JP2019173892A - 流量調節装置及び流量調節システム - Google Patents

流量調節装置及び流量調節システム Download PDF

Info

Publication number
JP2019173892A
JP2019173892A JP2018063519A JP2018063519A JP2019173892A JP 2019173892 A JP2019173892 A JP 2019173892A JP 2018063519 A JP2018063519 A JP 2018063519A JP 2018063519 A JP2018063519 A JP 2018063519A JP 2019173892 A JP2019173892 A JP 2019173892A
Authority
JP
Japan
Prior art keywords
flow rate
control device
rotation axis
movable blade
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018063519A
Other languages
English (en)
Inventor
龍司 中村
Ryuji Nakamura
龍司 中村
富明 上妻
Tomiaki Kamitsuma
富明 上妻
洋平 ▲高▼嶋
洋平 ▲高▼嶋
Yohei Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018063519A priority Critical patent/JP2019173892A/ja
Publication of JP2019173892A publication Critical patent/JP2019173892A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding Valves (AREA)

Abstract

【課題】流量調節装置の耐久性を向上する。【解決手段】流量調節装置は、粉体を搬送するための流体の流量を調節するための流量調節装置100であって、流体が通過する通過空間を内部に有するリング状の支持体102と、リング状の支持体に周方向に間隔をあけて配置される3以上の可動羽根110であって、可動羽根の回転軸線AX2を中心に回動可能に構成される3以上の可動羽根と、を備え、3以上の可動羽根の各々は、回転軸線を中心として、一方向側に回動することで通過空間に進入する方向に移動し、他方向側に回動することで通過空間から退避する方向に移動するように構成され、3以上の可動羽根の各々は、一方向側に形成される内周側エッジ部113と、他方向側に形成される外周側エッジ部114と、を有し、内周側エッジ部は、外周側エッジ部に向かって凹となる曲線形状を有する。【選択図】図2

