JP2019174245A - X-ray photography method and x-ray photography device - Google Patents

X-ray photography method and x-ray photography device Download PDF

Info

Publication number
JP2019174245A
JP2019174245A JP2018061809A JP2018061809A JP2019174245A JP 2019174245 A JP2019174245 A JP 2019174245A JP 2018061809 A JP2018061809 A JP 2018061809A JP 2018061809 A JP2018061809 A JP 2018061809A JP 2019174245 A JP2019174245 A JP 2019174245A
Authority
JP
Japan
Prior art keywords
ray
image
light emitted
ray imaging
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018061809A
Other languages
Japanese (ja)
Other versions
JP7078815B2 (en
Inventor
悟 江川
Satoru Egawa
悟 江川
桂一 中川
Keiichi Nakagawa
桂一 中川
秀和 三村
Hidekazu Mimura
秀和 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2018061809A priority Critical patent/JP7078815B2/en
Publication of JP2019174245A publication Critical patent/JP2019174245A/en
Application granted granted Critical
Publication of JP7078815B2 publication Critical patent/JP7078815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide an X-ray photography method and X-ray photography device that can efficiently and stably acquire a dynamic phenomenon or a spectral imaging in a very short time and can be appropriately used for a non-repetitive phenomenon that occurs only once or for destructive inspection of an expensive or rare sample.SOLUTION: An image formation optical system 4 includes: an image formation optical element 41; and one or more separation optical surfaces 42 that are disposed on the downstream side of the image formation optical element, and reflect the light emitted from a partial region R1 of an outlet 41c of the image formation optical element and form an image at a position separate from that of the light emitted from another region. Thus, an X-ray image of a sample is acquired by detectors 50 at two or more positions.SELECTED DRAWING: Figure 1

Description

本発明は、材料科学や生命科学などの分野においてサンプルの形状や性質を調べることのできる、透過型のX線顕微鏡として好適なX線撮影方法およびX線撮影装置に係り、とくに多波長同時X線撮影や高速X線撮影が可能なX線撮影方法およびX線撮影装置に関する。   The present invention relates to an X-ray imaging method and an X-ray imaging apparatus suitable as a transmission X-ray microscope capable of examining the shape and properties of a sample in fields such as material science and life science. The present invention relates to an X-ray imaging method and an X-ray imaging apparatus capable of X-ray imaging and high-speed X-ray imaging.

X線は、新規材料開発における材料評価や、細胞から個体スケールの生命現象の解析などに貢献している。X線光源の進歩も目覚ましく、大型施設であるX線自由電子レーザのような短パルス、高強度かつ制御性の高いX線による解析が、一研究室レベルで行うことができるようになってきている。波長1〜10nm程度の軟X線や波長0.01nm〜1nm程度の硬X線など、波長の短い「X線」を用いて顕微を行う場合、波長の長い「可視光」を用いる場合に比べて高い空間分解能が得られる。さらに、軟X線や硬X線が原子に対して特徴的な吸収-散乱特性をもつことを利用することにおり、原子分布やその電子状態の可視化も可能である。X線を用いて結像顕微鏡を構成すれば、可視光同様、二次元の像が得られる(例えば、特許文献1参照。)。   X-rays contribute to material evaluation in the development of new materials and analysis of life phenomena from cells to individuals. The progress of X-ray light sources has been remarkable, and analysis using short pulses, high intensity, and high controllability X-rays like the X-ray free electron laser, which is a large facility, can be performed at the laboratory level. Yes. When microscopic observation is performed using “X-rays” having a short wavelength, such as soft X-rays having a wavelength of about 1 to 10 nm and hard X-rays having a wavelength of about 0.01 nm to 1 nm, compared to using “visible light” having a long wavelength. High spatial resolution. Furthermore, by utilizing the fact that soft X-rays and hard X-rays have characteristic absorption-scattering characteristics with respect to atoms, it is possible to visualize the atomic distribution and its electronic state. If an imaging microscope is constructed using X-rays, a two-dimensional image can be obtained in the same way as visible light (see, for example, Patent Document 1).

図20は、従来から用いられているX線撮影装置101(X線顕微鏡)の概略構成を示す説明図である。符号20はX線源、3は試料、50は検出器を示し、大きくX線源20および集光光学系121よりなる照明光学系102と、結像光学系104より構成されている。集光光学系121を構成する集光素子22として、たとえば回転楕円体ミラー60が用いられ、結像光学素子41としてたとえばウォルター型斜入射ミラー61が用いられる。X線領域では可視光用のレンズを用いることはできない。ウォルター型斜入射ミラー61であるウォルターミラーは全反射を利用した結像素子であり、図に示すように回転双曲面610と回転楕円面611の二枚のミラーによって構成され、輪帯状の特徴的な形状を持つ。   FIG. 20 is an explanatory diagram showing a schematic configuration of a conventionally used X-ray imaging apparatus 101 (X-ray microscope). Reference numeral 20 denotes an X-ray source, 3 denotes a sample, and 50 denotes a detector, which mainly includes an illumination optical system 102 including the X-ray source 20 and a condensing optical system 121, and an imaging optical system 104. As the condensing element 22 constituting the condensing optical system 121, for example, a spheroid mirror 60 is used, and as the imaging optical element 41, for example, a Walter type oblique incidence mirror 61 is used. A visible light lens cannot be used in the X-ray region. The Walter mirror, which is the Walter type oblique incidence mirror 61, is an imaging element using total reflection, and is composed of two mirrors of a rotating hyperboloid 610 and a rotating ellipsoid 611 as shown in the figure, and has a ring-shaped characteristic. Have a nice shape.

ところで、このようなX線撮影装置を用いて動的な現象、又はあるエネルギーに特異な吸収を示す空間像(スペクトラルイメージング)を取得しようとする場合、従来の手法としては、ポンプ、プローブ法とよばれる繰り返しによる取得や、X線光源からあるエネルギーを切り出す分光器の切り替えを複数回繰り返すことによる観察が行われている。しかしながら、このような従来の手法では、たとえば一度きりしか生じない非反復的な現象の場合には不可能であり、高価・希少なサンプルの破壊検査には不適であるという問題があった。さらに、計測に多大な時間が要するという研究開発上の致命的な問題や、光源の不安定さによるデータのばらつきといった問題も存在していた。   By the way, when trying to acquire a dynamic image or an aerial image (spectral imaging) showing absorption specific to certain energy using such an X-ray imaging apparatus, conventional methods include a pump and a probe method. Observations are performed by repeating acquisitions called multiple times and switching of a spectroscope that cuts out certain energy from an X-ray light source a plurality of times. However, such a conventional method has a problem that it is impossible in the case of a non-repetitive phenomenon that occurs only once, and is not suitable for destructive inspection of expensive and rare samples. Furthermore, there have been fatal problems in research and development, which require a lot of time for measurement, and problems such as data dispersion due to instability of the light source.

特開平6−347600号公報JP-A-6-347600

そこで、本発明が前述の状況に鑑み、解決しようとするところは、動的な現象、又はスペクトラルイメージングをごく短時間で効率的、且つ安定的に取得することができ、一度きりしか生じない非反復的な現象の場合や、高価・希少なサンプルの破壊検査においても好適に用いることのできるX線撮影方法、X線撮影装置を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem that a dynamic phenomenon or spectral imaging can be acquired efficiently and stably in a very short time, and it occurs only once. An object of the present invention is to provide an X-ray imaging method and an X-ray imaging apparatus that can be suitably used in the case of repetitive phenomena and in destructive inspection of expensive and rare samples.

