にロボットアームを操作して患者の位置および姿勢を変更すれば手術中の術野を広く確保することができる点もある。   When the robot arm automatically moves the table between the surgical position and the MRI imaging position, the surgical field is reliably returned to the same place after the MRI imaging due to the positioning accuracy of the robot arm. Also, as an advantage of using the robot arm, it is possible to secure a wide surgical field during the operation by operating the robot arm during the operation and changing the position and posture of the patient.

[他の治療等への適用]
第1〜第5の構成例で示したロボティックベッド(場合によっては上述の共通の特徴を付加したロボティックベッド)は、術中MRIのみならず、他の治療等にも適用することができる。
[Application to other treatments]
The robotic beds shown in the first to fifth configuration examples (the robotic beds to which the above-described common features are added in some cases) can be applied not only to intraoperative MRI but also to other treatments.

例えば、各構成例においてテーブルの移動の説明において参照した図4−図6、図24−図26の装置414、図13−図15の装置1314、図19−図21の装置1914、図28−図30の装置2814はレントゲン撮影装置であり、テーブル108、308、708、1008、1108、1208、1708、1808、2708に患者を載置した後、撮影位置に移動させて患者の歯をレントゲン撮影し、続けて治療位置に移動させて、歯の治療を行うことに用いられる。   For example, in each configuration example, the apparatus 414 in FIGS. 4 to 6, 24 to 26, the apparatus 1314 in FIGS. 13 to 15, the apparatus 1914 in FIGS. 19 to 21, and the apparatus in FIG. An apparatus 2814 in FIG. 30 is an X-ray imaging apparatus. After placing the patient on the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708, the patient's teeth are X-rayed by moving to the imaging position. Then, it is used to treat teeth by moving to a treatment position.

あるいは、各構成例においてテーブルの移動の説明において参照した図4−図6、図24−図26の装置414、図13−図15の装置1314、図19−図21の装置1914、図28−図30の装置2814はアンギオ装置であり、テーブル108、308、708、1008、1108、1208、1708、1808、2708に患者を載置した後、撮影位置に移動して、アンギオ装置15により目的部位をX線透視撮影し、その後治療位置に移動させて、カテーテル治療などを行うことに用いられる。この場合、アンギオ装置15が固定されていて、ロボットアーム1701の駆動によってテーブル1708がC型アーム内に挿入されるような構成であるが、図37及び図38の外観図示すように、テーブル1708が撮影位置に移動した後、アンギオ装置15がテーブル1708側に移動することによって、アンギオ装置15のC型アーム内にテーブル1708が挿入される構成でもよい。   Alternatively, the apparatus 414 in FIGS. 4 to 6, 24 to 26, the apparatus 1314 in FIGS. 13 to 15, the apparatus 1914 in FIGS. 19 to 21, and the apparatus in FIG. An apparatus 2814 in FIG. 30 is an angio apparatus. After placing a patient on the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2708, the patient moves to an imaging position, and the angio apparatus 15 uses the target site. X-ray fluoroscopy, and then moved to a treatment position to perform catheter treatment or the like. In this case, the angio device 15 is fixed, and the table 1708 is inserted into the C-type arm by driving the robot arm 1701, but as shown in the external views of FIGS. After moving to the shooting position, the table 1708 may be inserted into the C-shaped arm of the angio device 15 by moving the angio device 15 to the table 1708 side.

その他、各構成例においてテーブルの移動の説明において参照した図4−図6、図13−図15、図19−図21、図24−図26、図28−図30の治療位置において手術ロボットを配置するようにし、治療準備位置でカニューラなどを患者に挿入して腹腔鏡手術の準備を整えた後、治療位置に移動させて手術ロボットにより遠隔操作で手術ロボットのマニピュレータを操作して腹腔鏡手術を行うことに用いられる。図39は、ロボティックベッドの第4の構成例のテーブル1708が、手術ロボットが配置される治療位置に移動した様子を示す。     In addition, the surgical robot is operated at the treatment positions shown in FIGS. 4 to 6, 13 to 15, 19 to 21, 24 to 26, and 28 to 30, which are referred to in the description of table movement in each configuration example. After placing the cannula into the patient at the treatment preparation position and preparing for laparoscopic surgery, move it to the treatment position and operate the manipulator of the surgical robot remotely by the surgical robot to perform laparoscopic surgery Used to do FIG. 39 shows a state where the table 1708 of the fourth configuration example of the robotic bed has moved to the treatment position where the surgical robot is placed.

