JP2019175650A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2019175650A
JP2019175650A JP2018061601A JP2018061601A JP2019175650A JP 2019175650 A JP2019175650 A JP 2019175650A JP 2018061601 A JP2018061601 A JP 2018061601A JP 2018061601 A JP2018061601 A JP 2018061601A JP 2019175650 A JP2019175650 A JP 2019175650A
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
lithium
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018061601A
Other languages
Japanese (ja)
Inventor
長谷川 智彦
Tomohiko Hasegawa
智彦 長谷川
秀明 関
Hideaki Seki
秀明 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018061601A priority Critical patent/JP2019175650A/en
Publication of JP2019175650A publication Critical patent/JP2019175650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lithium ion secondary battery which enables the improvement of lithium precipitation on a negative electrode after a cycle.SOLUTION: A lithium ion secondary battery comprises a positive electrode 10 which contains a lithium nickel compound represented by LiNi(M)(M)O(where Mis at least one kind selected from Co and Mn, and Mrepresents at least one element selected from Al, Fe, Cr and Mg; 0.9≤w≤1.3; 0.75≤x≤0.95; 0.01≤y≤0.25; and 0≤z≤0.25), and a negative electrode 20. When the impedance of the negative electrode at 25°C and 1 kHz is denoted by Z(mΩ), the impedance at 25°C and 1 Hz is Z(mΩ), and the capacity of the lithium ion secondary battery is denoted by Q (Ah), a unit volume impedance index given by (Z-Z)×Q is 100.0 mAhΩ or less.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、携帯電話やパソコン等の電子機器の小型化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、このような状況下において、充放電容量が大きく、高エネルギー密度を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as mobile phones and personal computers have been rapidly reduced in size and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having a large charge / discharge capacity and a high energy density has attracted attention.

リチウムイオン二次電池の高エネルギー密度化には高電位・高容量の正極活物質の開発が急務である。近年、電池電圧が4V前後を示すものが現れ、そのうちLiNiO、LiCoOなどのニッケルやコバルトを主体とするリチウム遷移金属複合酸化物が有望な材料の一つとして考えられている。この中でも、NCAやNCM811といったニッケル比率が高いリチウムニッケル化合物は放電容量が200mAh/gを超えるものも存在し、これを用いることでリチウムイオン二次電池のエネルギー密度が飛躍的に向上することが期待されている。 To increase the energy density of lithium ion secondary batteries, it is urgent to develop positive electrode active materials with high potential and high capacity. In recent years, a battery voltage of around 4 V has appeared, and lithium transition metal composite oxides mainly composed of nickel and cobalt such as LiNiO 2 and LiCoO 2 are considered as one of promising materials. Among these, lithium nickel compounds having a high nickel ratio such as NCA and NCM811 exist that have a discharge capacity exceeding 200 mAh / g, and it is expected that the energy density of the lithium ion secondary battery will be dramatically improved by using this. Has been.

しかしながら、上記リチウムニッケル化合物は充放電に伴い、徐々に構成する遷移金属元素が電解液中に溶出するという問題が存在する。特に、NCAやNCM811といったニッケル比率が高いリチウムニッケル化合物でその傾向が顕著であり、電池のサイクル特性やレート特性に大きな影響を与えると考えられている。   However, the lithium nickel compound has a problem that a transition metal element that gradually constitutes elutes in the electrolytic solution with charge and discharge. In particular, lithium nickel compounds having a high nickel ratio such as NCA and NCM811, the tendency is remarkable, and it is considered that the cycle characteristics and rate characteristics of the battery are greatly affected.

そこで、特許文献1では、リチウムニッケル化合物に、Al、Mg、Sn、Ti、Zn、及びZrのうち少なくとも一つを含む有機金属化合物を添加して、機械的に解砕し、その後、400℃以上700℃以下の温度で熱処理を行う方法が提案されている。これによれば、粒子表面を機械的に解砕して有機金属化合物を付着させた後、高温処理を行うことで、リチウムニッケル化合物の粒子表面が安定化され、サイクル特性が改善する。   Therefore, in Patent Document 1, an organometallic compound containing at least one of Al, Mg, Sn, Ti, Zn, and Zr is added to a lithium nickel compound, and mechanically pulverized. A method of performing heat treatment at a temperature of 700 ° C. or lower has been proposed. According to this, the particle surface of the lithium nickel compound is stabilized and the cycle characteristics are improved by mechanically crushing the particle surface and attaching the organometallic compound, followed by high-temperature treatment.

特開2005−346956号JP-A-2005-346955

しかしながら、従来技術の方法でも遷移金属元素の溶出を完全に抑制することは難しく、溶出した遷移金属元素は負極の固体電解質界面(SEI)被膜へと取り込まれ、負極抵抗が継続的に増大してしまう。これにより、サイクル経過に伴って負極上にリチウムのデンドライド状析出が引き起こされる課題があった。   However, it is difficult to completely suppress the elution of the transition metal element even by the prior art method, and the eluted transition metal element is taken into the solid electrolyte interface (SEI) film of the negative electrode, and the negative electrode resistance continuously increases. End up. Thereby, there existed a subject by which dendritic precipitation of lithium was caused on a negative electrode with progress of a cycle.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、サイクル経過後の負極上へのリチウム析出を改善することが可能なリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a lithium ion secondary battery capable of improving lithium deposition on the negative electrode after the cycle has elapsed.