本発明者はかかる現況に鑑み、鋭意検討した結果、波長の短いX線の場合、結像光学素子の小さな開口数を用いても、実用的に十分な空間分解能を実現できると想定し、結像光学素子の出口開口を分割して複数の像を得ることを着想した。このように開口を分割すると一つの像を与える開口の大きさが小さくなるため、開口を分割しない場合に比べて得られる像の空間分解能は低下してしまうが、X線であれば、上記のとおり各像につき十分な空間分解能が得られる可能性がある。
この想定のもと、図8および表1に示すように、結像光学素子として波長4nmの軟X線の利用を想定したウォルターミラーを設計し、このウォルターミラーにおいて開口を図9のような部分開口に設定した場合の結像分解能を検証した結果、レイリー分解能の基準で100nmとなり、小さな開口にもかかわらず標準的な可視光顕微鏡の結像分解能を上回っていることが確認できた。
As a result of diligent investigations in view of the present situation, the present inventor has assumed that, in the case of X-rays with a short wavelength, a practically sufficient spatial resolution can be realized even with a small numerical aperture of the imaging optical element. The idea was to divide the exit aperture of the image optical element to obtain a plurality of images. If the aperture is divided in this way, the size of the aperture that gives one image is reduced, so that the spatial resolution of the image obtained is lower than when the aperture is not divided. As described above, sufficient spatial resolution may be obtained for each image.
Based on this assumption, as shown in FIG. 8 and Table 1, a Walter mirror is designed assuming the use of a soft X-ray having a wavelength of 4 nm as an imaging optical element, and the aperture in this Walter mirror is a portion as shown in FIG. As a result of verifying the imaging resolution when the aperture was set, it was confirmed that it was 100 nm on the basis of the Rayleigh resolution and exceeded the imaging resolution of the standard visible light microscope despite the small aperture.

そして、この開口分割による複数の像を取得(検出)する具体的手法として、本発明者は、結像光学素子の下流側に、上記分割された各出口領域から出射される光を反射して他の領域から出射された光と別の位置に結像させる分離光学面を設けることを考案し、本発明を完成するに至った。分離光学面としては、たとえば平面ミラーを用いることができる。十分平坦に研磨された平面ミラーを用いれば、既存の結像系に対して、波面収差を与えて像を劣化させることもない。これにより、同一試料の同一またはほぼ同一の像を、同時またはほぼ同時に複数取得(検出)することが可能となる。   As a specific method for acquiring (detecting) a plurality of images by the aperture division, the inventor reflects light emitted from each of the divided exit areas on the downstream side of the imaging optical element. It has been devised to provide a separation optical surface that forms an image at a position different from that of light emitted from other regions, and the present invention has been completed. For example, a plane mirror can be used as the separation optical surface. If a flat mirror polished sufficiently flat is used, the image is not deteriorated by giving wavefront aberration to an existing imaging system. This makes it possible to acquire (detect) a plurality of the same or substantially the same image of the same sample simultaneously or substantially simultaneously.

すなわち本発明は、以下の発明を包含する。
(1) 結像光学系として、結像光学素子を設けるとともに、該結像光学素子の下流側に、該結合光学素子の出口のうち一部の領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる分離光学面を、単または複数設け、これにより試料のX線像を2以上の位置で得ることを特徴とする、X線撮影方法。
That is, the present invention includes the following inventions.
(1) As an imaging optical system, an imaging optical element is provided, and light emitted from a part of the exit of the coupling optical element is reflected downstream of the imaging optical element to provide another An X-ray imaging method characterized by providing a single or a plurality of separation optical surfaces that form an image at a position different from the light emitted from the region, thereby obtaining an X-ray image of the sample at two or more positions.

(2) 前記結像光学素子がウォルター型斜入射ミラーである、(1)記載のX線撮影方法。   (2) The X-ray imaging method according to (1), wherein the imaging optical element is a Walter type oblique incidence mirror.

(3) 前記分離光学面が平面ミラー部である、(1)又は(2)記載のX線撮影方法。   (3) The X-ray imaging method according to (1) or (2), wherein the separation optical surface is a plane mirror section.

(4) 前記一部の領域が、前記結像光学素子の出口を、素子中心軸を中心とした周方向に沿って複数の領域に分割した分割領域のうちの一つである、(1)〜(3)のいずれかに記載のX線撮影方法。   (4) The partial area is one of divided areas obtained by dividing the exit of the imaging optical element into a plurality of areas along a circumferential direction around the element central axis. X-ray imaging method in any one of-(3).

(5) 前記分割領域を3つ以上設け、そのうち2つ以上の分割領域をそれぞれ前記一部の領域として、各領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる、ミラー面が互いに異なる方向を向いた前記を2つ以上設けた、(4)記載のX線撮影方法。   (5) Three or more of the divided regions are provided, and two or more of the divided regions are set as the partial regions, and the light emitted from each region is reflected and separated from the light emitted from other regions. The X-ray imaging method according to (4), wherein two or more of the mirror surfaces that are imaged at different positions are directed in different directions.

(6) 照明光学系に、前記一部の領域から出射される光の波長が、他の少なくとも1つの領域からの光の波長とは異なる波長となるように異波長のX線を生成する異波長生成部を設け、これにより前記2以上の位置で同じ試料の異なる波長によるX線像を同時に得る、(1)〜(5)の何れかに記載のX線撮影方法。   (6) In the illumination optical system, different X-rays that generate X-rays having different wavelengths so that the wavelength of the light emitted from the partial region is different from the wavelength of the light from at least one other region. The X-ray imaging method according to any one of (1) to (5), wherein a wavelength generation unit is provided, thereby obtaining X-ray images of the same sample at different wavelengths at the two or more positions simultaneously.

(7) 照明光学系に、前記一部の領域から出射される光が、他の少なくとも1つの領域からの光よりも遅延するように時間遅延部を設け、これにより前記2以上の位置で試料の時間のずれたX線像を得る、(1)〜(5)の何れかに記載のX線撮影方法。   (7) The illumination optical system is provided with a time delay unit so that the light emitted from the partial region is delayed from the light from at least one other region, thereby the sample at the two or more positions. The X-ray imaging method according to any one of (1) to (5), wherein an X-ray image with a time shift is obtained.

(8) 結像光学系として、結像光学素子を設けるとともに、該結像光学素子の下流側に、該結像光学素子の出口のうち一部の領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる分離光学面を、単または複数設け、これにより試料のX線像を2以上の位置で得ることを特徴とする、X線撮影装置。   (8) As the imaging optical system, an imaging optical element is provided, and the light emitted from a part of the exit of the imaging optical element is reflected downstream of the imaging optical element. An X-ray imaging apparatus characterized in that a single or a plurality of separation optical surfaces for forming an image at a position different from the light emitted from the region is provided, thereby obtaining an X-ray image of the sample at two or more positions. .

(9) 前記結像光学素子がウォルター型斜入射ミラーである、(8)記載のX線撮影装置。   (9) The X-ray imaging apparatus according to (8), wherein the imaging optical element is a Walter type oblique incidence mirror.

(10) 前記分離光学面が平面ミラー部である、(8)又は(9)記載のX線撮影装置。   (10) The X-ray imaging apparatus according to (8) or (9), wherein the separation optical surface is a plane mirror unit.

(11) 前記一部の領域が、前記結像光学素子の出口を、素子中心軸を中心とした周方向に沿って複数の領域に分割した分割領域のうちの一つである、(8)〜(10)のいずれかに記載のX線撮影装置。   (11) The partial area is one of divided areas obtained by dividing the exit of the imaging optical element into a plurality of areas along a circumferential direction around the element central axis. X-ray imaging apparatus in any one of-(10).

(12) 前記分割領域を3つ以上設け、そのうち2つ以上の分割領域をそれぞれ前記一部の領域として、各領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる、ミラー面が互いに異なる方向を向いた前記分離光学面を2つ以上設けた、(11)記載のX線撮影装置。   (12) Three or more of the divided regions are provided, and two or more of the divided regions are set as the partial regions, and the light emitted from each region is reflected and separated from the light emitted from other regions. The X-ray imaging apparatus according to (11), wherein two or more separation optical surfaces whose mirror surfaces are directed in different directions are formed at an image position.

(13) 前記2つ以上の分離光学面を外周面若しくは内周面に有する、角錐ミラーまたは角錐台ミラーを中心軸が素子中心軸に一致するように同軸に設けてなる、(12)記載のX線撮影装置。   (13) The pyramid mirror or the truncated pyramid mirror having the two or more separation optical surfaces on the outer peripheral surface or the inner peripheral surface is provided coaxially so that the central axis coincides with the element central axis. X-ray imaging device.

