JP2019171241A - Method for coating fiber-reinforced resin molded article and coated product of the same - Google Patents

Method for coating fiber-reinforced resin molded article and coated product of the same Download PDF

Info

Publication number
JP2019171241A
JP2019171241A JP2018059962A JP2018059962A JP2019171241A JP 2019171241 A JP2019171241 A JP 2019171241A JP 2018059962 A JP2018059962 A JP 2018059962A JP 2018059962 A JP2018059962 A JP 2018059962A JP 2019171241 A JP2019171241 A JP 2019171241A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
coating
resin molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018059962A
Other languages
Japanese (ja)
Other versions
JP7159585B2 (en
Inventor
允哉 湊
Mitsuya Minato
允哉 湊
高廣 田中
Takahiro Tanaka
高廣 田中
敏弘 吉田
Toshihiro Yoshida
敏弘 吉田
和広 古田
Kazuhiro Furuta
和広 古田
直樹 氏平
Naoki Ujihira
直樹 氏平
松田 祐之
Sukeyuki Matsuda
祐之 松田
久保田 寛
Hiroshi Kubota
寛 久保田
赤峰 真明
Masaaki Akamine
真明 赤峰
克典 中本
Katsunori Nakamoto
克典 中本
光祥 河邉
Mitsuyoshi Kawabe
光祥 河邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018059962A priority Critical patent/JP7159585B2/en
Publication of JP2019171241A publication Critical patent/JP2019171241A/en
Application granted granted Critical
Publication of JP7159585B2 publication Critical patent/JP7159585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a method for coating a fiber-reinforced resin-molded article which can suppress the appearance of unevenness derived from reinforced fibers on the surface of a product after a coating step and simplify the coating step.SOLUTION: A method for coating a fiber-reinforced resin-molded article 11, which is a method for coating the surface of the fiber-reinforced resin-molded article 11 comprising a fiber-reinforced resin layer 3 that contains reinforced fibers 36 to make the matrix of a thermosetting resin 37, includes a first heating step S2 of applying a heat treatment to the fiber-reinforced resin-molded article 11 for predetermined time at a predetermined temperature and a coating step S3 of forming a coating layer 4 by coating the surface of the fiber-reinforced resin-molded article 11 after the first heating step S2.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂成形品の塗装方法及びその塗装製品に関するものである。   The present invention relates to a method for coating a fiber-reinforced resin molded article and a coated product thereof.

近年、成形品の強度向上及び軽量化の観点から、例えば炭素繊維やガラス繊維等の強化繊維に熱硬化性樹脂を含浸させてなる繊維強化樹脂成形品や、その塗装製品が注目されている。   In recent years, a fiber reinforced resin molded product obtained by impregnating a reinforced fiber such as carbon fiber or glass fiber with a thermosetting resin and a coated product thereof have attracted attention from the viewpoint of improving the strength and weight of the molded product.

しかしながら、成形直後の繊維強化樹脂成形品には、潜在的な歪みや応力等が存在しており、その後の乾燥工程や加熱工程等でこれらの歪みや応力が顕在化して、繊維強化樹脂成形品の表面に反り等が生じるという問題があった。   However, there are potential distortions and stresses in the fiber reinforced resin molded product immediately after molding, and these distortions and stresses are manifested in the subsequent drying process and heating process. There was a problem that warpage or the like occurred on the surface of the film.

そこで、例えば、特許文献1には、繊維強化樹脂成形品の塗装前に、該成形品に矯正治具を装着させた状態で、塗装温度よりも10〜70℃高い温度で熱処理することで、該成形品の反りを矯正することが開示されている。   Therefore, for example, in Patent Document 1, before coating the fiber reinforced resin molded product, in a state where the correction jig is attached to the molded product, heat treatment is performed at a temperature 10 to 70 ° C. higher than the coating temperature. It is disclosed to correct the warpage of the molded article.

特開2004−291558号公報JP 2004-291558 A

ところで、繊維強化樹脂成形品には、上記反り以外に、繊維強化樹脂成形品内部に含有される強化繊維由来の凹凸模様が塗装表面に現れ、十分な表面平滑性が得られず、外観不良の要因となるという問題があった。   By the way, in the fiber reinforced resin molded product, in addition to the warp, a concavo-convex pattern derived from the reinforced fiber contained inside the fiber reinforced resin molded product appears on the painted surface, and sufficient surface smoothness cannot be obtained, resulting in poor appearance. There was a problem of being a factor.

そして、強化繊維由来の凹凸模様を隠して外観不良を改善するために、塗装工程において、例えば繰り返し研磨工程を施すことや、10層以上もの塗装膜を形成することが行われており、作業面、時間面、及びコスト面において、過大な負担がかかるという問題があった。   And, in order to conceal the concavo-convex pattern derived from the reinforcing fibers and improve the appearance defect, in the coating process, for example, repeatedly performing a polishing process or forming a coating film of 10 layers or more is performed. However, there has been a problem that an excessive burden is required in terms of time and cost.

また、上記特許文献1には、塗装後の繊維強化樹脂成形品の反りを低減させることについては開示されているものの、その表面に現れた強化繊維由来の凹凸模様を低減させることについては、開示されていない。   Moreover, although the said patent document 1 is disclosed about reducing the curvature of the fiber reinforced resin molded article after coating, about reducing the uneven | corrugated pattern derived from the reinforced fiber which appeared on the surface, it is disclosed. It has not been.

そこで本発明は、塗装工程後に得られる塗装製品の表面に強化繊維由来の凹凸が現れるのを抑制するとともに、塗装工程を簡潔化することができる繊維強化樹脂成形品の塗装方法を提供することを課題とする。   Accordingly, the present invention provides a method for coating a fiber-reinforced resin molded article that can suppress the appearance of unevenness derived from reinforcing fibers on the surface of a coated product obtained after the coating process and can simplify the coating process. Let it be an issue.

