JP2019175653A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2019175653A
JP2019175653A JP2018061604A JP2018061604A JP2019175653A JP 2019175653 A JP2019175653 A JP 2019175653A JP 2018061604 A JP2018061604 A JP 2018061604A JP 2018061604 A JP2018061604 A JP 2018061604A JP 2019175653 A JP2019175653 A JP 2019175653A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
surface portion
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018061604A
Other languages
Japanese (ja)
Inventor
長谷川 智彦
Tomohiko Hasegawa
智彦 長谷川
秀明 関
Hideaki Seki
秀明 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018061604A priority Critical patent/JP2019175653A/en
Publication of JP2019175653A publication Critical patent/JP2019175653A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lithium ion secondary battery suppressed in metal lithium deposition in a curved surface portion during repeated charge/discharge.SOLUTION: A lithium ion secondary battery includes a wound body including a positive electrode and a negative electrode wound with a separator interposed therebetween and an exterior body for receiving the wound body. The wound body includes a plurality of planar portions and a curved surface portion connecting the planar portions, and, when Rrepresents the charge transfer resistance of the negative electrode in the curved surface portion and Rrepresents the charge transfer resistance in the planar portions, a relationship of R/R≤0.8 is satisfied.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、このような状況下において、充放電容量が大きく、高エネルギー密度を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been rapidly reduced in size and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having a large charge / discharge capacity and a high energy density has attracted attention.

上記リチウムイオン二次電池は、一般的に電極体と非水電解液を備え、電極体の形状から積層型電池と捲回型電池の大きく二つに分類することが出来る。このうち、捲回型電池の電極体は、長尺なシート状の電極および長尺なシート状のセパレータを一まとめとして扁平形状に捲回して製造されることから、一巻きのロールから連続的に製造が可能で、生産性に優れるという優位点を有している。   The lithium ion secondary battery generally includes an electrode body and a non-aqueous electrolyte, and can be roughly classified into two types, a stacked battery and a wound battery, depending on the shape of the electrode body. Among these, the electrode body of the wound battery is manufactured by winding a long sheet-shaped electrode and a long sheet-shaped separator into a flat shape as a whole. Can be manufactured easily, and has the advantage of excellent productivity.

ただし、上記捲回型電池はその構造上、電極体に平面部と曲面部が存在することとなり、この曲面部に起因する特有の問題が発生することも知られている。例えば、曲面部の応力の不均一性によって製造過程で微小短絡を生じる問題について、特許文献1では、捲回体の最外周部に余剰セパレータ領域を設けることで、曲面部における応力緩和と、電荷担体のバランスを改善し、上記問題を解決する方法が開示されている。   However, it is also known that due to the structure of the wound battery, the electrode body has a flat surface portion and a curved surface portion, and a specific problem due to the curved surface portion occurs. For example, regarding the problem of causing a short-circuit in the manufacturing process due to the non-uniformity of stress in the curved surface portion, in Patent Document 1, by providing a surplus separator region in the outermost peripheral portion of the wound body, stress relaxation in the curved surface portion and charge A method for improving the balance of the carrier and solving the above problems is disclosed.

特開2017−10878JP 2017-10878

しかしながら、従来技術の方法では未だ諸特性は満足されず、特に曲面部における繰り返し充放電時の金属リチウム析出の抑制が求められている。   However, various properties are not yet satisfied by the method of the prior art, and suppression of metallic lithium precipitation at the time of repeated charging / discharging is particularly demanded on the curved surface portion.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a lithium ion secondary battery in which the deposition of metallic lithium during repeated charging / discharging in the curved surface portion is suppressed.

上記課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と負極とがセパレータを介して捲回された捲回体と、上記捲回体を収納する外装体と、を備え、上記捲回体は、複数の平面部と上記平面部を連結する曲面部とを含んでなり、上記曲面部における負極の電荷移動抵抗をR、上記平面部における負極の電荷移動抵抗をRとしたとき、R/R≦0.8の関係を満たすことを特徴とする。 In order to solve the above problems, a lithium ion secondary battery according to the present invention includes a wound body in which a positive electrode and a negative electrode are wound through a separator, and an exterior body that houses the wound body, The winding body includes a plurality of flat surface portions and a curved surface portion connecting the flat surface portions. The negative electrode charge transfer resistance in the curved surface portion is R 1 , and the negative charge transfer resistance in the flat surface portion is R 2. In this case, the relationship of R 1 / R 2 ≦ 0.8 is satisfied.

これによれば、密度やSEI被膜形成が不均一な状態となりやすい曲面部においても、R/R≦0.8の関係を満たす負極とすることで、曲面部において溶媒和リチウムイオンの脱溶媒和が速やかに行われ、リチウムイオンの挿入が負極面全てで均一に進行するため、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, even in a curved surface portion where the density and SEI film formation are likely to be in a non-uniform state, the negative electrode satisfying the relationship of R 1 / R 2 ≦ 0.8 is used, so that solvated lithium ions are removed from the curved surface portion. Since solvation is performed quickly and lithium ion insertion proceeds uniformly on the entire negative electrode surface, metal lithium deposition during repeated charging and discharging in the curved surface portion is suppressed.

本発明に係るリチウムイオン二次電池は更に、上記曲面部における負極の電荷移動抵抗Rが、1Ahセル換算で20mΩ以下であることが好ましい。 Lithium-ion secondary battery according to the present invention further charge transfer resistance R 1 of the negative electrode in the curved portion is preferably 20mΩ or less 1Ah cell conversion.