(14) 照明光学系に、前記一部の領域から出射される光の波長が、他の少なくとも1つの領域からの光の波長とは異なる波長となるように異波長のX線を生成する異波長生成部を設け、これにより前記2以上の位置で同じ試料の異なる波長によるX線像を同時に得る、(8)〜(13)の何れかに記載のX線撮影装置。   (14) In the illumination optical system, different X-rays that generate X-rays having different wavelengths so that the wavelength of the light emitted from the partial area is different from the wavelength of the light from at least one other area. The X-ray imaging apparatus according to any one of (8) to (13), wherein a wavelength generation unit is provided, thereby obtaining X-ray images of the same sample at different wavelengths at the two or more positions simultaneously.

(15) 前記異波長生成部が、バンドパスフィルタ、または分光器よりなる(14)記載のX線撮影装置。   (15) The X-ray imaging apparatus according to (14), wherein the different wavelength generation unit includes a bandpass filter or a spectroscope.

(16) 照明光学系に、前記一部の領域から出射される光が、他の少なくとも1つの領域からの光よりも遅延するように時間遅延光学系を設け、これにより前記2以上の位置で試料の時間のずれたX線像を得る、(8)〜(13)の何れかに記載のX線撮影装置。   (16) The illumination optical system is provided with a time delay optical system so that the light emitted from the partial area is delayed from the light from at least one other area. The X-ray imaging apparatus according to any one of (8) to (13), wherein an X-ray image of a sample shifted in time is obtained.

以上にしてなる本願発明に係るX線撮影方法およびX線撮影装置によれば、動的な現象、又はスペクトラルイメージングをごく短時間で効率的、且つ安定的に取得することができ、X線領域でのマルチスペクトラルイメージングや高速度イメージングへの道を開く手法として革新的である。特に、一度きりしか生じない非反復的な現象の場合や、高価・希少なサンプルの破壊検査においても好適に用いることができる。このように、本発明は、これまで取得できなかった情報をごく短時間で取得し、基礎研究から製品開発まで幅広く研究開発を加速させることが可能となり、大型なX線施設はもちろん、研究室レベルで多様なX線解析を行うためのツールとして広く利用されることが期待される。   According to the X-ray imaging method and X-ray imaging apparatus according to the present invention as described above, a dynamic phenomenon or spectral imaging can be acquired efficiently and stably in a very short time. It is an innovative technique that opens the way to multi-spectral imaging and high-speed imaging. In particular, it can be suitably used in the case of a non-repetitive phenomenon that occurs only once or in the destructive inspection of expensive and rare samples. In this way, the present invention can acquire information that could not be acquired in a very short time, and can accelerate research and development widely from basic research to product development, as well as large X-ray facilities as well as laboratories. It is expected to be widely used as a tool for performing various X-ray analysis at the level.

(a),(b)は本発明にかかるX線撮影装置の代表的な実施形態を示す説明図、(c)、(d)はミラー回転軸に沿った縦方向に分割された部分曲面ミラーで構成された変形例の出口開口を示す説明図。(A), (b) is explanatory drawing which shows typical embodiment of the X-ray imaging apparatus concerning this invention, (c), (d) is the partial curved-surface mirror divided | segmented into the vertical direction along a mirror rotating shaft. Explanatory drawing which shows the exit opening of the modification comprised by this. 平面ミラーで外側に反射させる変形例を示す説明図。Explanatory drawing which shows the modification reflected on an outer side with a plane mirror. 複数の分離光学面を用いて開口を3つ以上に分割した変形例を示す説明図。Explanatory drawing which shows the modification which divided | segmented the opening into 3 or more using the some isolation | separation optical surface. 出口の分割領域をすべて分離光学面により反射させ、素子中心軸上に結像される光を無くすようにした変形例を示す説明図。Explanatory drawing which shows the modification which reflected all the division | segmentation area | regions of an exit with the isolation | separation optical surface, and eliminated the light imaged on an element central axis. 角錐台ミラーを設けた変形例を示す説明図。Explanatory drawing which shows the modification which provided the pyramid mirror. (a)、(b)は、それぞれマルチスペクトラルイメージングを実現するX線撮影装置の例を示す説明図。(A), (b) is explanatory drawing which shows the example of the X-ray imaging apparatus which each implement | achieves multispectral imaging. 高速度イメージングを実現するX線撮影装置の例を示す説明図。Explanatory drawing which shows the example of the X-ray imaging apparatus which implement | achieves high speed imaging. ウォルターミラーの設計案の一例を示す説明図。Explanatory drawing which shows an example of the design plan of Walter Miller. 同じくウォルターミラーの設計案の一例を示す説明図。Explanatory drawing which similarly shows an example of the design plan of Walter Miller. 試料上のある点からの光の伝搬の様子を光線追跡結果に基づいて示した図。The figure which showed the mode of the propagation of the light from a certain point on a sample based on the ray tracing result. 試料上のある点からの光の伝搬の様子を光線追跡結果に基づいて示した図。The figure which showed the mode of the propagation of the light from a certain point on a sample based on the ray tracing result. 軟X線を対象とした本発明の実装案を示す説明図。Explanatory drawing which shows the mounting plan of this invention which made soft X-ray object. 同じく軟X線を対象とした本発明の他の実装案を示す説明図。Explanatory drawing which shows the other mounting plan of this invention for soft X-ray similarly. 試料として設定した元画像を示す図。The figure which shows the original image set as a sample. 図12の実装案において平面ミラーによる反射されて結像した像と反射されずに素子中心軸上の位置で結像した像を示す図。FIG. 13 is a diagram illustrating an image formed by being reflected and imaged by a plane mirror in the implementation plan of FIG. 12 and an image formed at a position on the element central axis without being reflected. 図13の実装案において平面ミラーによる反射されて結像した像と反射されずに素子中心軸上の位置で結像した像を示す図。FIG. 14 is a diagram illustrating an image formed by being reflected by a plane mirror and an image formed at a position on the element central axis without being reflected in the implementation plan of FIG. 13. ウォルターミラーの設計案の他の例を示す説明図。Explanatory drawing which shows the other example of the design plan of Walter Miller. 硬X線を対象とした本発明の実装案を示す説明図。Explanatory drawing which shows the mounting plan of this invention which made hard X-ray object. 図18の実装案において平面ミラーによる反射されて結像した像と反射されずに素子中心軸上の位置で結像した像を示す図。FIG. 19 is a diagram showing an image formed by being reflected by a flat mirror and an image formed at a position on the element central axis without being reflected in the implementation plan of FIG. 18. 従来のX線撮影装置を示す説明図。Explanatory drawing which shows the conventional X-ray imaging apparatus.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明にかかるX線撮影装置1は、図1(a),(b)に示すように、X線源20、およびこれを資料3に集光する集光光学系21を有する照明光学系2と、結像光学素子41を有する結像光学系4と、検出器50とを備え、とくに結像光学系4として、結像光学素子41の下流側に、結像光学素子41の出口41cのうち一部の領域R1から出射された光を反射して他の領域R01から出射された光とは別の位置に結像させる分離光学面42を設けるとともに、この分離光学面42を通じて結像されるX線像を検出する検出器51を設け、これにより試料3のX線像を2以上の位置(図1の例では検出器50、51の二つの位置)で得ることを特徴とする、透過型のX線顕微鏡として好適なX線撮影装置である。   As shown in FIGS. 1A and 1B, an X-ray imaging apparatus 1 according to the present invention includes an X-ray source 20 and an illumination optical system 2 having a condensing optical system 21 for condensing the X-ray source 20 on a material 3. And an imaging optical system 4 having the imaging optical element 41 and a detector 50, and in particular, as the imaging optical system 4, an outlet 41 c of the imaging optical element 41 is provided downstream of the imaging optical element 41. Among them, a separation optical surface 42 that reflects light emitted from a part of the region R1 and forms an image at a position different from the light emitted from the other region R01 is provided, and the image is formed through the separation optical surface 42. A detector 51 for detecting an X-ray image is provided, whereby an X-ray image of the sample 3 is obtained at two or more positions (in the example of FIG. 1, two positions of the detectors 50 and 51). It is an X-ray imaging apparatus suitable as a transmission type X-ray microscope.