上記の目的を達成するために、本発明では、塗装工程前に繊維強化樹脂成形品を所定温度で所定時間加熱して予め熱硬化性樹脂を収縮させておき、塗装工程後に製品外観に強化繊維由来の凹凸が生じにくくなるようにした。   In order to achieve the above object, in the present invention, the fiber reinforced resin molded product is heated at a predetermined temperature for a predetermined time before the coating process to shrink the thermosetting resin in advance, and the reinforcing fiber is added to the product appearance after the coating process. The unevenness of the origin was made difficult to occur.

すなわち、ここに開示する第1の技術に係る繊維強化樹脂成形品の塗装方法は、強化繊維を含み、熱硬化性樹脂をマトリクスとする繊維強化樹脂層を備えた繊維強化樹脂成形品の表面に塗装を施す方法であって、前記繊維強化樹脂成形品に所定温度で所定時間加熱処理を施す第1加熱工程と、前記第1加熱工程後に、前記繊維強化樹脂成形品の表面に塗装を施して塗装層を形成する塗装工程とを備えたことを特徴とする。   That is, the fiber-reinforced resin molded article coating method according to the first technique disclosed herein includes a reinforcing fiber and a fiber-reinforced resin molded article provided with a fiber-reinforced resin layer having a thermosetting resin as a matrix. A method of applying a coating, the first heating step of heating the fiber reinforced resin molded product for a predetermined time at a predetermined temperature, and after the first heating step, coating the surface of the fiber reinforced resin molded product And a coating process for forming a coating layer.

塗装表面に現れる強化繊維由来の凹凸模様は、塗装工程における塗料の乾燥工程や加熱工程において、強化繊維よりも収縮率の大きい熱硬化性樹脂の収縮が促進されるために、顕在化すると考えられる。第1の技術によれば、塗装工程前の繊維強化樹脂成形品に対し所定温度で所定時間加熱処理を施すことにより、予め熱硬化性樹脂の収縮を促進させることができる。そうすると、塗装工程前の繊維強化樹脂成形品の表面に、強化繊維と熱硬化性樹脂との収縮率の差異に起因して生じる凹凸模様を予め形成することができる。そして、表面の凹凸を隠すように塗装層を形成することにより、塗装工程後に得られた製品の表面に強化繊維由来の凹凸模様が現れるのを抑制することができる。そうして、塗装工程を簡潔化しつつ、塗装製品の表面平滑性を向上させて、外観性を向上させることができる。   Concavo-convex patterns derived from reinforcing fibers appearing on the coating surface are thought to be manifested in the paint drying and heating processes in the coating process because the shrinkage of thermosetting resins having a higher shrinkage rate than the reinforcing fibers is promoted. . According to the first technique, the shrinkage of the thermosetting resin can be promoted in advance by subjecting the fiber-reinforced resin molded product before the coating process to heat treatment at a predetermined temperature for a predetermined time. If it does so, the uneven | corrugated pattern resulting from the difference in shrinkage | contraction rate of a reinforced fiber and a thermosetting resin can be previously formed in the surface of the fiber reinforced resin molding before a coating process. And it can suppress that the uneven | corrugated pattern derived from a reinforced fiber appears on the surface of the product obtained after the coating process by forming a coating layer so that the unevenness | corrugation of the surface may be hidden. Thus, while simplifying the coating process, the surface smoothness of the coated product can be improved and the appearance can be improved.

第2の技術は、第1の技術において、前記塗装工程は、前記第1加熱工程後の前記繊維強化樹脂成形品の表面に下塗り層を形成する第1塗装工程と、前記繊維強化樹脂成形品の前記下塗り層の表面上に上塗り層を形成する第2塗装工程とを備えたことを特徴とする。   A second technique is the first technique, wherein the coating step includes a first coating step of forming an undercoat layer on the surface of the fiber reinforced resin molded product after the first heating step, and the fiber reinforced resin molded product. And a second coating step of forming an overcoat layer on the surface of the undercoat layer.

第2の技術によれば、塗装層を少なくとも下塗り層及び上塗り層の積層構造とすることにより、強化繊維由来の凹凸をより効果的に隠すことができ、塗装工程後に得られた製品の平滑性及び外観性を効果的に向上させることができる。   According to the second technique, the unevenness derived from the reinforcing fiber can be more effectively concealed by making the coating layer a laminated structure of at least the undercoat layer and the topcoat layer, and the smoothness of the product obtained after the coating process In addition, the appearance can be effectively improved.

第3の技術は、第2の技術において、前記塗装工程は、前記第1塗装工程後であり且つ前記第2塗装工程前に、前記下塗り層の表面を研磨する研磨工程を備えたことを特徴とする。   A third technique is characterized in that, in the second technique, the coating process includes a polishing process for polishing the surface of the undercoat layer after the first coating process and before the second coating process. And

第3の技術によれば、下塗り層の表面を研磨する研磨工程を備えることで、下塗り層表面に現れた強化繊維由来の凹凸を滑らかにすることができ、延いては塗装工程後に得られた製品の平滑性及び外観性をより効果的に向上させることができる。   According to the third technique, by providing a polishing step for polishing the surface of the undercoat layer, the unevenness derived from the reinforcing fibers that appeared on the surface of the undercoat layer can be smoothed, and thus obtained after the coating step. The smoothness and appearance of the product can be improved more effectively.

第4の技術は、第1乃至第3の技術のいずれか一において、前記塗装工程後に、前記繊維強化樹脂成形品に熱処理を施す第2加熱工程を備えたことを特徴とする。   A fourth technique is characterized in that, in any one of the first to third techniques, a second heating step of performing a heat treatment on the fiber-reinforced resin molded article is provided after the coating step.