Description

本開示は、流量調節装置及び流量調節システムに関する。
複数の配管の内部を流れる流体の流量を揃える必要がある場合であっても、複数の配管のそれぞれで配管の長さが異なったりベンド等の曲部の数が異なったりするなどの理由により圧力損失に違いが生じ、そのままでは複数の配管の内部を流れる流体の流量が揃わない場合がある。このような場合には、配管の途中にオリフィスやダンパなどの流量調節装置を設けることで、複数の配管の内部を流れる流体の流量を揃えることがある。
そのような事例の一つに、粉砕機で粉砕した微粉炭を、微粉炭燃焼を行うボイラに気流搬送することが挙げられる(特許文献1参照)。
特許文献1に記載のオリフィス装置では、アーチ状に形成された複数の板片が導管の軸線方向に向かって内向きに枢動できるように構成されている。特許文献1に記載のオリフィス装置では、複数の板片の位置を調節することで、オリフィス装置を通過する空気の流量を調節できる。
特開昭59−145420号公報
しかし、特許文献1に記載のオリフィス装置では、複数の板片の位置によっては、複数の板片で囲まれた流路の形状が導管の軸線方向から見て楕円形状となってしまう。この場合、長軸方向と短軸方向とで流路幅が異なるため、流速のアンバランスが生じる。流速の速いところでは、空気とともに搬送される微粉炭による摩耗がより早く進行してしまうので局部的な摩耗が生じてしまい、板片の交換頻度が高くなってしまう。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、流量調節装置の耐久性を向上することを目的とする。
(1)本発明の少なくとも一実施形態に係る流量調節装置は、
粉体を搬送するための流体の流量を調節するための流量調節装置であって、
前記流体が通過する通過空間を内部に有するリング状の支持体と、
前記リング状の支持体に周方向に間隔をあけて配置される3以上の可動羽根であって、前記可動羽根の回転軸線を中心に回動可能に構成される3以上の可動羽根と、を備え、
前記3以上の可動羽根の各々は、前記回転軸線を中心として、一方向側に回動することで前記通過空間に進入する方向に移動し、他方向側に回動することで前記通過空間から退避する方向に移動するように構成され、
前記3以上の可動羽根の各々は、前記一方向側に形成される内周側エッジ部と、前記他方向側に形成される外周側エッジ部と、を有し、
前記内周側エッジ部は、前記外周側エッジ部に向かって凹となる曲線形状を有する。
上記(1)の構成によれば、周方向に間隔をあけて配置される3以上の可動羽根の各々が、回転軸線を中心として、一方向側に回動することで通過空間に進入する方向に移動し、他方向側に回動することで通過空間から退避する方向に移動するように構成されている。そして、3以上の可動羽根の各々の内周側エッジ部は、外周側エッジ部に向かって凹となる曲線形状を有する。これにより、可動羽根の配置位置、可動羽根の移動方向、及び内周側エッジ部の形状のそれぞれ点で、流量調節装置における流体の流路を流体の流れ方向から見たときの断面形状を真円形状に近づけることができる。これにより、流量調節装置における流体の流路での流体の流速が場所によってアンバランスになることを抑制できるので、流体で搬送される粉体による局部的な摩耗を抑制でき、流量調節装置の耐久性を向上できる。
(2)幾つかの実施形態では、上記(1)の構成において、前記内周側エッジ部は、前記流体の流量の制限量が最大である最小開度位置において、前記流体が通過する略真円形の通過部を形成する第1曲線状部を含む。
上記(2)の構成によれば、内周側エッジ部が、最小開度位置において、流体が通過する略真円形の通過部を形成する第1曲線状部を含むので、流体の流路の断面積が最も小さくなって流体の流速が最も速くなるときに、通過部の形状が略真円形になる。これにより、流量調節装置によって流路を最も絞った状態でも流体の流速が場所によってアンバランスになることを抑制できるので、流体で搬送される粉体による局部的な摩耗を抑制でき、流量調節装置の耐久性を向上できる。
(3)幾つかの実施形態では、上記(2)の構成において、前記内周側エッジ部は、前記流体の流量の制限量が最小である最大開度位置において、前記流体が通過する略真円形の通過部を形成する第2曲線状部であって、前記第1曲線状部よりも前記回転軸線側に位置する第2曲線状部を含む。
上記(3)の構成によれば、内周側エッジ部が、最大開度位置において、流体が通過する略真円形の通過部を形成する第2曲線状部を含むので、流体の流路の断面積が最も大きくなって流体の流量が最も多くなるときに、通過部の形状が略真円形になる。これにより、流体を多く流そうとしたときの流量調節装置における圧力損失を小さくすることができる。また、通過部の形状が略真円形になることで、流体の流速が場所によってアンバランスになることを抑制できるので、流体で搬送される粉体による局部的な摩耗を抑制でき、流量調節装置の耐久性を向上できる。
(4)幾つかの実施形態では、上記(3)の構成において、
前記3以上の可動羽根の各々は、前記回転軸線方向の一方側の第1面と他方側の第2面とを有する第1部分と、前記第1部分よりも前記回転軸線側に位置する第2部分であって、前記一方側の第1面と前記他方側の第2面とを有する第2部分とを含み、
前記第1部分の前記第2面は、前記第2部分の前記第1面よりも前記回転軸線方向の一方側に位置している。
上記(4)の構成によれば、可動羽根の各々において、第1部分の第2面が第2部分の第1面よりも回転軸線方向の一方側に位置しているので、隣接する2つの可動羽根を接近させて配置して、一方の可動羽根の第1部分の第2面と他方の可動羽根の第2部分の第1面とが回転軸線方向から見て重なる場合であっても、隣接する2つの可動羽根同士が回転軸線方向で干渉することを防止できる。
(5)幾つかの実施形態では、上記(4)の構成において、前記第1部分の前記第1面と前記第2部分の前記第1面との間に形成される段差部は、前記第1部分の前記回転軸線を中心とする径方向外側に向けて凹となる曲線形状を有する。
上記(5)の構成によれば、上記(4)の構成を有するので、隣接する2つの可動羽根を接近させて配置して、一方の可動羽根の第1部分の第2面と他方の可動羽根の第2部分の第1面とが回転軸線方向から見て重なるようにすることができる。この場合に、他方の可動羽根の段差部が、仮に回転軸線を中心とする径方向内側に向けて凸となる曲線形状を有していた場合、一方の可動羽根の第1部分が他方の可動羽根の段差部と干渉するおそれがある。
その点、上記(5)の構成では、段差部が第1部分の前記回転軸線を中心とする径方向外側に向けて凹となる曲線形状を有するので、一方の可動羽根の第1部分が他方の可動羽根の段差部と干渉しないようにすることができる。
(6)幾つかの実施形態では、上記(3)乃至(5)の何れかの構成において、前記外周側エッジ部は、前記流体の流量の制限量が最大である最小開度位置において、前記回転軸線方向から見たときに隣接する前記可動羽根の前記第2曲線状部との間に隙間が存在しない形状に形成されている。
仮に、最小開度位置において、回転軸線方向から見たときに外周側エッジ部と、隣接する可動羽根の第2曲線状部との間に隙間が存在すると、最小開度位置において流体の流量の制限量が必ずしも最大とならず、所望する流体の流量の制限量が得られないおそれがある。
その点、上記(6)の構成では、最小開度位置において、回転軸線方向から見たときに外周側エッジ部と、隣接する可動羽根の第2曲線状部との間に隙間が存在しないので、上述したような不具合が生じない。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
前記回転軸線を中心に前記可動羽根を回転駆動する回転駆動力を伝達するための動力伝達軸をさらに備え、
前記支持体は、前記動力伝達軸を回動可能に支持する支持部を有し、
前記支持部と前記動力伝達軸との間をシールするシール部をさらに備える。
上記(7)の構成によれば、支持部と動力伝達軸との間がシール部でシールされるので、支持部と動力伝達軸との間から粉体や粉体を搬送するための流体の漏れを防止できる。
(8)本発明の少なくとも一実施形態に係る流量調節システムは、
上記(1)乃至(7)の何れかの流量調節装置と、
前記3以上の可動羽根の各々の開度位置を変更する開度位置変更装置と、
前記流量調節装置の上流側と下流側との差圧を検出する差圧検出装置と、
前記差圧検出装置で検出した前記差圧に基づいて前記開度位置変更装置に制御信号を出力して、前記開度位置を制御する制御装置と、を備える。