従来からのX線撮影装置においては、図20に示すように、結像光学素子41の出口(開口)から出射されたX線は下流遠方の光軸上に一つの像を形成し、該位置に設けられる検出器50により検出される。これに対し、本発明では、図1に示すように出口41c開口から出射したX線の一部の光路を、開口下流に設置した分離光学面42によりそらすことで、本来の結像位置(検出器50の位置)とは別の位置(検出器51の位置)に像を生成する。各検出器50、51で得られる像は、互いに同じ試料の同じタイミングの像である。   In the conventional X-ray imaging apparatus, as shown in FIG. 20, the X-rays emitted from the exit (opening) of the imaging optical element 41 form one image on the optical axis farther downstream, and this position It is detected by the detector 50 provided in. On the other hand, in the present invention, as shown in FIG. 1, a part of the optical path of the X-rays emitted from the opening of the exit 41c is deflected by the separation optical surface 42 installed downstream of the opening, so An image is generated at a position different from the position of the detector 50 (the position of the detector 51). The images obtained by the detectors 50 and 51 are images of the same sample at the same timing.

このように本発明は、結像光学素子41の出口41cを領域分割し、同時利用することで一度に複数のX線像を取得できるX線撮影装置である。これにより同じ試料の同じタイミングのX線像を2以上の位置で検出でき、X線領域でのマルチスペクトラルイメージングや高速度イメージングを実現できる手法として革新的なものである。   As described above, the present invention is an X-ray imaging apparatus capable of acquiring a plurality of X-ray images at a time by dividing the exit 41c of the imaging optical element 41 into regions and using them simultaneously. This is an innovative technique that can detect X-ray images of the same sample at the same timing at two or more positions, and can realize multispectral imaging and high-speed imaging in the X-ray region.

X線源20としては、軟X線や硬X線が好適に用いられる。照明光学系2、集光光学系21、結像光学素子41についても、従来からの透過型のX線撮影装置(X線顕微鏡)において公知の光学系を用いることができる。とくに結像光学素子41については、ウォルター型斜入射ミラー61が好ましい。ウォルター型斜入射ミラーは他に比べて開口の大きなものを容易に設計できるため、開口分割する本発明に特に適している。フレネルゾーンプレートやAdvanced Kirkpatrick Baezミラーを用いることもできる。   As the X-ray source 20, soft X-rays or hard X-rays are preferably used. As for the illumination optical system 2, the condensing optical system 21, and the imaging optical element 41, a known optical system can be used in a conventional transmission X-ray imaging apparatus (X-ray microscope). In particular, for the imaging optical element 41, the Walter type oblique incidence mirror 61 is preferable. Since the Walter type oblique incidence mirror can be easily designed with a larger aperture than the others, it is particularly suitable for the present invention in which the aperture is divided. Fresnel zone plates and Advanced Kirkpatrick Baez mirrors can also be used.

図1(a),(b)の代表的なウォルター型斜入射ミラー61は全周にわたる筒状のウォルターミラーであるが、図中(c)、(d)に示すようにミラー回転軸に沿った縦方向に分割された部分曲面ミラー(半割状のウォルター型斜入射ミラー61A、より小さく分割されたウォルター型斜入射ミラー61B、61C)で構成されたものを単または同軸の異なる角度領域に複数配置したものでも勿論よい。   A typical Walter type oblique incidence mirror 61 shown in FIGS. 1 (a) and 1 (b) is a cylindrical Walter mirror extending over the entire circumference, but as indicated by (c) and (d) in FIG. Are composed of partially curved mirrors (half-split Walter grazing incidence mirror 61A, smaller Walter grazing incidence mirrors 61B and 61C) divided in the vertical direction in different angular regions, single or coaxial. Of course, a plurality of them may be arranged.

分離光学面42としては、本例ではウォルター型斜入射ミラー61の下流側の出口41cの開口領域R1に対応する位置に、平面ミラー部7を有する平面ミラー70が配置されている。なお、平面ミラー部に限定されず、回折格子などで構成することもできる。   As the separation optical surface 42, in this example, the plane mirror 70 having the plane mirror portion 7 is disposed at a position corresponding to the opening region R1 of the outlet 41c on the downstream side of the Walter type oblique incidence mirror 61. In addition, it is not limited to a plane mirror part, It can also comprise with a diffraction grating.

領域R1以外の領域R01から出た光は、ウォルター型斜入射ミラー61のミラー回転軸である素子中心軸a上の位置(検出器50の位置)に結像し、検出器50で検出される。領域R1から出た光は、平面ミラー部7に反射して、異なる位置(検出器51の位置)に結像し、検出器51により検出される。すなわち、結像光学素子41(ウォルター型斜入射ミラー61)の出口開口が領域R1、R01に分割され、各領域から出た光のうち領域R1からの光を分離光学面42(平面ミラー部7)で反射させて分離し、異なる位置で結像させることにより、同一試料3の同一タイミングの像が異なる位置で取得(検出)される。   The light emitted from the region R01 other than the region R1 forms an image at a position on the element central axis a (the position of the detector 50), which is the mirror rotation axis of the Walter type oblique incidence mirror 61, and is detected by the detector 50. . The light emitted from the region R <b> 1 is reflected by the plane mirror unit 7, forms an image at a different position (the position of the detector 51), and is detected by the detector 51. That is, the exit opening of the imaging optical element 41 (Walter type oblique incidence mirror 61) is divided into regions R1 and R01, and the light from the region R1 out of the light emitted from each region is separated into the optical surface 42 (planar mirror unit 7). ) Are separated and imaged at different positions, whereby images of the same sample 3 at the same timing are acquired (detected) at different positions.

平面ミラー70は、内側に平面ミラー部7を配して出口領域R1から出た光を内側に反射させ、素子中心軸a上の位置(検出部50の位置)とは異なる位置(検出部51の位置)に結像させ、検出器51にて検出するように構成されている。ここで、「内側に反射させ」とは、反射する方向が入射方向に比べて素子中心軸aにより近づく方向となる場合をいう。   The plane mirror 70 has the plane mirror unit 7 disposed on the inside thereof, reflects the light emitted from the exit region R1 to the inside, and is different from the position on the element center axis a (the position of the detection unit 50) (the detection unit 51). The image is formed at the position (1) and detected by the detector 51. Here, “reflect inside” means that the direction of reflection is closer to the element center axis a than the incident direction.

このように平面ミラー70は、結像光学素子の下流側の領域R1に対応する位置に配置するだけでよく、簡易な構造で且つアライメントの精度も不要であるため、きわめて低コストで実現することができ、取扱い性も良好である。本例では平面ミラー70により内側に反射させているが、図2に示すように、平面ミラー70を配置して外側に反射させることで、同じく素子中心軸a上の位置とは異なる位置(検出器51の位置)に結像させることも勿論できる。「外側に反射させる」とは、入射方向が反射する方向に比べて素子中心軸aにより近づく方向となる場合をいう。図示しないが、内側でも外側でもない、素子中心軸を中心とした円周方向に反射させることでもよい。   Thus, the plane mirror 70 only needs to be arranged at a position corresponding to the region R1 on the downstream side of the imaging optical element, and since it has a simple structure and does not require alignment accuracy, it can be realized at a very low cost. The handleability is also good. In this example, the light is reflected inward by the flat mirror 70. However, as shown in FIG. 2, by disposing the flat mirror 70 and reflecting it outward, a position different from the position on the element central axis a (detection). It is of course possible to form an image at the position of the container 51). “Reflect outside” means that the incident direction is closer to the element center axis a than the direction of reflection. Although not shown, it may be reflected in a circumferential direction around the element central axis, neither inside nor outside.