第4の技術によれば、第2加熱工程により、塗装層のより確実な定着を図ることができる。   According to the fourth technique, the coating layer can be more reliably fixed by the second heating step.

第5の技術は、第4の技術において、前記第1加熱工程における前記所定温度は、第2加熱工程における温度以上であることを特徴とする。   According to a fifth technique, in the fourth technique, the predetermined temperature in the first heating step is equal to or higher than a temperature in the second heating step.

第5の技術によれば、製品の平滑性及び外観性を効果的に向上させることができる。   According to the fifth technique, the smoothness and appearance of the product can be effectively improved.

第6の技術は、第1乃至第4の技術のいずれか一において、前記繊維強化樹脂層に含まれる前記強化繊維は所定方向に配向していることを特徴とする。   According to a sixth technique, in any one of the first to fourth techniques, the reinforcing fibers included in the fiber reinforced resin layer are oriented in a predetermined direction.

第6の技術によれば、繊維強化樹脂成形品の強度を向上させることができる。   According to the sixth technique, the strength of the fiber-reinforced resin molded product can be improved.

第7の技術は、第5の技術において、前記繊維強化樹脂層は、前記強化繊維の配向が異なる複数の層を積層させてなることを特徴とする。   A seventh technique is characterized in that, in the fifth technique, the fiber reinforced resin layer is formed by laminating a plurality of layers having different orientations of the reinforcing fibers.

第7の技術によれば、繊維強化樹脂成形品の強度をより一層向上させることができる。   According to the seventh technique, the strength of the fiber-reinforced resin molded product can be further improved.

第8の技術は、第5又は第6の技術において、前記所定方向に配向した強化繊維は、織物材、編物材、組物材、UD材及びノンクリンプファブリック材の少なくとも1種であることを特徴とする。   According to an eighth technique, in the fifth or sixth technique, the reinforcing fiber oriented in the predetermined direction is at least one of a woven material, a knitted material, a braided material, a UD material, and a non-crimp fabric material. Features.

第8の技術によれば、強度及び耐久性に優れた繊維強化樹脂成形品の塗装製品を得ることができる。   According to the eighth technique, a coated product of a fiber reinforced resin molded product having excellent strength and durability can be obtained.

第9の技術は、第1乃至第7の技術のいずれか一において、前記強化繊維は、炭素繊維であることを特徴とする。   According to a ninth technique, in any one of the first to seventh techniques, the reinforcing fiber is a carbon fiber.

第9の技術によれば、軽量且つ強度及び耐久性に優れた繊維強化樹脂成形品の塗装製品を得ることができる。   According to the ninth technique, it is possible to obtain a coated product of a fiber-reinforced resin molded product that is lightweight and excellent in strength and durability.

第10の技術は、第1乃至第8の技術のいずれか一において、前記熱硬化性樹脂は、エポキシ樹脂であることを特徴とする。   A tenth technique is any one of the first to eighth techniques, wherein the thermosetting resin is an epoxy resin.

第10の技術によれば、軽量且つコスト性の優れた繊維強化樹脂成形品の塗装製品を得ることができる。   According to the tenth technique, it is possible to obtain a coated product of a lightweight and cost-effective fiber-reinforced resin molded product.

第11の技術は、第1乃至第9の技術のいずれか一において、前記第1加熱工程における前記所定温度は、100℃以上250℃以下であり、前記第1加熱工程における前記所定時間は、5分以上60分以下であることを特徴とする。   In an eleventh technique according to any one of the first to ninth techniques, the predetermined temperature in the first heating step is 100 ° C. or more and 250 ° C. or less, and the predetermined time in the first heating step is: 5 minutes or more and 60 minutes or less.

第11の技術によれば、製品の平滑性及び外観性を効果的に向上させることができる。   According to the eleventh technique, the smoothness and appearance of the product can be effectively improved.

第12の技術は、第1乃至第10の技術のいずれか一において、前記繊維強化樹脂成形品は、車両部品外板部材用であることを特徴とする。   In a twelfth technique according to any one of the first to tenth techniques, the fiber-reinforced resin molded product is for a vehicle component outer plate member.

第12の技術によれば、外観性に優れるとともに、軽量且つ高強度の車両部品外板部材を得ることができる。   According to the twelfth technique, it is possible to obtain a vehicle component outer plate member having excellent appearance and light weight and high strength.

第13の技術によれば、強化繊維を含み、熱硬化性樹脂をマトリクスとする繊維強化樹脂層を備えた繊維強化樹脂成形品と、前記繊維強化樹脂成形品の表面に形成された塗装層とを備えた繊維強化樹脂成形品の塗装製品であって、前記繊維強化樹脂層は、一定の方向に配向した前記強化繊維からなる繊維束を複数含んでおり、前記複数の繊維束は、前記繊維強化樹脂成形品の表面と平行な方向に互いに隣り合う2つの繊維束を備えており、前記塗装製品の縦断面図において、前記繊維束の上側に位置する前記塗装層の表面高さと、隣り合う前記繊維束間の上側に位置する前記塗装層の表面高さとの差が0.5μm以下であることを特徴とする。   According to the thirteenth technique, a fiber reinforced resin molded article comprising a fiber reinforced resin layer containing a reinforced fiber and having a thermosetting resin as a matrix; and a coating layer formed on the surface of the fiber reinforced resin molded article; The fiber reinforced resin layer is a coated product, and the fiber reinforced resin layer includes a plurality of fiber bundles made of the reinforced fibers oriented in a certain direction, and the plurality of fiber bundles are the fibers. Two fiber bundles adjacent to each other in a direction parallel to the surface of the reinforced resin molded product are provided, and in the longitudinal sectional view of the coated product, the surface height of the coating layer located on the upper side of the fiber bundle is adjacent. The difference from the surface height of the coating layer located on the upper side between the fiber bundles is 0.5 μm or less.

