JP2019175083A - Smoke sensor and smoke detection system - Google Patents

Smoke sensor and smoke detection system Download PDF

Info

Publication number
JP2019175083A
JP2019175083A JP2018061859A JP2018061859A JP2019175083A JP 2019175083 A JP2019175083 A JP 2019175083A JP 2018061859 A JP2018061859 A JP 2018061859A JP 2018061859 A JP2018061859 A JP 2018061859A JP 2019175083 A JP2019175083 A JP 2019175083A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
smoke
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061859A
Other languages
Japanese (ja)
Other versions
JP7033980B2 (en
Inventor
真道 内田
Masamichi Uchida
真道 内田
貴洋 金子
Takahiro Kaneko
貴洋 金子
松田 大造
Daizo Matsuda
大造 松田
貴弘 野口
Takahiro Noguchi
貴弘 野口
顕治 水谷
Kenji Mizutani
顕治 水谷
恭拓 渡邉
Takahiro Watanabe
恭拓 渡邉
晋 橋本
Susumu Hashimoto
晋 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2018061859A priority Critical patent/JP7033980B2/en
Priority to CN201910147835.2A priority patent/CN110322655A/en
Publication of JP2019175083A publication Critical patent/JP2019175083A/en
Application granted granted Critical
Publication of JP7033980B2 publication Critical patent/JP7033980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a smoke sensor capable of suppressing reduction in accuracy of output from a light-receiving element, and a smoke detection system.SOLUTION: A smoke sensor comprises: a light-emitting element; a light-receiving element including a light-receiving axis which crosses a light-emitting axis of the light-emitting element; and a control unit which defines output of the light-receiving element in a state where a smoke concentration is zero, as a reference value and compensates the output of the light-receiving element by using a compensation value that is obtained on the basis of a rate of change in the output of the light-receiving element with respect to the reference value. Each time the smoke sensor is powered on, the control unit determines the compensation value of the light-receiving element.SELECTED DRAWING: Figure 3

Description

本発明は、発光素子と受光素子とを備えた光電式の煙感知器及び煙検知システムに関する。   The present invention relates to a photoelectric smoke detector and a smoke detection system including a light emitting element and a light receiving element.

従来、発光素子から光を出射し、煙の粒子により生じる散乱光を受光素子で受光することで煙を検知する光電式煙感知器が知られている。光電式煙感知器は、検煙室内、発光素子及び受光素子に汚れが付着するなどの理由により、受光素子の感度に経時変化が生じうる。そこで、受光素子の感度の経時変化によって生じる煙の検知精度の低下を抑制するために、受光素子の感度の変化を補う補償処理を行う技術が提案されている(たとえば、特許文献1参照)。   2. Description of the Related Art Conventionally, a photoelectric smoke detector that detects smoke by emitting light from a light emitting element and receiving scattered light generated by smoke particles with a light receiving element is known. In the photoelectric smoke detector, the sensitivity of the light receiving element can change over time due to the fact that dirt adheres to the inside of the smoke detection chamber, the light emitting element and the light receiving element. Therefore, in order to suppress a decrease in smoke detection accuracy caused by a change in sensitivity of the light receiving element over time, a technique for performing compensation processing to compensate for the change in sensitivity of the light receiving element has been proposed (for example, see Patent Document 1).

特開2013−3760号公報JP2013-3760A

上記特許文献1に記載の煙感知器では、受光素子の感度と受光素子の使用時間とを対応させた特性を用いて、受光素子の感度を補償している。この特許文献1では、使用時間が長くなると受光素子が収容された検煙室内への埃等の堆積量が多くなり、それに伴って検煙室内の散乱光が増えて受光素子の受光強度が上昇するとして、使用時間に応じて受光素子の感度を補償している。   In the smoke detector described in Patent Document 1, the sensitivity of the light receiving element is compensated by using a characteristic in which the sensitivity of the light receiving element is associated with the usage time of the light receiving element. In Patent Document 1, as the usage time becomes longer, the amount of dust and the like accumulated in the smoke detection chamber in which the light receiving element is accommodated increases, and accordingly, the scattered light in the smoke detection chamber increases and the light receiving intensity of the light receiving element increases. As a result, the sensitivity of the light receiving element is compensated according to the usage time.

ところが、煙感知器が設置されている部屋のレイアウト変更などによって、煙感知器の設置場所が変更されると、設置場所の明るさによっては同じ煙濃度であっても受光素子の出力が変わる虞がある。また、受光素子の出力が補償されている状態で煙感知器の設置環境が変更された場合に、煙感知器の電源遮断に伴って補償量がリセットされたとすると、電源投入後には実際には補償が必要であるにもかかわらず補償のない状態になる。そうすると、受光素子の感度が低下した状態で、火災の監視が行われてしまう。   However, if the installation location of the smoke detector is changed due to a change in the layout of the room where the smoke detector is installed, the output of the light receiving element may change depending on the brightness of the installation location even if the smoke concentration is the same. There is. Also, if the installation environment of the smoke detector is changed while the output of the light receiving element is compensated, and the compensation amount is reset when the smoke detector is turned off, Despite the need for compensation, there is no compensation. If it does so, a fire will be monitored in the state which the sensitivity of the light receiving element fell.

また、使用時間に応じて受光素子の感度の補償量を大きくしている状態で煙感知器の清掃が行われて埃等が取り除かれると、煙感知器の受光素子の実際の感度は、初期状態、すなわち埃等が堆積していない状態の感度に戻る。しかし、受光素子の感度は補償されてしまうため、実際の煙濃度を正確に検出できないおそれがあった。また、煙感知器の清掃が行われたときに煙感知器の電源遮断によって感度の補償量がリセットされたとすると、清掃が不十分であった場合には、補償が必要であるにもかかわらず受光素子の感度が補償されなくなり、煙濃度を正確に検出できなくなってしまう。   Also, if the smoke detector is cleaned and dust is removed with the sensitivity compensation amount of the light receiving element increased according to the usage time, the actual sensitivity of the light receiving element of the smoke detector will be The sensitivity returns to the state, that is, the state where dust or the like is not accumulated. However, since the sensitivity of the light receiving element is compensated, there is a possibility that the actual smoke density cannot be accurately detected. Also, if the sensitivity compensation amount was reset by turning off the smoke detector when the smoke detector was cleaned, if the cleaning was insufficient, compensation would be necessary. The sensitivity of the light receiving element is not compensated, and the smoke density cannot be detected accurately.