これらのケースにおいても、上述した共通の特徴を付加することができ、例えば、第1〜第5の構成例で示したロボティックベッドがアンギオ装置15による撮影位置への移動に用いられる場合、上述の高さセンサ174・374・774・1074・1174・1274・1774・1874・2774を備えるようにし、当該高さセンサにより検出したテーブル108、308、708、1008、1108、1208、1708、1808、2708の高さがC型アームの開口範囲内にない場合には、アンギオ装置の移動またはロボットアームによるテーブルの移動を停止してもよい。   Also in these cases, the above-described common features can be added. For example, when the robotic bed shown in the first to fifth configuration examples is used for movement to the photographing position by the angio device 15, Height sensors 174, 374, 774, 1074, 1174, 1274, 1774, 1874, 2774, and the tables 108, 308, 708, 1008, 1108, 1208, 1708, 1808, detected by the height sensors. If the height of 2708 is not within the opening range of the C-arm, the movement of the angio device or the movement of the table by the robot arm may be stopped.

以上の通り、第1〜第5の構成例に係るロボティックベッドを医療現場における様々なシーンに適用する例を示したが、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。例えば、ロボットアームのベース121、321、721、1021、1121、1221、1721、1821、2721は、全て固定されていることを前提に説明をしたが、医療室の設計によっては回転する床にベースを設置し、ベースが床の回転に応じて移動するような構成としてもよい。また、医療室にベースが移動できるレールを設け、当該レールに従ってベースが移動できるような構成としてもよい。このようにベース自体が動く構成としても、ロボットアームの制御と組み合わせてテーブルを移動させることにより、上述したそれぞれの位置への移動が可能となる。   As mentioned above, although the example which applies the robotic bed which concerns on the 1st-5th structural example to the various scenes in a medical field was shown, a various deformation | transformation is possible in the range which does not deviate from the meaning of this invention. For example, the bases 121, 321, 721, 1021, 1121, 1221, 1721, 1821, and 2721 of the robot arm have been described on the assumption that they are all fixed. It is good also as a structure which installs and a base moves according to rotation of a floor. Moreover, it is good also as a structure which provides the rail which a base can move in a medical room, and a base can move according to the said rail. Even when the base itself moves as described above, the table can be moved in combination with the control of the robot arm to move to the respective positions described above.

なお、上記説明において用いたベッドとテーブルという用語は同義であり、引用する個所を明確にする目的で、異なる用語を用いている場合がある。   Note that the terms bed and table used in the above description are synonymous, and different terms may be used for the purpose of clarifying the cited part.

101,301,701,1001,1101,1201,1701,1801,27
01,3101,3201:ロボットアーム
414,1314,1914,2814,3314:MRI装置
121,321,721,1021,1121,1221,1721,1821,2721:ベース
122〜125,322〜323,722〜724,1022〜1024,1122〜1124,1222〜1223,1722〜1725,1822〜1823,2722〜2724:可動要素
131〜136,331〜333,731〜736,1031〜1035,1131〜1135,1231〜1233,1731〜1736,1831〜1833,2731〜2735:ジョイント
141〜146,341〜343,741〜746,1041〜1045,1141〜1145,1241〜1243,1741〜1746,1841〜1843,2741〜2745:アクチュエータ
151〜156,351〜353,751〜756,1051〜1055,1151〜1155,1251〜1253,1751〜1756,1851〜1853,2751〜2755:位置検出器
161〜166,361〜363,761〜766,1061〜1065,1161〜1165,1261〜1263,1761〜1766,1861〜1863,2761〜2765:電磁ブレーキ
171,371,771,1071,1171,1271,1771,1871,2771:固定具
172,372,772,1072,1172,1272,1772,1872,2772:温度センサ
173,373,773,1073,1173,1273,1773,1873,2773:距離センサ
174,374,774,1074,1174,1274,1774,1874,2774:高さセンサ
175,375,775,1075,1175,1275,1775,1875,2775:重量センサ
107,307,707,1007,1107,1207,1707,1807,2707:制御装置
108,308,708,1008,1108,1208,1708,1808,2308,2408,2708,3108,3208:テーブル
101, 301, 701, 1001, 1101, 1201, 1701, 1801, 27
01, 3101, 3201: Robot arm 414, 1314, 1914, 2814, 3314: MRI apparatus 121, 321, 721, 1021, 1121, 1221, 1721, 1821, 2721: Base 122-125, 322-323, 722-724 , 1022-1024, 1122-1124, 1222-1223, 1722-1725, 1822-1823, 2722-2724: movable elements 131-136, 331-333, 731-736, 1031-1035, 1131-1135, 1231-1233 , 1731-1736, 1831-1833, 2731-2735: Joints 141-146, 341-343, 741-746, 1041-1045, 1141-1145, 1241-1243, 1741-17 6, 1841-1843, 2741-2745: Actuator 151-156, 351-353, 751-756, 1051-1055, 1151-1155, 1251-1253, 175-1175, 1851-1853, 2751-2755: Position detector 161 to 166, 361 to 363, 761 to 766, 1061 to 1065, 1161 to 1165, 1261 to 1263, 1761 to 1766, 1861 to 1863, 2761 to 2765: electromagnetic brakes 171, 371, 771, 1071, 1171, 1271, 1771,1871,2771: Fixing fixture 172,372,772,1072,1172,1272,1772,1872,2772: Temperature sensor 173,373,773,1073,1173,1733,1773 , 1873, 2773: distance sensors 174, 374, 774, 1074, 1174, 1274, 1774, 1874, 2774: height sensors 175, 375, 775, 1075, 1175, 1275, 1775, 1875, 2775: weight sensors 107, 307, 707, 1007, 1107, 1207, 1707, 1807, 2707: Control device 108, 308, 708, 1008, 1108, 1208, 1708, 1808, 2308, 2408, 2708, 3108, 3208: Table

