JP2019171657A - Heat conductive sheet and process for producing same - Google Patents

Heat conductive sheet and process for producing same Download PDF

Info

Publication number
JP2019171657A
JP2019171657A JP2018061764A JP2018061764A JP2019171657A JP 2019171657 A JP2019171657 A JP 2019171657A JP 2018061764 A JP2018061764 A JP 2018061764A JP 2018061764 A JP2018061764 A JP 2018061764A JP 2019171657 A JP2019171657 A JP 2019171657A
Authority
JP
Japan
Prior art keywords
heat conductive
conductive sheet
carbon material
glass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018061764A
Other languages
Japanese (ja)
Inventor
藤井 義徳
Yoshinori Fujii
義徳 藤井
明子 川村
Akiko Kawamura
明子 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2018061764A priority Critical patent/JP2019171657A/en
Publication of JP2019171657A publication Critical patent/JP2019171657A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a heat conductive sheet that has a low heat resistivity in the thickness direction.SOLUTION: Provided are: a heat conductive sheet having a plurality of carbon material-containing layers laminated and integrated via a glass layer and the thickness of the glass layer is from 0.5 μm or more and 50 μm or less; and further, a process for producing heat conductive sheet comprising a step (A) in which carbon material-containing layers are overlapped by applying a liquid composition containing a glass precursor on at least one overlapping surface to yield an overlapped body, and a step (B) in which, after step (A), the liquid composition is solidified to form a glass layer.SELECTED DRAWING: Figure 1

Description

本発明は、熱伝導シートおよび熱伝導シートの製造方法に関するものである。   The present invention relates to a heat conductive sheet and a method for producing the heat conductive sheet.

近年、電子機器の小型化、高性能化が進むにつれて、高密度に集積されたCPUなどから発生する熱の放熱対策の重要性が高まっている。   In recent years, as electronic devices have become smaller and higher in performance, the importance of measures to dissipate heat generated from CPUs and the like that are densely integrated has increased.

また、電子機器等の放熱に使用し得る熱伝導材としては、熱伝導性および柔軟性に優れるグラファイトシート等の炭素材料シートが注目されている。しかし、グラファイトシート等の炭素材料シートは、厚みを大きくし難い。   In addition, as a heat conductive material that can be used for heat dissipation of electronic devices and the like, carbon material sheets such as graphite sheets that are excellent in heat conductivity and flexibility have attracted attention. However, it is difficult to increase the thickness of a carbon material sheet such as a graphite sheet.

そこで、熱源の発熱量の増大に伴い、例えばグラファイトシートを用いた熱伝導材としては、複数枚のグラファイトシートを両面粘着テープまたは液状樹脂で貼り合わせてなる熱伝導シートが用いられている(例えば、特許文献1参照)。   Therefore, with an increase in the heat generation amount of the heat source, for example, as a heat conductive material using a graphite sheet, a heat conductive sheet obtained by bonding a plurality of graphite sheets with a double-sided adhesive tape or a liquid resin is used (for example, , See Patent Document 1).

特開2002−160970号公報JP 2002-160970 A

しかし、両面粘着テープや液状樹脂を用いてグラファイトシートを貼り合わせてなる熱伝導シートは、グラファイトシート間に両面粘着テープや液状樹脂が介在しているため、厚み方向の熱抵抗率が高くなり、厚み方向に熱を伝え難かった。   However, the heat conductive sheet obtained by laminating a graphite sheet using a double-sided adhesive tape or liquid resin has a high thermal resistance in the thickness direction because the double-sided adhesive tape or liquid resin is interposed between the graphite sheets, It was difficult to convey heat in the thickness direction.

そこで、本発明は、厚み方向の熱抵抗率が低い熱伝導シートを提供することを目的とする。   Then, an object of this invention is to provide the heat conductive sheet with low heat resistance of the thickness direction.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、炭素材料を含む層を所定の厚みのガラス層を介して積層・一体化してなる熱伝導シートが、厚み方向の熱抵抗率が低く、厚み方向に熱を伝え易い(即ち、熱拡散させ易い)ことを見出し、本発明を完成させた。   The present inventor has intensively studied for the purpose of solving the above problems. And this inventor is the heat conductive sheet which laminates | stacks and integrates the layer containing a carbon material through the glass layer of predetermined thickness, and the heat resistance of a thickness direction is low, and it is easy to convey heat to a thickness direction ( In other words, the present invention was completed.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートは、複数の炭素材料含有層がガラス層を介して積層・一体化されており、前記ガラス層の厚みが0.5μm以上50μm以下であることを特徴とする。このように、複数の炭素材料含有層を、厚みが0.5μm以上50μm以下のガラス層を介して積層・一体化すれば、厚み方向の熱抵抗率が低く、厚み方向に熱を伝え易い熱伝導シートが得られる。
なお、本発明において、「ガラス層の厚み」は、本明細書の実施例に記載の方法を用いて測定することができる。
That is, the present invention aims to advantageously solve the above problems, and the heat conductive sheet of the present invention has a plurality of carbon material-containing layers laminated and integrated via glass layers, The glass layer has a thickness of 0.5 to 50 μm. Thus, if a plurality of carbon material-containing layers are laminated and integrated via a glass layer having a thickness of 0.5 μm or more and 50 μm or less, heat resistance in the thickness direction is low and heat is easily transferred in the thickness direction. A conductive sheet is obtained.
In the present invention, the “thickness of the glass layer” can be measured using the method described in the examples of the present specification.

ここで、本発明の熱伝導シートは、前記炭素材料含有層上で前記ガラス層が占める面積の割合が20%以上100%以下であることが好ましい。ガラス層が占める面積の割合を上記範囲内にすれば、炭素材料含有層同士を良好に一体化させつつ、熱伝導シートの厚み方向の熱抵抗率を十分に低下させることができる。
なお、本発明において、「炭素材料含有層上でガラス層が占める面積の割合」は、本明細書の実施例に記載の方法を用いて測定することができる。
Here, as for the heat conductive sheet of this invention, it is preferable that the ratio of the area which the said glass layer occupies on the said carbon material containing layer is 20% or more and 100% or less. If the ratio of the area which a glass layer occupies is in the said range, the thermal resistivity of the thickness direction of a heat conductive sheet can fully be reduced, integrating carbon material content layers well.
In addition, in this invention, "the ratio of the area which a glass layer occupies on a carbon material containing layer" can be measured using the method as described in the Example of this specification.