本発明は、上記のような課題を背景としてなされたものであり、受光素子の出力の精度の低下を抑えることができる煙感知器及び煙検知システムを提供することを目的とする。   The present invention has been made against the background of the above problems, and an object of the present invention is to provide a smoke detector and a smoke detection system capable of suppressing a decrease in accuracy of output of a light receiving element.

本発明に係る煙感知器は、発光素子と、前記発光素子の投光軸と交差する受光軸を有する受光素子と、煙濃度がゼロの状態における前記受光素子の出力を基準値とし、前記基準値に対する前記受光素子の出力の変化率に基づいて得た補償値を用いて、前記受光素子の出力を補償する制御部とを備え、前記制御部は、電源が投入される度に、前記受光素子の前記補償値を決定するものである。   A smoke detector according to the present invention uses a light emitting element, a light receiving element having a light receiving axis intersecting a light projecting axis of the light emitting element, and an output of the light receiving element in a state where the smoke density is zero as a reference value, and the reference A control unit that compensates for the output of the light receiving element using a compensation value obtained based on a change rate of the output of the light receiving element with respect to the value, and the control unit receives the light receiving each time the power is turned on. The compensation value of the element is determined.

本発明に係る煙検知システムは、煙感知器と、前記煙感知器に接続された受信機とを備えた煙検知システムであって、前記煙感知器は、発光素子と、前記発光素子の投光軸と交差する受光軸を有する受光素子とを有し、前記受信機は、煙濃度がゼロの状態における前記受光素子の出力を基準値とし、前記基準値に対する前記受光素子の出力の変化率に基づいて得た補償値を用いて、前記受光素子の出力を補償する制御部を備え、前記制御部は、電源が投入される度に、前記受光素子の前記補償値を決定するものである。   A smoke detection system according to the present invention includes a smoke detector and a receiver connected to the smoke detector, the smoke detector including a light emitting element and a projection of the light emitting element. A light-receiving element having a light-receiving axis that intersects the optical axis, and the receiver uses the output of the light-receiving element in a state where the smoke density is zero as a reference value, and the rate of change of the output of the light-receiving element with respect to the reference value A control unit that compensates the output of the light receiving element using the compensation value obtained based on the control unit, and the control unit determines the compensation value of the light receiving element each time the power is turned on. .

本発明によれば、煙感知器の受光素子の受光強度を変化させる外的要因が変化した場合でも、電源投入後には受光素子の出力の精度を維持することができる。   According to the present invention, even when an external factor that changes the light receiving intensity of the light receiving element of the smoke detector changes, the output accuracy of the light receiving element can be maintained after the power is turned on.

実施の形態に係る煙感知器の構造を説明する図である。It is a figure explaining the structure of the smoke detector which concerns on embodiment. 実施の形態に係る煙検知システム及び煙感知器の機能ブロック図である。It is a functional block diagram of the smoke detection system and smoke detector concerning an embodiment. 実施の形態に係る補償処理を説明するフローチャートである。It is a flowchart explaining the compensation process which concerns on embodiment.

実施の形態.
(煙感知器の構成)
図1は、実施の形態に係る煙感知器の構造を説明する図である。煙感知器1は、外郭を構成する筐体2と、筐体2の内部に形成された検煙空間3と、第1発光素子4と、第2発光素子5と、受光素子6とを備える。煙感知器1は、筐体2内に形成された検煙空間3に向けて光を出射し、検煙空間3内に存在する煙によって生じる散乱光を受光して煙を検出する光電式煙感知器である。
Embodiment.
(Configuration of smoke detector)
FIG. 1 is a diagram for explaining the structure of a smoke detector according to an embodiment. The smoke detector 1 includes a casing 2 constituting an outer shell, a smoke detection space 3 formed inside the casing 2, a first light emitting element 4, a second light emitting element 5, and a light receiving element 6. . The smoke detector 1 emits light toward the smoke detection space 3 formed in the housing 2 and receives the scattered light generated by the smoke existing in the smoke detection space 3 to detect the smoke. It is a sensor.

第1発光素子4及び第2発光素子5は、例えばLED(Light Emitting Diode)であり、検煙空間3に向けて光を出射する。第1発光素子4及び第2発光素子5は、ともに検煙空間3に向けて可視光領域の赤色光(例えば波長655nm)を出射する。なお、第1発光素子4及び第2発光素子5は、波長655nmの赤色光を出射するものに限定されず、波長600nm〜700nmの範囲内にピーク波長を有する光を出射するものであればよい。   The first light emitting element 4 and the second light emitting element 5 are, for example, LEDs (Light Emitting Diodes), and emit light toward the smoke detection space 3. Both the first light emitting element 4 and the second light emitting element 5 emit red light (for example, wavelength 655 nm) in the visible light region toward the smoke detection space 3. In addition, the 1st light emitting element 4 and the 2nd light emitting element 5 are not limited to what emits red light with a wavelength of 655 nm, What is necessary is just to emit the light which has a peak wavelength within the range of wavelength 600nm -700nm. .

受光素子6は、光を受光し、その受光強度に応じた信号を出力する。受光素子6は、例えばフォトダイオードである。受光素子6は、第1発光素子4及び第2発光素子5が出射する光が直接は入射しない位置に、配置されている。すなわち、第1発光素子4の光軸を第1投光軸4A、第2発光素子5の光軸を第2投光軸5A、受光素子6の光軸を受光軸6Aとすると、第1投光軸4Aと受光軸6Aとが交差し、かつ第2投光軸5Aと受光軸6Aとが交差する。受光素子6は、第1発光素子4及び第2発光素子5から出射された光が煙の粒子に反射して生じる散乱光を受光する。   The light receiving element 6 receives light and outputs a signal corresponding to the received light intensity. The light receiving element 6 is, for example, a photodiode. The light receiving element 6 is disposed at a position where the light emitted from the first light emitting element 4 and the second light emitting element 5 does not directly enter. That is, assuming that the optical axis of the first light emitting element 4 is the first light projecting axis 4A, the optical axis of the second light emitting element 5 is the second light projecting axis 5A, and the optical axis of the light receiving element 6 is the light receiving axis 6A. The optical axis 4A and the light receiving axis 6A intersect, and the second light projecting axis 5A and the light receiving axis 6A intersect. The light receiving element 6 receives scattered light generated by reflection of light emitted from the first light emitting element 4 and the second light emitting element 5 on smoke particles.