上記(8)の構成によれば、流量調節装置の上流側と下流側との差圧を差圧検出装置で検出し、検出した差圧に基づいて制御装置が開度位置を制御するので、例えば流量を直接測定する流量計を使用する場合と比べて、粉体を含む流体の流量を粉体による摩耗や詰まりなどの影響を受け難くなる。これにより、流量調節装置を流れる流体の流量を安定して制御できる。また、(1)乃至(7)の何れかの流量調節装置を用いるので、流量調節装置の耐久性が高く、長期にわたって流量調節装置を流れる流体の流量を安定して制御できる。
本発明の少なくとも一実施形態によれば、流量調節装置の耐久性を向上できる。
幾つかの実施形態に係る流量調節装置が用いられる配管系統の一例を示す図であり、微粉炭燃焼を行うボイラに微粉炭を供給するための微粉炭の搬送系統を示している。 搬送空気が通過する通過空間の軸線方向の一方側から見た一実施形態の流量調節装置の要部の構成を模式的に示した図である。 搬送空気が通過する通過空間の軸線方向の一方側から見た一実施形態の流量調節装置の要部の構成を模式的に示した図である。 図2及び図3に示した一実施形態の流量調節装置の可動羽根の開度位置を説明する図であり、(a)は可動羽根が最大開度位置に位置している場合を示し、(b)は可動羽根が最小開度位置に位置している場合を示す。 搬送空気が通過する通過空間の軸線方向の一方側から見た他の実施形態の流量調節装置の要部の構成を模式的に示した図である。 搬送空気が通過する通過空間の軸線方向の一方側から見た他の実施形態の流量調節装置の要部の構成を模式的に示した図である。 図5及び図6に示した他の実施形態の流量調節装置の可動羽根の形状を説明する図であり、(a)は可動羽根の平面図であり、(b)は可動羽根の側面図である。 可動羽根の回転駆動に関する構造を説明するための断面図である。 シール部について説明するための図である。 一実施形態の流量調節システムの構成を示す図である。 ボイラの試運転時における差圧の目標値の設定に関する処理の手順を示したフローチャートである。 ボイラの通常運転時における流量調節装置の各可動羽根の開度位置の制御に関する処理を示したフローチャートである。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、幾つかの実施形態に係る流量調節装置が用いられる配管系統の一例を示す図であり、微粉炭燃焼を行うボイラに微粉炭を供給するための微粉炭の搬送系統を示している。
一実施形態に係る配管系統1は、複数の微粉炭管30を備える。図1に示す例では、一実施形態に係る配管系統1は、例えば第1配管31から第4配管34までの4本の微粉炭管30を備える。なお、配管系統1が備える微粉炭管30の本数は4本には限られない。
複数の微粉炭管30の各々は、石炭を粉砕する微粉砕機10と、微粉砕機10で粉砕された微粉炭を燃料とするボイラ20とを接続する。より具体的には、各配管31〜34は、それぞれ、上流側が微粉砕機10に接続され、下流側がボイラ20に設置された4つのバーナ22のそれぞれに接続されている。各配管31〜34には、後で詳述する流量調節装置100が設置されている。
図示しない石炭供給装置によって微粉砕機10に供給された石炭は、微粉砕機10で粉砕され、図示しない送風装置によって微粉砕機10に供給された空気(搬送空気)とともに各配管31〜34を介してボイラ20のバーナ22に供給され、火炉21内で燃焼される。なお、搬送空気は、微粉炭の燃焼用の空気の一部でもあり、一次空気とも呼ばれる。
図1に示した一実施形態のボイラ20は、例えば旋回燃焼方式のボイラであり、バーナ22が4つのコーナにそれぞれ配置されており、各バーナ22に微粉砕機10から微粉炭が供給される。
図1に示した一実施形態のボイラ20では、微粉砕機10からの各バーナ22の配置位置が異なるため、各配管31〜34で、配管長やベンド等の曲部の数が異なる場合があり、各配管31〜34で圧力損失が相違する場合がある。各配管31〜34からバーナ22に供給される微粉炭の量は、各配管31〜34のそれぞれを流れる搬送空気の流量に概ね比例するため、各配管31〜34における圧力損失が相違すると、各配管31〜34のそれぞれを流れる搬送空気の流量が相違し、各バーナ22に供給される微粉炭の量も相違することとなる。
しかし、例えば旋回燃焼方式のボイラでは、各コーナに配置されたバーナ22に供給される微粉炭の量を等しくして安定した燃焼を行わせる必要がある。そのため、一実施形態に係る配管系統1では、各微粉炭管30に設置した流量調節装置100によって、各配管31〜34を流れる搬送空気の流量が等しくなるようにすることで、各バーナ22に供給される微粉炭の量が等しくなるようにしている。
また、流量調節装置100内を流れる微粉炭によって流量調節装置100の内部が摩耗すると、微粉炭管30を流れる搬送空気の流量が経時的に変化してしまうため、一実施形態に係る配管系統1では、後述するように、ボイラ20の運転中にも流量調節装置100を流れる搬送空気の流量を調節するようにしている。
(流量調節装置100について)
以下、幾つかの実施形態に係る流量調節装置100について、図2〜図9を参照して説明する。
図2及び図3は、流体、すなわち搬送空気が通過する通過空間の軸線方向の一方側から見た一実施形態の流量調節装置100の要部の構成を模式的に示した図である。図2は、後述する可動羽根110が最大開度位置に位置している場合を示し、図3は、可動羽根110が最小開度位置に位置している場合を示す。
図4は、図2及び図3に示した一実施形態の流量調節装置100の可動羽根110の開度位置を説明する図であり、図4(a)は、可動羽根110が最大開度位置に位置している場合を示し、図4(b)は、可動羽根110が最小開度位置に位置している場合を示す。
図5及び図6は、搬送空気が通過する通過空間の軸線方向の一方側から見た他の実施形態の流量調節装置100の要部の構成を模式的に示した図である。図5は、後述する可動羽根110が後述する最大開度位置に位置している場合を示し、図6は、可動羽根110が後述する最小開度位置に位置している場合を示す。
図7は、図5及び図6に示した他の実施形態の流量調節装置100の可動羽根110の形状を説明する図であり、図7(a)は、可動羽根110の平面図であり、図7(b)は、可動羽根110の側面図である。
図8は、可動羽根110の回転駆動に関する構造を説明するための断面図であり、搬送空気が通過する通過空間の軸線方向に沿った断面を示している。
図9は、後述するシール部107について説明するための図である。
幾つかの実施形態に係る流量調節装置100は、図2,3,5,6に示すように、搬送空気が通過する通過空間101に複数の可動羽根110を回動させ挿抜することで、通過空間101の軸線AX1方向から見たときの通過空間101の断面積、すなわち流路断面積を変更して、通過空間101を通過する搬送空気の流量を変更するための装置である。すなわち、幾つかの実施形態に係る流量調節装置100は、可動羽根110の移動によってオリフィス径を変更することができる可変オリフィス装置である。
幾つかの実施形態に係る流量調節装置100は、図2,3,5,6に示すように、搬送空気が通過する通過空間101を内部に有するリング状の支持体102と、リング状の支持体102に周方向に間隔をあけて配置される複数の可動羽根110とを備える。複数の可動羽根110のそれぞれは、可動羽根110の回転軸線AX2を中心に回動可能に構成される。
なお、幾つかの実施形態に係る流量調節装置100では、可動羽根110の数は3以上とされる。例えば図2,3に示した一実施形態の流量調節装置100は、可動羽根110の数を6とした場合の一例である。また、例えば図5,6に示した他の実施形態の流量調節装置100は、可動羽根110の数を10とした場合の一例である。
幾つかの実施形態に係る流量調節装置100では、複数の可動羽根110の各々は、回転軸線AX2を中心として、一方向側、すなわち図2〜6において反時計方向に回動することで通過空間101に進入する方向に移動するように構成されている。複数の可動羽根110の各々は、回転軸線AX2を中心として、他方向側、すなわち図2〜6において時計方向に回動することで通過空間101から退避する方向に移動するように構成されている。
複数の可動羽根110の各々は、上記一方向側に形成される内周側エッジ部113と、上記他方向側に形成される外周側エッジ部114と、を有する。幾つかの実施形態では、内周側エッジ部113は、外周側エッジ部114に向かって凹となる曲線形状を有する。