これによれば、Rの値として好適であり、曲面部における繰り返し充放電時の金属リチウム析出がより抑制される。 According to this, it is suitable as a value of R 1 , and metal lithium deposition during repeated charging / discharging in the curved surface portion is further suppressed.

本発明に係るリチウムイオン二次電池は更に、上記曲面部における負極合剤層の密度が1.30g/cm以下であることが好ましい。 In the lithium ion secondary battery according to the present invention, it is further preferable that the density of the negative electrode mixture layer in the curved portion is 1.30 g / cm 3 or less.

これによれば、曲面部における負極合剤層の密度が1.30g/cm以下という低密度であっても、本発明に係るリチウムイオン二次電池であれば、曲面部における繰り返し充放電時の金属リチウム析出がより抑制される。 According to this, even if the density of the negative electrode mixture layer in the curved surface portion is a low density of 1.30 g / cm 3 or less, the lithium ion secondary battery according to the present invention can be repeatedly charged and discharged in the curved surface portion. The metal lithium deposition is further suppressed.

本発明によれば、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery by which metal lithium precipitation at the time of repeated charging / discharging in a curved surface part was suppressed is provided.

本実施形態に係るリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery according to the present embodiment. 本実施形態に係るリチウムイオン二次電池における捲回体を展開した図である。It is the figure which expand | deployed the winding body in the lithium ion secondary battery which concerns on this embodiment. 本実施形態に係るリチウムイオン二次電池における捲回体の端部を拡大した模式断面図である。It is the schematic cross section which expanded the edge part of the winding body in the lithium ion secondary battery which concerns on this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, in order to make the characteristics of the present invention easier to understand, there are cases where the characteristic parts are enlarged for the sake of convenience, and the dimensional ratios of the respective components are different from actual ones. is there. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.

<リチウムイオン二次電池>
図1は、本実施形態に係るリチウムイオン二次電池の模式断面図である。図1に示すように、本実施形態に係るリチウムイオン二次電池100は、発電素子1と外装体2とを備える。発電素子1は、正極10と負極20とセパレータ30とを有する。図1に示す発電素子1は、正極10と負極20とが、セパレータ30を挟んで対向配置され、捲回されてなる捲回体である。正極10及び負極20のそれぞれには、外部との電気的接続のための端子15、25が設けられている。
<Lithium ion secondary battery>
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to this embodiment. As shown in FIG. 1, a lithium ion secondary battery 100 according to this embodiment includes a power generation element 1 and an exterior body 2. The power generating element 1 includes a positive electrode 10, a negative electrode 20, and a separator 30. The power generating element 1 shown in FIG. 1 is a wound body in which a positive electrode 10 and a negative electrode 20 are disposed so as to face each other with a separator 30 in between. Each of the positive electrode 10 and the negative electrode 20 is provided with terminals 15 and 25 for electrical connection with the outside.

図2は、本実施形態に係るリチウムイオン二次電池における捲回体を展開した図である。正極10は、板状の正極集電体12に正極活物質層14が設けられたものである。負極20は、板状の負極集電体22に負極活物質層24が設けられたものである。また正極10及び負極20の一部には、絶縁テープ40が貼られている。絶縁テープ40は、端子15、25の短絡を防ぎ、活物質層が集電体から剥離するのを抑制する。   FIG. 2 is a developed view of the wound body in the lithium ion secondary battery according to the present embodiment. The positive electrode 10 is a plate-shaped positive electrode current collector 12 provided with a positive electrode active material layer 14. The negative electrode 20 is a plate-shaped negative electrode current collector 22 provided with a negative electrode active material layer 24. An insulating tape 40 is attached to a part of the positive electrode 10 and the negative electrode 20. The insulating tape 40 prevents the terminals 15 and 25 from being short-circuited and suppresses the active material layer from being separated from the current collector.

図3は、本実施形態に係るリチウムイオン二次電池における捲回体の端部を拡大した模式断面図である。捲回体端部は、平面部Rと、平面部Rを連結する曲面部Rとを有する。 FIG. 3 is an enlarged schematic cross-sectional view of an end portion of the wound body in the lithium ion secondary battery according to the present embodiment. The wound body end has a plane portion R P, a curved surface portion R C that connects the flat portion R P.

<正極>
正極10は、正極集電体12と、正極集電体12の両面に設けられた正極活物質層14とを有する。
<Positive electrode>
The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 provided on both surfaces of the positive electrode current collector 12.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive additive.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の正極活物質を使用できる。上記正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガン酸リチウム、Li(NiCoMn)O(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1であり、MはAl、Mg、Nb、Ti、Cu、Zn、Crから選択される少なくとも一種)で表される複合金属酸化物、Li(PO(1≦a≦4、1≦b≦2、1≦c≦3であり、MはFe,V,Co,Mn,Ni,VOから選択される少なくとも一種)で表されるポリアニオンオリビン型正極、等が挙げられる。
(Positive electrode active material)
As the positive electrode active material, lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a counter anion (for example, PF 6 ) of the lithium ion are reversibly performed. If it can be made to advance, it will not specifically limit, A well-known positive electrode active material can be used. As the positive electrode active material, for example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), lithium nickel manganese oxide, Li (Ni x Co y Mn z M a) O 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is selected from Al, Mg, Nb, Ti, Cu, Zn, Cr Li a M b (PO 4 ) c (1 ≦ a ≦ 4, 1 ≦ b ≦ 2, 1 ≦ c ≦ 3, and M is Fe, V, Co. , At least one selected from Mn, Ni, and VO), and the like.