受光素子6は、第1発光素子4の第1投光軸4Aに対する受光軸6Aの第1角度θ1が鋭角(例えば60°)になる位置にあり、第2発光素子5の第2投光軸5Aに対する受光軸6Aの第2角度θ2が鈍角(例えば110°)になる位置にある。第1角度θ1と第2角度θ2とは異なる。したがって、受光素子6は、第1発光素子4が光を出射している際には、第1発光素子4の光により生じる煙の前方散乱光を受光する。また、第2発光素子5が光を出射している際には、受光素子6は、第2発光素子5の光により生じる煙の後方散乱光とを受光する。第1角度θ1は鋭角であればよく、より好ましくは50度〜70度の角度範囲の値である。また、第2角度θ2は鈍角であればよく、より好ましくは100度〜120度の角度範囲の値である。   The light receiving element 6 is in a position where the first angle θ1 of the light receiving axis 6A with respect to the first light projecting axis 4A of the first light emitting element 4 is an acute angle (for example, 60 °), and the second light projecting axis of the second light emitting element 5 is. The second angle θ2 of the light receiving shaft 6A with respect to 5A is at an obtuse angle (for example, 110 °). The first angle θ1 and the second angle θ2 are different. Therefore, when the first light emitting element 4 emits light, the light receiving element 6 receives the forward scattered light of smoke generated by the light of the first light emitting element 4. Further, when the second light emitting element 5 emits light, the light receiving element 6 receives the smoke backscattered light generated by the light of the second light emitting element 5. The first angle θ1 may be an acute angle, and more preferably a value in an angle range of 50 degrees to 70 degrees. The second angle θ2 may be an obtuse angle, and more preferably a value in the angle range of 100 degrees to 120 degrees.

そして、受光素子6は、第1発光素子4の光により生じた煙からの散乱光の受光強度を第1出力信号S1として出力し、第2発光素子5の光により生じた煙からの散乱光の受光強度を第2出力信号S2として出力する。   The light receiving element 6 outputs the received light intensity of the scattered light from the smoke generated by the light of the first light emitting element 4 as the first output signal S1, and the scattered light from the smoke generated by the light of the second light emitting element 5. Is received as the second output signal S2.

図2は、実施の形態に係る煙検知システム及び煙感知器の機能ブロック図である。煙感知器1は、第1発光素子4、第2発光素子5、受光素子6、制御部7、記憶部8、及び発報部9を備える。煙感知器1は、火災受信機20に伝送線を介して接続されており、煙感知器1は火災受信機20に対して火災発生の有無に関する信号を出力する。本実施の形態では、煙感知器1と火災受信機20とで、煙検知システムを構成している。   FIG. 2 is a functional block diagram of the smoke detection system and the smoke detector according to the embodiment. The smoke detector 1 includes a first light emitting element 4, a second light emitting element 5, a light receiving element 6, a control unit 7, a storage unit 8, and a notification unit 9. The smoke detector 1 is connected to the fire receiver 20 via a transmission line, and the smoke detector 1 outputs a signal regarding the occurrence of a fire to the fire receiver 20. In the present embodiment, the smoke detector 1 and the fire receiver 20 constitute a smoke detection system.

制御部7は、第1発光素子4及び第2発光素子5の発光動作を制御する。また制御部7は、受光素子6から出力された第1出力信号S1及び第2出力信号S2を用いて火災発生の有無を判定する。火災発生の有無の判定に用いられるデータは、記憶部8に記憶されている。火災が発生していると判定した場合には、制御部7は、発報部9を制御して火災発生を示す信号を火災受信機20に送信する。   The control unit 7 controls the light emitting operation of the first light emitting element 4 and the second light emitting element 5. The control unit 7 determines whether or not a fire has occurred using the first output signal S1 and the second output signal S2 output from the light receiving element 6. Data used for determining whether or not a fire has occurred is stored in the storage unit 8. If it is determined that a fire has occurred, the control unit 7 controls the reporting unit 9 to transmit a signal indicating the occurrence of a fire to the fire receiver 20.

ここで、制御部7は、専用のハードウェア、またはメモリに格納されるプログラムを実行するMPU(Micro Processing Unit)で構成される。制御部7が専用のハードウェアである場合、制御部7は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御部7が実現する各機能のそれぞれを、個別のハードウェアで実現してもよいし、各機能を一つのハードウェアで実現してもよい。制御部7がMPUの場合、制御部7が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。MPUは、メモリに格納されたプログラムを読み出して実行することにより、制御部7の各機能を実現する。メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。また、記憶部8は、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリである。   Here, the control unit 7 is configured by dedicated hardware or an MPU (Micro Processing Unit) that executes a program stored in a memory. When the control unit 7 is dedicated hardware, the control unit 7 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each function realized by the control unit 7 may be realized by individual hardware, or each function may be realized by one piece of hardware. When the control unit 7 is an MPU, each function executed by the control unit 7 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The MPU implements each function of the control unit 7 by reading and executing a program stored in the memory. The memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM. The storage unit 8 is a nonvolatile or volatile semiconductor memory such as a RAM, ROM, flash memory, EPROM, or EEPROM.