幾つかの実施形態に係る流量調節装置100では、複数の可動羽根110の各々が回転軸線AX2を中心として、図2〜6において反時計方向に回動することで通過空間101に進入し、通過空間101の断面積(流路断面積)を小さくしている。図3及び図6は、複数の可動羽根110が図示反時計方向に最も回動して、可変オリフィスとしての開度が最小となった最小開度の時の状態を示している。図3及び図6に示した最小開度となる可動羽根110の開度位置を最小開度位置と呼ぶ。
同様に、幾つかの実施形態に係る流量調節装置100では、複数の可動羽根110の各々が回転軸線AX2を中心として、図2〜6において時計方向に回動することで通過空間101から退避し、通過空間101の断面積(流路断面積)を大きくしている。図2及び図5は、複数の可動羽根110が図示時計方向に最も回動して、可変オリフィスとしての開度が最大となった最大開度の時の状態を示している。図2及び図5に示した最大開度となる可動羽根110の開度位置を最大開度位置と呼ぶ。
このように、幾つかの実施形態に係る流量調節装置100は、複数の可動羽根110が最大開度位置と最小開度位置の間を移動することで流路面積を変更して、通過空間101を流れる搬送空気の流量を調節するように構成されている。
幾つかの実施形態に係る流量調節装置100では、上述したように、周方向に間隔をあけて配置される3以上の可動羽根110の各々が、回転軸線AX2を中心として、一方向側に回動することで通過空間101に進入する方向に移動し、他方向側に回動することで通過空間101から退避する方向に移動するように構成されている。そして、3以上の可動羽根110の各々の内周側エッジ部113は、外周側エッジ部114に向かって凹となる曲線形状を有する。これにより、可動羽根110の配置位置、可動羽根110の移動方向、及び内周側エッジ部113の形状のそれぞれ点で、流量調節装置100における搬送空気の流路を搬送空気の流れ方向から見たときの断面形状を真円形状に近づけることができる。
より具体的には、幾つかの実施形態に係る流量調節装置100では、3以上の可動羽根110の各々を周方向に間隔をあけて配置することで、3以上の可動羽根110の配置位置が円形のリング形状を呈する支持体102の周方向に沿って分散される。
また、各可動羽根110を、回転軸線AX2を中心として図示反時計方向に回動させて通過空間101に進入させるので、各可動羽根110で進入量、すなわち回動量を揃えれば、支持体102の周方向に沿って3か所以上に分散して配置された各可動羽根110が、通過空間101の軸線AX1に向かって同じように移動する。
また、各可動羽根110の内周側エッジ部113が外周側エッジ部114に向かって凹となる曲線形状を有することで、内周側エッジ部113の曲率の中心が内周側エッジ部113よりも通過空間101の径方向内側に位置することになる。そのため、通過空間101の軸線AX1方向から見たときの内周側エッジ部113の形状は、軸線AX1を中心とする円の円弧の形状に近づく。
これらのことから、幾つかの実施形態に係る流量調節装置100では、例えば図3,6に示すように、流量調節装置100における搬送空気の流路を搬送空気の流れ方向から見たときの断面形状を真円形状に近づけることができる。これにより、幾つかの実施形態に係る流量調節装置100では、流量調節装置100における搬送空気の流路での搬送空気の流速が場所によってアンバランスになることを抑制できるので、搬送空気で搬送される粉体による局部的な摩耗を抑制でき、流量調節装置100の耐久性を向上できる。
(可動羽根110の形状について)
以下、幾つかの実施形態に係る流量調節装置100の可動羽根110の形状について説明する。なお、以下の説明では、図2,3に示した一実施形態の流量調節装置100の可動羽根110については、符号の後にアルファベットのAを付して表すこともあり、図5,6に示した他の実施形態の流量調節装置100の可動羽根110については、符号の後にアルファベットのBを付して表すこともある。また、図2,3に示した一実施形態に係る可動羽根110Aと、図5,6に示した他の実施形態に係る可動羽根110Bとを特に区別する必要がない場合には、符号の後にアルファベットのAやBを付さずに、単に可動羽根110と表すこととする。
図2,3,5,6に示す幾つかの実施形態に係る流量調節装置100では、内周側エッジ部113は、搬送空気の流量の制限量が最大である最小開度位置において、搬送空気が通過する略真円形の通過部103を形成する第1曲線状部113aを含む。
これにより、搬送空気の流路の断面積が最も小さくなって搬送空気の流速が最も速くなるときに、通過部103の形状が略真円形になる。これにより、流量調節装置100によって流路を最も絞った状態でも搬送空気の流速が場所によってアンバランスになることを抑制できるので、搬送空気で搬送される粉体である微粉炭による局部的な摩耗を抑制でき、流量調節装置100の耐久性を向上できる。
図2,3,5,6に示す幾つかの実施形態に係る流量調節装置100では、内周側エッジ部113は、搬送空気の流量の制限量が最小である最大開度位置において、搬送空気が通過する略真円形の通過部104を形成する第2曲線状部113bであって、第1曲線状部113aよりも回転軸線AX2側に位置する第2曲線状部113bを含む。
これにより、搬送空気の流路の断面積が最も大きくなって搬送空気の流量が最も多くなるときに、通過部104の形状が略真円形になる。これにより、搬送空気を多く流そうとしたときの流量調節装置100における圧力損失を小さくすることができる。また、通過部104の形状が略真円形になることで、搬送空気の流速が場所によってアンバランスになることを抑制できるので、搬送空気で搬送される粉体である微粉炭による局部的な摩耗を抑制でき、流量調節装置100の耐久性を向上できる。
なお、可動羽根110は、耐摩耗性を確保するために、耐摩耗材料によって構成することが望ましい。また、可動羽根110の表面にセラミックス製のライナを張り付けたり、セラミックス材料を溶射することでセラミックスの溶射膜を可動羽根110の表面に形成したりするようにしてもよい。
以下、可動羽根110の形状について、さらに説明する。図2,3に示した一実施形態に係る可動羽根110Aと、図5,6に示した他の実施形態に係る可動羽根110Bとでは、大きさや各部の寸法比などで異なる点もあるが、同様の構成である。
そこで、以下の説明では、他の実施形態に係る可動羽根110Bについての図7を参照して可動羽根110の形状を説明し、一実施形態に係る可動羽根110Aについての説明を省略するが、一実施形態の流量調節装置100の可動羽根110Aについても他の実施形態に係る可動羽根110Bと同様である。
幾つかの実施形態では、各可動羽根110は、回転軸線AX2方向の一方側の第1面111aと他方側の第2面111bとを有する第1部分111を含む。幾つかの実施形態では、各可動羽根110は、第1部分111よりも回転軸線AX2側に位置する第2部分112であって、上記一方側の第1面112aと上記他方側の第2面112bとを有する第2部分112とを含む。
ここで、回転軸線AX2方向の一方側は、図7(a)における紙面手前側であり、図7(b)における紙面上方である。また、回転軸線AX2方向の他方側は、図7(a)における紙面奥側であり、図7(b)における紙面下方である。
第1部分111の第2面111bは、第2部分112の第1面112aよりも回転軸線AX2方向の一方側に位置している。
このように、幾つかの実施形態では、各可動羽根110の各々において、第1部分111の第2面111bが第2部分112の第1面112aよりも回転軸線AX2方向の一方側に位置しているので、図2,3,5,6に示すように、隣接する2つの可動羽根110を接近させて配置して、一方の可動羽根110の第1部分111の第2面111bと他方の可動羽根110の第2部分112の第1面112aとが回転軸線AX2方向から見て重なる場合であっても、隣接する2つの可動羽根110同士が回転軸線AX2方向で干渉することを防止できる。
幾つかの実施形態では、第1部分111の第1面111aと第2部分112の第1面112aとの間に形成される段差部115は、第1部分111の回転軸線AX2を中心とする径方向外側に向けて凹となる曲線形状を有する。
幾つかの実施形態では、図2,3,5,6に示すように、隣接する2つの可動羽根110を接近させて配置して、一方の可動羽根110の第1部分111の第2面111bと他方の可動羽根110の第2部分112の第1面112aとが回転軸線AX2方向から見て重なるようにすることができる。この場合に、他方の可動羽根110の段差部115が、仮に回転軸線AX2を中心とする径方向内側に向けて凸となる曲線形状を有していた場合、一方の可動羽根110の第1部分111が他方の可動羽根110の段差部115と干渉するおそれがある。