上記課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と、負極と、上記正極と上記負極の間に位置するセパレータと、溶媒と支持塩から成る電解液とを備えるリチウムイオン二次電池であって、上記正極がLiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含み、上記負極の25℃1kHzにおけるインピーダンスをZ(mΩ)、25℃1HzにおけるインピーダンスをZ(mΩ)、上記リチウムイオン二次電池の容量をQ(Ah)としたとき、(Z−Z)×Qで表される単位容量インピーダンス指数が100.0mAhΩ以下であることを特徴とするリチウムイオン二次電池。 In order to solve the above problems, a lithium ion secondary battery according to the present invention comprises a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte solution comprising a solvent and a supporting salt. In the secondary battery, the positive electrode is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, and M 2 is Al, Fe, Cr) And at least one element selected from Mg, 0.9 ≦ w ≦ 1.3, 0.75 ≦ x ≦ 0.95, 0.01 ≦ y ≦ 0.25, 0 ≦ z ≦ 0. .25), the impedance of the negative electrode at 25 ° C. and 1 kHz is Z 1 (mΩ), the impedance at 25 ° C. and 1 Hz is Z 2 (mΩ), and the capacity of the lithium ion secondary battery is Q (Ah) and When in, (Z 2 -Z 1) Lithium ion secondary batteries, characterized by unit volume impedance index represented by × Q is less than 100.0MAhomega.

本発明に係るリチウムイオン二次電池のように、正極としてニッケル比率が高いリチウムニッケル化合物を用いると、サイクル経過に伴い遷移金属イオンが溶出しやすく、負極上でSEI皮膜中に取り込まれて高キャパシタンス化しやすい。これに伴い、時定数も減少方向へと変化するため、25℃1kHzにおけるインピーダンスをZ、25℃1HzにおけるインピーダンスをZとしたとき、Z−Zを負極のインピーダンスを表す指標として用いることができる。この値を電池容量Qで規格化した単位容量インピーダンス指数を100mAhΩ以下とすることで、負極上に低抵抗で均一なSEIが形成され、サイクル経過後のリチウム析出を抑制することが出来る。 When a lithium nickel compound having a high nickel ratio is used as the positive electrode as in the lithium ion secondary battery according to the present invention, transition metal ions are likely to elute with the progress of the cycle, and are taken into the SEI film on the negative electrode and have a high capacitance. Easy to convert. Along with this, the time constant also changes in a decreasing direction. Therefore, when the impedance at 25 ° C. and 1 kHz is Z 1 , and the impedance at 25 ° C. and 1 Hz is Z 2 , Z 2 −Z 1 is used as an index representing the impedance of the negative electrode. be able to. By setting the unit capacity impedance index obtained by standardizing this value with the battery capacity Q to 100 mAhΩ or less, uniform SEI with low resistance can be formed on the negative electrode, and lithium deposition after the cycle can be suppressed.

本発明に係るリチウムイオン二次電池はさらに、上記単位容量インピーダンス指数が、70.0mAhΩ以下であることが好ましい。   In the lithium ion secondary battery according to the present invention, the unit capacity impedance index is preferably 70.0 mAhΩ or less.

これによれば、単位容量インピーダンス指数としてより好適であり、サイクル経過後のリチウム析出をより抑制することが出来る。   According to this, it is more suitable as a unit capacity impedance index, and lithium deposition after the cycle can be further suppressed.

本発明に係るリチウムイオン二次電池はさらに、上記容量Qが、3.0Ah以上であることが好ましい。   In the lithium ion secondary battery according to the present invention, the capacity Q is preferably 3.0 Ah or more.

これによれば、SEI皮膜形成にばらつきが生じやすいために、リチウム析出が引き起こされる可能性が高い容量帯のリチウムイオン二次電池であっても、本発明に係る構成とすることで、サイクル経過後のリチウム析出を抑制することが出来る。   According to this, since the variation in SEI film formation is likely to occur, even if it is a lithium ion secondary battery having a capacity band in which lithium deposition is likely to be caused, by adopting the configuration according to the present invention, the cycle progress Later lithium deposition can be suppressed.

本発明に係るリチウムイオン二次電池はさらに、上記正極が、リチウムバナジウム化合物を含むことが好ましい。   In the lithium ion secondary battery according to the present invention, the positive electrode preferably further contains a lithium vanadium compound.

これによれば、正極に、リチウム析出の核となりやすいバナジウムイオンから構成されるリチウムバナジウム化合物を含むリチウムイオン二次電池であっても、本発明に係る構成とすることで、サイクル経過後のリチウム析出を抑制することが出来る。   According to this, even if it is a lithium ion secondary battery including a lithium vanadium compound composed of a vanadium ion that is likely to be a nucleus of lithium deposition on the positive electrode, the configuration according to the present invention allows lithium after the cycle to be performed. Precipitation can be suppressed.

本発明によれば、サイクル経過後のリチウム析出を抑制することが可能なリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery which can suppress the lithium precipitation after progress of a cycle is provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想到できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily conceived by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14とを有する。また、負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24とを有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10. A plate-like separator 18, an electrolyte solution containing lithium ions, a case 50 containing these in a sealed state, and one end of the negative electrode 20 being electrically connected. A lead 62 whose other end protrudes outside the case and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case are provided. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.