そして、本発明の熱伝導シートは、前記炭素材料含有層がグラファイトシートからなることが好ましい。グラファイトシートを使用すれば、厚み方向の熱抵抗率が十分に低く、厚み方向に熱を伝え易い熱伝導シートが容易に得られる。   And as for the heat conductive sheet of this invention, it is preferable that the said carbon material content layer consists of a graphite sheet. If a graphite sheet is used, a heat conductive sheet having a sufficiently low thermal resistance in the thickness direction and easily conducting heat in the thickness direction can be easily obtained.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートの製造方法は、上述した熱伝導シートの何れかの製造方法であって、炭素材料含有層同士を、少なくとも一方の重ね合わせ面にガラス前駆体を含む液状組成物を塗布して重ね合わせ、重ね合わせ体を得る工程(A)と、前記工程(A)の後に、前記液状組成物を固化させてガラス層を形成する工程(B)とを含むことを特徴とする。このように、ガラス前駆体を含む液状組成物を使用すれば、厚み方向の熱抵抗率が低く、厚み方向に熱を伝え易い上記熱伝導シートが容易に得られる。   Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the heat conductive sheet of this invention is a manufacturing method of any of the heat conductive sheets mentioned above, Comprising: Carbon material A step (A) of obtaining a superposed body by applying a liquid composition containing a glass precursor on at least one superposed surface of the containing layers, and after the step (A), the liquid composition (B) which solidifies and forms a glass layer. Thus, if the liquid composition containing a glass precursor is used, the heat conductive sheet having a low thermal resistivity in the thickness direction and easy to conduct heat in the thickness direction can be easily obtained.

ここで、本発明の熱伝導シートの製造方法では、前記工程(B)中に、前記重ね合わせ体を圧力(ゲージ圧)0.1MPa以上30MPa以下でプレスすることが好ましい。工程(B)において、重ね合わせ体を圧力(ゲージ圧)0.1MPa以上30MPa以下でプレスする操作を行えば、炭素材料含有層同士を良好に一体化させつつ、得られる熱伝導シートの厚み方向の熱抵抗率を更に低下させることができる。   Here, in the manufacturing method of the heat conductive sheet of this invention, it is preferable to press the said laminated body at a pressure (gauge pressure) 0.1 MPa or more and 30 MPa or less during the said process (B). In the step (B), if the stacked body is pressed at a pressure (gauge pressure) of 0.1 MPa or more and 30 MPa or less, the carbon material-containing layers are well integrated with each other, and the thickness direction of the obtained heat conductive sheet is obtained. The thermal resistivity can be further reduced.

そして、本発明の熱伝導シートの製造方法では、前記液状組成物が液体ガラスであることが好ましい。液体ガラスを使用すれば、上述したガラス層を容易に形成し得る。   And in the manufacturing method of the heat conductive sheet of this invention, it is preferable that the said liquid composition is liquid glass. If liquid glass is used, the glass layer mentioned above can be formed easily.

本発明によれば、厚み方向の熱抵抗率が低い熱伝導シートが得られる。   According to the present invention, a heat conductive sheet having a low thermal resistivity in the thickness direction can be obtained.

本発明に従う熱伝導シートの一例の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of an example of the heat conductive sheet according to this invention.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の熱伝導シートは、特に限定されることなく、例えば電子機器等の放熱などに使用することができる。そして、本発明の熱伝導シートは、例えば本発明の熱伝導シートの製造方法を用いて製造することができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the heat conductive sheet of this invention is not specifically limited, For example, it can be used for heat dissipation, such as an electronic device. And the heat conductive sheet of this invention can be manufactured, for example using the manufacturing method of the heat conductive sheet of this invention.

(熱伝導シート)
本発明の熱伝導シートは、複数の炭素材料含有層がガラス層を介して積層・一体化されたものである。具体的には、本発明の熱伝導シートの一例の概略構成を図1に示すように、熱伝導シート10は、複数(図示例では4層)の炭素材料含有層1と、積層方向に隣接する炭素材料含有層1間に位置する合計3層のガラス層2とを備えており、積層方向に隣接する炭素材料含有層1同士は、ガラス層2を介して一体化されている。
なお、図1に示す例では、積層方向両端が炭素材料含有層からなる場合を示したが、本発明の熱伝導シートは、積層方向一端または両端がガラス層で構成されていてもよい。
(Heat conduction sheet)
The heat conductive sheet of the present invention is obtained by laminating and integrating a plurality of carbon material-containing layers via a glass layer. Specifically, as shown in FIG. 1 of a schematic configuration of an example of the heat conductive sheet of the present invention, the heat conductive sheet 10 is adjacent to a plurality (four in the illustrated example) of carbon material-containing layers 1 in the stacking direction. And a total of three glass layers 2 positioned between the carbon material-containing layers 1, and the carbon material-containing layers 1 adjacent to each other in the stacking direction are integrated via the glass layer 2.
In addition, although the case where the lamination direction both ends consist of a carbon material containing layer was shown in the example shown in FIG. 1, as for the heat conductive sheet of this invention, the lamination direction one end or both ends may be comprised with the glass layer.

<炭素材料含有層>
ここで、炭素材料含有層としては、得に限定されることなく、例えば、グラファイト、カーボンナノチューブ、カーボンナノホーン、フラーレン、炭素繊維などの炭素材料を含み、任意に炭素材料同士を結着させる結着材などを更に含有する層が挙げられる。そして、炭素材料含有層に含まれる炭素材料は、熱伝導性の観点から、グラファイト、カーボンナノチューブまたはそれらの混合物であることが好ましく、グラファイトであることがより好ましい。
なお、熱伝導シートが有する複数の炭素材料含有層は、互いに同一でも、相異なっていてもよい。
<Carbon material containing layer>
Here, the carbon material-containing layer is not particularly limited, and includes, for example, carbon materials such as graphite, carbon nanotubes, carbon nanohorns, fullerenes, and carbon fibers, and arbitrarily binds carbon materials together. Examples thereof include a layer further containing a material. The carbon material contained in the carbon material-containing layer is preferably graphite, carbon nanotube, or a mixture thereof, more preferably graphite, from the viewpoint of thermal conductivity.
In addition, the several carbon material content layer which a heat conductive sheet has may be mutually the same, or may differ.