また、図3に示すように、複数の分離光学面42を用いて開口を3つ以上(本例では出口領域R1、R2、R05、R06)に分割し、そのうち2つ以上の分割領域(R1、R2)の各領域から出射された光を対応する分離光学面42、42によりそれぞれ別の方向に反射させ、他の領域(R05、R06)から出射された光とは別の各位置(検出器51、52の各位置)にそれぞれ結像させるものも好ましい実施形態である。これにより、3つ以上の像を同時に取得することができる。たとえば図9のように1開口あたりの円周方向角度幅を12度とすれば、360°÷12°=30となり、30枚の同時撮影が可能である。ここで、各分離光学面42はいずれも光を内側に反射させる平面ミラー70が設けられているが、一部または全部を光を外側に反射させる平面ミラーとしてもよい。   Also, as shown in FIG. 3, a plurality of separation optical surfaces 42 are used to divide the aperture into three or more (in this example, exit regions R1, R2, R05, R06), and two or more of the divided regions (R1) , R2) are reflected in different directions by the corresponding separation optical surfaces 42, 42, and each position (detection) is different from the light emitted from other regions (R05, R06). It is also a preferred embodiment to form an image at each position of the containers 51 and 52. Thereby, three or more images can be acquired simultaneously. For example, as shown in FIG. 9, if the circumferential angular width per opening is set to 12 degrees, 360 ° / 12 ° = 30, and 30 images can be captured simultaneously. Here, each separation optical surface 42 is provided with a flat mirror 70 that reflects light inward, but a part or all of it may be a flat mirror that reflects light outward.

このように平面ミラー70を複数設けるだけで、3つ以上の多数の像が得られるにもかかわらず、このような平面ミラー70はアライメント精度も不要であり、アライメントシステムの部品数を少なくすることができる。また、結像光学素子41として図1(a),(b)に示すような筒状のウォルターミラーを用いても各平面ミラー70の簡易なアライメントにより正確な位置にそれぞれ反射・結像させることができる。   Although a plurality of three or more images can be obtained simply by providing a plurality of plane mirrors 70 in this way, such plane mirrors 70 do not require alignment accuracy and reduce the number of parts of the alignment system. Can do. Further, even if a cylindrical Walter mirror as shown in FIGS. 1A and 1B is used as the imaging optical element 41, it can be reflected and imaged at an accurate position by simple alignment of each plane mirror 70. Can do.

また、図4に示すように、出口の分割領域(R3、R4)をすべて分離光学面42により反射させ、素子中心軸a上に結像される光を無くすようにしても勿論よい。図中(b)は領域を2つ(R3、R4)に分けた例であるが、(c)に示すように4つ(R5〜R8)に分けたり、その他の数に分けてもよい。また、この場合、図5に示すように外周面に複数の平面ミラー部7を備えた角錐台ミラー71を設けて各平面ミラー部7により各領域からの光を外側に反射させることも好ましい実施形態である。これによれば、平面ミラーを複数設ける場合に比べて部品点数を少なくすることができる。   Further, as shown in FIG. 4, it is of course possible to reflect all of the divided areas (R3, R4) at the exit by the separation optical surface 42 so as to eliminate the light imaged on the element center axis a. In the figure, (b) is an example in which the region is divided into two (R3, R4), but it may be divided into four (R5 to R8) as shown in (c) or other numbers. Further, in this case, as shown in FIG. 5, it is also preferable to provide a truncated pyramid mirror 71 having a plurality of plane mirror portions 7 on the outer peripheral surface and reflect the light from each region to the outside by each plane mirror portion 7. It is a form. According to this, the number of parts can be reduced compared with the case where a plurality of plane mirrors are provided.

角錐台ミラー71の代わりに角錐ミラーを用いてもよい。また、外周面ではなく内周面に同様の複数の平面ミラー部7を備える、内周面が角錐台面形状の筒状ミラーを用いて各領域からの光を内側に反射させるものでもよい。角錐台ミラー71はその中心軸が素子中心軸aに一致するように同軸に設けられているが、これに何ら限定されない。
以上の説明では、出口の分割領域から出た光を分離光学面42で一度反射させて結像させているが、当該光の光路上に複数の分離光学面42をおいて複数回反射させたうえで結像させるように構成してもよい。
A pyramid mirror may be used instead of the pyramid mirror 71. Alternatively, a plurality of similar planar mirror portions 7 may be provided on the inner peripheral surface instead of the outer peripheral surface, and the inner peripheral surface may reflect light from each region to the inside using a truncated pyramid shaped cylindrical mirror. The truncated pyramid mirror 71 is provided coaxially so that the central axis thereof coincides with the element central axis a, but is not limited to this.
In the above description, the light emitted from the divided area at the exit is reflected once by the separation optical surface 42 and imaged. However, a plurality of separation optical surfaces 42 are reflected on the optical path of the light and reflected multiple times. You may comprise so that it may image-form.

図6(a)は、マルチスペクトラルイメージングを実現するX線撮影装置の例を示している。具体的には、照明光学系2に、上記分離光学面42によって反射される一部の領域の光の波長が、他の少なくとも1つの領域からの光の波長とは異なる波長となるように異波長のX線を生成する異波長生成部23が設け、これにより2以上の位置(検出器51、52の位置)で同じ試料の異なる波長によるX線像を同時に得ることができるものである。サンプルの破壊的な検査や、時間によって変化するサンプルを観察する際に大きなアドバンテージを示す。   FIG. 6A shows an example of an X-ray imaging apparatus that realizes multispectral imaging. Specifically, the illumination optical system 2 is different so that the wavelength of the light in a part of the region reflected by the separation optical surface 42 is different from the wavelength of the light from at least one other region. A different wavelength generator 23 for generating X-rays of wavelengths is provided, whereby X-ray images of different wavelengths of the same sample can be obtained simultaneously at two or more positions (positions of detectors 51 and 52). This is a great advantage when testing a sample destructively or observing a sample that changes over time.

異波長生成部23は、固体フィルタや分光器を用いて異なる波長の照明光を生成し、各開口に与えるものである。放射光のような白色光源や、高次高調波のようなマルチスペクトル光源の利用を想定している。本例では、異波長生成部23として、バンドパスフィルタ63を用いる例を示している。本発明ではシングルショットでの撮影が実現可能であるため、時間の同時性が担保されたスペクトラルイメージが取得可能となる。   The different wavelength generation unit 23 generates illumination light having different wavelengths using a solid filter or a spectroscope and supplies the illumination light to each aperture. The use of white light sources such as synchrotron radiation and multispectral light sources such as higher harmonics is assumed. In this example, a bandpass filter 63 is used as the different wavelength generation unit 23. In the present invention, since it is possible to perform shooting with a single shot, it is possible to acquire a spectral image in which time synchronism is ensured.

すなわち、バンドパスフィルタ63により波長を変えた光を2つ、異なる方向から試料3に同時に入射させ、透過した光を上記結像光学素子41および分離光学面42を通じて互いに異なる位置に結像させ、各位置の検出器で違う波長の情報「像」を検出するものである。たとえば波長が2nmの光と4nmの光を同時に入射して2nmの像と4nmの像がとれる。物質は波長により吸収係数が異なる。吸収係数による観察像の違いから、物質の詳細が判明する。   That is, two light whose wavelengths are changed by the bandpass filter 63 are simultaneously incident on the sample 3 from different directions, and the transmitted light is imaged at different positions through the imaging optical element 41 and the separation optical surface 42, The information “image” of a different wavelength is detected by the detector at each position. For example, light having a wavelength of 2 nm and light having a wavelength of 4 nm are simultaneously incident to obtain a 2 nm image and a 4 nm image. Substances have different absorption coefficients depending on the wavelength. The details of the substance can be determined from the difference in the observed image due to the absorption coefficient.

従来は、波長を振って像を得るため、得られる像は互いにタイミングが異なる像となる。これに対し、本発明では同時に各波長の光の像を取得できる。分割する数により多くの波長の像を同時に取得できることになる。高次高調波、放射光などのX線光源は多波長のX線を放射するので、本例のようにフィルタを通して複数の波長の光を得ることができる。   Conventionally, since an image is obtained by changing the wavelength, the obtained images are images having different timings. On the other hand, in the present invention, an image of light of each wavelength can be acquired simultaneously. Depending on the number of divisions, images of many wavelengths can be acquired simultaneously. Since X-ray light sources such as high-order harmonics and synchrotron radiation emit multi-wavelength X-rays, light of a plurality of wavelengths can be obtained through a filter as in this example.