<正極>
本実施形態に係る正極は、LiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含む。
<Positive electrode>
The positive electrode according to the present embodiment is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, and M 2 is Al, Fe, Cr, and Mg) And at least one element selected from the group consisting of 0.9 ≦ w ≦ 1.3, 0.75 ≦ x ≦ 0.95, 0.01 ≦ y ≦ 0.25, and 0 ≦ z ≦ 0.25. The lithium nickel compound represented by this is included.

これによれば、正極としてサイクル経過に伴い遷移金属イオンが溶出しやすいニッケル比率が高いリチウムニッケル化合物を用いても、本実施形態に係るリチウムイオン電池の構成とすることで、サイクル経過後のリチウム析出を抑制することが出来る。   According to this, even if a lithium nickel compound having a high nickel ratio that easily elutes transition metal ions with the progress of the cycle is used as the positive electrode, the lithium ion battery according to the present embodiment can be used as the lithium after the cycle has elapsed. Precipitation can be suppressed.

本実施形態に係る正極は更に、リチウムバナジウム化合物を含むことが好ましい。   The positive electrode according to this embodiment preferably further contains a lithium vanadium compound.

これによれば、正極に、リチウム析出の核となりやすいバナジウムイオンから構成されるリチウムバナジウム化合物を含むリチウムイオン二次電池であっても、本実施形態に係るリチウムイオン電池の構成とすることで、サイクル経過後のリチウム析出を抑制することが出来る。   According to this, even if it is a lithium ion secondary battery containing a lithium vanadium compound composed of vanadium ions that are likely to be nuclei of lithium deposition on the positive electrode, by configuring the lithium ion battery according to this embodiment, Lithium deposition after the cycle can be suppressed.

上記リチウムバナジウム化合物としては特に限定はないが、Li(PO(ただし、MはVおよびVOを表す。また、1≦a≦4、1≦b≦2、1≦c≦3)表されるリチウムリン酸バナジウムリチウム化合物等を用いることが出来る。 The lithium vanadium compound is not particularly limited, but Li a M b (PO 4 ) c (where M represents V and VO. Also, 1 ≦ a ≦ 4, 1 ≦ b ≦ 2, 1 ≦ c ≦ 3) The lithium vanadium lithium compound represented by the formula etc. can be used.

以下、本実施形態に係る正極の構成の一例を記載する。   Hereinafter, an example of the configuration of the positive electrode according to the present embodiment will be described.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、および正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a positive electrode conductive additive.

(その他の正極活物質)
正極活物質は、リチウムイオンの吸蔵および放出、リチウムイオンの脱離および挿入が可能な、その他の正極活物質を混合して用いることも出来る。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)や、LiNiCoMn(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物等が挙げられる。
(Other positive electrode active materials)
As the positive electrode active material, other positive electrode active materials capable of inserting and extracting lithium ions and desorbing and inserting lithium ions can be mixed and used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), LiNi x Co y Mn z M a O 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Etc.

(正極用バインダー)
正極用バインダーは正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode active material layer 14 and the positive electrode current collector 12. The binder is not particularly limited as long as it can be bonded as described above. For example, fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide A resin, a polyamideimide resin, or the like may be used. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, and polyaniline. Examples of the ion conductive conductive polymer include those obtained by combining a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. It is done.

正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。   Although content of the binder in the positive electrode active material layer 14 is not specifically limited, When adding, it is preferable that it is 0.5-5 mass parts with respect to the mass of a positive electrode active material.

(正極用導電助剤)
正極用導電助剤としては、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive auxiliary agent for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, and conductive oxides such as ITO.

<負極>
本実施形態に係る負極は、25℃1kHzにおけるインピーダンスをZ(mΩ)、25℃1HzにおけるインピーダンスをZ(mΩ)、リチウムイオン二次電池の容量をQ(Ah)としたとき、(Z−Z)×Qで表される単位容量インピーダンス指数が100.0mAhΩ以下であり、より好ましくは70.0mAhΩ以下である。
<Negative electrode>
When the impedance at 25 ° C. and 1 kHz is Z 1 (mΩ), the impedance at 25 ° C. and 1 Hz is Z 2 (mΩ), and the capacity of the lithium ion secondary battery is Q (Ah), the negative electrode according to this embodiment is (Z The unit capacitance impedance index represented by 2 −Z 1 ) × Q is 100.0 mAhΩ or less, more preferably 70.0 mAhΩ or less.

上記単位容量インピーダンス指数を上記規定の数値とする手法としては、例えば、リチウムイオン伝導性が異なる負極活物質を使用することや、負極中に含まれる導電助剤の割合を変える等、負極活物質層の抵抗を変化させることで、単位容量インピーダンス指数を制御することが出来る。あるいは、負極スラリーに適当な添加剤を加えること、電解液濡れ性が異なる材料で負極活物質を被覆すること等、負極活物質表面の抵抗を変化させることでも、単位容量インピーダンス指数を制御することが出来る。更には、電池化後、充電電流の大きさや、その時の温度によっても単位容量インピーダンス指数を制御することが出来る。後述する実施例においては、これらの手法を組み合わせて単位容量インピーダンス指数を目的の値としているが、ここに記載した以外の手法を用いて単位容量インピーダンス指数を制御してもよく、そのようなものも本発明の範囲内である。   Examples of the method for setting the unit capacitance impedance index to the specified value include, for example, use of a negative electrode active material having different lithium ion conductivity, or changing the ratio of the conductive auxiliary agent contained in the negative electrode. The unit capacitance impedance index can be controlled by changing the resistance of the layer. Alternatively, the unit capacitance impedance index can be controlled by changing the resistance of the negative electrode active material surface, such as adding an appropriate additive to the negative electrode slurry, or coating the negative electrode active material with a material having different electrolyte wettability. I can do it. Furthermore, after the battery is made into a battery, the unit capacity impedance index can be controlled by the magnitude of the charging current and the temperature at that time. In the embodiments described later, the unit capacitance impedance index is set as a target value by combining these methods, but the unit capacitance impedance index may be controlled by using a method other than those described here. Are also within the scope of the present invention.