(正極用バインダー)
正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂や、ビニリデンフルオライド−ヘキサフルオロプロピレン(VDF−HFP)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン(VDF−HFP−TFE)、ビニリデンフルオライド−クロロトリフルオロエチレン(VDF−CTFE)等のビニリデンフルオライド系フッ素樹脂、スチレン・ブタジエンゴム(SBR)、エチレン・プロピレンゴム(EPR)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)等の非フッ素樹脂を用いてもよい。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder is not particularly limited as long as the above-described bonding is possible. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) ), Etc., vinylidene fluoride-hexafluoropropylene (VDF-HFP), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene (VDF-HFP-TFE), vinylidene fluoride Vinylidene fluoride fluoropolymers such as id-chlorotrifluoroethylene (VDF-CTFE), styrene / butadiene rubber (SBR), ethylene / propylene rubber (EPR), polyamide (PA), polyimide (PI), polyamideimide (PAI) A non-fluorine resin such as) may be used.

更に、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。 Further, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, and polyaniline. Examples of the ion conductive conductive polymer include those obtained by combining a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. It is done.

(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属、酸化インジウムスズ(ITO)等の導電性酸化物が挙げられる。また、正極活物質のみで十分な導電性を確保できる場合は、正極活物質層14は導電助剤を含んでいなくても良い。
(Conductive aid for positive electrode)
The conductive auxiliary agent for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metals such as copper, nickel, stainless steel, and iron, and conductive oxides such as indium tin oxide (ITO). Moreover, when sufficient electroconductivity is securable only with a positive electrode active material, the positive electrode active material layer 14 does not need to contain the conductive support agent.

<負極>
負極20は、負極集電体22と、負極集電体22の両面に設けられた負極活物質層24と、を有する。
<Negative electrode>
The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 provided on both surfaces of the negative electrode current collector 22.

(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a negative electrode conductive additive.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の負極活物質を使用できる。上記負極活物質としては、例えば、グラファイト、ハードカーボン、ソフトカーボン等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと合金を形成することが出来る金属、酸化シリコン、酸化スズ等の非晶質の酸化物、チタン酸リチウム(LiTi12)、等が挙げられる。
(Negative electrode active material)
As the negative electrode active material, lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a counter anion (for example, PF 6 ) of the lithium ion are reversibly performed. If it can be made to advance, it will not specifically limit, A well-known negative electrode active material can be used. Examples of the negative electrode active material include carbon materials such as graphite, hard carbon, and soft carbon, metals that can form an alloy with lithium such as aluminum, silicon, and tin, and amorphous materials such as silicon oxide and tin oxide. oxide, lithium titanate (Li 4 Ti 5 O 12) , and the like.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.

以下で、本実施形態に係る負極について、更に詳しく記載する。   Hereinafter, the negative electrode according to the present embodiment will be described in more detail.

本実施形態に係る負極は、曲面部Rにおける負極の電荷移動抵抗をR、平面部Rにおける負極の電荷移動抵抗をRとしたとき、R/R≦0.8である。 The negative electrode according to the present embodiment, when the charge transfer resistance of the negative electrode in the curved portion R C and R 1, the negative electrode charge transfer resistance of the flat portion R P and R 2, is R 1 / R 2 ≦ 0.8 .

これによれば、密度やSEI被膜形成が不均一な状態となりやすい曲面部においても、R/R≦0.8の関係を満たす負極とすることで、曲面部において溶媒和リチウムイオンの脱溶媒和が速やかに行われ、リチウムイオンの挿入が負極面全てで均一に進行するため、曲面部における繰り返し充放電時の金属リチウム析出が抑制される。 According to this, even in a curved surface portion where the density and SEI film formation are likely to be in a non-uniform state, the negative electrode satisfying the relationship of R 1 / R 2 ≦ 0.8 is used, so that solvated lithium ions are removed from the curved surface portion. Since solvation is performed quickly and lithium ion insertion proceeds uniformly on the entire negative electrode surface, metal lithium deposition during repeated charging and discharging in the curved surface portion is suppressed.

上記電荷移動抵抗は、活物質の表面性に強く影響を受けることが知られている。電荷移動抵抗を制御するには、単純には異なる活物質を混合して用いるほか、粉砕機や混合機を用いた機械的な手法、あるいはゾル−ゲル法等を用いた化学的な手法により、活物質に表面コートを施すことが有効である。あるいは、塗料作成時に適当な添加剤を加えること、活物質層塗布後の乾燥温度や雰囲気を変化させることも有効である。また、リチウムイオン電池作製後、初回充電時の温度や充電速度を変化させることも有効である。   It is known that the charge transfer resistance is strongly influenced by the surface properties of the active material. In order to control the charge transfer resistance, simply use a mixture of different active materials, or use a mechanical method using a pulverizer or mixer, or a chemical method using a sol-gel method, It is effective to apply a surface coat to the active material. Alternatively, it is also effective to add an appropriate additive at the time of preparing the paint, and to change the drying temperature and atmosphere after application of the active material layer. In addition, it is also effective to change the temperature and the charging speed at the time of the first charge after manufacturing the lithium ion battery.