第13の技術によれば、外観性に優れるとともに、軽量且つ高強度の繊維強化樹脂成形品の塗装製品を得ることができる。   According to the thirteenth technology, it is possible to obtain a coated product of a lightweight and high-strength fiber-reinforced resin molded product while being excellent in appearance.

以上述べたように、本発明によれば、塗装工程前の繊維強化樹脂成形品に対し所定温度で所定時間加熱処理を施すことにより、予め熱硬化性樹脂の収縮を促進させることができる。そうすると、塗装工程前の繊維強化樹脂成形品の表面に、強化繊維と熱硬化性樹脂との収縮率の差異に起因して生じる凹凸模様を予め形成することができる。そして、表面の凹凸を隠すように塗装層を形成することにより、塗装工程後に得られた製品の表面に強化繊維由来の凹凸模様が現れるのを抑制することができる。そうして、塗装工程を簡潔化しつつ、塗装製品の表面平滑性を向上させて、外観性を向上させることができる。   As described above, according to the present invention, the shrinkage of the thermosetting resin can be promoted in advance by subjecting the fiber-reinforced resin molded product before the coating process to heat treatment at a predetermined temperature for a predetermined time. If it does so, the uneven | corrugated pattern resulting from the difference in shrinkage | contraction rate of a reinforced fiber and a thermosetting resin can be previously formed in the surface of the fiber reinforced resin molding before a coating process. And it can suppress that the uneven | corrugated pattern derived from a reinforced fiber appears on the surface of the product obtained after the coating process by forming a coating layer so that the unevenness | corrugation of the surface may be hidden. Thus, while simplifying the coating process, the surface smoothness of the coated product can be improved and the appearance can be improved.

本発明の一実施形態に係る繊維強化樹脂成形品の塗装方法を説明するためのフローチャートである。It is a flowchart for demonstrating the coating method of the fiber reinforced resin molded product which concerns on one Embodiment of this invention. 準備工程において準備された繊維強化樹脂成形品の構成を模式的に示す図である。It is a figure which shows typically the structure of the fiber reinforced resin molded product prepared in the preparation process. 準備工程において準備された繊維強化樹脂成形品の表面に垂直な方向の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the direction perpendicular | vertical to the surface of the fiber reinforced resin molded product prepared in the preparation process. 第1加熱工程後の繊維強化樹脂成形品の図3相当図である。It is the FIG. 3 equivalent view of the fiber reinforced resin molded product after a 1st heating process. 第1塗装工程後の繊維強化樹脂成形品の図3相当図である。It is the FIG. 3 equivalent view of the fiber reinforced resin molded product after a 1st coating process. 仕上げ工程後の繊維強化樹脂成形品、すなわち塗装製品の図3相当図である。FIG. 4 is a view corresponding to FIG. 3 of a fiber-reinforced resin molded product after a finishing process, that is, a coated product. 第1加熱工程を省略して第1塗装工程を行った後の繊維強化樹脂成形品の図3相当図である。FIG. 4 is a view corresponding to FIG. 3 of the fiber-reinforced resin molded product after performing the first coating process by omitting the first heating process. 図7の繊維強化樹脂成形品について、仕上げ工程後の状態を示す図である。It is a figure which shows the state after a finishing process about the fiber reinforced resin molded product of FIG. 他の実施形態に係る繊維強化樹脂成形品の図2相当図である。It is the FIG. 2 equivalent view of the fiber reinforced resin molded product which concerns on other embodiment. 他の実施形態に係る繊維強化樹脂成形品の図2相当図である。It is the FIG. 2 equivalent view of the fiber reinforced resin molded product which concerns on other embodiment. 他の実施形態に係る繊維強化樹脂成形品の図2相当図である。It is the FIG. 2 equivalent view of the fiber reinforced resin molded product which concerns on other embodiment. 供試材1の繊維強化樹脂成形品について、凹み深さと加熱温度との関係を示すグラフである。It is a graph which shows the relationship between a dent depth and heating temperature about the fiber reinforced resin molded product of the test material 1. FIG. 供試材1の繊維強化樹脂成形品について、凹み深さと加熱回数との関係を示すグラフである。It is a graph which shows the relationship between a dent depth and the frequency | count of a heating about the fiber reinforced resin molded product of the test material 1. FIG. 供試材1の繊維強化樹脂成形品について、凹み深さと加熱時間との関係を示すグラフである。It is a graph which shows the relationship between a dent depth and heating time about the fiber reinforced resin molded product of the specimen 1. 塗面平滑性評価試験の試験方法を説明するための図である。It is a figure for demonstrating the test method of a coating surface smoothness evaluation test.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or its application.

(実施形態1)
<繊維強化樹脂成形品の塗装方法>
図1に示すように、本実施形態に係る繊維強化樹脂成形品11の塗装方法は、準備工程S1と、第1加熱工程S2と、塗装工程S3と、仕上げ工程S4(第2加熱工程)とを備えている。そして、塗装工程S3は、第1塗装工程S31と、研磨工程S32と、第2塗装工程S33とを備えている。
(Embodiment 1)
<Coating method for fiber reinforced resin molding>
As shown in FIG. 1, the coating method of the fiber reinforced resin molded article 11 according to this embodiment includes a preparation step S1, a first heating step S2, a painting step S3, and a finishing step S4 (second heating step). It has. The painting step S3 includes a first painting step S31, a polishing step S32, and a second painting step S33.

−準備工程−
準備工程S1は、塗装を施すための繊維強化樹脂成形品11を準備する工程である。
-Preparation process-
Preparatory process S1 is a process of preparing the fiber reinforced resin molded product 11 for coating.