特に、SEI皮膜形成にばらつきが生じやすく、リチウム析出が引き起こされる可能性が高いQが3.0Ah以上のリチウムイオン電池の場合でも、本発明に係る構成とすることで、サイクル経過後のリチウム析出を効果的に抑制することが出来る。   In particular, even in the case of a lithium ion battery having a Q of 3.0 Ah or higher, which is likely to cause variations in SEI film formation and cause lithium deposition, the lithium deposition after cycle elapses with the configuration according to the present invention. Can be effectively suppressed.

負極のインピーダンスを測定する方法として、電池に参照極を組み込んだ三極セルを用いる方法がよく知られている。上記三極セルを負極−正極間を電流端子、負極−参照極間を電圧端子で繋ぎ、インピーダンスアナライザで測定することで、負極のインピーダンスを分離して求めることが出来る。また、電池に悪影響を及ぼさないという観点から、参照極はリチウム金属を用い、電極の取出し口にはニッケルを用いることが好ましい。   As a method for measuring the impedance of the negative electrode, a method using a triode cell in which a reference electrode is incorporated in a battery is well known. By connecting the negative electrode to the positive electrode with a current terminal and connecting the negative electrode to the reference electrode with a voltage terminal and measuring with an impedance analyzer, the impedance of the negative electrode can be obtained separately. From the viewpoint of not adversely affecting the battery, it is preferable to use lithium metal for the reference electrode and nickel for the electrode outlet.

他に、負極のインピーダンスを測定する方法として、負極同士を対向させた対称セルを用いる方法も知られている。測定したい電池をグローブボックス等不活性雰囲気下で解体して負極を取り出し、セパレータを介して対向させて再封止することで対称セルを得ることが出来る。上記対称セルをインピーダンスアナライザで測定することでも、負極のインピーダンスを分離して求めることが出来る。   In addition, as a method for measuring the impedance of the negative electrode, a method using a symmetrical cell in which the negative electrodes are opposed to each other is also known. A symmetrical cell can be obtained by disassembling the battery to be measured under an inert atmosphere such as a glove box, taking out the negative electrode, and facing and resealing via a separator. The impedance of the negative electrode can also be obtained separately by measuring the symmetric cell with an impedance analyzer.

以下、本実施形態に係る負極の構成の一例を記載する。   Hereinafter, an example of the configuration of the negative electrode according to the present embodiment will be described.

(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、および負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and a negative electrode conductive additive.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)、金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance occlusion and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. . For example, carbon-based materials such as graphite and hard carbon, silicon-based materials such as silicon oxide (SiO x ) and metal silicon (Si), metal oxides such as lithium titanate (LTO), metals such as lithium, tin, and zinc Materials.

負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。   When a metal material is not used as the negative electrode active material, the negative electrode active material layer 24 may further include a negative electrode binder and a negative electrode conductive additive.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.

<電解液>
(溶媒)
電解液の溶媒としては、一般にリチウムイオン二次電池に用いられている溶媒であれば特に限定はなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート化合物、γ−ブチロラクトン等の環状エステル化合物、プロピオン酸プロピル、プロピオン酸エチル、酢酸エチル等の鎖状エステル化合物、等を任意の割合で混合して用いることができる。
<Electrolyte>
(solvent)
The solvent of the electrolytic solution is not particularly limited as long as it is a solvent generally used in lithium ion secondary batteries. For example, cyclic carbonate compounds such as ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC) ), A chain carbonate compound such as ethyl methyl carbonate (EMC), a cyclic ester compound such as γ-butyrolactone, a chain ester compound such as propyl propionate, ethyl propionate, and ethyl acetate, etc. Can be used.

(電解質)
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(正極の作製)
Li(Ni0.80Co0.15Al0.05)O85質量部、カーボンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 1]
(Preparation of positive electrode)
85 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF are dispersed in N-methyl-2-pyrrolidone (NMP) to form a positive electrode active material layer The slurry for was prepared. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 9.0 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.

(負極の作製)
天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が6.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Preparation of negative electrode)
90 parts by mass of natural graphite, 5 parts by mass of carbon black, and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 6.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded with the roller press and produced the negative electrode.