また、曲面部と平面部の電荷移動抵抗を変化させる方法としては、平面部に当たる活物質層を間欠で塗布、乾燥し、再び曲面部に当たる活物質層を間欠で塗布する方法が挙げられる。活物質層を連続で塗布後、曲面部に当たる領域を粘着テープ等を用いて除去しても良い。また、活物質層塗布後、曲面部と平面部のどちらかの領域だけ、適当な表面コート剤を塗布することも有効である。後述する実施例においては、これらの手法を組み合わせて電荷移動抵抗を目的の値としているが、ここに記載した以外の手法を用いて電荷移動抵抗を制御してもよく、そのようなものも本発明の範囲内である。   In addition, as a method of changing the charge transfer resistance between the curved surface portion and the flat surface portion, there is a method of intermittently applying and drying an active material layer that hits the flat surface portion and then intermittently applying an active material layer that hits the curved surface portion again. After continuously applying the active material layer, a region corresponding to the curved surface portion may be removed using an adhesive tape or the like. It is also effective to apply an appropriate surface coating agent only to either the curved surface portion or the flat surface region after the active material layer is applied. In the embodiments described later, the charge transfer resistance is set to a target value by combining these methods. However, the charge transfer resistance may be controlled by using a method other than the method described here, and such a method may be used. Within the scope of the invention.

上記電荷移動抵抗を測定する方法としては、同極の電極同士を対向させた対称セルを用いる方法が知られている。例えば、測定したい電池をグローブボックス等不活性雰囲気下で解体して電極を取り出し、これらの電極を所定の距離だけ離した状態で、互いの活物質層が対向するように配置して電解液を充填した対称セルを作製する。上記対称セルをインピーダンスアナライザを用いて測定し、得られたコールコールプロットをフィッティングすることで、電荷移動抵抗を求めることが出来る。   As a method for measuring the charge transfer resistance, a method using a symmetrical cell in which electrodes of the same polarity are opposed to each other is known. For example, the battery to be measured is disassembled in an inert atmosphere such as a glove box, and the electrodes are taken out. With these electrodes separated by a predetermined distance, the active material layers are arranged so that the active material layers face each other. A filled symmetrical cell is made. The charge transfer resistance can be obtained by measuring the symmetric cell using an impedance analyzer and fitting the obtained Cole-Cole plot.

本実施形態に係る負極は更に、上記曲面部における負極の電荷移動抵抗Rが、1Ahセル換算で20mΩ以下であることが好ましい。 In the negative electrode according to the present embodiment, it is further preferable that the charge transfer resistance R 1 of the negative electrode in the curved surface portion is 20 mΩ or less in terms of 1 Ah cell.

これによれば、Rの値として好適であり、曲面部における繰り返し充放電時の金属リチウム析出がより抑制される。 According to this, it is suitable as a value of R 1 , and metal lithium deposition during repeated charging / discharging in the curved surface portion is further suppressed.

本実施形態に係る負極は更に、上記曲面部における負極合剤層の密度が1.30g/cm以下であることが好ましい。 In the negative electrode according to the present embodiment, it is preferable that the density of the negative electrode mixture layer in the curved surface portion is 1.30 g / cm 3 or less.

これによれば、曲面部における負極合剤層の密度が1.30g/cm以下という低密度であっても、本発明に係るリチウムイオン二次電池であれば、曲面部における繰り返し充放電時の金属リチウム析出がより抑制される。 According to this, even if the density of the negative electrode mixture layer in the curved surface portion is a low density of 1.30 g / cm 3 or less, the lithium ion secondary battery according to the present invention can be repeatedly charged and discharged in the curved surface portion. The metal lithium deposition is further suppressed.

<セパレータ>
セパレータ30は、電気絶縁性の多孔質構造を有する。上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンの単層体あるいは積層体や、セルロース、ポリエステル、ポリアクリロニトリル等からなる繊維不織布が挙げられる。
<Separator>
The separator 30 has an electrically insulating porous structure. Examples of the separator include monolayers or laminates of polyolefins such as polyethylene and polypropylene, and fiber nonwoven fabrics made of cellulose, polyester, polyacrylonitrile, and the like.

また、上記セパレータは、その表面を無機化合物や有機化合物で被覆されていても良い。上記無機化合物としては、アルミナやベーマイト等の絶縁性金属酸化物、上記有機化合物としては、ポリフッ化ビニリデン(PVDF)やポリエチレンオキシド(PEO)等を用いることが出来る。   Moreover, the surface of the separator may be coated with an inorganic compound or an organic compound. An insulating metal oxide such as alumina or boehmite can be used as the inorganic compound, and polyvinylidene fluoride (PVDF) or polyethylene oxide (PEO) can be used as the organic compound.

<電解液>
本発明に係る電解液は、溶媒および電解質から主に構成されるものである。
<Electrolyte>
The electrolytic solution according to the present invention is mainly composed of a solvent and an electrolyte.

(溶媒)
上記溶媒としては、一般にリチウムイオン二次電池に用いられている溶媒を任意の割合で混合して使用することが出来る。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等の鎖状カーボネート化合物、γ−ブチロラクトン(GBL)等の環状エステル化合物、プロピオン酸プロピル(PrP)、プロピオン酸エチル(PrE)、酢酸エチル等の鎖状エステル化合物が挙げられる。
(solvent)
As said solvent, the solvent generally used for the lithium ion secondary battery can be mixed and used in arbitrary ratios. For example, cyclic carbonate compounds such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, chain carbonate compounds such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC), γ-butyrolactone Examples include cyclic ester compounds such as (GBL), and chain ester compounds such as propyl propionate (PrP), ethyl propionate (PrE), and ethyl acetate.