中でも、熱伝導シートの厚み方向の熱抵抗率を十分に低下させる観点からは、炭素材料含有層は、炭素材料のみからなる層であることが好ましい。そして、厚み方向の熱抵抗率が十分に低く、厚み方向に熱を伝え易い熱伝導シートを容易に得る観点からは、炭素材料含有層は、バッキーペーパーと称されることもあるカーボンナノチューブシート、または、グラファイトシートからなることが好ましく、グラファイトシートからなることがより好ましい。
なお、グラファイトシートとしては、特に限定されることなく、例えば、ポリイミドなどの高分子のフィルムを不活性ガス中で加熱および焼成して得られるグラファイトシート(例えば、パナソニック社製、PGS(登録商標)グラファイトシート等)を用いることができる。
Especially, it is preferable that a carbon material content layer is a layer which consists only of carbon materials from a viewpoint of fully reducing the thermal resistivity of the thickness direction of a heat conductive sheet. And, from the viewpoint of easily obtaining a heat conductive sheet that has a sufficiently low thermal resistance in the thickness direction and easily conducts heat in the thickness direction, the carbon material-containing layer is a carbon nanotube sheet that may be referred to as a bucky paper, Alternatively, it is preferably made of a graphite sheet, and more preferably made of a graphite sheet.
The graphite sheet is not particularly limited. For example, a graphite sheet obtained by heating and baking a polymer film such as polyimide in an inert gas (for example, PGS (registered trademark) manufactured by Panasonic Corporation). A graphite sheet or the like can be used.

そして、炭素材料含有層の厚みは、1μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることが更に好ましく、150μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることが更に好ましい。炭素材料含有層の厚みが上記下限値以上であれば、厚み方向に熱を伝え易い熱伝導シートを得ることができる。また、炭素材料含有層の厚みが上記上限値以下であれば、熱伝導シートの厚み方向の熱抵抗率を十分に低下させることができる。
なお、炭素材料含有層は、通常、ガラス層よりも厚い。そして、本発明において、「炭素材料含有層の厚み」は、本明細書の実施例に記載の方法を用いて測定することができる。
The thickness of the carbon material-containing layer is preferably 1 μm or more, more preferably 10 μm or more, further preferably 20 μm or more, preferably 150 μm or less, and preferably 100 μm or less. More preferably, it is 80 μm or less. If the thickness of the carbon material-containing layer is not less than the above lower limit, a heat conductive sheet that can easily transfer heat in the thickness direction can be obtained. Moreover, if the thickness of a carbon material content layer is below the said upper limit, the heat resistivity of the thickness direction of a heat conductive sheet can fully be reduced.
The carbon material-containing layer is usually thicker than the glass layer. And in this invention, "the thickness of a carbon material content layer" can be measured using the method as described in the Example of this specification.

<ガラス層>
ガラス層は、積層方向に隣接する炭素材料含有層同士を一体化し得る層であり、通常は、非多孔性のガラスからなる。非多孔性のガラスからなるガラス層を使用すれば、熱伝導シートの厚み方向に熱を良好に伝えることができる。
<Glass layer>
The glass layer is a layer capable of integrating the carbon material-containing layers adjacent to each other in the lamination direction, and is usually made of non-porous glass. If a glass layer made of non-porous glass is used, heat can be transmitted well in the thickness direction of the heat conductive sheet.

なお、ガラス層は、液体ガラスを固化させて得たガラスからなることが好ましい。また、ガラス層には、熱伝導性充填材等のガラス以外の成分(但し、上述した炭素材料に該当するものを除く)が含まれていてもよい。   In addition, it is preferable that a glass layer consists of glass obtained by solidifying liquid glass. Further, the glass layer may contain components other than glass such as a heat conductive filler (except for those corresponding to the above-mentioned carbon material).

そして、ガラス層は、厚みが0.5μm以上50μm以下であることを必要とし、ガラス層の厚みは、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることが更に好ましく、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましい。ガラス層の厚みが0.5μm未満の場合、積層方向に隣接する炭素材料含有層同士を良好に一体化することができず、熱伝導シートの厚み方向の熱抵抗率が上昇する。また、ガラス層の厚みが50μm超の場合、熱伝導シートの厚み方向の熱抵抗率が上昇し、熱伝導シートの厚み方向に熱を伝え難くなる。そして、ガラス層の厚みが上記下限値以上であれば、積層方向に隣接する炭素材料含有層同士を良好に一体化し、熱伝導シートの厚み方向の熱抵抗率を低下させることができる。また、ガラス層の厚みが上記上限値以下であれば、熱伝導シートの生産性の低下を抑制しつつ、ガラス層に起因して熱伝導シートの厚み方向の熱抵抗率が上昇するのを抑制することができる。   The glass layer needs to have a thickness of 0.5 μm or more and 50 μm or less, and the thickness of the glass layer is preferably 1 μm or more, more preferably 3 μm or more, and more preferably 5 μm or more. More preferably, it is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less. When the thickness of the glass layer is less than 0.5 μm, the carbon material-containing layers adjacent to each other in the stacking direction cannot be well integrated, and the thermal resistivity in the thickness direction of the heat conductive sheet increases. Moreover, when the thickness of a glass layer exceeds 50 micrometers, the thermal resistivity of the thickness direction of a heat conductive sheet rises, and it becomes difficult to convey heat to the thickness direction of a heat conductive sheet. And if the thickness of a glass layer is more than the said lower limit, the carbon material containing layer adjacent to a lamination direction can be favorably integrated, and the thermal resistivity of the thickness direction of a heat conductive sheet can be reduced. Moreover, if the thickness of the glass layer is not more than the above upper limit value, it is possible to suppress an increase in thermal resistivity in the thickness direction of the heat conductive sheet due to the glass layer while suppressing a decrease in productivity of the heat conductive sheet. can do.