(電解液の作製)
体積比でEC/DEC=3/7となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解し、電解液を作製した。
(Preparation of electrolyte)
Were mixed so that EC / DEC = 3/7 by volume, to which LiPF 6 was dissolved at a concentration of 1.0 mol / L, to prepare an electrolyte solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極と負極の間に、ポリエチレン微多孔膜からなるセパレータを挟んで積層し、上記積層体をアルミラミネートの外装体に封入して、容量Qが3.0Ahのドライセルを作製した。上記ドライセルを室温で24時間乾燥した後、上記で作製した電解液を、下記式から求めた注液量だけ注入し、真空シーラー(富士インパルス株式会社製)を用いて封止を行い、評価用のリチウムイオン二次電池を作製した。
注液量(mL)=(正極空孔体積+負極空孔体積+セパレータ空孔体積)×注液係数
注液係数=2.0
正極空孔体積(cm)=正極活物質層体積×正極空孔率
負極空孔体積(cm)=負極活物質層体積×負極空孔率
(Production of evaluation lithium-ion secondary battery)
A laminate made of a polyethylene microporous membrane was sandwiched between the positive electrode and the negative electrode produced above, and the laminate was sealed in an aluminum laminate outer package to produce a dry cell having a capacity Q of 3.0 Ah. After the dry cell is dried at room temperature for 24 hours, the electrolytic solution prepared above is injected in an amount of injection obtained from the following formula, and sealed with a vacuum sealer (Fuji Impulse Co., Ltd.) for evaluation. A lithium ion secondary battery was prepared.
Injection volume (mL) = (Positive electrode volume + Negative electrode volume + Separator volume) x Injection coefficient Injection coefficient = 2.0
Positive electrode void volume (cm 3 ) = positive electrode active material layer volume × positive electrode porosity Negative electrode void volume (cm 3 ) = negative electrode active material layer volume × negative electrode porosity

(電池化)
上記で作製した評価用のリチウムイオン二次電池を、恒温槽(エスペック株式会社製)および充放電試験装置(北斗電工株式会社製)を用い、25℃に設定した恒温槽内で充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。ここで、X(C)とは、25℃で定電流充電を行ったときに1/X時間で充電終了となる電流値を示す。
(Battery)
The lithium ion secondary battery for evaluation produced above was charged at a charge rate of 0.00 in a thermostatic chamber set at 25 ° C. using a thermostatic chamber (manufactured by Espec Co., Ltd.) and a charge / discharge test apparatus (manufactured by Hokuto Denko Co., Ltd.). After charging at a constant current of 2C until the battery voltage reached 4.2V, discharging was performed until the battery voltage reached 2.8V at a constant current discharge at a discharge rate of 0.2C. Here, X (C) indicates a current value at which charging is completed in 1 / X time when constant current charging is performed at 25 ° C.

(負極インピーダンスの測定)
上記で電池化した評価用のリチウムイオン二次電池の外装体の一部を、グローブボックス中、不活性雰囲気下で開封し、そこから、ニッケル線に金属リチウムを捲き付けた参照極をショートに気を付けながら導入し、真空シーラーを用いて再封止を行った。この参照極を導入した評価用のリチウム二次電池を、インピーダンスアナライザ(Bio−Logic社製)を用い、電流端子を負極(+)−正極(−)、電圧端子を負極(+)−参照極(−)となるように25℃に設定した恒温槽(エスペック社製)に接続し、1kHzにおけるインピーダンスZ(mΩ)、および1HzにおけるインピーダンスZ(mΩ)を求めた。結果を表1に示す。
(Measurement of negative electrode impedance)
A part of the evaluation lithium-ion secondary battery package that has been made into a battery as described above is opened in a glove box under an inert atmosphere, and then the reference electrode in which metallic lithium is plated on a nickel wire is short-circuited. It was introduced with care and resealed using a vacuum sealer. The evaluation lithium secondary battery into which this reference electrode was introduced was measured using an impedance analyzer (Bio-Logic), the current terminal was negative (+)-positive (-), and the voltage terminal was negative (+)-reference electrode. It was connected to a thermostatic chamber (manufactured by Espec Corp.) set at 25 ° C. so as to be (−), and impedance Z 1 (mΩ) at 1 kHz and impedance Z 2 (mΩ) at 1 Hz were obtained. The results are shown in Table 1.

(100サイクル経過後リチウム析出の確認)
上記で負極インピーダンスを測定した評価用のリチウムイオン二次電池を、25℃に設定した恒温槽内で充電レート2.0Cの定電流充電で電池電圧が4.2Vとなるまで充電を行い、続いて、放電レート1.0Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記充放電パターンを1サイクルとし、100サイクルの充放電を行った。100サイクル経過後の電池について、グローブボックス中、不活性雰囲気化で電池を解体して負極面の確認を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition after 100 cycles)
The lithium ion secondary battery for evaluation whose negative electrode impedance was measured as described above was charged until the battery voltage became 4.2 V by constant current charging at a charging rate of 2.0 C in a thermostat set at 25 ° C., and then Then, the battery was discharged until the battery voltage became 2.8 V by constant current discharge at a discharge rate of 1.0 C. The charge / discharge pattern was defined as one cycle, and 100 cycles of charge / discharge were performed. Regarding the battery after 100 cycles, the battery was disassembled in an inert atmosphere in the glove box and the negative electrode surface was confirmed. As a result, lithium deposition was not confirmed.

[実施例2]
(正極の作製)
Li(Ni0.80Co0.15Al0.05)O85質量部、カーボンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が13.5mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 2]
(Preparation of positive electrode)
85 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 , 5 parts by mass of carbon black, and 10 parts by mass of PVDF are dispersed in N-methyl-2-pyrrolidone (NMP) to form a positive electrode active material layer The slurry for was prepared. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 13.5 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.

(負極の作製)
天然黒鉛90質量部、カーボンブラック5質量部、PVDF5質量部をN−メチル−2−ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。上記スラリーを、厚さ20μmの銅箔の一面に、負極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、負極を作製した。
(Preparation of negative electrode)
90 parts by mass of natural graphite, 5 parts by mass of carbon black, and 5 parts by mass of PVDF were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 20 μm so that the amount of the negative electrode active material applied was 9.0 mg / cm 2 and dried at 100 ° C. to form a negative electrode active material layer. Then, it pressure-molded with the roller press and produced the negative electrode.