(煙検知処理)
制御部7は、第1出力信号S1と第2出力信号S2との出力比R(=第1出力信号S1/第2出力信号S2)を算出し、算出した出力比Rに基づいて、第1出力信号S1を補正する。補正後の信号を、第1出力信号SC1と称する。そして、制御部7は、補正後の第1出力信号SC1を用いて、火災の判定を行う。記憶部8には、例えばCS計(減光率計)による減光率10%/mに対応する火災判定用のしきい値が記憶されている。そして、制御部7は、補正後の第1出力信号SC1の値が火災判定用のしきい値を超えている場合に、火災が発生していると判定する。
(Smoke detection processing)
The control unit 7 calculates an output ratio R (= first output signal S1 / second output signal S2) between the first output signal S1 and the second output signal S2, and based on the calculated output ratio R, the first The output signal S1 is corrected. The corrected signal is referred to as a first output signal SC1. Then, the control unit 7 determines a fire using the corrected first output signal SC1. The storage unit 8 stores a threshold value for fire determination corresponding to, for example, a light attenuation rate of 10% / m by a CS meter (light attenuation rate meter). And the control part 7 determines with the fire having generate | occur | produced, when the value of 1st output signal SC1 after correction | amendment exceeds the threshold value for fire determination.

ここで、第1出力信号S1を補正して第1出力信号SC1を得る処理について、説明する。火災が発生したときには、1種類の煙のみが発生するのではなく、白煙、灰色煙、黒煙等、燃焼物に応じて種々の種類の煙が発生する。また、煙感知器1が設置される室内には、火災による煙ではなく湯気が発生する場合もある。煙感知器1は、これら種々の煙のいずれが発生しても火災を検知して発報する必要がある一方で、湯気が発生した場合には火災と判定しないようにする必要がある。そして、出力比Rは、煙の種類及び湯気であるか否かに応じた値になる。すなわち出力比Rにより、煙の種類及び湯気であるか否かが判定できる。   Here, a process of obtaining the first output signal SC1 by correcting the first output signal S1 will be described. When a fire occurs, not only one type of smoke is generated, but various types of smoke, such as white smoke, gray smoke, and black smoke, are generated depending on the combusted matter. In addition, steam may be generated in the room where the smoke detector 1 is installed instead of smoke due to fire. The smoke detector 1 needs to detect and report a fire when any of these various types of smoke is generated, but should not be determined as a fire when steam is generated. And the output ratio R becomes a value according to whether it is the kind of smoke and steam. That is, it can be determined from the output ratio R whether the type of smoke and steam.

白煙及び灰色煙が検煙空間3内にある場合の受光素子6の受光強度は、黒煙が検煙空間3内にある場合の受光素子6の受光強度よりも大きい。言い換えると、黒煙が検煙空間3内にある場合には、受光素子6の受光強度が相対的に小さい。このため、黒煙、白煙及び灰色煙とで同じ火災判定用のしきい値を用いるとすると、黒煙の場合には火災が発生していると判定しにくい。また、湯気が検煙空間3内にある場合には、非火災であると判定する必要がある。これらのことから、出力比Rに基づいて、すなわち煙等の種類に基づいて、第1出力信号S1を補正して補正後の第1出力信号SC1を得て、この補正後の第1出力信号SC1を用いて、火災の判定を行う。   The light receiving intensity of the light receiving element 6 when white smoke and gray smoke are in the smoke detecting space 3 is larger than the light receiving intensity of the light receiving element 6 when black smoke is in the smoke detecting space 3. In other words, when black smoke is in the smoke detection space 3, the light receiving intensity of the light receiving element 6 is relatively small. For this reason, if the same threshold value for fire determination is used for black smoke, white smoke, and gray smoke, it is difficult to determine that a fire has occurred in the case of black smoke. Further, when the steam is in the smoke detection space 3, it is necessary to determine that it is non-fire. From these, based on the output ratio R, that is, based on the type of smoke or the like, the first output signal S1 is corrected to obtain a corrected first output signal SC1, and the corrected first output signal The fire is judged using SC1.

記憶部8には、煙の種類及び湯気であるか否かを判定する指標となる出力比Rと、補正係数Cfとを対応づけた補正テーブル又は計算式が記憶されている。制御部7は、補正テーブル又は計算式を参照して、算出した出力比Rに対応する補正係数Cfを取得し、取得した補正係数Cfを用いて第1出力信号S1を補正し、補正後の第1出力信号SC1を生成する。CS計(減光率計)による測定値に追従した補正後の第1出力信号SC1を得るべく、黒煙である場合の補正係数Cfは、白煙及び灰色煙である場合の補正係数Cfよりも大きい値である。また、湯気の場合には、非火災であると判定する必要があるため、湯気の場合の補正係数Cfは、補正後の第1出力信号SC1の値が補正前の第1出力信号S1の値よりも小さくなるような値とする。   The storage unit 8 stores a correction table or a calculation formula in which the output ratio R serving as an index for determining whether or not the type of smoke and steam is associated with the correction coefficient Cf. The control unit 7 refers to the correction table or the calculation formula, acquires the correction coefficient Cf corresponding to the calculated output ratio R, corrects the first output signal S1 using the acquired correction coefficient Cf, and performs correction. A first output signal SC1 is generated. In order to obtain the corrected first output signal SC1 following the measurement value by the CS meter (dimming rate meter), the correction coefficient Cf for black smoke is based on the correction coefficient Cf for white smoke and gray smoke. Is also a large value. In the case of steam, since it is necessary to determine that there is no fire, the correction coefficient Cf in the case of steam is the value of the first output signal S1 before the correction is the value of the corrected first output signal SC1. The value is set to be smaller than that.

制御部7は、補正後の第1出力信号SC1の値がしきい値よりも大きい場合に、火災が発生していると判定する。火災が発生していると判定した場合には、発報部9から火災受信機20へ火災信号が送信される。   The control unit 7 determines that a fire has occurred when the value of the corrected first output signal SC1 is greater than the threshold value. When it is determined that a fire has occurred, a fire signal is transmitted from the reporting unit 9 to the fire receiver 20.

なお、発報部9から火災信号を送信するのではなく、補正後の煙濃度をアナログ値として送信してもよい。その場合、発報部9からのアナログ値を受信した火災受信機20で火災を判別する。また、ここでは第1出力信号SC1を補正することを説明したが、火災判定用のしきい値を補正してもよい。   Instead of transmitting a fire signal from the alarm unit 9, the corrected smoke density may be transmitted as an analog value. In that case, the fire receiver 20 that has received the analog value from the reporting unit 9 determines the fire. Further, although the correction of the first output signal SC1 has been described here, the threshold value for fire determination may be corrected.