また、ガラス層が炭素材料含有層上で占める面積の割合は、20%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることが更に好ましく、通常100%以下であり、90%以下であることが好ましい。ガラス層の面積割合が上記下限値以上であれば、積層方向に隣接する炭素材料含有層同士を良好に一体化し、熱伝導シートの厚み方向の熱抵抗率を低下させることができる。また、ガラス層の面積割合が上記上限値以下であれば、ガラス層に起因して熱伝導シートの厚み方向の熱抵抗率が上昇するのを抑制することができる。   Further, the ratio of the area occupied by the glass layer on the carbon material-containing layer is preferably 20% or more, more preferably 50% or more, still more preferably 70% or more, and usually 100% or less. It is preferable that it is 90% or less. If the area ratio of a glass layer is more than the said lower limit, the carbon material containing layers adjacent to a lamination direction can be favorably integrated, and the thermal resistivity of the thickness direction of a heat conductive sheet can be reduced. Moreover, if the area ratio of a glass layer is below the said upper limit, it can suppress that the thermal resistivity of the thickness direction of a heat conductive sheet rises resulting from a glass layer.

<熱伝導シートの厚み>
そして、熱伝導シートの厚みは、特に限定されるものではないが、60μm以上であることが好ましく、100μm以上であることがより好ましく、200μm以下であることが好ましく、180μm以下であることがより好ましい。熱伝導シートの厚みが上記下限値以上であれば、熱伝導シートの厚み方向に熱を良好に拡散させることができる。また、熱伝導シートの厚みが上記上限値以下であれば、熱伝導シートの生産性の低下を抑制することができる。
なお、本発明において、「熱伝導シートの厚み」は、本明細書の実施例に記載の方法を用いて測定することができる。
<Thickness of heat conductive sheet>
The thickness of the heat conductive sheet is not particularly limited, but is preferably 60 μm or more, more preferably 100 μm or more, preferably 200 μm or less, and more preferably 180 μm or less. preferable. If the thickness of a heat conductive sheet is more than the said lower limit, heat can be diffused favorably in the thickness direction of a heat conductive sheet. Moreover, if the thickness of a heat conductive sheet is below the said upper limit, the fall of productivity of a heat conductive sheet can be suppressed.
In addition, in this invention, "the thickness of a heat conductive sheet" can be measured using the method as described in the Example of this specification.

(熱伝導シートの製造方法)
また、本発明の熱伝導シートの製造方法は、上述した本発明の熱伝導シートを製造する際に用いられ、炭素材料含有層同士を、少なくとも一方の重ね合わせ面にガラス前駆体を含む液状組成物を塗布して重ね合わせ、重ね合わせ体を得る工程(A)と、液状組成物を固化させてガラス層を形成する工程(B)とを含む。
(Method for producing heat conductive sheet)
Moreover, the manufacturing method of the heat conductive sheet of this invention is used when manufacturing the heat conductive sheet of this invention mentioned above, The liquid composition which contains a glass precursor in carbon material content layer at least on one overlapping surface. The method includes a step (A) of applying and stacking objects to obtain an overlapped body, and a step (B) of solidifying the liquid composition to form a glass layer.

<炭素材料含有層>
ここで、炭素材料含有層としては、本発明の熱伝導シートの炭素材料含有層として上述したものと同様のものが挙げられる。中でも、炭素材料含有層は、カーボンナノチューブシート、または、グラファイトシートからなることが好ましく、グラファイトシートからなることがより好ましい。
<Carbon material containing layer>
Here, as a carbon material content layer, the thing similar to what was mentioned above as a carbon material content layer of the heat conductive sheet of this invention is mentioned. Among these, the carbon material-containing layer is preferably made of a carbon nanotube sheet or a graphite sheet, and more preferably made of a graphite sheet.

<液状組成物>
ガラス前駆体を含む液状組成物としては、温度25℃、圧力(絶対圧)1atmの条件下で液状であり、固化させてガラス層を形成することが可能であれば特に限定されることなく、ガラス前駆体を含み、任意に溶媒や添加剤を更に含有する液状組成物を用いることができる。中でも、ガラス層の形成容易性の観点からは、液状組成物としては、液体ガラスを用いることが好ましい。
なお、液状組成物に含まれるガラス前駆体としては、例えば、テトラエトキシシラン等が挙げられる。
<Liquid composition>
The liquid composition containing the glass precursor is not particularly limited as long as it is liquid under conditions of a temperature of 25 ° C. and a pressure (absolute pressure) of 1 atm and can be solidified to form a glass layer. A liquid composition containing a glass precursor and optionally further containing a solvent and additives can be used. Among these, from the viewpoint of easy formation of the glass layer, it is preferable to use liquid glass as the liquid composition.
In addition, as a glass precursor contained in a liquid composition, tetraethoxysilane etc. are mentioned, for example.

ここで、液体ガラスとしては、特に限定されることなく、例えば、二酸化ケイ素、アルミナおよび溶媒を含有する液体ガラスや、テトラエトキシシラン、金属触媒および水を含有する液体ガラスなどが挙げられる。より具体的には、液体ガラスとしては、例えば、墨東化成工業社製の「ヒートレスグラス」、「シダクシタールB4373」や、モクテックカメムラ社製の「ファインクリスタル(Quartz for NOMシリーズ)」等を用いることができる。   Here, the liquid glass is not particularly limited, and examples thereof include liquid glass containing silicon dioxide, alumina and a solvent, and liquid glass containing tetraethoxysilane, a metal catalyst and water. More specifically, as the liquid glass, for example, “Heatless Glass” manufactured by Bokuto Kasei Kogyo Co., Ltd., “Shidakushitar B4373”, “Fine Crystal (Quartz for NOM series)” manufactured by Mokutech Kamemura Co., Ltd., etc. Can be used.