Claims (16)

患者を載置するためのテーブルと、
ベースと、複数のジョイントによって接続される複数の可動要素と、前記複数のジョイントのそれぞれに割り当てられ前記複数の可動要素を駆動する複数のアクチュエータと、前記複数の可動要素の位置を検出する複数の位置検出器と、を含み、前記テーブルを複数の異なる位置に移動させるように構成されたロボットアームと、
前記テーブルをスライドさせるためのスライド機構と、を備えており、
前記複数の異なる位置は、患者を前記テーブルに載置する載置位置と、術者が患者を治療するための治療位置と、患者をMRI装置で撮影するためのMRI撮影位置から離れた位置にあるMRI撮影準備位置と、を含み、
前記ロボットアームは、前記載置位置、前記治療位置および前記MRI撮影準備位置に前記テーブルを移動させるように構成されており、
前記スライド機構は、前記MRI撮影準備位置および前記MRI撮影位置に前記テーブルを移動させるように構成されていることを特徴とするロボティックベッド。
A table for placing the patient;
A base, a plurality of movable elements connected by a plurality of joints, a plurality of actuators assigned to each of the plurality of joints and driving the plurality of movable elements, and a plurality of positions detecting the positions of the plurality of movable elements A position detector, and a robot arm configured to move the table to a plurality of different positions;
A slide mechanism for sliding the table,
The plurality of different positions include a placement position where the patient is placed on the table, a treatment position where the operator treats the patient, and a position away from the MRI imaging position where the patient is photographed with the MRI apparatus. Including a certain MRI imaging preparation position,
The robot arm is configured to move the table to the placement position, the treatment position, and the MRI imaging preparation position,
The robotic bed, wherein the slide mechanism is configured to move the table to the MRI imaging preparation position and the MRI imaging position.
前記治療位置において鉛直方向上側から見下ろした場合に、前記ロボットアームの全体が、前記テーブルに隠れる姿勢をとることを特徴とする請求項1に記載のロボティックベッド。   2. The robotic bed according to claim 1, wherein when viewed from the upper side in the vertical direction at the treatment position, the entire robot arm takes a posture of being hidden by the table. 前記ロボットアームは前記複数のアクチュエータに対応して複数の電磁ブレーキを備えており、前記テーブルが前記MRI撮影準備位置に到達した後、前記MRI装置による患者の撮影が開始されるまでの間に前記複数の電磁ブレーキのブレーキ機能をオンとするように構成されていることを特徴とする請求項1又は2に記載のロボティックベッド。   The robot arm is provided with a plurality of electromagnetic brakes corresponding to the plurality of actuators, and after the table reaches the MRI imaging preparation position, the imaging of the patient by the MRI apparatus is started. The robotic bed according to claim 1 or 2, wherein the brake function of a plurality of electromagnetic brakes is turned on. 前記複数のジョイントが垂直回転ジョイントと水平回転ジョイントを含んでおり、前記複数の電磁ブレーキのうち、前記水平回転ジョイントに対応する少なくとも1つの電磁ブレーキは、手動で前記ブレーキ機能をオフとすることが可能なように構成された請求項3に記載のロボティックベッド。   The plurality of joints may include a vertical rotation joint and a horizontal rotation joint, and at least one electromagnetic brake corresponding to the horizontal rotation joint among the plurality of electromagnetic brakes may manually turn off the brake function. The robotic bed according to claim 3 configured to be possible. 前記治療位置は、前記MRI装置の5ガウスラインよりも離れた位置であることを特徴とする請求項1乃至4の何れかに記載のロボティックベッド。   The robotic bed according to any one of claims 1 to 4, wherein the treatment position is a position away from a 5 gauss line of the MRI apparatus. 前記ロボットアームは、前記テーブルを前記MRI撮影準備位置に移動させる際、前記テーブルと前記MRI撮影準備位置とが一定距離以下となった場合に減速するように構成されていることを特徴とする請求項1乃至5の何れかに記載のロボティックベッド。   The robot arm is configured to decelerate when moving the table to the MRI imaging preparation position when the table and the MRI imaging preparation position are less than a certain distance. Item 6. The robotic bed according to any one of Items 1 to 5. 前記テーブルの可動範囲を走査する距離センサを備え、