制御部7が出力比Rを取得するタイミングについて説明する。例えば、制御部7は、第1発光素子4及び第2発光素子5を常に交互に発光させて出力比Rを取得することができる。そのほか、制御部7は、第1発光素子4を常時発光させ、受光素子6における受光量が火災判定要のしきい値より小さい値として設定された設定値を超えたか否かを監視する。この設定値は、記憶部8に記憶されている。そして、制御部7は、受光量が設定値を超えたとき、第1発光素子4及び第2発光素子5を交互に発光させて出力比Rを取得するようにしてもよい。   The timing at which the control unit 7 acquires the output ratio R will be described. For example, the control unit 7 can obtain the output ratio R by always causing the first light emitting element 4 and the second light emitting element 5 to alternately emit light. In addition, the control unit 7 always causes the first light emitting element 4 to emit light, and monitors whether or not the amount of light received by the light receiving element 6 exceeds a set value set as a value smaller than a threshold for determining fire. This set value is stored in the storage unit 8. Then, the control unit 7 may acquire the output ratio R by causing the first light emitting element 4 and the second light emitting element 5 to emit light alternately when the amount of received light exceeds a set value.

(補償処理)
上述のように、受光素子6から出力される第1出力信号S1及び第2出力信号S2を用いて火災の判定が行われるが、経時に伴って第1出力信号S1及び第2出力信号S2の精度の低下が生じうる。例えば、検煙空間3内に埃等が付着して白色汚損が生じると、検煙空間3内における光の反射量が上昇し、受光素子6の受光強度が全体的に上昇する。また、検煙空間3内に埃等が付着して黒色汚損が生じると、検煙空間3内における光の反射量が減少し、受光素子6の受光強度が全体的に低下する。また、第1発光素子4、第2発光素子5及び受光素子6の表面に埃等が付着するなどして汚損が生じると、これらの素子の表面における光の透過量が減少し、受光素子6の受光強度が低下する。このように、実際の煙濃度が同じ条件であっても、外的要因によって受光素子6の受光強度は変化しうる。また、第1発光素子4、第2発光素子5及び受光素子6の経時劣化によっても、受光素子6の受光強度は変化しうる。このような受光素子6の受光強度の変化は、煙の検知の精度の低下につながる。そこで、本実施の形態では、このような経時又は外的要因による受光素子6の受光強度の変化を補う処理である、補償処理を行う。本実施の形態の補償処理では、受光素子6から出力された信号を補償し、第1出力信号S1及び第2出力信号S2を得る。すなわち、受光素子6の出力の補償後の値が、第1出力信号S1及び第2出力信号S2である。説明のため、受光素子6の出力の補償前の値を、第1出力信号S01、第2出力信号S02と称する。
(Compensation processing)
As described above, the fire determination is performed using the first output signal S1 and the second output signal S2 output from the light receiving element 6, but the first output signal S1 and the second output signal S2 of the first output signal S2 with the passage of time. A decrease in accuracy may occur. For example, when dust or the like adheres to the smoke detection space 3 and white contamination occurs, the amount of reflected light in the smoke detection space 3 increases, and the light receiving intensity of the light receiving element 6 increases as a whole. Further, when dust or the like adheres to the smoke detection space 3 and black contamination occurs, the amount of reflected light in the smoke detection space 3 decreases, and the light receiving intensity of the light receiving element 6 decreases as a whole. Further, when contamination occurs due to dust or the like adhering to the surfaces of the first light emitting element 4, the second light emitting element 5, and the light receiving element 6, the amount of light transmitted through the surfaces of these elements decreases, and the light receiving element 6. The received light intensity is reduced. Thus, even if the actual smoke density is the same, the light receiving intensity of the light receiving element 6 can change due to external factors. Further, the light receiving intensity of the light receiving element 6 can also change due to the temporal deterioration of the first light emitting element 4, the second light emitting element 5, and the light receiving element 6. Such a change in the light receiving intensity of the light receiving element 6 leads to a decrease in the accuracy of smoke detection. Therefore, in the present embodiment, a compensation process is performed, which is a process that compensates for such a change in the received light intensity of the light receiving element 6 due to time or an external factor. In the compensation processing of the present embodiment, the signal output from the light receiving element 6 is compensated to obtain the first output signal S1 and the second output signal S2. That is, the compensated values of the output of the light receiving element 6 are the first output signal S1 and the second output signal S2. For the sake of explanation, the values before compensation of the output of the light receiving element 6 are referred to as a first output signal S01 and a second output signal S02.

受光素子6の出力の補償処理は、本実施の形態では制御部7によって行われる。補償処理において制御部7は、煙濃度がゼロのときの受光素子6の出力を、基準値SSと対比し、当該出力の基準値SSに対する変化率に基づいて、受光強度の出力を補償するための補償値Cpを得る。基準値SSは、初期状態、すなわち埃等が堆積していない状態(例えば工場出荷時)における、煙濃度がゼロのときの受光素子6の出力である。本実施の形態では、第1発光素子4に対応する第1基準値SS1と、第2発光素子5に対応する第2基準値SS2とがある。また、第1発光素子4の出力の補償に用いられる第1補償値Cp1と、第2発光素子5の出力の補償に用いられる第2補償値Cp2とがある。第1基準値SS1に対する第1出力信号S01の変化率が大きいほど、補償値Cpの絶対値は大きな値となる。   The compensation process of the output of the light receiving element 6 is performed by the control unit 7 in the present embodiment. In the compensation process, the control unit 7 compares the output of the light receiving element 6 when the smoke density is zero with the reference value SS, and compensates the output of the received light intensity based on the rate of change of the output with respect to the reference value SS. Is obtained. The reference value SS is an output of the light receiving element 6 when the smoke density is zero in an initial state, that is, a state where dust or the like is not accumulated (for example, at the time of factory shipment). In the present embodiment, there are a first reference value SS1 corresponding to the first light emitting element 4 and a second reference value SS2 corresponding to the second light emitting element 5. Further, there are a first compensation value Cp1 used for compensation of the output of the first light emitting element 4, and a second compensation value Cp2 used for compensation of the output of the second light emitting element 5. The absolute value of the compensation value Cp increases as the rate of change of the first output signal S01 with respect to the first reference value SS1 increases.