<工程(A)>
そして、工程(A)では、複数の炭素材料含有層を重ね合わせて重ね合わせ体を得る際に、互いに重ね合わされる炭素材料含有層の少なくとも一方の重ね合わせ面に液状組成物を塗布する。即ち、工程(A)では、液状組成物を介在させた状態で複数の炭素材料含有層を重ね合わせ、重ね合わせ体を得る。なお、3層以上の炭素材料含有層を重ね合わせる場合には、液状組成物の塗布と、炭素材料含有層の重ね合わせとを交互に繰り返すことにより重ね合わせ体を得てもよいし、液状組成物を塗布した複数の炭素材料含有層を一度に重ね合わせることにより重ね合わせ体を得てもよい。
<Process (A)>
In step (A), when a plurality of carbon material-containing layers are overlapped to obtain an overlapped body, the liquid composition is applied to at least one overlapping surface of the carbon material-containing layers that are overlapped with each other. That is, in the step (A), a plurality of carbon material-containing layers are overlapped with a liquid composition interposed therebetween to obtain an overlapped body. When three or more carbon material-containing layers are overlaid, an overlapping body may be obtained by alternately repeating the application of the liquid composition and the carbon material-containing layer, or the liquid composition An overlapped body may be obtained by overlapping a plurality of carbon material-containing layers coated with an object at a time.

ここで、工程(A)において重ね合わせ面に液状組成物を塗布する方法としては、特に限定されることなく、滴下、スプレーコート、ロールコート、スピンコート、グラビアコート、ダイコート、バーコートなどの任意の塗布方法を用いることができる。   Here, the method for applying the liquid composition to the superposed surface in the step (A) is not particularly limited, and may be any one of dripping, spray coating, roll coating, spin coating, gravure coating, die coating, bar coating, and the like. The coating method can be used.

そして、工程(A)では、液状組成物を塗布しているので、重ね合わせの際等に、炭素材料含有層から炭素材料が脱落(粉落ち)するのを良好に抑制することができる。   In the step (A), since the liquid composition is applied, it is possible to satisfactorily prevent the carbon material from falling off (powder off) from the carbon material-containing layer during superposition.

<工程(B)>
工程(B)では、工程(A)で塗布した液状組成物を固化させてガラス層を形成し、重ね合わされた複数の炭素材料含有層をガラス層を介して一体化させる。なお、液状組成物を固化させる方法は、液状組成物の種類に応じて選択すればよく、例えば液状組成物を乾燥および硬化させる方法が挙げられる。
<Process (B)>
In the step (B), the liquid composition applied in the step (A) is solidified to form a glass layer, and the multiple carbon material-containing layers that are overlaid are integrated via the glass layer. In addition, what is necessary is just to select the method of solidifying a liquid composition according to the kind of liquid composition, for example, the method of drying and hardening a liquid composition is mentioned.

ここで、工程(B)では、任意に液状組成物を乾燥させた後、硬化反応中または硬化反応前に、重ね合わせ体を積層方向にプレスすることが好ましい。重ね合わせ体を積層方向にプレスすれば、炭素材料含有層同士を良好に密着させ、得られる熱伝導シートの厚み方向の熱抵抗率を更に低下させることができる。そして、重ね合わせ体をプレスする際の圧力(ゲージ圧)は、特に限定されることなく、0.1MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、50MPa以下であることが好ましく、30MPa以下であることがより好ましい。プレス圧力が上記下限値以上であれば、炭素材料含有層同士を更に良好に一体化させ、得られる熱伝導シートの厚み方向の熱抵抗率をより一層低下させることができる。また、プレス圧力が上記上限値以下であれば、厚み方向の熱抵抗率が低い熱伝導シートを効率的に製造することができる。   Here, in the step (B), it is preferable to press the laminated body in the stacking direction after the liquid composition is arbitrarily dried and before or during the curing reaction. If the stacked body is pressed in the laminating direction, the carbon material-containing layers can be brought into close contact with each other, and the thermal resistivity in the thickness direction of the obtained heat conductive sheet can be further reduced. And the pressure (gauge pressure) at the time of pressing a laminated body is not specifically limited, It is preferable that it is 0.1 MPa or more, It is more preferable that it is 0.5 MPa or more, It is 50 MPa or less. Is preferable, and it is more preferable that it is 30 MPa or less. If a press pressure is more than the said lower limit, carbon material content layers can be integrated further more favorably and the heat resistance of the thickness direction of the heat conductive sheet obtained can be reduced further. Moreover, if a press pressure is below the said upper limit, the heat conductive sheet with low heat resistance of the thickness direction can be manufactured efficiently.

なお、工程(B)では、重ね合わせ体をプレスした後に、プレスされた重ね合わせ体を静置して硬化反応を更に進行させてもよい。   In step (B), after pressing the overlapped body, the pressed overlapped body may be allowed to stand to further advance the curing reaction.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例および比較例において、炭素材料含有層、ガラス層および熱伝導シートの厚み、ガラス層の面積割合、炭素材料含有層のピール強度、並びに、熱伝導シートの厚み方向の熱抵抗率は、下記の方法で測定または評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
In Examples and Comparative Examples, the carbon material-containing layer, the thickness of the glass layer and the heat conductive sheet, the area ratio of the glass layer, the peel strength of the carbon material-containing layer, and the thermal resistivity in the thickness direction of the heat conductive sheet are as follows: It was measured or evaluated by the method.