≪繊維強化樹脂成形品≫
図2,図3に示すように、繊維強化樹脂成形品11は、複数のプリプレグ層31が積層されてなる繊維強化樹脂層3を成形させてなる。プリプレグ層31は、強化繊維36を含み、この強化繊維36に熱硬化性樹脂37をマトリックスとして含浸させてなるシート状の層である。なお、図2には、プリプレグ層31を3層積層させた構成として図示しているが、プリプレグ層31の層数はこれに限られるものではなく、2層であってもよいし、4層以上であってもよい。また、複数でなくても、単層であってもよい。
≪Fiber-reinforced resin molded product≫
As shown in FIGS. 2 and 3, the fiber reinforced resin molded article 11 is formed by molding a fiber reinforced resin layer 3 in which a plurality of prepreg layers 31 are laminated. The prepreg layer 31 is a sheet-like layer including reinforcing fibers 36 and impregnating the reinforcing fibers 36 with a thermosetting resin 37 as a matrix. 2 shows a configuration in which three prepreg layers 31 are laminated, the number of prepreg layers 31 is not limited to this, and may be two layers or four layers. It may be the above. In addition, a single layer may be used instead of a plurality.

≪強化繊維≫
プリプレグ層31に含まれる強化繊維36は、繊維強化樹脂成形品11の強度を向上させるためのものであり、限定する意図ではないが、例えば繊維状の炭素繊維の繊維束が、所定方向に配向された状態、具体的には平織された状態となっている。
≪Reinforcing fiber≫
The reinforced fiber 36 contained in the prepreg layer 31 is for improving the strength of the fiber reinforced resin molded article 11 and is not intended to be limited. For example, a fiber bundle of fibrous carbon fibers is oriented in a predetermined direction. More specifically, it is in a plain woven state.


なお、所定方向に配向された状態の強化繊維36は、平織状の織物材に限られるものではなく、例えば一定の方向に配向した強化繊維からなる繊維束が一方向又は多方向に複数配置されてなる強化繊維材であってよい。具体的には例えば、平織に加え、綾織、朱子織等の織物材、平編、リブ編、両面編、パール編、トリコット、ラッセル等の編物材、丸組、平組、角組等の組紐等の組物材、繊維束が一方向に並んだ単一方向性(UD)材、及び、多方向に積層された繊維束を例えばナイロンやポリエステル等の高分子の糸でステッチ加工してなるノンクリンプファブリック材等が挙げられる。繊維強化樹脂層3は、強度及び耐久性に優れた繊維強化樹脂成形品11を得る観点から、強化繊維36として上記織物材、編物材、組物材、UD材及びノンクリンプファブリック材の少なくとも1種を含む層を単層で又は複数層を積層させたものとしてもよいし、複数種を積層させたものとしてもよい。

The reinforcing fibers 36 in a state oriented in a predetermined direction are not limited to plain woven fabric materials. For example, a plurality of fiber bundles composed of reinforcing fibers oriented in a certain direction are arranged in one direction or multiple directions. It may be a reinforcing fiber material. Specifically, for example, in addition to plain weave, weaving materials such as twill weave and satin weave, flat knitting, rib knitting, double-sided knitting, knitting materials such as pearl knitting, tricot and raschel, braided braids such as round braid, flat braid and square braid For example, a braided material such as a unidirectional (UD) material in which fiber bundles are arranged in one direction, and a fiber bundle that is laminated in multiple directions are stitched with a polymer thread such as nylon or polyester. Non-crimp fabric materials and the like can be mentioned. From the viewpoint of obtaining a fiber reinforced resin molded article 11 having excellent strength and durability, the fiber reinforced resin layer 3 is at least one of the woven material, knitted material, braided material, UD material, and non-crimp fabric material as the reinforcing fiber 36. The seed-containing layer may be a single layer or a stack of a plurality of layers, or a stack of a plurality of types.

また、強化繊維36は、所定の方向に配向している強化繊維材に限られるものではなく、例えば不織布等の、ランダム配向の強化繊維を含む強化繊維材であってもよい。ゆえに、繊維強化樹脂層3は、強化繊維36として、上記ランダム配向の強化繊維材を含む層を単層で又は複数層を積層させたものとしてもよいし、複数種を積層させたものとしてもよい。さらに、繊維強化樹脂層3は、強化繊維36として、上記ランダム配向の強化繊維材を含む層と、上記所定の方向に配向する強化繊維材の層とを組み合わせたものであってもよい。   The reinforcing fiber 36 is not limited to the reinforcing fiber material oriented in a predetermined direction, and may be a reinforcing fiber material including randomly oriented reinforcing fibers such as a nonwoven fabric. Therefore, the fiber reinforced resin layer 3 may be a single layer or a plurality of laminated layers including the above-mentioned randomly oriented reinforcing fiber material as the reinforcing fiber 36, or may be a plurality of laminated layers. Good. Further, the fiber reinforced resin layer 3 may be a combination of the layer containing the randomly oriented reinforcing fiber material and the layer of reinforcing fiber material oriented in the predetermined direction as the reinforcing fiber 36.

強化繊維36としての炭素繊維は、特に限定されるものではないが、例えば、東レ株式会社製T700、東邦テナックス株式会社製HTS40、三菱ケミカル株式会社製TR50S等のポリアクリロニトリル(PAN)系、日本グラファイトファイバー株式会社製XN−60、三菱ケミカル株式会社製K13312等のピッチ系等を使用することができる。   The carbon fiber as the reinforcing fiber 36 is not particularly limited. For example, polyacrylonitrile (PAN) such as T700 manufactured by Toray Industries, Inc., HTS40 manufactured by Toho Tenax Co., Ltd., and TR50S manufactured by Mitsubishi Chemical Co., Ltd., Nippon Graphite Co., Ltd. A pitch system such as XN-60 manufactured by Fiber Co., Ltd. or K13312 manufactured by Mitsubishi Chemical Co., Ltd. can be used.