図3は、実施の形態に係る補償処理を説明するフローチャートである。図3では、第1発光素子4を発光させた場合の受光素子6の出力の補償処理を例示している。なお、前提として、第1基準値SS1及び第2基準値SS2は、記憶部8に記憶されている。また、第1基準値SS1に対する受光素子6の出力の変化率と第1補償値Cp1との関係を示すテーブル又は計算式が、記憶部8に記憶されている。また、第2基準値SS2に対する受光素子6の出力の変化率と第2補償値Cp2との関係を示すテーブル又は計算式が、記憶部8に記憶されている。   FIG. 3 is a flowchart illustrating compensation processing according to the embodiment. FIG. 3 exemplifies compensation processing for the output of the light receiving element 6 when the first light emitting element 4 emits light. As a premise, the first reference value SS1 and the second reference value SS2 are stored in the storage unit 8. In addition, a table or a calculation formula indicating the relationship between the change rate of the output of the light receiving element 6 with respect to the first reference value SS1 and the first compensation value Cp1 is stored in the storage unit 8. In addition, a table or a calculation formula indicating the relationship between the change rate of the output of the light receiving element 6 with respect to the second reference value SS2 and the second compensation value Cp2 is stored in the storage unit 8.

制御部7は、煙感知器1に電源が投入されたときに、補償処理を実行する。さらに本実施の形態では、制御部7は、定期的、例えば24時間おきに、補償処理を実行する。   The control unit 7 executes compensation processing when the smoke detector 1 is powered on. Furthermore, in the present embodiment, the control unit 7 executes compensation processing periodically, for example, every 24 hours.

制御部7は、補償処理を開始すると、第1発光素子4を発光させる(S10)。次に制御部7は、受光素子6から出力される補償前の第1出力信号S01を取得する(S11)。続けて制御部7は、当該補償処理を行っているタイミングである補償タイミングを判定する(S12)。電源投入時である場合には、ステップS13へ進み、定期的に補償処理を行うタイミングである場合には、ステップS14へ進む。ステップS13では、制御部7は、記憶部8に記憶された第1最大値を取得する。ステップS14では、制御部7は、記憶部8に記憶された第2最大値を取得する。   When starting the compensation process, the controller 7 causes the first light emitting element 4 to emit light (S10). Next, the control unit 7 acquires the first output signal S01 before compensation output from the light receiving element 6 (S11). Subsequently, the control unit 7 determines a compensation timing that is a timing at which the compensation processing is performed (S12). If it is time to turn on the power, the process proceeds to step S13, and if it is time to periodically perform the compensation process, the process proceeds to step S14. In step S <b> 13, the control unit 7 acquires the first maximum value stored in the storage unit 8. In step S <b> 14, the control unit 7 acquires the second maximum value stored in the storage unit 8.

ここで、第1最大値及び第2最大値は、いずれも第1補償値Cp1の最大値である。第1最大値と第2最大値とは異なる値であり、第1最大値の方が第2最大値よりも大きい値である。すなわち、電源投入時に行われる補償処理における第1補償値Cp1の最大値は、定期的に行われる補償処理における第1補償値Cp1の最大値よりも、大きい。   Here, the first maximum value and the second maximum value are both the maximum value of the first compensation value Cp1. The first maximum value and the second maximum value are different values, and the first maximum value is larger than the second maximum value. That is, the maximum value of the first compensation value Cp1 in the compensation process performed when the power is turned on is larger than the maximum value of the first compensation value Cp1 in the compensation process performed periodically.

次に、制御部7は、ステップS13又はステップS14で取得した第1補償値Cp1の最大値の範囲内で、第1補償値Cp1を決定する(S15)。第1最大値の方が第2最大値よりも大きいため、電源投入時に行われる補償処理で用いられる第1補償値Cp1は、定期的な補償処理における第1補償値Cp1よりも大きな値となりうる。   Next, the control unit 7 determines the first compensation value Cp1 within the range of the maximum value of the first compensation value Cp1 acquired in Step S13 or Step S14 (S15). Since the first maximum value is larger than the second maximum value, the first compensation value Cp1 used in the compensation process performed when the power is turned on can be larger than the first compensation value Cp1 in the periodic compensation process. .

次に、制御部7は、第1出力信号S01をステップS15で決定した補償値を用いて補償し、第1出力信号S1を得る(S16)。   Next, the control unit 7 compensates the first output signal S01 using the compensation value determined in step S15, and obtains the first output signal S1 (S16).

図3では、第1発光素子4を発光させた場合の受光素子6の第1出力信号S01を補償する場合を例示したが、第2発光素子5を発光させた場合についても同様の処理が実行される。その場合には、図3における第1発光素子、第1補償値、第1出力信号S01及び第1出力信号S1を、それぞれ、第2発光素子、第2補償値、第2出力信号S02及び第2出力信号S2と読み替えればよい。   Although FIG. 3 illustrates the case where the first output signal S01 of the light receiving element 6 is compensated when the first light emitting element 4 is caused to emit light, the same processing is executed when the second light emitting element 5 is caused to emit light. Is done. In that case, the first light emitting element, the first compensation value, the first output signal S01, and the first output signal S1 in FIG. 3 are respectively converted into the second light emitting element, the second compensation value, the second output signal S02, and the first output signal S02. What is necessary is just to read as 2 output signal S2.

以上のように本実施の形態によれば、電源が投入される度に、受光素子6の出力が補償される。このため、煙感知器1の電源が遮断されている間に、煙感知器1の設置環境又は煙感知器1の汚損状態等の外的要因が変化した場合でも、電源が投入された後には受光素子6の出力の精度が回復する。このため、受光素子6の出力の精度を維持することができる。   As described above, according to the present embodiment, every time the power is turned on, the output of the light receiving element 6 is compensated. For this reason, even if external factors such as the installation environment of the smoke detector 1 or the fouling state of the smoke detector 1 change while the power of the smoke detector 1 is shut off, after the power is turned on The accuracy of the output of the light receiving element 6 is restored. For this reason, the accuracy of the output of the light receiving element 6 can be maintained.