<厚み>
熱伝導シートおよび炭素材料含有層の厚みは、デジマチックインジケーター(ミツトヨ社製、ID−C112X)を用いて、1/1000mmの精度で測定した。
また、ガラス層の厚みは、熱伝導シートを1cm角に切断して得た測定用試料を用いて求めた。具体的には、各測定用試料について、中央部の厚みをデジマチックインジケーター(ミツトヨ社製、ID−C112X)で測定し、測定値から炭素材料含有層の総厚みを差し引き、得られた値をガラス層の総数で除して各測定試料のガラス層の厚みを求めた。そして、算出した各測定試料のガラス層の厚みの平均値を求め、熱伝導シートのガラス層の厚みとした。
<ガラス層の面積割合>
炭素材料含有層を剥がし、炭素材料含有層上に形成されているガラス層の面積をレーザー顕微鏡(キーエンス社製、VK−X200)で観察して求め、ガラス層の面積割合を算出した。
<ピール強度>
準備した測定試料を幅10mmに切断し、一方の表面側に位置する炭素材料含有層を90°方向に引っ張って剥がすのに要する力を測定した。測定は25mmの長さで実施し、平均値をピール強度として以下の基準で評価した。なお、測定機には、万能引張圧縮試験機(新興通信工業社製、TCM−500CR)を使用し、測定時の引張速度は20mm/秒とした。
ピール強度が大きいほど、炭素材料含有層同士が良好に密着・一体化していることを示す。
A:ピール強度が2.0N/25mm以上
B:ピール強度が1.5N/25mm以上2.0N/25mm未満
C:ピール強度が1.0N/25mm以上1.5N/25mm未満
D:ピール強度が1.0N/25mm未満
<熱抵抗率>
熱伝導シートを1cm角に切断して得た測定用試料について、樹脂材料熱抵抗試験器(株式会社日立テクノロジーアンドサービス製)を使用し、試料温度50℃において、0.3MPaの圧力を加えた時の熱抵抗値R(K/W)を測定した。そして、熱抵抗値Rを熱伝導シートの厚みdで除して熱抵抗率R/d(K/W・μm)を求め、以下の基準で評価した。
A:R/dが0.004K/W・μm未満
B:R/dが0.004K/W・μm以上0.006K/W・μm未満
C:R/dが0.006K/W・μm以上0.008K/W・μm未満
D:R/dが0.008K/W・μm以上
<Thickness>
The thickness of the heat conductive sheet and the carbon material-containing layer was measured with an accuracy of 1/1000 mm using a digimatic indicator (ID-C112X, manufactured by Mitutoyo Corporation).
Moreover, the thickness of the glass layer was calculated | required using the sample for a measurement obtained by cut | disconnecting a heat conductive sheet into 1 cm square. Specifically, for each measurement sample, the thickness of the central part was measured with a digimatic indicator (ID-C112X, manufactured by Mitutoyo Corporation), and the total thickness of the carbon material-containing layer was subtracted from the measured value. The thickness of the glass layer of each measurement sample was determined by dividing by the total number of glass layers. And the average value of the thickness of the calculated glass layer of each measurement sample was calculated | required, and it was set as the thickness of the glass layer of a heat conductive sheet.
<Area ratio of glass layer>
The carbon material-containing layer was peeled off, and the area of the glass layer formed on the carbon material-containing layer was determined by observing with a laser microscope (manufactured by Keyence Corporation, VK-X200), and the area ratio of the glass layer was calculated.
<Peel strength>
The prepared measurement sample was cut into a width of 10 mm, and the force required to pull and peel the carbon material-containing layer located on one surface side in the 90 ° direction was measured. The measurement was carried out with a length of 25 mm, and the average value was evaluated as the peel strength based on the following criteria. A universal tensile / compression tester (manufactured by Shinsei Tsushin Kogyo Co., Ltd., TCM-500CR) was used as the measuring device, and the tensile speed during measurement was 20 mm / second.
The larger the peel strength, the better the carbon material-containing layers are closely adhered and integrated.
A: Peel strength is 2.0 N / 25 mm or more B: Peel strength is 1.5 N / 25 mm or more and less than 2.0 N / 25 mm C: Peel strength is 1.0 N / 25 mm or more and less than 1.5 N / 25 mm D: Peel strength is <1.0N / 25mm <Thermal resistivity>
About the measurement sample obtained by cutting the heat conductive sheet into 1 cm square, a pressure of 0.3 MPa was applied at a sample temperature of 50 ° C. using a resin material thermal resistance tester (manufactured by Hitachi Technology & Service Co., Ltd.). The thermal resistance value R (K / W) at the time was measured. Then, the thermal resistance value R was divided by the thickness d of the heat conductive sheet to obtain the thermal resistivity R / d (K / W · μm), and the following criteria were used for evaluation.
A: R / d is less than 0.004 K / W · μm B: R / d is 0.004 K / W · μm or more and less than 0.006 K / W · μm C: R / d is 0.006 K / W · μm or more Less than 0.008 K / W · μm D: R / d is 0.008 K / W · μm or more

(実施例1)
炭素材料含有層として、厚み25μmのグラファイトシート(パナソニック社製、PGS(登録商標)グラファイトシート)を3cm角に切断したシートを用意した。
また、液状組成物として、液体ガラス(モクテックカメムラ社製、ファインクリスタル(Quartz for NOM)を調合した。
そして、準備したシートの中央と、シート中央と四隅との中間位置(4点)との合計5箇所に、マイクロピペッター(エッペンドルフ社製、容量可変マイクロピペット、リサーチプラス)にて、液体ガラスを4.0μLずつ滴下し、その上にシートを重ね合わせる操作を3回繰り返し、液体ガラスを介在させて4枚のシートを重ね合わせてなる重ね合わせ体を得た。
その後、常温(23℃)で液体ガラスを6時間乾燥させ、プレス機にて重ね合わせ体を0.1MPaの圧力で2時間プレスした。その後、プレスした重ね合わせ体を取り出し、2日間常温に放置して液体ガラスを硬化させ、熱伝導シートを得た。
そして、炭素材料含有層、ガラス層および熱伝導シートの厚み、ガラス層の面積割合、並びに、熱伝導シートの厚み方向の熱抵抗率を測定および評価した。結果を表1に示す。
また、ピール強度の測定用に、準備したシートの中央と、シート中央と四隅との中間位置(4点)との合計5箇所に、マイクロピペッター(エッペンドルフ社製、容量可変マイクロピペット、リサーチプラス)にて、液体ガラスを4.0μLずつ滴下し、その上にシートを重ね合わせて、液体ガラスを介在させて2枚のシートを重ね合わせてなるピール強度測定用重ね合わせ体を得た。
その後、常温(23℃)で液体ガラスを6時間乾燥させ、プレス機にてピール強度測定用重ね合わせ体を0.1MPaの圧力で2時間プレスした。その後、プレスしたピール強度測定用重ね合わせ体を取り出し、2日間常温に放置して液体ガラスを硬化させ、ピール強度測定用試料を得た。そして、ピール強度を測定および評価した。結果を表1に示す。
Example 1
As the carbon material-containing layer, a sheet obtained by cutting a 25-μm-thick graphite sheet (PGS (registered trademark) graphite sheet, manufactured by Panasonic Corporation) into a 3 cm square was prepared.
In addition, liquid glass (manufactured by Moctec Kamemura Co., Ltd., fine crystal for NOM) was prepared as a liquid composition.
Then, at a total of five locations including the center of the prepared sheet and the intermediate positions (four points) between the center of the sheet and the four corners, 4 liquid glasses were used with a micropipette (Eppendorf, variable volume micropipette, Research Plus). The operation of dropping 0.0 μL at a time and overlaying the sheets thereon was repeated three times to obtain a superposed body in which four sheets were superposed with liquid glass interposed.
Thereafter, the liquid glass was dried at room temperature (23 ° C.) for 6 hours, and the laminated body was pressed with a press at a pressure of 0.1 MPa for 2 hours. Thereafter, the pressed laminate was taken out and allowed to stand at room temperature for 2 days to cure the liquid glass to obtain a heat conductive sheet.
And the thickness of a carbon material content layer, a glass layer, and a heat conductive sheet, the area ratio of a glass layer, and the thermal resistivity of the thickness direction of a heat conductive sheet were measured and evaluated. The results are shown in Table 1.
In addition, for the measurement of peel strength, a micropipette (Eppendorf, variable volume micropipette, Research Plus) is provided at a total of five locations: the center of the prepared sheet and the middle position (4 points) between the center of the sheet and the four corners. Then, 4.0 μL of liquid glass was dropped at a time, and a sheet was superimposed thereon, and an overlapped body for peel strength measurement was obtained in which two sheets were overlapped with the liquid glass interposed.
Thereafter, the liquid glass was dried at room temperature (23 ° C.) for 6 hours, and the laminate for measuring peel strength was pressed with a press at a pressure of 0.1 MPa for 2 hours. Thereafter, the pressed laminate for measuring peel strength was taken out and allowed to stand at room temperature for 2 days to cure the liquid glass to obtain a sample for measuring peel strength. And peel strength was measured and evaluated. The results are shown in Table 1.