(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(正極の作製)
Li(Ni0.80Co0.15Al0.05)O85質量部、アセチレンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 1]
(Preparation of positive electrode)
85 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 , 5 parts by mass of acetylene black and 10 parts by mass of PVDF are dispersed in N-methyl-2-pyrrolidone (NMP) to form a positive electrode active material layer The slurry for was prepared. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 9.0 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.

(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmで平面部だけに塗布されるように間欠塗布し、100℃で乾燥することで平面部に当たる負極活物質層を形成した。
(Preparation of negative electrode)
A slurry for forming a negative electrode active material layer was prepared by dispersing 90 parts by mass of flaky artificial graphite, 5 parts by mass of acetylene black, and 5 parts by mass of PVDF in N-methyl-2-pyrrolidone (NMP). The above slurry is intermittently applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied is 6.0 mg / cm 2 , and dried at 100 ° C. A negative electrode active material layer corresponding to the above was formed.

続いて、上記負極活物質層形成用のスラリーに対し、添加剤として1,3−プロパンスルトンを0.2wt%加え、再度よく分散させた。上記添加剤を加えたスラリーを、上記負極の間欠部に、負極活物質の塗布量が6.0mg/cmとなるようにキャストし、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、負極を作製した。 Subsequently, 0.2 wt% of 1,3-propane sultone as an additive was added to the slurry for forming the negative electrode active material layer and dispersed well again. The slurry to which the additive was added was cast on the intermittent part of the negative electrode so that the coating amount of the negative electrode active material was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. . Thereafter, the negative electrode mixture layer was pressure-molded by a roller press so that the density of the negative electrode mixture layer was 1.55 g / cm 3 , thereby producing a negative electrode.

(捲回体の作製)
上記で作製した正極、負極およびポリエチレンのセパレータの一端側を軸としてこれらを巻き取り、捲回体を作製した。
(Preparation of wound body)
These were wound around the positive electrode, negative electrode, and polyethylene separator prepared as described above as an axis to prepare a wound body.

(電解液の作製)
体積比でEC:DEC=30:70となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解し、電解液を作製した。
(Preparation of electrolyte)
EC volume ratio: DEC = 30: were mixed in a 70, to which LiPF 6 was dissolved at a concentration of 1.0 mol / L, to prepare an electrolyte solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した捲回体を、収容空間が形成されているアルミラミネートフィルムの外装体内に収納し、上記で作製した電解液を注入し、真空シールを行って評価用リチウムイオン二次電池を2個作製した。
(Production of evaluation lithium-ion secondary battery)
The wound body produced above is housed in an aluminum laminate film exterior body in which a housing space is formed, the electrolytic solution produced above is injected, and vacuum sealing is performed to obtain 2 lithium ion secondary batteries for evaluation. Individually produced.

(電池化)
上記で作製した評価用リチウムイオン二次電池を、充放電試験装置(北斗電工株式会社製)を用い、25℃の恒温槽内で充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。ここで、X(C)とは、25℃で定電流充電を行ったときに1/X時間で充電終了となる電流値を示す。
(Battery)
The lithium ion secondary battery for evaluation produced above was 4.2 V by constant current charging at a charge rate of 0.2 C in a constant temperature bath at 25 ° C. using a charge / discharge test apparatus (manufactured by Hokuto Denko Co., Ltd.). Then, the battery was charged with a constant current discharge at a discharge rate of 0.2 C until the battery voltage became 2.8V. Here, X (C) indicates a current value at which charging is completed in 1 / X time when constant current charging is performed at 25 ° C.

(電荷移動抵抗の測定)
上記で電池化した評価用リチウムイオン二次電池の一つを、グローブボックス中、不活性雰囲気下で解体し、負極を取り出した。上記負極について、曲面部に当たる領域を幅2mm、高さ50mmで2枚切り出した後、角柱型のガラスセルに5mmの距離だけ離した状態で対向するように配置した。このガラスセルに、上記切り出した負極が高さ40mmだけ液に浸漬するように、EC:DEC=30:70(体積%)、1.0mol/L LiPFで調整した電解液を注液して、対称セルを作製した。
(Measurement of charge transfer resistance)
One of the evaluation lithium ion secondary batteries made into a battery was disassembled in an inert atmosphere in a glove box, and the negative electrode was taken out. About the said negative electrode, after cut | disconnecting the area | region which hits a curved-surface part by 2 mm in width and 50 mm in height, it has arrange | positioned so that it may oppose in the state separated only 5 mm from the prismatic glass cell. Into this glass cell, an electrolytic solution adjusted with EC: DEC = 30: 70 (volume%), 1.0 mol / L LiPF 6 was poured so that the cut-out negative electrode was immersed in the liquid by a height of 40 mm. A symmetric cell was produced.

上記対称セルの液に浸漬していない負極と測定端子を繋ぎ、インピーダンスアナライザ(Bio−Logic社製)を用いて25℃における負極のインピーダンスを測定した。得られたコールコールプロットを、10kHzから1Hzの範囲において、一つの抵抗(R)と、抵抗(R)・コンデンサ(C)並列回路二つ、の計三つを直列に繋いだ等価回路モデルでフィッティングし、曲面部における負極の電荷移動抵抗Rを求めた。なお、ここでの電荷移動抵抗は、二つのRC並列回路のうち、時定数τが遅い方のRと定義する。 The negative electrode not immersed in the liquid of the symmetric cell was connected to the measurement terminal, and the impedance of the negative electrode at 25 ° C. was measured using an impedance analyzer (Bio-Logic). The obtained Cole-Cole plot is an equivalent circuit model in which one resistor (R) and two resistors (R) / capacitors (C) in parallel are connected in series in the range of 10 kHz to 1 Hz. fitting to obtain the charge transfer resistance R 1 of the negative electrode in the curved portion. Here, the charge transfer resistance is defined as R having the slower time constant τ of the two RC parallel circuits.