また、本実施の形態によれば、電源が投入されたときとは別に、定期的に受光素子6の出力が補償される。このため、煙感知器1に経年に伴う汚損又は劣化が生じた場合でも、受光素子6の出力の精度の低下を抑制することができる。   Further, according to the present embodiment, the output of the light receiving element 6 is periodically compensated separately from when the power is turned on. For this reason, even when the smoke detector 1 is contaminated or deteriorated with the passage of time, it is possible to suppress a decrease in the accuracy of the output of the light receiving element 6.

また、本実施の形態では、電源が投入されたときの補償処理に用いられる補償値の第1最大値は、定期的な補償処理に用いられる補償値の第2最大値よりも大きい値である。経年による受光素子6の出力の精度の低下は徐々に進むのに対し、電源遮断後の電源投入時における煙感知器1の外的要因の変化は比較的大きくなりうる。このため、電源が投入されたときに用いられる補償値の第1最大値を相対的に大きい値とすることで、受光素子6の出力をより正確な値とすることができる。また、定期的な補償処理の際の補償値の第2最大値を相対的に小さい値とすることで、一時的な外乱によって受光素子6の出力に変動が生じた場合に、過度な補償が行われてしまうのを抑制することができる。   In the present embodiment, the first maximum value of the compensation value used for the compensation process when the power is turned on is larger than the second maximum value of the compensation value used for the periodic compensation process. . While the deterioration of the output accuracy of the light receiving element 6 over time gradually progresses, the change in the external factor of the smoke detector 1 when the power is turned on after the power is turned off can be relatively large. For this reason, by setting the first maximum value of the compensation value used when the power is turned on to a relatively large value, the output of the light receiving element 6 can be set to a more accurate value. Further, by setting the second maximum value of the compensation value in the periodic compensation process to a relatively small value, when the output of the light receiving element 6 fluctuates due to temporary disturbance, excessive compensation is performed. It can suppress that it is performed.

本発明の実施の形態は、上記実施の形態に限定されず、種々の変更を行うことができる。例えば、2つの第1発光素子4及び第2発光素子5と、1つの受光素子6とを有する場合について例示しているが、第1発光素子4及び第2発光素子5が、例えば白色光等の所定の波長域を持った1つの発光素子から構成されていてもよい。この場合、受光素子が光学フィルタ等により異なる波長の散乱光を受光する構成にするとよい。   The embodiment of the present invention is not limited to the above embodiment, and various modifications can be made. For example, the case where there are two first light emitting elements 4 and second light emitting elements 5 and one light receiving element 6 is illustrated, but the first light emitting element 4 and the second light emitting element 5 are, for example, white light or the like. The light emitting element may have a predetermined wavelength range. In this case, the light receiving element may be configured to receive scattered light having different wavelengths by an optical filter or the like.

また、上記実施の形態では、煙感知器1の制御部7が補償処理を行うことを説明したが、火災受信機20が補償処理を行ってもよい。この場合には、煙感知器1は、受光素子6からの出力を伝送線を介して火災受信機20に送り、火災受信機20は、取得した受光素子6の出力を補償し、補償後の出力を用いて、火災発生の有無を判定する。   Moreover, although the said embodiment demonstrated that the control part 7 of the smoke detector 1 performed a compensation process, the fire receiver 20 may perform a compensation process. In this case, the smoke detector 1 sends the output from the light receiving element 6 to the fire receiver 20 via the transmission line, and the fire receiver 20 compensates for the obtained output of the light receiving element 6 and performs compensation. Use the output to determine whether a fire has occurred.

1 煙感知器、2 筐体、3 検煙空間、4 第1発光素子、4A 第1投光軸、5 第2発光素子、5A 第2投光軸、6 受光素子、6A 受光軸、7 制御部、8 記憶部、9 発報部、20 火災受信機。   DESCRIPTION OF SYMBOLS 1 Smoke detector, 2 housing | casing, 3 smoke detection space, 4 1st light emitting element, 4A 1st light projection axis, 5 2nd light emitting element, 5A 2nd light projection axis, 6 light receiving element, 6A light receiving axis, 7 control Part, 8 storage part, 9 reporting part, 20 fire receiver.

Claims (4)

発光素子と、
前記発光素子の投光軸と交差する受光軸を有する受光素子と、
煙濃度がゼロの状態における前記受光素子の出力を基準値とし、前記基準値に対する前記受光素子の出力の変化率に基づいて得た補償値を用いて、前記受光素子の出力を補償する制御部とを備え、
前記制御部は、電源が投入される度に、前記受光素子の前記補償値を決定する
煙感知器。
A light emitting element;
A light receiving element having a light receiving axis intersecting a light projecting axis of the light emitting element;
A control unit that compensates the output of the light receiving element using a compensation value obtained based on the change rate of the output of the light receiving element with respect to the reference value, with the output of the light receiving element in a state where the smoke density is zero And
The control unit determines the compensation value of the light receiving element every time power is turned on.
前記制御部は、電源が投入されたときとは別に、定期的に前記受光素子の前記補償値を決定し、
電源が投入されたときに決定される前記補償値の第1最大値は、前記定期的に決定される前記補償値の第2最大値よりも大きい値である
請求項1記載の煙感知器。
The control unit periodically determines the compensation value of the light receiving element separately from when the power is turned on,
The smoke detector according to claim 1, wherein the first maximum value of the compensation value determined when the power is turned on is larger than the second maximum value of the compensation value determined periodically.
前記発光素子は、第1発光素子と第2発光素子とを含み、
前記受光素子の前記受光軸に対する前記第1発光素子の投光軸の角度と、前記受光素子の前記受光軸に対する前記第2発光素子の投光軸の角度とは、異なる
請求項1または請求項2に記載の煙感知器。
The light emitting device includes a first light emitting device and a second light emitting device,
The angle of the light projecting axis of the first light emitting element with respect to the light receiving axis of the light receiving element is different from the angle of the light projecting axis of the second light emitting element with respect to the light receiving axis of the light receiving element. 2. The smoke detector according to 2.
煙感知器と、前記煙感知器に接続された受信機とを備えた煙検知システムであって、
前記煙感知器は、
発光素子と、
前記発光素子の投光軸と交差する受光軸を有する受光素子とを有し、
前記受信機は、
煙濃度がゼロの状態における前記受光素子の出力を基準値とし、前記基準値に対する前記受光素子の出力の変化率に基づいて得た補償値を用いて、前記受光素子の出力を補償する制御部を備え、
前記制御部は、電源が投入される度に、前記受光素子の前記補償値を決定する
煙検知システム。
A smoke detection system comprising a smoke detector and a receiver connected to the smoke detector,
The smoke detector is
A light emitting element;
A light receiving element having a light receiving axis that intersects a light projecting axis of the light emitting element,
The receiver
A control unit that compensates the output of the light receiving element using a compensation value obtained based on the change rate of the output of the light receiving element with respect to the reference value, with the output of the light receiving element in a state where the smoke density is zero With
The control unit determines the compensation value of the light receiving element every time power is turned on.
JP2018061859A 2018-03-28 2018-03-28 Smoke detector and smoke detection system Active JP7033980B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018061859A JP7033980B2 (en) 2018-03-28 2018-03-28 Smoke detector and smoke detection system
CN201910147835.2A CN110322655A (en) 2018-03-28 2019-02-28 Smoke sensor device and smoke detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061859A JP7033980B2 (en) 2018-03-28 2018-03-28 Smoke detector and smoke detection system