(実施例2)
重ね合わせ体をプレスする際の圧力を2MPaに変更した以外は実施例1と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 2)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 1 except that the pressure when pressing the laminated body was changed to 2 MPa. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
液体ガラスの滴下量を1.0μLずつに変更した以外は実施例2と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 3)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 2 except that the amount of liquid glass dropped was changed to 1.0 μL. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
液体ガラスの滴下量を2.0μLずつに変更した以外は実施例2と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 4)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 2 except that the dropping amount of liquid glass was changed to 2.0 μL. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
液体ガラスの滴下量を10.0μLずつに変更し、更に重ね合わせ体のプレスを行わなかった以外は実施例1と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Example 5)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 1 except that the dripping amount of the liquid glass was changed to 10.0 μL each and the laminated body was not pressed. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
液体ガラスを滴下せずにシートを重ね合わせ、更に重ね合わせ体のプレスを行わなかった以外は実施例1と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Comparative Example 1)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 1 except that the sheets were stacked without dropping the liquid glass and the stacked body was not pressed. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
厚みが100μmのグラファイトシート(パナソニック社製、PGS(登録商標)グラファイトシート)を3cm角に切断して熱伝導シートとした。そして、熱伝導シートの厚み方向の熱抵抗率を測定および評価した。結果を表1に示す。
(Comparative Example 2)
A graphite sheet having a thickness of 100 μm (manufactured by Panasonic Corporation, PGS (registered trademark) graphite sheet) was cut into 3 cm square to obtain a heat conductive sheet. And the thermal resistivity of the thickness direction of a heat conductive sheet was measured and evaluated. The results are shown in Table 1.

(比較例3)
液体ガラスに替えて厚さ10μmの両面テープ(日栄化工社製、NeoFix10)を介在させてシートを重ね合わせた以外は実施例1と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Comparative Example 3)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 1 except that the sheet was overlapped with a double-sided tape having a thickness of 10 μm (NeoFix Corporation, NeoFix 10) instead of liquid glass. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
液体ガラスの滴下量を0.5μLずつに変更した以外は実施例2と同様にして熱伝導シートおよびピール強度測定用試料を調製した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(Comparative Example 4)
A heat conductive sheet and a sample for measuring peel strength were prepared in the same manner as in Example 2 except that the amount of liquid glass dropped was changed to 0.5 μL. Measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 2019171657
Figure 2019171657

表1より、実施例1〜5の熱伝導シートでは、厚み方向の熱抵抗率を十分に低下させられることが分かる。一方、ガラス層を使用しなかった比較例1〜3およびガラス層の厚みが薄い比較例4では、厚み方向の熱抵抗率が上昇することが分かる。特に、比較例1および4では、炭素材料含有層同士の密着性が低下し、熱抵抗率が著しく上昇していることが分かる。   From Table 1, it can be seen that in the heat conductive sheets of Examples 1 to 5, the thermal resistivity in the thickness direction can be sufficiently reduced. On the other hand, in Comparative Examples 1 to 3 in which the glass layer was not used and Comparative Example 4 in which the glass layer was thin, it was found that the thermal resistivity in the thickness direction increased. In particular, in Comparative Examples 1 and 4, it can be seen that the adhesion between the carbon material-containing layers is reduced and the thermal resistivity is remarkably increased.

本発明によれば、厚み方向の熱抵抗率が低い熱伝導シートが得られる。   According to the present invention, a heat conductive sheet having a low thermal resistivity in the thickness direction can be obtained.