(電解液の作製)
実施例1と同様の方法で、電解液を作製した。
(Preparation of electrolyte)
An electrolytic solution was prepared in the same manner as in Example 1.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極、負極、電解液を用い、実施例1の方法に倣い、評価用リチウムイオン二次電池を作製した。なお、容量Qは3.0Ahとした。
(Production of evaluation lithium-ion secondary battery)
Using the positive electrode, negative electrode, and electrolytic solution prepared above, a lithium ion secondary battery for evaluation was manufactured following the method of Example 1. The capacity Q was set to 3.0 Ah.

(電池化)
実施例1と同様の方法で、電池化を行った。
(Battery)
Batterization was carried out in the same manner as in Example 1.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、わずかにリチウム析出が確認された。(負極総面積に対して1%程度)
(Confirmation of lithium deposition during cycle test)
The lithium ion secondary battery for evaluation made into a battery was observed for the negative electrode surface of the battery after 100 cycles in the same manner as in Example 1. As a result, lithium deposition was slightly confirmed. (About 1% of the total area of the negative electrode)

[実施例3]
(正極の作製)
実施例1と同様の方法で、正極を作製した。
[Example 3]
(Preparation of positive electrode)
A positive electrode was produced in the same manner as in Example 1.

(負極の作製)
実施例1と同様の方法で、負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1.

(電解液の作製)
実施例1と同様の方法で、電解液を作製した。
(Preparation of electrolyte)
An electrolytic solution was prepared in the same manner as in Example 1.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極、負極、電解液を用い、実施例1の方法に倣い、評価用リチウムイオン二次電池を作製した。なお、容量Qは3.0Ahとした。
(Production of evaluation lithium-ion secondary battery)
Using the positive electrode, negative electrode, and electrolytic solution prepared above, a lithium ion secondary battery for evaluation was manufactured following the method of Example 1. The capacity Q was set to 3.0 Ah.

(電池化)
上記で作製した評価用のリチウムイオン二次電池を、25℃に設定した恒温槽内で充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記で充放電を行ったリチウムイオン二次電池を、60℃に設定した恒温槽内で30分静置し、電池化を行った。
(Battery)
The lithium ion secondary battery for evaluation produced above was charged until the battery voltage became 4.2 V by constant current charging at a charge rate of 0.2 C in a thermostat set at 25 ° C., and then the discharge rate. The battery was discharged at a constant current discharge of 0.2 C until the battery voltage reached 2.8V. The lithium ion secondary battery that was charged and discharged as described above was allowed to stand for 30 minutes in a thermostatic chamber set at 60 ° C., and the battery was formed.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition during cycle test)
Regarding the lithium ion secondary battery for evaluation made into a battery as described above, as in Example 1, the negative electrode surface of the battery after 100 cycles was observed, and lithium deposition was not confirmed.

[実施例4]
(正極の作製)
実施例1と同様の方法で、正極を作製した。
[Example 4]
(Preparation of positive electrode)
A positive electrode was produced in the same manner as in Example 1.

(負極の作製)
実施例1と同様の方法で、負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1.

(電解液の作製)
体積比でEC/DEC/DMC=2/2/6となるように混合し、これに1.2mol/Lの濃度となるようにLiPFを溶解した。その後、ビニレンカーボネートを1.0wt%の濃度となるように添加し、電解液を作製した。
(Preparation of electrolyte)
It was mixed so that EC / DEC / DMC = 2/ 2/6 by volume, to which LiPF 6 was dissolved at a concentration of 1.2 mol / L. Then, vinylene carbonate was added so that it might become a 1.0 wt% density | concentration, and electrolyte solution was produced.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極、負極、電解液を用い、実施例1の方法に倣い、評価用リチウムイオン二次電池を作製した。なお、容量Qは3.0Ah、注液係数は2.2とした。
(Production of evaluation lithium-ion secondary battery)
Using the positive electrode, negative electrode, and electrolytic solution prepared above, a lithium ion secondary battery for evaluation was manufactured following the method of Example 1. The capacity Q was 3.0 Ah, and the injection coefficient was 2.2.

(電池化)
上記で作製した評価用のリチウムイオン二次電池を、25℃に設定した恒温槽内で充電レート0.05Cの定電流充電で電池電圧が3.9Vとなるまで充電を行った後、充電レート0.1Cの定電流充電に切り替え、電池電圧が4.2Vとなるまで充電を行った。その後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。
(Battery)
The lithium ion secondary battery for evaluation produced above was charged until the battery voltage became 3.9 V by constant current charging at a charge rate of 0.05 C in a thermostat set at 25 ° C., and then the charge rate It switched to the constant current charge of 0.1C, and it charged until the battery voltage became 4.2V. Then, it discharged until the battery voltage became 2.8V by the constant current discharge of the discharge rate 0.2C.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition during cycle test)
Regarding the lithium ion secondary battery for evaluation made into a battery as described above, as in Example 1, the negative electrode surface of the battery after 100 cycles was observed, and lithium deposition was not confirmed.