また、強化繊維36としては、軽量且つ強度及び耐久性に優れた繊維強化樹脂成形品11を得る観点から、特に炭素繊維を用いることが好ましいが、炭素繊維に限定されるものではなく、炭素繊維以外に、ガラスファイバ、バサルトファイバ等により構成されてもよい。   Further, as the reinforcing fiber 36, it is particularly preferable to use carbon fiber from the viewpoint of obtaining a fiber reinforced resin molded article 11 that is lightweight and excellent in strength and durability, but is not limited to carbon fiber, and is not limited to carbon fiber. In addition, it may be composed of glass fiber, basalt fiber, or the like.

強化繊維36の平均繊維径は、限定されるものではないが、軽量且つ強度及び耐久性に優れた繊維強化樹脂成形品11を得る観点から、例えば5μm〜15μm程度とすることができる。また強化繊維36の平均繊維長は、特に限定されるものではなく、軽量且つ強度及び耐久性に優れた繊維強化樹脂成形品11を得る観点から、連続繊維が好ましい。   The average fiber diameter of the reinforcing fibers 36 is not limited, but may be, for example, about 5 μm to 15 μm from the viewpoint of obtaining a fiber reinforced resin molded article 11 that is lightweight and excellent in strength and durability. The average fiber length of the reinforcing fibers 36 is not particularly limited, and continuous fibers are preferable from the viewpoint of obtaining a fiber-reinforced resin molded article 11 that is lightweight and excellent in strength and durability.

繊維強化樹脂成形品11中における強化繊維36の含有量は、軽量且つ強度及び耐久性に優れるとともに成形性に優れた繊維強化樹脂成形品11を得る観点から、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下とすることができる。   The content of the reinforcing fiber 36 in the fiber reinforced resin molded article 11 is preferably 30% by volume or more and 80% by volume from the viewpoint of obtaining the fiber reinforced resin molded article 11 that is lightweight, excellent in strength and durability and excellent in moldability. In the following, it can be more preferably 40% by volume or more and 70% by volume or less.

≪熱硬化性樹脂≫
熱硬化性樹脂37は、繊維強化樹脂成形品11の骨格を形成するためのものであり、具体的には例えば、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、ウレタンアクリレート樹脂等の熱硬化性樹脂材料が挙げられ、特に、繊維強化樹脂成形品11の軽量性、強度、耐久性、コスト性等の観点から、エポキシ樹脂が望ましい。これらの熱硬化性樹脂材料は、単体の他、一種の樹脂材料と他の樹脂材料との共重合体、変性体および2種類以上ブレンドした樹脂材料等も用いることができる。
≪Thermosetting resin≫
The thermosetting resin 37 is for forming the skeleton of the fiber reinforced resin molded article 11, and specifically, for example, epoxy resin, vinyl ester resin, phenol resin, polyimide resin, polyurethane resin, urea resin, melamine Examples include thermosetting resin materials such as resins, bismaleimide resins, unsaturated polyester resins, and urethane acrylate resins. In particular, from the viewpoints of lightness, strength, durability, cost, etc. of the fiber reinforced resin molded article 11, epoxy resin is used. Resin is desirable. As these thermosetting resin materials, in addition to a simple substance, a copolymer of one kind of resin material and another resin material, a modified body, a resin material blended with two or more kinds, and the like can also be used.

≪その他の材料≫
繊維強化樹脂成形品11は、強化繊維36、熱硬化性樹脂37に加え、成形性、強度、意匠性、機能性等の向上の観点から、フィラー、顔料、染料、耐衝撃性改良剤、UV吸収剤等の添加材等を含有してもよい。これらの添加材は単独で添加してもよいし、複数種を添加してもよい。
≪Other materials≫
In addition to the reinforcing fiber 36 and the thermosetting resin 37, the fiber reinforced resin molded article 11 is filled with fillers, pigments, dyes, impact modifiers, UV, from the viewpoint of improving moldability, strength, designability, functionality, and the like. You may contain additives, such as an absorber. These additives may be added singly or plural kinds may be added.

繊維強化樹脂成形品11中に、添加材等を含有させる場合には、成形性、強度、意匠性、機能性等を向上させる観点から、添加材の含有量は、例えば5質量%以下とすることができる。   In the case where an additive or the like is included in the fiber reinforced resin molded article 11, the content of the additive is, for example, 5% by mass or less from the viewpoint of improving moldability, strength, design, functionality, and the like. be able to.

また、繊維強化樹脂成形品11の樹脂材料として、上記熱硬化性樹脂37に加え、成形性を向上させる観点から、熱可塑性樹脂を含有してもよい。熱可塑性樹脂としては、具体的には例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアリーレンスルフィド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルスルホン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂等が挙げられる。   Moreover, as a resin material of the fiber reinforced resin molded article 11, in addition to the thermosetting resin 37, a thermoplastic resin may be contained from the viewpoint of improving moldability. Specific examples of the thermoplastic resin include polypropylene resin, polyethylene resin, polycarbonate resin, polyamide resin, polyester resin, polyarylene sulfide resin, polyphenylene sulfide resin, polyether ketone, polyether ether ketone resin, polyether ketone ketone. Examples thereof include resins, polyethersulfone resins, polyimide resins, polyamideimide resins, polyetherimide resins, and polysulfone resins.

≪繊維強化樹脂成形品の用途≫
繊維強化樹脂成形品11は、例えば車両部品、例えばエンジンカバー等のエンジン部品用、ボンネット、リヤフェンダー、ルーフ、ドア、フロントパネル、リアパネル、リフトゲート等の車両部品外板部材用等の用途に用いることができ、好ましくは車両部品外板部材用である。これにより、表面平滑性に優れ、軽量且つ高強度の車両部品、特に車両部品外板部材を得ることができる。
≪Use of fiber reinforced resin molded products≫
The fiber reinforced resin molded article 11 is used for applications such as vehicle parts, for example, engine parts such as an engine cover, bonnets, rear fenders, roofs, doors, front panels, rear panels, lift gates, etc. Preferably, it is for vehicle component outer plate members. Thereby, it is excellent in surface smoothness, and a lightweight and high intensity | strength vehicle component, especially a vehicle component outer plate member can be obtained.