前記ロボットアームは、前記距離センサにより前記可動範囲内に物体を検出した場合には、前記複数のアクチュエータの動作を停止するように構成されていることを特徴とする請求項1乃至6の何れかに記載のロボティックベッド。
A distance sensor for scanning the movable range of the table;
7. The robot arm according to claim 1, wherein the robot arm is configured to stop the operations of the plurality of actuators when an object is detected within the movable range by the distance sensor. Robotic bed as described in
前記テーブルの位置を目標点に対してトラッキングするトラッキング手段を含み、
前記目標点に対して前記位置が変化した場合、前記ロボットアームは、前記目標点に前記位置が合うように前記複数のアクチュエータの少なくとも一つを駆動することを特徴とする請求項1乃至7の何れかに記載のロボティックベッド。
Tracking means for tracking the position of the table relative to a target point;
8. The robot arm according to claim 1, wherein, when the position changes with respect to the target point, the robot arm drives at least one of the plurality of actuators so that the position matches the target point. 9. Robotic bed according to any of the above.
前記テーブルの高さを検出する高さセンサを備えることを特徴とする請求項1乃至8の何れかに記載のロボティックベッド。   The robotic bed according to claim 1, further comprising a height sensor that detects a height of the table. 前記ロボットアームの先端は、前記テーブルの長手方向の一端側を支持していることを特徴とする請求項1乃至9の何れかに記載のロボティックベッド。   The robotic bed according to any one of claims 1 to 9, wherein a tip end of the robot arm supports one end side in a longitudinal direction of the table. 前記治療位置は、前記MRI撮影準備位置よりも前記MRI撮影位置から離れていることを特徴とする請求項1乃至10の何れかに記載のロボティックベッド。   The robotic bed according to any one of claims 1 to 10, wherein the treatment position is farther from the MRI imaging position than the MRI imaging preparation position. 前記スライド機構は、アクチュエータの駆動により前記テーブルをスライドさせるように構成されていることを特徴とする請求項1乃至11の何れかに記載のロボティックベッド。   The robotic bed according to any one of claims 1 to 11, wherein the slide mechanism is configured to slide the table by driving an actuator. 前記スライド機構は、手動により前記テーブルをスライドさせるように構成されていることを特徴とする請求項1乃至11の何れかに記載のロボティックベッド。   The robotic bed according to claim 1, wherein the slide mechanism is configured to manually slide the table. 請求項1乃至13の何れかに記載のロボティックベッドと、当該ロボティックベッドの前記テーブルに載置された患者を撮影するのに用いられるMRI装置と、を備えることを特徴とする術中MRIシステム。   An intraoperative MRI system comprising: the robotic bed according to any one of claims 1 to 13; and an MRI apparatus used for photographing a patient placed on the table of the robotic bed. . 前記ベースは、前記MRI装置の5ガウスラインより外側に設置されていることを特徴とする請求項14に記載の術中MRIシステム。   The intraoperative MRI system according to claim 14, wherein the base is installed outside a 5 gauss line of the MRI apparatus. 前記MRI装置は、前方および側方に開口するオープン型であることを特徴とする請求項14又は15に記載の術中MRIシステム。
The intraoperative MRI system according to claim 14 or 15, wherein the MRI apparatus is an open type that opens forward and laterally.
JP2019119874A 2019-06-27 2019-06-27 Robotic bed and intraoperative MRI system Active JP6780066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119874A JP6780066B2 (en) 2019-06-27 2019-06-27 Robotic bed and intraoperative MRI system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119874A JP6780066B2 (en) 2019-06-27 2019-06-27 Robotic bed and intraoperative MRI system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017554666A Division JP6571791B2 (en) 2015-12-11 2015-12-11 Robotic bed and intraoperative MRI system