[実施例5]
評価用リチウムイオン二次電池の作製において、容量Qを1.0Ahに変更した以外は実施例1と同様にして、実施例5の評価用リチウムイオン二次電池を作製した。
[Example 5]
In the production of the evaluation lithium ion secondary battery, the evaluation lithium ion secondary battery of Example 5 was produced in the same manner as in Example 1, except that the capacity Q was changed to 1.0 Ah.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition during cycle test)
Regarding the lithium ion secondary battery for evaluation made into a battery as described above, as in Example 1, the negative electrode surface of the battery after 100 cycles was observed, and lithium deposition was not confirmed.

[実施例6]
評価用リチウムイオン二次電池の作製において、容量Qを4.5Ahに変更した以外は実施例1と同様にして、実施例6の評価用リチウムイオン二次電池を作製した。
[Example 6]
A lithium ion secondary battery for evaluation of Example 6 was produced in the same manner as in Example 1 except that the capacity Q was changed to 4.5 Ah in the production of the evaluation lithium ion secondary battery.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition during cycle test)
Regarding the lithium ion secondary battery for evaluation made into a battery as described above, as in Example 1, the negative electrode surface of the battery after 100 cycles was observed, and lithium deposition was not confirmed.

[実施例7]
(正極の作製)
Li(Ni0.80Co0.15Al0.05)O80質量部、LiVOPO5質量部、カーボンブラック5質量部、PVDF10質量部をN−メチル−2−ピロリドン(NMP)に分散させ、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミ金属箔の一面に、正極活物質の塗布量が9.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、ローラープレスによって加圧成形し、正極を作製した。
[Example 7]
(Preparation of positive electrode)
80 parts by mass of Li (Ni 0.80 Co 0.15 Al 0.05 ) O 2 , 5 parts by mass of LiVOPO 4, 5 parts by mass of carbon black, and 10 parts by mass of PVDF are dispersed in N-methyl-2-pyrrolidone (NMP). Then, a slurry for forming the positive electrode active material layer was prepared. This slurry was applied to one surface of an aluminum metal foil having a thickness of 20 μm so that the applied amount of the positive electrode active material was 9.0 mg / cm 2 and dried at 100 ° C. to form a positive electrode active material layer. Then, it pressure-molded with the roller press and produced the positive electrode.

(負極の作製)
実施例1と同様の方法で、負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1.

(電解液の作製)
実施例1と同様の方法で、電解液を作製した。
(Preparation of electrolyte)
An electrolytic solution was prepared in the same manner as in Example 1.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極、負極、電解液を用い、実施例1の方法に倣い、評価用リチウムイオン二次電池を作製した。なお、容量Qは3.0Ahとした。
(Production of evaluation lithium-ion secondary battery)
Using the positive electrode, negative electrode, and electrolytic solution prepared above, a lithium ion secondary battery for evaluation was manufactured following the method of Example 1. The capacity Q was set to 3.0 Ah.

(電池化)
実施例1と同様の方法で、電池化を行った。
(Battery)
Batterization was carried out in the same manner as in Example 1.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出は確認されなかった。
(Confirmation of lithium deposition during cycle test)
Regarding the lithium ion secondary battery for evaluation made into a battery as described above, as in Example 1, the negative electrode surface of the battery after 100 cycles was observed, and lithium deposition was not confirmed.

[比較例1]
(正極の作製)
実施例1と同様の方法で、負極を作製した。
[Comparative Example 1]
(Preparation of positive electrode)
A negative electrode was produced in the same manner as in Example 1.

(負極の作製)
実施例1と同様の方法で、負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced in the same manner as in Example 1.

(電解液の作製)
実施例1と同様の方法で、電解液を作製した。
(Preparation of electrolyte)
An electrolytic solution was prepared in the same manner as in Example 1.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極、負極、電解液を用い、実施例1の方法に倣い、評価用リチウムイオン二次電池を作製した。なお、容量Qは3.0Ahとした。
(Production of evaluation lithium-ion secondary battery)
Using the positive electrode, negative electrode, and electrolytic solution prepared above, a lithium ion secondary battery for evaluation was manufactured following the method of Example 1. The capacity Q was set to 3.0 Ah.

(電池化)
上記で作製した評価用のリチウムイオン二次電池を、60℃に設定した恒温槽内で充電レート0.2Cの定電流充電で電池電圧が4.2Vとなるまで充電を行った後、放電レート0.2Cの定電流放電で電池電圧が2.8Vとなるまで放電を行った。上記で充放電を行ったリチウムイオン二次電池を、80℃に設定した恒温槽内で2時間静置し、電池化を行った。
(Battery)
The lithium ion secondary battery for evaluation prepared above was charged until the battery voltage became 4.2 V by constant current charging at a charging rate of 0.2 C in a thermostat set at 60 ° C., and then the discharge rate. The battery was discharged at a constant current discharge of 0.2 C until the battery voltage reached 2.8V. The lithium ion secondary battery that was charged and discharged as described above was allowed to stand for 2 hours in a thermostatic chamber set at 80 ° C., and battery formation was performed.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出が確認された。(負極総面積に対して5%程度)
(Confirmation of lithium deposition during cycle test)
The lithium ion secondary battery for evaluation made into a battery as described above was subjected to observation of the negative electrode surface of the battery after 100 cycles in the same manner as in Example 1. As a result, lithium deposition was confirmed. (About 5% of the total area of the negative electrode)

[比較例2]
(評価用リチウムイオン二次電池の作製)
実施例7と同様の方法で、正極、負極、電解液を作製し、評価用のリチウムイオン二次電池を作製した。なお、容量Qは3.0Ahとした。
[Comparative Example 2]
(Production of evaluation lithium-ion secondary battery)
In the same manner as in Example 7, a positive electrode, a negative electrode, and an electrolytic solution were produced, and a lithium ion secondary battery for evaluation was produced. The capacity Q was set to 3.0 Ah.