1 炭素材料含有層
2 ガラス層
10 熱伝導シート
DESCRIPTION OF SYMBOLS 1 Carbon material containing layer 2 Glass layer 10 Thermal conductive sheet

Claims (6)

複数の炭素材料含有層がガラス層を介して積層・一体化されており、
前記ガラス層の厚みが0.5μm以上50μm以下である、熱伝導シート。
A plurality of carbon material-containing layers are laminated and integrated via a glass layer,
The heat conductive sheet whose thickness of the said glass layer is 0.5 micrometer or more and 50 micrometers or less.
前記炭素材料含有層上で前記ガラス層が占める面積の割合が20%以上100%以下である、請求項1に記載の熱伝導シート。   The heat conductive sheet of Claim 1 whose ratio of the area which the said glass layer occupies on the said carbon material content layer is 20% or more and 100% or less. 前記炭素材料含有層がグラファイトシートからなる、請求項1または2に記載の熱伝導シート。   The heat conductive sheet according to claim 1, wherein the carbon material-containing layer is made of a graphite sheet. 請求項1〜3の何れかに記載の熱伝導シートの製造方法であって、
炭素材料含有層同士を、少なくとも一方の重ね合わせ面にガラス前駆体を含む液状組成物を塗布して重ね合わせ、重ね合わせ体を得る工程(A)と、
前記工程(A)の後に、前記液状組成物を固化させてガラス層を形成する工程(B)と、
を含む、熱伝導シートの製造方法。
It is a manufacturing method of the heat conductive sheet in any one of Claims 1-3,
The carbon material-containing layers are overlapped by applying a liquid composition containing a glass precursor on at least one overlapping surface to obtain an overlapping body (A);
After the step (A), a step (B) of solidifying the liquid composition to form a glass layer;
The manufacturing method of the heat conductive sheet containing this.
前記工程(B)中に、前記重ね合わせ体を圧力(ゲージ圧)0.1MPa以上30MPa以下でプレスする、請求項4に記載の熱伝導シートの製造方法。   The manufacturing method of the heat conductive sheet of Claim 4 which presses the said laminated body at a pressure (gauge pressure) 0.1 MPa or more and 30 MPa or less during the said process (B). 前記液状組成物が液体ガラスである、請求項4または5に記載の熱伝導シートの製造方法。   The manufacturing method of the heat conductive sheet of Claim 4 or 5 whose said liquid composition is liquid glass.
JP2018061764A 2018-03-28 2018-03-28 Heat conductive sheet and process for producing same Pending JP2019171657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061764A JP2019171657A (en) 2018-03-28 2018-03-28 Heat conductive sheet and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061764A JP2019171657A (en) 2018-03-28 2018-03-28 Heat conductive sheet and process for producing same

Publications (1)

Publication Number Publication Date
JP2019171657A true JP2019171657A (en) 2019-10-10

Family

ID=68169981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061764A Pending JP2019171657A (en) 2018-03-28 2018-03-28 Heat conductive sheet and process for producing same

Country Status (1)

Country Link
JP (1) JP2019171657A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088318A (en) * 2000-09-12 2002-03-27 Kanagawa Prefecture Method for adhering base plate by using water glass, and chip
JP2006303240A (en) * 2005-04-21 2006-11-02 Fujikura Ltd Heat dissipating sheet, heat dissipating body, manufacturing method for the sheet, and heat transfer method
US20150077957A1 (en) * 2013-09-17 2015-03-19 Panasonic Corporation Composite sheet, mounting structure including the composite sheet and electronic apparatus including the mounting structure
JP2015105210A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
JP2016082155A (en) * 2014-10-21 2016-05-16 信越化学工業株式会社 Heat dissipation sheet
WO2016088435A1 (en) * 2014-12-04 2016-06-09 信越化学工業株式会社 Thermally conductive sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088318A (en) * 2000-09-12 2002-03-27 Kanagawa Prefecture Method for adhering base plate by using water glass, and chip
JP2006303240A (en) * 2005-04-21 2006-11-02 Fujikura Ltd Heat dissipating sheet, heat dissipating body, manufacturing method for the sheet, and heat transfer method
US20150077957A1 (en) * 2013-09-17 2015-03-19 Panasonic Corporation Composite sheet, mounting structure including the composite sheet and electronic apparatus including the mounting structure
JP2015084402A (en) * 2013-09-17 2015-04-30 パナソニックIpマネジメント株式会社 Composite sheet
JP2015105210A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
JP2016082155A (en) * 2014-10-21 2016-05-16 信越化学工業株式会社 Heat dissipation sheet
KR20170075744A (en) * 2014-10-21 2017-07-03 신에쓰 가가꾸 고교 가부시끼가이샤 Heat dissipation sheet
WO2016088435A1 (en) * 2014-12-04 2016-06-09 信越化学工業株式会社 Thermally conductive sheet

Similar Documents

Publication Publication Date Title
TWI686967B (en) Thermally conductive adhesive sheet, manufacturing method thereof, and electronic device using the same
US10276475B2 (en) Thermal conductive stress relaxation structure
WO2016163537A1 (en) Graphite composite film and method for producing same, and heat-dissipating part
US11060805B2 (en) Thermal interface material system
JP2010013340A (en) Graphite complex and manufacturing method thereof
CN106537524B (en) Insulating trip
JP2011071301A (en) Joining method and joining body using metal nanoparticle
CN101277601A (en) Laminated body
WO2018088045A1 (en) Metal-carbon particle composite material and method for manufacturing same
JP2008192823A (en) Manufacturing apparatus and manufacturing method for circuit board, and cushion sheet used for the manufacturing method
TWM425495U (en) Flexible high thermal conductive copper substrate
KR101989077B1 (en) Heat radiating member and heat radiating sheet having heat control function and manufacturing method the same
JP6876569B2 (en) Metal-carbon particle composite
JP6720717B2 (en) Heat dissipation sheet manufacturing method
US20190001652A1 (en) Method for producing metal-carbon fiber composite material
CN104396356B (en) Heat-conducting substrate product
JP2019171657A (en) Heat conductive sheet and process for producing same
CN110602934A (en) Electromagnetic shielding heat dissipation film and preparation method and application thereof
TW201404568A (en) Method of producing thermally conductive sheet
JP6383670B2 (en) Method for producing composite material of aluminum and carbon particles and method for producing insulating substrate
JP6821409B2 (en) Method for manufacturing metal-carbon particle composite material
WO2021049218A1 (en) Surface layer porous graphite sheet
CN109822982B (en) Multilayer graphite temperature-equalizing plate and preparation method thereof
WO2015064481A1 (en) Method for producing carbon nanotube sheet
KR102053326B1 (en) Composite sheet having an excellent thermal and electric conductivity and manugacturing method there of

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510