上記負極の平面部についても、上記と同様の方法で電荷移動抵抗を測定し、平面部における負極の電荷移動抵抗Rを求めた。 For even flat portion of the negative electrode to measure the charge transfer resistance in the same manner as described above to determine the charge transfer resistance R 2 of the negative electrode in the plane portion.

(サイクル経過後リチウム析出の確認)
上記で電荷移動抵抗を測定したのとは別の評価用のリチウムイオン二次電池を、充電レート2.0Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、続いて、放電レート1.0Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記充放電パターンを1サイクルとし、100サイクルの充放電を行った。100サイクル経過後の電池について、グローブボックス中、不活性雰囲気化で電池を解体して負極曲面部の確認を行ったところ、わずかにリチウム析出が確認された。(負極曲面部の総面積に対して1%程度)
(Confirmation of lithium deposition after cycle)
A lithium ion secondary battery for evaluation different from the one in which the charge transfer resistance is measured is charged until the battery voltage becomes 4.2 V by constant current charging at a charging rate of 2.0 C, and then discharged. The battery was discharged at a constant current discharge rate of 1.0 C until the battery voltage reached 2.8V. The charge / discharge pattern was defined as one cycle, and 100 cycles of charge / discharge were performed. Regarding the battery after 100 cycles, the battery was disassembled in an inert atmosphere in the glove box and the negative electrode curved surface portion was confirmed. Slight lithium deposition was confirmed. (About 1% of the total area of the negative electrode curved surface)

[実施例2]
(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmで平面部だけに塗布されるように間欠塗布し、100℃で乾燥することで平面部に当たる負極活物質層を形成した。
[Example 2]
(Preparation of negative electrode)
A slurry for forming a negative electrode active material layer was prepared by dispersing 90 parts by mass of flaky artificial graphite, 5 parts by mass of acetylene black, and 5 parts by mass of PVDF in N-methyl-2-pyrrolidone (NMP). The above slurry is intermittently applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied is 6.0 mg / cm 2 , and dried at 100 ° C. A negative electrode active material layer corresponding to the above was formed.

続いて、上記負極活物質層形成用のスラリーに対し、添加剤として1,3−プロパンスルトンを1.0wt%加え、再度よく分散させた。上記添加剤を加えたスラリーを、上記負極の間欠部に、負極活物質の塗布量が6.0mg/cmとなるようにキャストし、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、実施例2の負極を作製した。 Subsequently, 1.0 wt% of 1,3-propane sultone as an additive was added to the slurry for forming the negative electrode active material layer and dispersed well again. The slurry to which the additive was added was cast on the intermittent part of the negative electrode so that the coating amount of the negative electrode active material was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. . Then, it pressure-molded so that the density of the negative mix layer might be set to 1.55 g / cm < 3 > with a roller press, and the negative electrode of Example 2 was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例2の評価用リチウム二次電池を作製した。
[実施例3]
(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmで平面部だけに塗布されるように間欠塗布し、100℃で乾燥することで平面部に当たる負極活物質層を形成した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 2 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.
[Example 3]
(Preparation of negative electrode)
A slurry for forming a negative electrode active material layer was prepared by dispersing 90 parts by mass of flaky artificial graphite, 5 parts by mass of acetylene black, and 5 parts by mass of PVDF in N-methyl-2-pyrrolidone (NMP). The above slurry is intermittently applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied is 6.0 mg / cm 2 , and dried at 100 ° C. A negative electrode active material layer corresponding to the above was formed.

続いて、上記負極活物質層形成用のスラリーに対し、添加剤としてフルオロエチレンカーボネートを1.0wt%加え、再度よく分散させた。上記添加剤を加えたスラリーを、上記負極の間欠部に、負極活物質の塗布量が6.0mg/cmとなるようにキャストし、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、実施例3の負極を作製した。 Subsequently, 1.0 wt% of fluoroethylene carbonate was added as an additive to the slurry for forming the negative electrode active material layer and dispersed well again. The slurry to which the additive was added was cast on the intermittent part of the negative electrode so that the coating amount of the negative electrode active material was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. . Then, it pressure-molded so that the density of the negative mix layer might be set to 1.55 g / cm < 3 > with a roller press, and the negative electrode of Example 3 was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例3の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 3 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[実施例4]
(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmで平面部だけに塗布されるように間欠塗布し、100℃で乾燥することで平面部に当たる負極活物質層を形成した。
[Example 4]
(Preparation of negative electrode)
A slurry for forming a negative electrode active material layer was prepared by dispersing 90 parts by mass of flaky artificial graphite, 5 parts by mass of acetylene black, and 5 parts by mass of PVDF in N-methyl-2-pyrrolidone (NMP). The above slurry is intermittently applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied is 6.0 mg / cm 2 , and dried at 100 ° C. A negative electrode active material layer corresponding to the above was formed.