Publications (2)

Publication Number Publication Date
JP2019177212A true JP2019177212A (en) 2019-10-17
JP6780066B2 JP6780066B2 (en) 2020-11-04

Family

ID=68277382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119874A Active JP6780066B2 (en) 2019-06-27 2019-06-27 Robotic bed and intraoperative MRI system

Country Status (1)

Country Link
JP (1) JP6780066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022551907A (en) * 2019-10-29 2022-12-14 中硼(厦▲門▼)医▲療▼器械有限公司 Operation procedure of radiation therapy system and its positioning device
WO2024004654A1 (en) * 2022-06-30 2024-01-04 川崎重工業株式会社 Robot system and robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236039A (en) * 1988-03-15 1989-09-20 Toshiba Corp Bed device
JP2005209061A (en) * 2004-01-26 2005-08-04 Yaskawa Electric Corp Automatic machine control unit
JP2005237613A (en) * 2004-02-26 2005-09-08 Shimadzu Corp X-ray photographic equipment
JP2007503237A (en) * 2003-08-27 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Safety equipment for surgical tools and MRI
JP2009131718A (en) * 2004-04-06 2009-06-18 Accuray Inc Patient-positioning assembly
JP2010094291A (en) * 2008-10-16 2010-04-30 Mizuho Co Ltd Device of positioning operating table
US8548629B2 (en) * 2008-04-17 2013-10-01 Kuka Laboratories Gmbh X-ray device and medical workplace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236039A (en) * 1988-03-15 1989-09-20 Toshiba Corp Bed device
JP2007503237A (en) * 2003-08-27 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Safety equipment for surgical tools and MRI
JP2005209061A (en) * 2004-01-26 2005-08-04 Yaskawa Electric Corp Automatic machine control unit
JP2005237613A (en) * 2004-02-26 2005-09-08 Shimadzu Corp X-ray photographic equipment
JP2009131718A (en) * 2004-04-06 2009-06-18 Accuray Inc Patient-positioning assembly
US8548629B2 (en) * 2008-04-17 2013-10-01 Kuka Laboratories Gmbh X-ray device and medical workplace
JP2010094291A (en) * 2008-10-16 2010-04-30 Mizuho Co Ltd Device of positioning operating table

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022551907A (en) * 2019-10-29 2022-12-14 中硼(厦▲門▼)医▲療▼器械有限公司 Operation procedure of radiation therapy system and its positioning device
WO2024004654A1 (en) * 2022-06-30 2024-01-04 川崎重工業株式会社 Robot system and robot

Also Published As

Publication number Publication date
JP6780066B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
JP6571792B2 (en) Robotic bed
JP6571791B2 (en) Robotic bed and intraoperative MRI system
JP6590946B2 (en) Medical system
JP6800058B2 (en) How to move the patient placement table
JP6752959B2 (en) Medical system
EP3282997B1 (en) Integrated medical imaging and surgical robotic system
EP3342349B1 (en) Robotic operating table and hybrid operating system
US7261464B2 (en) C-arm holding apparatus and X-ray diagnostic apparatus
US8721179B2 (en) Medical bed apparatus
JP6780066B2 (en) Robotic bed and intraoperative MRI system
JP6770097B2 (en) Robotic operating table and medical system
US20190336093A1 (en) System for performing robotic surgery
JP4515585B2 (en) Medical device
JP2009153579A (en) X-ray ct system and medical imaging system
EP2135554A1 (en) Appliance, robot and method for performing surgical interventions
JP6708768B2 (en) Robotic operating table and hybrid operating room
JP2021074261A (en) Radiographic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6780066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250