その点、幾つかの実施形態では、段差部115が第1部分111の回転軸線AX2を中心とする径方向外側に向けて凹となる曲線形状を有するので、一方の可動羽根110の第1部分111が他方の可動羽根110の段差部115と干渉しないようにすることができる。
また、可動羽根110の開度位置によっては、隣接する2つの可動羽根110の一方の可動羽根110において回転軸線AX2から最も遠い位置となる第1部分111の先端部116と、他方の可動羽根110の段差部115とが対向する。したがって、段差部115が第1部分111の回転軸線AX2を中心とする径方向外側に向けて凹となる曲線形状を有するようにすることで、隣接する2つの可動羽根110の一方の可動羽根110の第1部分111の先端部116と、他方の可動羽根110の段差部115とが対向した場合の離間距離が小さくなるようにすることができる。すなわち、隣接する2つの可動羽根110を回転軸線AX2を中心に回動させた場合に、一方の可動羽根110の第1部分111の先端部116が他方の可動羽根110の第2部分の第1面112a上で描く軌跡117(図7(a)参照)に他方の可動羽根110の段差部115を近づけることができる。
これにより、隣接する2つの可動羽根110の一方の可動羽根110の第1部分111の先端部116と、他方の可動羽根110の段差部115との間の間隔が狭まるので、一方の可動羽根110の第1部分111の先端部116と、他方の可動羽根110の段差部115との間を搬送空気や微粉炭が通過することを抑制できる。これにより、先端部116や段差部115の摩耗を抑制できる。
幾つかの実施形態では、外周側エッジ部114は、搬送空気の流量の制限量が最大である最小開度位置において、回転軸線AX2方向から見たときに隣接する可動羽根110の第2曲線状部113bとの間に隙間が存在しない形状に形成されている。
仮に、最小開度位置において、回転軸線AX2方向から見たときに外周側エッジ部114と、隣接する可動羽根110の第2曲線状部113bとの間に隙間が存在すると、最小開度位置において搬送空気の流量の制限量が必ずしも最大とならず、所望する搬送空気の流量の制限量が得られないおそれがある。
その点、幾つかの実施形態では、最小開度位置において、回転軸線AX2方向から見たときに外周側エッジ部114と、隣接する可動羽根110の第2曲線状部113bとの間に隙間が存在しないので、上述したような不具合が生じない。
(可動羽根110の駆動機構について)
以下、図8及び図9を参照して、可動羽根110の駆動機構について説明する。
図8は、幾つかの実施形態に係る可動羽根110の駆動装置200の一実施形態の構造を示している。図9は、図8の要部を拡大した図である。
幾つかの実施形態に係る流量調節装置100は、駆動装置200を有する。一実施形態の駆動装置200は、例えば複数の可動羽根110毎に複数設けられている。
一実施形態の駆動装置200は、駆動モータ201と、複数の動力伝達軸210とを備えている。動力伝達軸は、例えば駆動モータの出力軸202に接続された第1動力伝達軸211と、第1動力伝達軸211からの回転駆動力で回動される第2動力伝達軸212とを含む。
第2動力伝達軸212は、その軸線が可動羽根110の回転軸線AX2と一致するように配置され、流量調節装置100の支持体102の支持部106に回動可能に軸支されている。第2動力伝達軸212の図示下端にはかさ歯歯車212aが形成されており、第1動力伝達軸211の先端に形成されたかさ歯歯車211aとかみ合っている。
第2動力伝達軸212には、板状部材213が固定されている。第2動力伝達軸212は板状部材213を貫通している。板状部材213の図示上面には、第2動力伝達軸212の軸線(すなわち可動羽根110の回転軸線AX2)からオフセットされた位置に軸214の一端が取り付けられている。軸214の他端は、可動羽根110の第2部分112の第2面112bにおける、回転軸線AX2からオフセットされた位置に取り付けられている。
このように構成される一実施形態の駆動装置200の駆動モータ201が駆動されると出力軸202及び第1動力伝達軸211が第2動力伝達軸212を回転軸線AX2を中心に回転させる。第2動力伝達軸212が回転軸線AX2を中心に回転すると、板状部材、軸214及び可動羽根110が回転軸線AX2を中心に回転する。
このように、幾つかの実施形態に係る流量調節装置100は、回転軸線AX2を中心に可動羽根110を回転駆動する回転駆動力を伝達するための動力伝達軸210を備える。そして、支持体102は、動力伝達軸210を回動可能に支持する支持部106を有する。また、幾つかの実施形態に係る流量調節装置100は、支持部106と動力伝達軸210との間をシールするシール部107を備える。
これにより、支持部106と動力伝達軸210との間から微粉炭や微粉炭の搬送空気の漏れを防止できる。
なお、シール部107には、例えばシール部材としてグランドパッキンが用いられる。これにより、簡易で安価な構成によって、支持部106と動力伝達軸210との間をシールすることができる。なお、シール部107には、グランドパッキン以外にも、粉体用のメカニカルシール等も用いることができる。
なお、以下の構成により、1つの駆動モータで1つの流量調節装置100における複数の可動羽根110の全てを回動させるようにしてもよい。
例えば、複数の第2動力伝達軸212のそれぞれの外周に外歯歯車を形成し、これら複数の外歯歯車のそれぞれと内周側の歯車でかみ合う1つの内歯歯車を設ける。この1つの内歯歯車を1つの駆動モータによって駆動することで、全ての第2動力伝達軸212を回動させることができる。これにより、1つの駆動モータで複数の可動羽根110を回動させることができる。
(流量調節システムについて)
以下、上述した幾つかの実施形態に係る流量調節装置100を用いた流量調節システムについて説明する。図10は、一実施形態の流量調節システムの構成を示す図である。
一実施形態の流量調節システム2は、流量調節装置100と、各可動羽根110の開度位置を変更する開度位置変更装置としての駆動装置200と、差圧検出装置3と、制御装置5とを備える。
差圧検出装置3は、例えば流量調節装置100の上流側と下流側とに設けた圧力センサである。流量調節装置100の上流側の圧力センサ3aと、流量調節装置100の下流側の圧力センサ3bとによって、流量調節装置100の上流側と下流側との差圧を検出することができる。
制御装置5は、例えばCPU5aとその周辺回路を備えている。制御装置5は、差圧検出装置3で検出した流量調節装置100の上流側と下流側との差圧に基づいて駆動装置200に制御信号を出力して、各可動羽根110の開度位置を制御する。
これにより、例えば流量を直接測定する流量計を使用する場合と比べて、粉体を含む搬送空気の流量を粉体による摩耗や詰まりなどの影響を受け難くなる。したがって、流量調節装置100を流れる搬送空気の流量を安定して制御できる。また、上述した幾つかの実施形態に係る流量調節装置100を用いるので、流量調節装置100の耐久性が高く、長期にわたって流量調節装置100を流れる搬送空気の流量を安定して制御できる。
(流量の調節方法について)
以下、上述した幾つかの実施形態に係る流量調節装置100を用いた搬送空気の流量、すなわち給炭量の調節方法について説明する。
上述したように、図1に示した一実施形態のボイラ20では、各バーナ22の配置位置が異なるため、各配管31〜34で圧力損失が相違する場合がある。そのため、一実施形態に係る配管系統1では、各微粉炭管30に設置した流量調節装置100によって、各配管31〜34を流れる搬送空気の流量が等しくなるようにすることで、各バーナ22に供給される微粉炭の量が等しくなるようにしている。
具体的には、ボイラ20の試運転時に各配管31〜34に微粉炭を含まない試験用の空気(試験空気)を流し、各配管31〜34の出口における試験空気の流量がそれぞれ目標流量Qtとなるように各配管31〜34に設置した各流量調節装置100の可動羽根110の開度位置を調節する。
各配管31〜34の出口における試験空気の流量がそれぞれ目標流量Qtとなるように各流量調節装置100の可動羽根110の開度位置が調節された後、各配管31〜34における流量調節装置100の上流側と下流側との差圧を計測する。このようにして計測された差圧が、ボイラ20の運転時における流量調節装置100の上流側と下流側との差圧△Pの目標値△Ptとなる。以下の説明では、流量調節装置100の上流側と下流側との差圧△Pを、流量調節装置100における差圧△P、又は、単に差圧△Pと呼ぶこともある。