Publications (2)

Publication Number Publication Date
JP2019175083A true JP2019175083A (en) 2019-10-10
JP7033980B2 JP7033980B2 (en) 2022-03-11

Family

ID=68112729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061859A Active JP7033980B2 (en) 2018-03-28 2018-03-28 Smoke detector and smoke detection system

Country Status (2)

Country Link
JP (1) JP7033980B2 (en)
CN (1) CN110322655A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128851A (en) * 1994-10-31 1996-05-21 Matsushita Electric Works Ltd Sensor output signal-processing circuit
JPH09115075A (en) * 1995-10-17 1997-05-02 Hochiki Corp Alarm transmission level correcting method for smoke sensor
US5798701A (en) * 1994-08-26 1998-08-25 Slc Technologies, Inc. Self-adjusting smoke detector with self-diagnostic capabilities
JP2001143175A (en) * 1999-11-10 2001-05-25 Nohmi Bosai Ltd Photoelectric smoke sensor
JP2008250851A (en) * 2007-03-30 2008-10-16 Nohmi Bosai Ltd Photoelectric smoke detector
CN107016816A (en) * 2017-05-12 2017-08-04 浙江恒洲电子实业有限公司 Labyrinth type smoke detector structure and its smoke detection method
JP2017156127A (en) * 2016-02-29 2017-09-07 能美防災株式会社 Fire monitoring system and smoke sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009575B (en) * 1985-07-30 1990-09-12 报知机株式会社 Photoelectric smoke sensor
JP3370422B2 (en) * 1994-03-29 2003-01-27 能美防災株式会社 Terminal equipment for fire alarm equipment
JP3944696B2 (en) * 2001-10-31 2007-07-11 能美防災株式会社 Photoelectric smoke detector
WO2017217078A1 (en) * 2016-06-13 2017-12-21 シャープ株式会社 Photoelectric dust sensor device and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798701A (en) * 1994-08-26 1998-08-25 Slc Technologies, Inc. Self-adjusting smoke detector with self-diagnostic capabilities
JPH08128851A (en) * 1994-10-31 1996-05-21 Matsushita Electric Works Ltd Sensor output signal-processing circuit
JPH09115075A (en) * 1995-10-17 1997-05-02 Hochiki Corp Alarm transmission level correcting method for smoke sensor
JP2001143175A (en) * 1999-11-10 2001-05-25 Nohmi Bosai Ltd Photoelectric smoke sensor
JP2008250851A (en) * 2007-03-30 2008-10-16 Nohmi Bosai Ltd Photoelectric smoke detector
JP2017156127A (en) * 2016-02-29 2017-09-07 能美防災株式会社 Fire monitoring system and smoke sensor
CN107016816A (en) * 2017-05-12 2017-08-04 浙江恒洲电子实业有限公司 Labyrinth type smoke detector structure and its smoke detection method

Also Published As

Publication number Publication date
CN110322655A (en) 2019-10-11
JP7033980B2 (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US9824563B2 (en) Fire monitoring system and smoke detector
US8275011B2 (en) Optical transmission module, wavelength monitor, and wavelength drift detection method
KR100539310B1 (en) The optical dust sensor which has a function of self diagonosis and the sensitivity control
CN113888848B (en) Self-calibrating fire sensing device
JP2016114959A (en) Photoelectric smoke detector
JP6950276B2 (en) Distance measuring device
AU2010202665A1 (en) Circuitry to monitor and control source of radiant energy in smoke detector
GB2426577A (en) An optical detector with a reflector outside of its housing, and a plurality of sensors inside of its housing
JP2019175083A (en) Smoke sensor and smoke detection system
WO2020179268A1 (en) Optical distance measurement device
JP6739074B2 (en) Distance measuring device
JP5091169B2 (en) Smoke sensor device
KR101600047B1 (en) Optical dust sensor capable of controlling amount of light and having multiple light emitting units
JP7166386B2 (en) Smoke detectors
JP5416391B2 (en) smoke detector
CN110619730B (en) Fire detector
JP2625471B2 (en) Fire alarm device with dirt correction function
CN113805159A (en) Failure detection method, device, equipment and storage medium of signal receiving assembly
JP7131982B2 (en) Smoke detectors and smoke detection systems
JP2023528646A (en) Method and apparatus for identifying contamination on protective screens of lidar sensors
KR20220130207A (en) How to set photoelectric sensors and thresholds
US20190033486A1 (en) Optoelectronic sensor
JP4812018B2 (en) smoke detector
KR20150113575A (en) Micro controller unit type dust sensor
JP2008202946A (en) Fire sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7033980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150