また、図6(b)は、上記異波長生成部23として、バンドパスフィルタ63の代わりに、回折格子64にてエネルギーごとに異なる角度にX線が出射され、ミラーアレイ65と回転楕円体ミラー62により観察対象(試料3)へと異なる角度で照射する例である。   FIG. 6B shows an X-ray emitted from the diffraction grating 64 at a different angle for each energy, instead of the bandpass filter 63, as the different wavelength generator 23, and the mirror array 65 and the spheroid mirror. This is an example of irradiating the observation target (sample 3) at a different angle by 62.

図7は、高速度イメージングを実現するX線撮影装置の例を示している。具体的には、照明光学系2に、一部の領域から出射される光が、他の少なくとも1つの領域からの光よりも遅延するように時間遅延光学系24を設け、これにより2以上の位置(本例では検出器51、52の位置)で試料の時間のずれたX線像を得るものである。本手法を用いると、X線自由電子レーザー(FEL)や高次高調波のようなパルス光源を用いて、従来の電気式高速度カメラでは撮影ができないピコ秒、フェムト秒といった高速度領域のダイナミクスを、空間像として捉えることが初めてできるようになる。撮影の時間分解能は、前半の照明光学系2の構成により自由に調整可能であり、ユーザーが観たい現象に適した条件で撮影することが可能である。本手法では、従来方法でされている機械的・電気的な動作を一切排除し、完全なるシングルショットでの撮影が実現できる。   FIG. 7 shows an example of an X-ray imaging apparatus that realizes high-speed imaging. Specifically, the illumination optical system 2 is provided with a time delay optical system 24 so that light emitted from a part of the region is delayed from light from at least one of the other regions. An X-ray image of the sample shifted in time at the position (in this example, the position of the detectors 51 and 52) is obtained. Using this method, dynamics in high-speed areas such as picoseconds and femtoseconds that cannot be captured by conventional high-speed electric cameras using pulsed light sources such as X-ray free electron laser (FEL) and higher harmonics. Can be understood as a spatial image for the first time. The time resolution of photographing can be freely adjusted by the configuration of the illumination optical system 2 in the first half, and photographing can be performed under conditions suitable for the phenomenon desired by the user. This method eliminates all mechanical and electrical operations that are used in the conventional method, and can achieve complete single-shot shooting.

また、図6と図7の装置構成を組み合わせることにより、ダイナミクスを動画として取得しながら、多波長での観察を同時に実現することも可能である。   In addition, by combining the apparatus configurations of FIGS. 6 and 7, it is possible to simultaneously realize observation at multiple wavelengths while acquiring dynamics as a moving image.

以上、本発明の実施形態について説明したが、本発明はこうした実施の例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   The embodiments of the present invention have been described above, but the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

(光線追跡シミュレーション)
上述の実施形態のX線撮影装置の設計が実際に可能であることを確かめるために、光線追跡シミュレーションを行った。図10(a),(b)、図11(a),(b)は,それぞれ図1、図2、図4(c)、図5の例において、試料3上のある点からの光の伝搬の様子を光線追跡結果に基づいて示した図である。格子模様の箇所がウォルター型斜入射ミラー61を示し、その下流側の濃い黒の線分が平面ミラー部7を示し、灰色が光線を示している。
(Ray tracing simulation)
In order to confirm that the design of the X-ray imaging apparatus of the above-described embodiment is actually possible, a ray tracing simulation was performed. 10 (a), (b), FIG. 11 (a) and FIG. 11 (b) show the light from a certain point on the sample 3 in the examples of FIG. 1, FIG. 2, FIG. 4 (c) and FIG. It is the figure which showed the mode of propagation based on the ray tracing result. The lattice pattern portion indicates the Walter type oblique incidence mirror 61, the dark black line segment on the downstream side indicates the plane mirror portion 7, and the gray color indicates the light beam.

試料位置から伝搬した光線が、平面ミラー部によって分割され、分割されたそれぞれの光線群がそれぞれ別の位置に結像していることが分かる。ここでは、表示のために実際上用いることが不可能な形状設計のウォルターミラーを用いている。実際に本発明のX線撮影装置に用いるウォルターミラーはより倍率が大きく、光線のミラーへの斜入射角がより小さい。   It can be seen that the light beam propagated from the sample position is divided by the plane mirror section, and the divided light beam groups form images at different positions. Here, a Walter mirror having a shape design that cannot actually be used for display is used. Actually, the Walter mirror used in the X-ray imaging apparatus of the present invention has a larger magnification and a smaller oblique incidence angle of the light beam on the mirror.

(光線追跡による結像シミュレーション)
(軟X線を対象とした具体的な設計案)
次に、図12〜図16は、軟X線を対象とした本発明の具体的な実装案を示すために、実際の利用を想定したX線撮影装置を設計し、さらに光線追跡による結像シミュレーションを行った結果を示す。設計は、波長4nm、すなわちフォトンエネルギ310eVの軟X線の利用を想定した。ウォルターミラーの設計は図8、図9および表1で示したものと同一である。
(Imaging simulation by ray tracing)
(Specific design plan for soft X-rays)
Next, FIGS. 12 to 16 design an X-ray imaging apparatus that assumes actual use in order to show a specific implementation plan of the present invention for soft X-rays, and further form an image by ray tracing. The result of the simulation is shown. The design assumed the use of soft X-rays having a wavelength of 4 nm, that is, photon energy of 310 eV. The design of the Walter mirror is the same as that shown in FIGS.

図12は、図1の例を実現する具体的なX線撮影装置の寸法図であり、図13は、図2の例を実現するX線撮影装置の寸法図である。ともに一枚の平面ミラーを挿入し、開口を二つに分割した場合を示している。   12 is a dimensional diagram of a specific X-ray imaging apparatus that realizes the example of FIG. 1, and FIG. 13 is a dimensional diagram of the X-ray imaging apparatus that realizes the example of FIG. In both cases, a single plane mirror is inserted and the opening is divided into two.

図15は、図12のシステムを用いて平面ミラーにより反射されて結像した像(平面ミラー反射あり)と、平面ミラーによって反射されずに素子中心軸上の位置で結像した像(平面ミラー反射なし)をそれぞれ示す。また、図16は、図13のシステムを用いて平面ミラーにより反射されて結像した像(平面ミラー反射あり)と、平面ミラーによって反射されずに素子中心軸上の位置で結像した像(平面ミラー反射なし)をそれぞれ示す。図14は試料として設定した元画像を示す。   FIG. 15 shows an image formed by being reflected by a plane mirror using the system of FIG. 12 (with plane mirror reflection) and an image formed at a position on the element central axis without being reflected by the plane mirror (plane mirror). (Without reflection). FIG. 16 shows an image formed by being reflected by a plane mirror using the system of FIG. 13 (with plane mirror reflection) and an image formed at a position on the element central axis without being reflected by the plane mirror ( Each of them shows no flat mirror reflection). FIG. 14 shows an original image set as a sample.

いずれの像も、反射の有無で像の向きが反転していることを除けば、平面ミラー反射のあり/なしで、同一の像が得られていることが分かる。平面ミラーを用いて開口分割を行うことで波面収差による像の劣化を引き起こすことなく複数の像を得ることができることが分かる。   It can be seen that the same image is obtained with and without plane mirror reflection, except that the direction of the image is reversed depending on the presence or absence of reflection. It can be seen that a plurality of images can be obtained without causing image degradation due to wavefront aberration by performing aperture division using a plane mirror.

(硬X線を対象とした具体的な設計案)
次に、図17〜図19は、硬X線を対象とした本発明の具体的な実装案を示すために、実際の利用を想定したX線撮影装置を設計し、さらに光線追跡による結像シミュレーションを行った結果を示す。設計は、波長0.12nm、すなわちフォトンエネルギ10keVの硬X線の利用を想定した。ウォルターミラーの設計を図17および表2に示す。
(Specific design plan for hard X-ray)
Next, FIGS. 17 to 19 design an X-ray imaging apparatus that assumes actual use in order to show a specific implementation plan of the present invention for hard X-rays, and further form an image by ray tracing. The result of the simulation is shown. The design assumed the use of a hard X-ray having a wavelength of 0.12 nm, that is, a photon energy of 10 keV. The design of the Walter mirror is shown in FIG.