(試運転時の流量の調節方法について)
図11は、ボイラ20の試運転時における差圧の目標値△Ptの設定に関する処理の手順を示したフローチャートである。
まずステップS11において、各配管31〜34からの給炭量の目標値(目標給炭量)Ftから微粉炭を搬送する搬送空気の目標流量Qtを設定する。
次いで、ステップS13において、各配管31〜34に試験空気の供給を開始し、ステップS15において、各配管31〜34の出口で試験空気の流量Qを測定する。
そして、ステップS17において、ステップS15で測定した各配管31〜34の出口での試験空気の流量Qが目標流量Qtと等しいか否かを判断する。なお、ステップS17では、ステップS15で測定した各配管31〜34の出口での試験空気の流量Qが目標流量Qtに対して例えば±数パーセントの差があっても、目標流量Qtと等しいとみなすこととする。
ステップS17において、ステップS15で測定した各配管31〜34の出口での試験空気の流量Qが目標流量Qtと等しくないと判断された配管に関しては、ステップS19において、該配管の流量調節装置100の可動羽根110の開度位置を変更し、再びステップS15において、該配管の出口で試験空気の流量を測定する。
ステップS17において、ステップS15で測定した各配管31〜34の出口での試験空気の流量Qが目標流量Qtと等しいと判断されると、ステップS21へ進み、各流量調節装置100における差圧△Pをそれぞれ測定し、目標差圧△Ptとして設定する。例えば、第1配管31については、第1配管31に設置された流量調節装置100における差圧△Pを測定し、測定値を第1配管31に設置された流量調節装置100についての目標差圧△Ptとして設定する。
同様に、第2配管32については、第2配管32に設置された流量調節装置100における差圧△Pを測定し、測定値を第2配管32に設置された流量調節装置100についての目標差圧△Ptとして設定する。
第3配管33については、第3配管33に設置された流量調節装置100における差圧△Pを測定し、測定値を第3配管33に設置された流量調節装置100についての目標差圧△Ptとして設定する。
第4配管34については、第4配管34に設置された流量調節装置100における差圧△Pを測定し、測定値を第4配管34に設置された流量調節装置100についての目標差圧△Ptとして設定する。
幾つかの実施形態では、上述したよう流量調節装置100を用いることで、例えば、オリフィス径の変更のためにオリフィス板を交換しなければならない従来のオリフィス装置と比べて、試運転時の搬送空気の流量を容易に調節できる。
(通常運転時の流量の調節方法について)
上述したように、図1に示した一実施形態のボイラ20では、流量調節装置100内を流れる微粉炭によって流量調節装置100の内部が摩耗すると、微粉炭管30を流れる搬送空気の流量が経時的に変化してしまう。そのため、一実施形態に係る配管系統1では、以下で説明するように、ボイラ20の運転中にも流量調節装置100を流れる搬送空気の流量を調節するようにしている。
図12は、ボイラ20の通常運転時における流量調節装置100の各可動羽根110の開度位置の制御に関する処理を示したフローチャートである。図10に示す一実施形態の制御装置5のCPU5aは、ボイラ20の通常運転が開始されると、不図示のメモリからプログラムを読み込んで、図12のフローチャートに係る処理を開始して、ボイラ20の通常運転中に繰り返し実行する。
なお、以下の説明では、説明の便宜上、1つの流量調節装置100の可動羽根110の開度位置の制御について説明する。なお、CPU5aは、各配管31〜34に設置された流量調節装置100のそれぞれについて、以下で説明する処理を個別に行うことで、各流量調節装置100の可動羽根110の開度位置を制御する。
ステップS31において、CPU5aは、目標給炭量Ftに変更がないか否かを判断する。
ステップS31で目標給炭量Ftに変更がないと判断されると、後述するステップS35へ進む。ステップS31で目標給炭量Ftに変更があると判断されるとステップS33へ進み、CPU5aは、変更後の目標給炭量Ftαに基づいて目標差圧△Ptを変更する。
具体的には、CPU5aは、次のようにして目標差圧△Ptを変更する。
目標給炭量Ftと搬送空気の目標流量Qtとは概ね比例関係にある。そこで、CPU5aは、以下の(1)式から搬送空気の目標流量Qtの変更後の値(変更後の目標流量)Qtαを算出する。
Qtα=Q×(Ftα/Ft) ・・・(1)
また、目標差圧△Ptは搬送空気の目標流量Qtの二乗に比例する。そこでCPU5aは、以下の(2)式から目標差圧△Ptの変更後の値(変更後の目標差圧)△Ptαを算出する。
△Ptα=△Pt×(Qtα/Qt) ・・・(2)
CPU5aは、上述のようにして得られた変更後の目標差圧△Ptαを新たな目標差圧として設定する。
ステップS31が肯定判断されるか、ステップS31が否定判断された後ステップS33が実行されるとステップS35へ進み、CPU5aは、流量調節装置100における差圧△Pの値を取得する。具体的には、CPU5aは、流量調節装置100の上流側の圧力センサ3aの測定値と、流量調節装置100の下流側の圧力センサ3bの測定値とから、差圧△Pを算出する。
ステップS37において、CPU5aは、ステップS31が肯定判断されていた場合には、ステップS35で算出した差圧△Pと目標差圧△Ptとが等しいか否かを判断し、ステップS33が実行されていた場合には、ステップS35で算出した差圧△PとステップS33で算出した変更後の目標差圧△Ptαとが等しいか否かを判断する。
なお、図11におけるステップS17の場合と同様に、ステップS35で算出した差圧△Pが目標差圧△Ptに対して例えば±数パーセントの差があっても、目標差圧△Ptと等しいとみなすこととする。同様に、ステップS35で算出した差圧△Pが変更後の目標差圧△Ptαに対して例えば±数パーセントの差があっても、変更後の目標差圧△Ptαと等しいとみなすこととする。
ステップS37が肯定判断されると、CPU5aは本プログラムを終了する。なお、上述したように、CPU5aは、本プログラムをボイラ20の通常運転中に繰り返し実行する。
ステップS37が否定判断されるとステップS39へ進み、CPU5aは、差圧△Pが目標差圧△Pt又は変更後の目標差圧△Ptαに近づくように、各可動羽根110の開度位置を変更する制御信号(開度位置変更信号)を駆動装置200に出力して、ステップS35へ戻る。
幾つかの実施形態では、上述したように、ボイラ20の運転中に流量調節装置100における差圧△Pが自動的に調節されるので、ボイラ20における燃焼状態を安定化できる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、上述した幾つかの実施形態では、外周側エッジ部114は、搬送空気の流量の制限量が最大である最小開度位置において、軸線AX1方向(回転軸線AX2方向)から見たときに隣接する可動羽根110の第2曲線状部113bとの間に隙間が存在しない形状に形成されている。しかし、ボイラ20における燃焼状態に悪影響を与えない範囲で外周側エッジ部114と第2曲線状部113bとの間に隙間が存在していてもよい。
上述の説明では、幾つかの実施形態に係る流量調節装置100は、微粉炭燃焼を行うボイラ20に微粉炭を供給するための微粉炭の配管系統1に設置されている。しかし、幾つかの実施形態に係る流量調節装置100を微粉炭の配管系統1以外の配管系統に設置してもよい。例えば、微粉炭と同様、ミルで粉砕したバイオマス燃料や石油コークスを、ボイラ20に供給するための配管系統に設置してもよい。また、研磨材の製造工程において研磨材の粉末を空気で搬送する配管系統や、小麦粉を粉砕して空気で搬送する配管系統等に幾つかの実施形態に係る流量調節装置100を設置してもよい。
1 配管系統
2 流量調節システム
3 差圧検出装置
5 制御装置
5a CPU
10 微粉砕機
20 ボイラ
22 バーナ
30 微粉炭管
31 第1配管(配管)
32 第2配管(配管)
33 第3配管(配管)
34 第4配管(配管)
100 流量調節装置
101 通過空間
102 支持体
103,104 通過部
106 支持部
110,110A,110B 可動羽根
111 第1部分
111a 第1面
111b 第2面
112 第2部分
112a 第1面
112b 第2面
113 内周側エッジ部
113a 第1曲線状部
113b 第2曲線状部
114 外周側エッジ部
115 段差部
200 駆動装置
201 駆動モータ
210 動力伝達軸