続いて、上記負極活物質層形成用のスラリーに対し、添加剤としてビニレンカーボネートを2.0wt%加え、再度よく分散させた。上記添加剤を加えたスラリーを、上記負極の間欠部に、負極活物質の塗布量が6.0mg/cmとなるようにキャストし、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、実施例4の負極を作製した。 Subsequently, 2.0 wt% of vinylene carbonate as an additive was added to the slurry for forming the negative electrode active material layer and well dispersed again. The slurry to which the additive was added was cast on the intermittent part of the negative electrode so that the coating amount of the negative electrode active material was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. . Then, it pressure-molded so that the density of the negative mix layer might be set to 1.55 g / cm < 3 > with a roller press, and the negative electrode of Example 4 was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例4の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 4 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[実施例5]
(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させた後、添加剤としてアジポニトリルを1wt%加えて再度分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmで平面部だけに塗布されるように間欠塗布し、100℃で乾燥することで平面部に当たる負極活物質層を形成した。
[Example 5]
(Preparation of negative electrode)
After 90 parts by weight of flaky artificial graphite, 5 parts by weight of acetylene black, and 5 parts by weight of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP), 1 wt% of adiponitrile was added as an additive and dispersed again, and the negative electrode active material A slurry for layer formation was prepared. The above slurry is intermittently applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied is 6.0 mg / cm 2 , and dried at 100 ° C. A negative electrode active material layer corresponding to the above was formed.

続けて、鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させた後、添加剤としてビニレンカーボネートを2.0wt%加えて再度分散させ、別のスラリーを調整した。上記スラリーを、上記負極の間欠部に、負極活物質の塗布量が6.0mg/cmとなるようにキャストし、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、実施例5の負極を作製した。 Subsequently, after 90 parts by weight of scaly artificial graphite, 5 parts by weight of acetylene black, and 5 parts by weight of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP), 2.0 wt% of vinylene carbonate was added as an additive and again. Disperse and prepare another slurry. The slurry was cast on the intermittent portion of the negative electrode so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded so that the density of the negative mix layer might be set to 1.55 g / cm < 3 > with a roller press, and the negative electrode of Example 5 was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例5の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 5 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[実施例6]
(負極の作製)
負極合剤層の密度が1.35g/cmとなるようにローラープレスによって加圧成型した以外は実施例3と同様の方法で、実施例6の負極を作製した。
[Example 6]
(Preparation of negative electrode)
A negative electrode of Example 6 was produced in the same manner as in Example 3, except that the negative electrode mixture layer was pressure-molded by a roller press so that the density of the negative electrode mixture layer was 1.35 g / cm 3 .

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例6の評価用リチウム二次電池を作製した。
[実施例7]
(負極の作製)
負極合剤層の密度が1.28g/cmとなるようにローラープレスによって加圧成型した以外は実施例3と同様の方法で、実施例7の負極を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 6 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.
[Example 7]
(Preparation of negative electrode)
A negative electrode of Example 7 was produced in the same manner as in Example 3 except that the negative electrode mixture layer was pressure-molded by a roller press so that the density of the negative electrode mixture layer was 1.28 g / cm 3 .

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、実施例7の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Example 7 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[比較例1]
(負極の作製)
鱗片状人造黒鉛90質量部、アセチレンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させた後、添加剤としてアジポニトリルを1wt%加えて再度分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって負極合剤層の密度が1.55g/cmとなるように加圧成形し、比較例1の負極を作製した。
[Comparative Example 1]
(Preparation of negative electrode)
After 90 parts by weight of flaky artificial graphite, 5 parts by weight of acetylene black, and 5 parts by weight of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP), 1 wt% of adiponitrile was added as an additive and dispersed again, and the negative electrode active material A slurry for layer formation was prepared. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded so that the density of the negative mix layer might be set to 1.55 g / cm < 3 > with a roller press, and the negative electrode of the comparative example 1 was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、比較例1の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Comparative Example 1 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[比較例2]
(負極の作製)
負極合剤層の密度が1.35g/cmとなるようにローラープレスによって加圧成型した以外は比較例1と同様の方法で、比較例2の負極を作製した。
[Comparative Example 2]
(Preparation of negative electrode)
A negative electrode of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the negative electrode mixture layer was pressure-molded by a roller press so that the density of the negative electrode mixture layer was 1.35 g / cm 3 .

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、比較例2の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Comparative Example 2 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

[比較例3]
(負極の作製)
負極合剤層の密度が1.28g/cmとなるようにローラープレスによって加圧成型した以外は比較例1と同様の方法で、比較例3の負極を作製した。
[Comparative Example 3]
(Preparation of negative electrode)
A negative electrode of Comparative Example 3 was produced in the same manner as Comparative Example 1 except that the negative electrode mixture layer was pressure-molded by a roller press so that the density of the negative electrode mixture layer was 1.28 g / cm 3 .

(評価用リチウムイオン二次電池の作製)
上記で作製した負極を用いた以外は実施例1と同様の方法で、比較例3の評価用リチウム二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
A lithium secondary battery for evaluation of Comparative Example 3 was produced in the same manner as in Example 1 except that the negative electrode produced above was used.