X線を斜入射ミラーで反射させる際、波長が短いほど浅い角度でミラーに入射させなければ十分な反射率を得ることができない。波長の短い硬X線を用いた場合、軟X線を対象とする場合に比べて斜入射角を浅く設計しなければならない。そのためウォルターミラーはより細長く、開口分割用の平面ミラーはより素子中心軸方向に長く設計される。ここで反射面の材質を軟X線用ウォルターミラーに用いたニッケルではなくルテニウムとしているが、これはルテニウムの方が硬X線領域における反射率が高いためである。一方で、硬X線を用いた場合軟X線より波長が短いため空間分解能は向上する。   When X-rays are reflected by an oblique incidence mirror, a sufficient reflectance cannot be obtained unless the wavelength is incident on the mirror at a shallower angle. When hard X-rays having a short wavelength are used, the oblique incident angle must be designed shallower than when soft X-rays are targeted. Therefore, the Walter mirror is longer and thinner, and the aperture dividing plane mirror is designed to be longer in the element central axis direction. Here, the material of the reflecting surface is ruthenium instead of nickel used for the soft X-ray Walter mirror. This is because ruthenium has a higher reflectance in the hard X-ray region. On the other hand, when hard X-rays are used, the spatial resolution is improved because the wavelength is shorter than that of soft X-rays.

図18は、図1の例を実現する具体的なX線撮影装置の寸法図であり、一枚の平面ミラーを挿入し、開口を二つに分割した場合を示している。図19は、図18のシステムを用いて平面ミラーによる反射されて結像した像(平面ミラー反射あり)と、平面ミラーによって反射されずに素子中心軸上の位置で結像した像(平面ミラー反射なし)をそれぞれ示す。反射の有無で像の向きが反転していることを除けば、平面ミラー反射のあり/なしで、同一の像が得られていることが分かる。軟X線の場合と同様、平面ミラーを用いて開口分割を行うことで波面収差による像の劣化を引き起こすことなく複数の像を得ることができることが分かる。   FIG. 18 is a dimensional diagram of a specific X-ray imaging apparatus that realizes the example of FIG. 1, and shows a case where a single plane mirror is inserted and the opening is divided into two. FIG. 19 shows an image reflected and imaged by a plane mirror using the system of FIG. 18 (with plane mirror reflection) and an image (plane mirror) imaged at a position on the element central axis without being reflected by the plane mirror. (Without reflection). Except for the fact that the direction of the image is reversed depending on the presence or absence of reflection, it can be seen that the same image is obtained with and without plane mirror reflection. As in the case of soft X-rays, it can be seen that a plurality of images can be obtained by performing aperture division using a plane mirror without causing image degradation due to wavefront aberration.

1、1A−1G X線撮影装置
2 照明光学系
3 試料
4 結像光学系
7 平面ミラー部
20 X線源
21 集光光学系
22 集光素子
23 異波長生成部
24 時間遅延光学系
41 結像光学素子
41c 出口
42 分離光学面
50、51、52 検出器
60 回転楕円体ミラー
61、61A、61B ウォルター型斜入射ミラー
62 回転楕円体ミラー
63 バンドパスフィルタ
64 回折格子
65 ミラーアレイ
70 平面ミラー
71 角錐台ミラー
101 X線撮影装置
102 照明光学系
104 結像光学系
121 集光光学系
610 回転双曲面
611 回転楕円面
DESCRIPTION OF SYMBOLS 1, 1A-1G X-ray imaging apparatus 2 Illumination optical system 3 Sample 4 Imaging optical system 7 Flat mirror part 20 X-ray source 21 Condensing optical system 22 Condensing element 23 Different wavelength production | generation part 24 Time delay optical system 41 Imaging Optical element 41c Exit 42 Separation optical surface 50, 51, 52 Detector 60 Spheroid mirror 61, 61A, 61B Walter type oblique incidence mirror 62 Spheroid mirror 63 Bandpass filter 64 Diffraction grating 65 Mirror array 70 Flat mirror 71 Pyramid Table mirror 101 X-ray imaging apparatus 102 Illumination optical system 104 Imaging optical system 121 Condensing optical system 610 Rotating hyperboloid 611 Rotating ellipsoid

Claims (16)

結像光学系として、
結像光学素子を設けるとともに、
該結像光学素子の下流側に、該結合光学素子の出口のうち一部の領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる分離光学面を、単または複数設け、
これにより試料のX線像を2以上の位置で得ることを特徴とする、
X線撮影方法。
As an imaging optical system,
While providing an imaging optical element,
Separation optics that reflects light emitted from a part of the exit of the coupling optical element on the downstream side of the imaging optical element and forms an image at a position different from the light emitted from the other area One or more surfaces are provided,
Thereby, an X-ray image of the sample is obtained at two or more positions.
X-ray imaging method.
前記結像光学素子がウォルター型斜入射ミラーである、請求項1記載のX線撮影方法。   The X-ray imaging method according to claim 1, wherein the imaging optical element is a Walter type oblique incidence mirror. 前記分離光学面が平面ミラー部である、請求項1又は2記載のX線撮影方法。   The X-ray imaging method according to claim 1, wherein the separation optical surface is a plane mirror unit. 前記一部の領域が、前記結像光学素子の出口を、素子中心軸を中心とした周方向に沿って複数の領域に分割した分割領域のうちの一つである、
請求項1〜3の何れか1項に記載のX線撮影方法。
The partial area is one of divided areas obtained by dividing the exit of the imaging optical element into a plurality of areas along a circumferential direction around the element central axis.
The X-ray imaging method according to claim 1.
前記分割領域を3つ以上設け、
そのうち2つ以上の分割領域をそれぞれ前記一部の領域として、各領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる、ミラー面が互いに異なる方向を向いた前記を2つ以上設けた、
請求項4記載のX線撮影方法。
Provide three or more of the divided areas,
Two or more of the divided regions are defined as the partial regions, and the mirror surfaces are different from each other, reflecting the light emitted from each region to form an image at a position different from the light emitted from other regions. Provided two or more of the above facing the direction,
The X-ray imaging method according to claim 4.
照明光学系に、前記一部の領域から出射される光の波長が、他の少なくとも1つの領域からの光の波長とは異なる波長となるように異波長のX線を生成する異波長生成部を設け、
これにより前記2以上の位置で同じ試料の異なる波長によるX線像を同時に得る、
請求項1〜5の何れか1項に記載のX線撮影方法。
A different wavelength generation unit that generates X-rays having different wavelengths so that the wavelength of light emitted from the partial region is different from the wavelength of light from at least one other region in the illumination optical system. Provided,
Thereby, X-ray images with different wavelengths of the same sample at the two or more positions are simultaneously obtained.
The X-ray imaging method according to claim 1.
照明光学系に、前記一部の領域から出射される光が、他の少なくとも1つの領域からの光よりも遅延するように時間遅延部を設け、
これにより前記2以上の位置で試料の時間のずれたX線像を得る、
請求項1〜5の何れか1項に記載のX線撮影方法。
In the illumination optical system, a time delay unit is provided so that light emitted from the partial area is delayed from light from at least one other area,
Thereby, an X-ray image of the sample shifted in time at the two or more positions is obtained.
The X-ray imaging method according to claim 1.
結像光学系として、
結像光学素子を設けるとともに、
該結像光学素子の下流側に、該結像光学素子の出口のうち一部の領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる分離光学面を、単または複数設け、
これにより試料のX線像を2以上の位置で得ることを特徴とする、
X線撮影装置。
As an imaging optical system,
While providing an imaging optical element,
Separation in which light emitted from a part of the exit of the imaging optical element is reflected downstream from the imaging optical element to form an image at a position different from the light emitted from the other area Provide one or more optical surfaces,
Thereby, an X-ray image of the sample is obtained at two or more positions.
X-ray imaging device.
前記結像光学素子がウォルター型斜入射ミラーである、請求項8記載のX線撮影装置。   The X-ray imaging apparatus according to claim 8, wherein the imaging optical element is a Walter type oblique incidence mirror. 前記分離光学面が平面ミラー部である、請求項8又は9記載のX線撮影装置。   The X-ray imaging apparatus according to claim 8, wherein the separation optical surface is a plane mirror unit. 前記一部の領域が、前記結像光学素子の出口を、素子中心軸を中心とした周方向に沿って複数の領域に分割した分割領域のうちの一つである、
請求項8〜10の何れか1項に記載のX線撮影装置。
The partial area is one of divided areas obtained by dividing the exit of the imaging optical element into a plurality of areas along a circumferential direction around the element central axis.
The X-ray imaging apparatus of any one of Claims 8-10.
前記分割領域を3つ以上設け、
そのうち2つ以上の分割領域をそれぞれ前記一部の領域として、各領域から出射された光を反射して他の領域から出射された光とは別の位置に結像させる、ミラー面が互いに異なる方向を向いた前記分離光学面を2つ以上設けた、
請求項11記載のX線撮影装置。
Provide three or more of the divided areas,
Two or more of the divided regions are defined as the partial regions, and the mirror surfaces are different from each other, reflecting the light emitted from each region to form an image at a position different from the light emitted from other regions. Two or more separation optical surfaces facing the direction were provided,
The X-ray imaging apparatus according to claim 11.
前記2つ以上の分離光学面を外周面若しくは内周面に有する、角錐ミラーまたは角錐台ミラーを中心軸が素子中心軸に一致するように同軸に設けてなる、請求項12記載のX線撮影装置。   The X-ray imaging according to claim 12, wherein a pyramid mirror or a truncated pyramid mirror having the two or more separation optical surfaces on an outer peripheral surface or an inner peripheral surface is provided coaxially so that a central axis coincides with an element central axis. apparatus. 照明光学系に、前記一部の領域から出射される光の波長が、他の少なくとも1つの領域からの光の波長とは異なる波長となるように異波長のX線を生成する異波長生成部を設け、
これにより前記2以上の位置で同じ試料の異なる波長によるX線像を同時に得る、
請求項8〜13の何れか1項に記載のX線撮影装置。
A different wavelength generation unit that generates X-rays having different wavelengths so that the wavelength of light emitted from the partial region is different from the wavelength of light from at least one other region in the illumination optical system. Provided,
Thereby, X-ray images with different wavelengths of the same sample at the two or more positions are simultaneously obtained.
The X-ray imaging apparatus of any one of Claims 8-13.
前記異波長生成部が、バンドパスフィルタ、または分光器よりなる請求項14記載のX線撮影装置。   The X-ray imaging apparatus according to claim 14, wherein the different wavelength generation unit includes a bandpass filter or a spectroscope. 照明光学系に、前記一部の領域から出射される光が、他の少なくとも1つの領域からの光よりも遅延するように時間遅延光学系を設け、
これにより前記2以上の位置で試料の時間のずれたX線像を得る、
請求項8〜13の何れか1項に記載のX線撮影装置。
In the illumination optical system, a time delay optical system is provided so that light emitted from the partial area is delayed from light from at least one other area,
Thereby, an X-ray image of the sample shifted in time at the two or more positions is obtained.
The X-ray imaging apparatus of any one of Claims 8-13.
JP2018061809A 2018-03-28 2018-03-28 X-ray imaging method and X-ray imaging device Active JP7078815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061809A JP7078815B2 (en) 2018-03-28 2018-03-28 X-ray imaging method and X-ray imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061809A JP7078815B2 (en) 2018-03-28 2018-03-28 X-ray imaging method and X-ray imaging device