Claims (8)

  1. 粉体を搬送するための流体の流量を調節するための流量調節装置であって、
    前記流体が通過する通過空間を内部に有するリング状の支持体と、
    前記リング状の支持体に周方向に間隔をあけて配置される3以上の可動羽根であって、前記可動羽根の回転軸線を中心に回動可能に構成される3以上の可動羽根と、を備え、
    前記3以上の可動羽根の各々は、前記回転軸線を中心として、一方向側に回動することで前記通過空間に進入する方向に移動し、他方向側に回動することで前記通過空間から退避する方向に移動するように構成され、
    前記3以上の可動羽根の各々は、前記一方向側に形成される内周側エッジ部と、前記他方向側に形成される外周側エッジ部と、を有し、
    前記内周側エッジ部は、前記外周側エッジ部に向かって凹となる曲線形状を有する
    流量調節装置。
  2. 前記内周側エッジ部は、前記流体の流量の制限量が最大である最小開度位置において、前記流体が通過する略真円形の通過部を形成する第1曲線状部を含む
    請求項1に記載の流量調節装置。
  3. 前記内周側エッジ部は、前記流体の流量の制限量が最小である最大開度位置において、前記流体が通過する略真円形の通過部を形成する第2曲線状部であって、前記第1曲線状部よりも前記回転軸線側に位置する第2曲線状部を含む
    請求項2に記載の流量調節装置。
  4. 前記3以上の可動羽根の各々は、前記回転軸線方向の一方側の第1面と他方側の第2面とを有する第1部分と、前記第1部分よりも前記回転軸線側に位置する第2部分であって、前記一方側の第1面と前記他方側の第2面とを有する第2部分とを含み、
    前記第1部分の前記第2面は、前記第2部分の前記第1面よりも前記回転軸線方向の一方側に位置している
    請求項3に記載の流量調節装置。
  5. 前記第1部分の前記第1面と前記第2部分の前記第1面との間に形成される段差部は、前記第1部分の前記回転軸線を中心とする径方向外側に向けて凹となる曲線形状を有する
    請求項4に記載の流量調節装置。
  6. 前記外周側エッジ部は、前記流体の流量の制限量が最大である最小開度位置において、前記回転軸線方向から見たときに隣接する前記可動羽根の前記第2曲線状部との間に隙間が存在しない形状に形成されている
    請求項3乃至5の何れか一項に記載の流量調節装置。
  7. 前記回転軸線を中心に前記可動羽根を回転駆動する回転駆動力を伝達するための動力伝達軸をさらに備え、
    前記支持体は、前記動力伝達軸を回動可能に支持する支持部を有し、
    前記支持部と前記動力伝達軸との間をシールするシール部をさらに備える
    請求項1乃至6の何れか一項に記載の流量調節装置。
  8. 請求項1乃至7の何れか一項に記載の流量調節装置と、
    前記3以上の可動羽根の各々の開度位置を変更する開度位置変更装置と、
    前記流量調節装置の上流側と下流側との差圧を検出する差圧検出装置と、
    前記差圧検出装置で検出した前記差圧に基づいて前記開度位置変更装置に制御信号を出力して、前記開度位置を制御する制御装置と、を備える
    流量調節システム。
JP2018063519A 2018-03-29 2018-03-29 流量調節装置及び流量調節システム Pending JP2019173892A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063519A JP2019173892A (ja) 2018-03-29 2018-03-29 流量調節装置及び流量調節システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063519A JP2019173892A (ja) 2018-03-29 2018-03-29 流量調節装置及び流量調節システム