(電荷移動抵抗の測定)
実施例2〜7、および比較例1〜3で作製した評価用リチウムイオン二次電池について、実施例1と同様の方法で電荷移動抵抗を測定した。結果を表1に示す。
(Measurement of charge transfer resistance)
For the evaluation lithium ion secondary batteries produced in Examples 2 to 7 and Comparative Examples 1 to 3, the charge transfer resistance was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル経過後リチウム析出の確認)
実施例2〜7、および比較例1〜3で作製した評価用リチウムイオン二次電池について、実施例1と同様の方法でサイクル経過後のリチウム析出を確認した。結果を表1に示す。なお、表中において、「◎」はリチウム析出が全くない状態、「○」はリチウム析出が僅かに確認された状態(負極曲面部の総面積に対して1%以下)、「△」はリチウム析出が確認された状態(負極曲面部の総面積に対して5%以下)、「×」はリチウム析出が多く確認された状態(負極曲面部の総面積に対して10%以下)であることを示す。
(Confirmation of lithium deposition after cycle)
About the lithium ion secondary battery for evaluation produced in Examples 2-7 and Comparative Examples 1-3, lithium precipitation after cycling progress was confirmed by the method similar to Example 1. FIG. The results are shown in Table 1. In the table, “◎” indicates no lithium deposition, “◯” indicates a slight lithium deposition (1% or less of the total area of the negative electrode curved surface portion), and “Δ” indicates lithium. The state where precipitation was confirmed (5% or less with respect to the total area of the negative electrode curved surface portion), and “x” is a state where a large amount of lithium deposition was confirmed (10% or less with respect to the total area of the negative electrode curved surface portion). Indicates.

実施例1〜7はいずれも、曲面部と平面部の電荷移動抵抗比を最適化しなかった比較例1〜3よりも、サイクル経過後の負極曲面部におけるリチウム析出が改善することが確認された。   In each of Examples 1 to 7, it was confirmed that lithium deposition in the negative electrode curved surface portion after the cycle was improved as compared with Comparative Examples 1 to 3 in which the charge transfer resistance ratio between the curved surface portion and the flat surface portion was not optimized. .

実施例6および7の結果から、負極合剤層密度が1.30g/cm以下である場合に、サイクル経過後の負極曲面部におけるリチウム析出がより改善することが確認された。 From the results of Examples 6 and 7, it was confirmed that when the negative electrode mixture layer density was 1.30 g / cm 3 or less, lithium deposition on the negative electrode curved surface portion after the cycle was further improved.

Figure 2019175653
Figure 2019175653

本発明により、曲面部における繰り返し充放電時の金属リチウム析出が抑制されたリチウムイオン二次電池が提供される。   According to the present invention, there is provided a lithium ion secondary battery in which the deposition of metallic lithium during repeated charging / discharging in the curved surface portion is suppressed.

1…発電素子、2…外装体、10…正極、12…正極集電体、14…正極活物質層、15…端子、20…負極、22…負極集電体、24…負極活物質層、25…端子、30…セパレータ、40…絶縁テープ、100…リチウムイオン二次電池、R…平面部、R…曲面部



DESCRIPTION OF SYMBOLS 1 ... Electric power generation element, 2 ... Exterior body, 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 15 ... Terminal, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 25 ... Terminal, 30 ... Separator, 40 ... Insulating tape, 100 ... Lithium ion secondary battery, Rp ... Flat part, RC ... Curved part



Claims (3)

正極と負極とがセパレータを介して捲回された捲回体と、
前記捲回体を収納する外装体と、を備え、
前記捲回体は、複数の平面部と前記平面部を連結する曲面部とを含んでなり、
前記曲面部における負極の電荷移動抵抗をR、前記平面部における負極の電荷移動抵抗をRとしたとき、R/R≦0.8の関係を満たすことを特徴とするリチウムイオン二次電池。
A wound body in which a positive electrode and a negative electrode are wound through a separator;
An exterior body that houses the wound body,
The wound body includes a plurality of flat surface portions and a curved surface portion connecting the flat surface portions,
When the charge transfer resistance of the negative electrode in the curved surface portion is R 1 , and the charge transfer resistance of the negative electrode in the flat surface portion is R 2 , the relationship of R 1 / R 2 ≦ 0.8 is satisfied. Next battery.
前記曲面部における負極の電荷移動抵抗Rが、1Ahセル換算で20mΩ以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein the charge transfer resistance R 1 of the negative electrode in the curved surface portion is 20 mΩ or less in terms of 1 Ah cell. 前記曲面部における負極合剤層の密度が1.30g/cm以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。

3. The lithium ion secondary battery according to claim 1, wherein a density of the negative electrode mixture layer in the curved surface portion is 1.30 g / cm 3 or less.

JP2018061604A 2018-03-28 2018-03-28 Lithium ion secondary battery Pending JP2019175653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061604A JP2019175653A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061604A JP2019175653A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2019175653A true JP2019175653A (en) 2019-10-10

Family

ID=68169288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061604A Pending JP2019175653A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2019175653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165728A1 (en) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and device and method for manufacturing electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165728A1 (en) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, and device and method for manufacturing electrode assembly

Similar Documents

Publication Publication Date Title
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
JP2020537309A (en) Lithium metal secondary battery and battery module containing it
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
CN105706276A (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same
CN111183537A (en) Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2019175653A (en) Lithium ion secondary battery
CN112470323B (en) Lithium secondary battery
JP7363443B2 (en) Lithium ion secondary battery
JP7243381B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP2019175655A (en) Lithium ion secondary battery
JP6493582B1 (en) Negative electrode and lithium secondary battery
WO2020026705A1 (en) Lithium secondary battery
JP7035702B2 (en) Lithium ion secondary battery
JP2019175652A (en) Lithium ion secondary battery
JP2019061827A (en) Lithium ion secondary battery
JP2019061828A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same