≪繊維強化樹脂成形品の準備方法≫
繊維強化樹脂成形品11の準備方法は、特に限定されるものではなく、市販のものを用いてもよいし、成形により製造してもよい。
≪Preparation method of fiber reinforced resin molded product≫
The preparation method of the fiber reinforced resin molded product 11 is not specifically limited, A commercially available thing may be used and you may manufacture by shaping | molding.

成形を行う場合には、例えば、プリプレグ層31を調製後、種々の成形方法により成形することにより、繊維強化樹脂成形品11を得ることができる。   When molding, for example, the fiber reinforced resin molded article 11 can be obtained by preparing the prepreg layer 31 and then molding it by various molding methods.

プリプレグ層31は、具体的には例えば、ロール成形機等を用いて、所定方向に配向した強化繊維36の前駆体シートの表裏両面にシート状の熱硬化性樹脂37を貼り合わせ、ヒータ等で加熱して、前駆体シートに熱硬化性樹脂37が含浸してなるプリプレグ層31を形成する方法が挙げられる。   Specifically, the prepreg layer 31 is formed by, for example, using a roll molding machine or the like to bond sheet-like thermosetting resins 37 on both the front and back sides of the precursor sheet of the reinforcing fiber 36 oriented in a predetermined direction, and using a heater or the like. There is a method in which the prepreg layer 31 formed by heating and impregnating the thermosetting resin 37 into the precursor sheet is formed.

このプリプレグ層31を単独で、又は必要に応じて複数層積層して、繊維強化樹脂層3を構成する。このとき、後述するように、所定方向に配向した強化繊維36の繊維束の配向が互いに異なる複数のプリプレグ層や、ランダム配向の強化繊維36を含有するプリプレグ層を積層させてもよい。   The fiber reinforced resin layer 3 is configured by laminating the prepreg layer 31 singly or as needed. At this time, as described later, a plurality of prepreg layers having different fiber bundle orientations of the reinforcing fibers 36 oriented in a predetermined direction or prepreg layers containing the randomly oriented reinforcing fibers 36 may be laminated.

繊維強化樹脂層3の成形方法は特に限定されるものではなく、一般的な成形方法を採用することができるが、具体的には例えば、内圧成形、オートクレーブ成形、オーブン成形等により成形することができる。そして、成形後の繊維強化樹脂層3を冷却、脱型、乾燥等させて、繊維強化樹脂成形品11を得ることができる。   The molding method of the fiber reinforced resin layer 3 is not particularly limited, and a general molding method can be employed. Specifically, for example, the fiber reinforced resin layer 3 may be molded by internal pressure molding, autoclave molding, oven molding, or the like. it can. And the fiber reinforced resin molded product 11 can be obtained by cooling, demolding, drying, etc. the fiber reinforced resin layer 3 after molding.

−第1加熱工程−
第1加熱工程S2は、繊維強化樹脂成形品11に所定温度で所定時間加熱処理を施す工程である。
-First heating step-
The first heating step S2 is a step in which the fiber reinforced resin molded article 11 is subjected to heat treatment at a predetermined temperature for a predetermined time.

第1加熱工程S2による繊維強化樹脂成形品11の変化を図3,図4を参照して説明する。   The change of the fiber reinforced resin molded product 11 by the first heating step S2 will be described with reference to FIGS.

図3に示すように、繊維強化樹脂成形品11の最表面のプリプレグ層31は、強化繊維36としての縦繊維36a及び横繊維36bと、これら繊維間及び繊維内に含浸された熱硬化性樹脂37とを備えている。縦繊維36aは、図3の紙面に垂直な方向に延び、横繊維36bは、図3の紙面に平行な方向に延びるように配置されている。縦繊維36a及び横繊維36bは、それぞれ繊維強化樹脂成形品11の表面と平行な方向に並んだ複数の繊維束を形成しており、これらの繊維束が平織状の織物を形成している。具体的には、図3に示すように、縦繊維36aは、繊維強化樹脂成形品11の表面と平行な方向に互いに隣り合う2つの繊維束36a1,36a2を有している。そして、縦繊維36aの繊維束36a1,36a2間には、熱硬化性樹脂37が含浸されており、その最表面には、縦繊維36aの繊維束36a1,36a2が存在する位置に比べて例えば凹み深さtがtだけ凹んだ凹部37aが形成され得る。 As shown in FIG. 3, the prepreg layer 31 on the outermost surface of the fiber reinforced resin molded article 11 includes longitudinal fibers 36a and transverse fibers 36b as reinforcing fibers 36, and a thermosetting resin impregnated between and within the fibers. 37. The longitudinal fibers 36a extend in a direction perpendicular to the paper surface of FIG. 3, and the lateral fibers 36b are disposed so as to extend in a direction parallel to the paper surface of FIG. The vertical fibers 36a and the horizontal fibers 36b each form a plurality of fiber bundles arranged in a direction parallel to the surface of the fiber reinforced resin molded article 11, and these fiber bundles form a plain woven fabric. Specifically, as shown in FIG. 3, the vertical fiber 36 a has two fiber bundles 36 a 1 and 36 a 2 that are adjacent to each other in a direction parallel to the surface of the fiber reinforced resin molded product 11. And between the fiber bundles 36a1 and 36a2 of the longitudinal fibers 36a, a thermosetting resin 37 is impregnated, and the outermost surface thereof has, for example, a dent compared to the position where the fiber bundles 36a1 and 36a2 of the longitudinal fibers 36a are present. depth t is recessed by t 0 recess 37a may be formed.