Publications (1)

Publication Number Publication Date
JP2019173892A true JP2019173892A (ja) 2019-10-10

Family

ID=68166779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063519A Pending JP2019173892A (ja) 2018-03-29 2018-03-29 流量調節装置及び流量調節システム

Country Status (1)

Country Link
JP (1) JP2019173892A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075157A1 (ja) * 2019-10-16 2021-04-22
CN113685643A (zh) * 2021-08-27 2021-11-23 中国核动力研究设计院 一种变径节流孔板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145420A (ja) * 1983-01-24 1984-08-20 コンバッション・エンヂニアリング・インコ−ポレ−テッド 導管用の調節自在なオリフィス装置
JPH04108140U (ja) * 1991-02-27 1992-09-18 三菱重工業株式会社 粉体加圧供給装置
JP3149153U (ja) * 2008-12-26 2009-03-12 日本バルカー工業株式会社 コンダクタンス調整装置
JP2010112391A (ja) * 2008-11-04 2010-05-20 Covalent Materials Corp 減圧排気弁及びこの減圧排気弁を含む減圧排気機構を用いた減圧装置
JP2014109497A (ja) * 2012-12-03 2014-06-12 Hino Motors Ltd ガス流量計測装置
US20170298953A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger
US20170298943A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145420A (ja) * 1983-01-24 1984-08-20 コンバッション・エンヂニアリング・インコ−ポレ−テッド 導管用の調節自在なオリフィス装置
JPH04108140U (ja) * 1991-02-27 1992-09-18 三菱重工業株式会社 粉体加圧供給装置
JP2010112391A (ja) * 2008-11-04 2010-05-20 Covalent Materials Corp 減圧排気弁及びこの減圧排気弁を含む減圧排気機構を用いた減圧装置
JP3149153U (ja) * 2008-12-26 2009-03-12 日本バルカー工業株式会社 コンダクタンス調整装置
JP2014109497A (ja) * 2012-12-03 2014-06-12 Hino Motors Ltd ガス流量計測装置
US20170298953A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger
US20170298943A1 (en) * 2016-04-19 2017-10-19 Honeywell International Inc. Adjustable-trim centrifugal compressor for a turbocharger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075157A1 (ja) * 2019-10-16 2021-04-22
JP7243849B2 (ja) 2019-10-16 2023-03-22 株式会社Ihi 遠心圧縮機
US11754093B2 (en) 2019-10-16 2023-09-12 Ihi Corporation Centrifugal compressor
CN113685643A (zh) * 2021-08-27 2021-11-23 中国核动力研究设计院 一种变径节流孔板

Similar Documents

Publication Publication Date Title
WO2009093346A1 (ja) ローラミル構造
JP5984399B2 (ja) 石炭流均衡装置
KR101891454B1 (ko) 고체 연료 분쇄 장치 및 그 제어 방법
JP2019173892A (ja) 流量調節装置及び流量調節システム
KR101962583B1 (ko) 고체 연료 버너
EP2500647A2 (en) Coal flow splitters and distributor devices
JP5490924B2 (ja) 固体燃料バーナおよび前記バーナを用いる燃焼装置
CN108413442B (zh) 一种变流量旋流器
CN110067776B (zh) 用于压缩机的扩散器
KR900009047B1 (ko) 버너 송풍 장치
US9926939B2 (en) System for drawing solid feed into and/or out of a solid feed pump
US7549382B2 (en) On-line coal flow control mechanism for vertical spindle mills
US20110239915A1 (en) Adjustable Diffusing Coal Valve
CN213019736U (zh) 一次风管煤粉浓度调节件及磨煤机煤粉分配器
CN213000500U (zh) 一种磨煤机煤粉分配器
US20170023035A1 (en) Concentric flow variable orifices for gas and particulate flow balance
US2921542A (en) Fluid fuel burner
KR102575119B1 (ko) 부분 송입 터빈에 사용되는 손실 저감 장치 및 부분 송입 터빈
JP2020172895A (ja) 静翼ユニットおよび圧縮機並びにガスタービン
CN115539942A (zh) 用于深度调峰的一次风粉系统
JP2020008221A (ja) 固体燃料バーナ
KR970003611B1 (ko) 연소 공기 공급장치 및 방법
EP3645941A1 (en) Combustion head with low emission of nox for burners and burner comprising such a head
CN221763568U (zh) 煤粉制备组件及锅炉
US2396867A (en) Fuel burner

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220830