(電池化)
比較例1と同様の方法で電池化を行った。
(Battery)
A battery was produced in the same manner as in Comparative Example 1.

(負極インピーダンスの測定)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に負極インピーダンスを測定した。結果を表1に示す。
(Measurement of negative electrode impedance)
The negative electrode impedance of the evaluation lithium ion secondary battery made into a battery as described above was measured in the same manner as in Example 1. The results are shown in Table 1.

(サイクル試験に伴うリチウム析出の確認)
上記で電池化した評価用リチウムイオン二次電池について、実施例1と同様に、100サイクル経過後の電池について負極面の観察を行ったところ、リチウム析出が多く確認された。(負極総面積に対して10%程度)
(Confirmation of lithium deposition during cycle test)
As for the lithium ion secondary battery for evaluation made into a battery as described above, the negative electrode surface of the battery after 100 cycles was observed in the same manner as in Example 1. As a result, many lithium depositions were confirmed. (About 10% of the total area of the negative electrode)

実施例1〜7はいずれも、単位容量インピーダンス指数を最適化しなかった比較例1、2よりもリチウム析出が抑制されることが確認された。   In each of Examples 1 to 7, it was confirmed that lithium deposition was suppressed more than Comparative Examples 1 and 2 in which the unit capacitance impedance index was not optimized.

実施例7および比較例2の結果から、正極にリチウムバナジウム化合物を含む場合、リチウム析出抑制作用がより効果的に得られることが確認された。   From the results of Example 7 and Comparative Example 2, it was confirmed that when the positive electrode contains a lithium vanadium compound, the lithium precipitation suppressing action can be obtained more effectively.

Figure 2019175650
Figure 2019175650

本発明により、サイクル経過後の負極上へのリチウム析出を改善することが可能なリチウムイオン二次電池が提供される。   The present invention provides a lithium ion secondary battery capable of improving lithium deposition on the negative electrode after the cycle has elapsed.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (4)

正極と、負極と、前記正極と前記負極の間に位置するセパレータと、溶媒と支持塩から成る電解液とを備えるリチウムイオン二次電池であって、
前記正極がLiNi(M(M(ただし、MはCo、Mnから選ばれた少なくとも一種、MはAl、Fe、CrおよびMgから選ばれた少なくとも一種の元素を示す。また、0.9≦w≦1.3;0.75≦x≦0.95;0.01≦y≦0.25;0≦z≦0.25)で表されるリチウムニッケル化合物を含み、
前記負極の25℃1kHzにおけるインピーダンスをZ(mΩ)、前記負極の25℃1HzにおけるインピーダンスをZ(mΩ)、前記リチウムイオン二次電池の容量をQ(Ah)としたとき、(Z−Z)×Qで表される単位容量インピーダンス指数が100.0mAhΩ以下であることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte solution comprising a solvent and a supporting salt,
The positive electrode is Li w Ni x (M 1 ) y (M 2 ) z O 2 (where M 1 is at least one selected from Co and Mn, M 2 is at least selected from Al, Fe, Cr and Mg) One element, 0.9 ≦ w ≦ 1.3; 0.75 ≦ x ≦ 0.95; 0.01 ≦ y ≦ 0.25; 0 ≦ z ≦ 0.25) Including lithium nickel compounds,
When the impedance of the negative electrode at 25 ° C. and 1 kHz is Z 1 (mΩ), the impedance of the negative electrode at 25 ° C. and 1 Hz is Z 2 (mΩ), and the capacity of the lithium ion secondary battery is Q (Ah), (Z 2 A unit capacity impedance index represented by -Z 1 ) × Q is 100.0 mAhΩ or less.
前記単位容量インピーダンス指数が、70.0mAhΩ以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the unit capacity impedance index is 70.0 mAhΩ or less. 前記容量Qが、3.0Ah以上であることを特徴とする請求項1または2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the capacity Q is 3.0 Ah or more. 前記正極が、リチウムバナジウム化合物を含むことを特徴とする請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池。



The lithium ion secondary battery according to any one of claims 1 to 3, wherein the positive electrode contains a lithium vanadium compound.



JP2018061601A 2018-03-28 2018-03-28 Lithium ion secondary battery Pending JP2019175650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061601A JP2019175650A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061601A JP2019175650A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2019175650A true JP2019175650A (en) 2019-10-10

Family

ID=68169294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061601A Pending JP2019175650A (en) 2018-03-28 2018-03-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2019175650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748549A (en) * 2020-03-27 2021-12-03 宁德时代新能源科技股份有限公司 Secondary battery and device containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748549A (en) * 2020-03-27 2021-12-03 宁德时代新能源科技股份有限公司 Secondary battery and device containing the same

Similar Documents

Publication Publication Date Title
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
CN108370068B (en) Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same
TWI587562B (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6109603B2 (en) battery
JP6098852B2 (en) Negative electrode for secondary battery and lithium secondary battery including the same
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP6007902B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and production method thereof
KR20150089966A (en) Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
WO2016067428A1 (en) Lithium ion battery and method for manufacturing same
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019175650A (en) Lithium ion secondary battery
JP2019160617A (en) Lithium ion secondary battery
JP2016076332A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP7077736B2 (en) Secondary battery
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP2019175651A (en) Lithium ion secondary battery