Publications (2)

Publication Number Publication Date
JP2019174245A true JP2019174245A (en) 2019-10-10
JP7078815B2 JP7078815B2 (en) 2022-06-01

Family

ID=68170215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061809A Active JP7078815B2 (en) 2018-03-28 2018-03-28 X-ray imaging method and X-ray imaging device

Country Status (1)

Country Link
JP (1) JP7078815B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136976A (en) * 1985-12-11 1987-06-19 Toshiba Corp X-ray machine
JPH10300694A (en) * 1997-04-23 1998-11-13 Hitachi Ltd X-ray image pick-up device
US6195410B1 (en) * 1999-01-26 2001-02-27 Focused X-Rays, Llc X-ray interferometer
JP2001188099A (en) * 1999-12-28 2001-07-10 Rigaku Corp Method and device for reading out x-ray image data
JP2006317305A (en) * 2005-05-13 2006-11-24 Hitachi Ltd X-ray imaging apparatus
US20070057211A1 (en) * 2005-05-25 2007-03-15 Karsten Bahlman Multifocal imaging systems and method
JP2008164399A (en) * 2006-12-27 2008-07-17 Horiba Ltd Device for inspecting abnormality
JP2009008449A (en) * 2007-06-26 2009-01-15 Hitachi Ltd X-ray imaging device and x-ray imaging method
JP2010038627A (en) * 2008-08-01 2010-02-18 Hitachi Ltd X-ray imaging device and x-ray imaging method
JP2013190333A (en) * 2012-03-14 2013-09-26 Hitachi Ltd X-ray imaging apparatus and x-ray imaging method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136976A (en) * 1985-12-11 1987-06-19 Toshiba Corp X-ray machine
JPH10300694A (en) * 1997-04-23 1998-11-13 Hitachi Ltd X-ray image pick-up device
US6195410B1 (en) * 1999-01-26 2001-02-27 Focused X-Rays, Llc X-ray interferometer
JP2001188099A (en) * 1999-12-28 2001-07-10 Rigaku Corp Method and device for reading out x-ray image data
JP2006317305A (en) * 2005-05-13 2006-11-24 Hitachi Ltd X-ray imaging apparatus
US20070057211A1 (en) * 2005-05-25 2007-03-15 Karsten Bahlman Multifocal imaging systems and method
JP2008164399A (en) * 2006-12-27 2008-07-17 Horiba Ltd Device for inspecting abnormality
JP2009008449A (en) * 2007-06-26 2009-01-15 Hitachi Ltd X-ray imaging device and x-ray imaging method
JP2010038627A (en) * 2008-08-01 2010-02-18 Hitachi Ltd X-ray imaging device and x-ray imaging method
JP2013190333A (en) * 2012-03-14 2013-09-26 Hitachi Ltd X-ray imaging apparatus and x-ray imaging method

Also Published As

Publication number Publication date
JP7078815B2 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US10352880B2 (en) Method and apparatus for x-ray microscopy
US6389101B1 (en) Parallel x-ray nanotomography
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
JP6039093B2 (en) Laboratory X-ray microtomography system with crystallographic grain orientation mapping function
Wilke et al. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction
JP6553631B2 (en) Method and apparatus for light sheet microscopy
Giewekemeyer et al. Ptychographic coherent x-ray diffractive imaging in the water window
US8946619B2 (en) Talbot-illuminated imaging devices, systems, and methods for focal plane tuning
KR20190015531A (en) Method and Apparatus for X-ray Microscopy Observation
US20170192216A1 (en) Light Microscope and Microscopy Method
Koyama et al. Circular multilayer zone plate for high-energy x-ray nano-imaging
Allman et al. Noninterferometric quantitative phase imaging with soft x rays
US11885753B2 (en) Imaging type X-ray microscope
JP2019174245A (en) X-ray photography method and x-ray photography device
JP2016509872A (en) Large field grating interferometer for X-ray phase contrast imaging and CT at high energy
WO2014041675A1 (en) X-ray imaging device and x-ray imaging method
Sanchez del Rio et al. A novel imaging x-ray microscope based on a spherical crystal
Mirzaeimoghri et al. Nano-printed miniature compound refractive lens for desktop hard x-ray microscopy
US10741297B2 (en) 3-dimensional x-ray imager
KR101185786B1 (en) X-ray microscopy system for tomography
WO2018168621A1 (en) Radiographic image generating device
Wachulak et al. Fresnel zone plate telescope for condenser alignment in water-window microscope
EP3845892B1 (en) X-ray scattering apparatus
US11894160B2 (en) Light field X-ray optics
WO2019151095A1 (en) Radiation microscope device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7078815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150