図3の状態の繊維強化樹脂成形品11に対して、第1加熱工程S2を施すと、図4に示すように、凹部37aの凹み深さtがtに増加した状態となる。具体的に、プリプレグ層31に含まれる熱硬化性樹脂37及び強化繊維36のうち、熱硬化性樹脂37の収縮率は、強化繊維36の収縮率よりも大きい。そうすると、第1加熱工程S2の加熱処理により、熱硬化性樹脂37の方が強化繊維36よりも大きく収縮し、凹部37aの凹み深さtがtまで大きくなり得る。このように、加熱処理を施すことで、繊維強化樹脂成形品11の表面に、強化繊維36と熱硬化性樹脂37との互いの収縮率の差異に起因する凹凸模様が形成され得る。 Against states of the fiber-reinforced resin molded article 11 of Figure 3, when subjected to a first heating step S2, as shown in FIG. 4, a state in which recess depth t is increased to t 1 of the concave portion 37a. Specifically, among the thermosetting resin 37 and the reinforcing fiber 36 included in the prepreg layer 31, the shrinkage rate of the thermosetting resin 37 is larger than the shrinkage rate of the reinforcing fiber 36. Then, by heat treatment of the first heating step S2, towards the thermosetting resin 37 is largely contracted than the reinforcing fibers 36, recess depth t of the recess 37a may be increased up to t 1. As described above, by performing the heat treatment, a concavo-convex pattern due to the difference in contraction rate between the reinforcing fiber 36 and the thermosetting resin 37 can be formed on the surface of the fiber reinforced resin molded article 11.

第1加熱工程S2において、所定温度は、下限値は好ましくは100℃以上、より好ましくは105℃以上、特に好ましくは110℃以上、上限値は好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは160℃以下である。第1加熱工程S2における所定時間は、下限値は好ましくは5分以上、より好ましくは7分以上、特に好ましくは10分以上、上限値は好ましくは60分以下、より好ましくは50分以下、特に好ましくは30分以下である。所定温度が100℃未満及び/又は所定時間が5分未満では熱硬化性樹脂37の収縮を効果的に促進させることができないおそれがある。また所定温度が250℃超及び/又は所定時間が60分超では凹部37aの凹み深さtが大きくなりすぎ、塗装層4を形成しても凹凸模様を効果的に隠すことが難しくなるおそれがある。   In the first heating step S2, the lower limit of the predetermined temperature is preferably 100 ° C or higher, more preferably 105 ° C or higher, particularly preferably 110 ° C or higher, and the upper limit is preferably 250 ° C or lower, more preferably 200 ° C or lower. Especially preferably, it is 160 degrees C or less. The lower limit of the predetermined time in the first heating step S2 is preferably 5 minutes or more, more preferably 7 minutes or more, particularly preferably 10 minutes or more, and the upper limit is preferably 60 minutes or less, more preferably 50 minutes or less, particularly Preferably it is 30 minutes or less. If the predetermined temperature is less than 100 ° C. and / or the predetermined time is less than 5 minutes, the shrinkage of the thermosetting resin 37 may not be effectively promoted. If the predetermined temperature exceeds 250 ° C. and / or the predetermined time exceeds 60 minutes, the recess depth t of the recess 37a becomes too large, and it may be difficult to effectively hide the uneven pattern even if the coating layer 4 is formed. is there.

なお、仕上げ工程S4において、第2加熱工程として、塗装工程S3後の繊維強化樹脂成形品に対し、加熱処理を行う場合は、第1加熱工程S2における所定温度は、仕上げ工程S4における温度以上とすることが望ましい。これにより、製品の平滑性及び外観性を効果的に向上させることができる。   In addition, in finishing process S4, when performing heat processing with respect to the fiber reinforced resin molded product after coating process S3 as a 2nd heating process, the predetermined temperature in 1st heating process S2 is more than the temperature in finishing process S4. It is desirable to do. Thereby, the smoothness and appearance of the product can be effectively improved.

凹部37aの凹み深さtについて、熱硬化性樹脂37の収縮を促進させ、塗装工程S3を簡潔化しつつ塗装製品1の表面平滑性を向上させる観点から、第1加熱工程S2前のtに対する第1加熱工程S2後tの比t/tは、好ましくは1.1以上10以下、より好ましくは1.3以上9以下、特に好ましくは1.5以上8以下である。具体的には例えば、tは0.1μm以上1μm以下程度であり、この場合、第1加熱工程S2後のtは、例えば1.1μm以上3μm以下程度とすることができる。 For recess depth t of the recessed portion 37a, to promote the contraction of the thermosetting resin 37, from the viewpoint of improving the surface smoothness of the coated product 1 while simplifying the painting process S3, for t 0 before the first heating process S2 the ratio t 1 / t 0 after t 1 a first heating step S2 is preferably 1.1 to 10, more preferably 1.3 to 9, particularly preferably 1.5 to 8. Specifically, for example, t 0 is the degree than 1μm or less 0.1 [mu] m, in this case, t 1 after the first heating process S2 may be, for example, about 1.1μm or 3μm or less.

第1加熱工程S2では、繊維強化樹脂成形品11に加熱処理を施した後、常温まで冷却する。   In 1st heating process S2, after performing the heat processing to the fiber reinforced resin molded product 11, it cools to normal temperature.

−塗装工程−
塗装工程S3は、第1加熱工程S2後の繊維強化樹脂成形品11の表面に塗装を施して塗装層4を形成する工程である。上述のごとく、塗装工程S3は、第1塗装工程S31と、研磨工程S32と、第2塗装工程S33とを備えている。
-Painting process-
The coating step S3 is a step of forming the coating layer 4 by coating the surface of the fiber reinforced resin molded article 11 after the first heating step S2. As described above, the painting step S3 includes the first painting step S31, the polishing step S32, and the second painting step S33.

≪第1塗装工程≫
第1塗装工程S31は、図5に示すように、第1加熱工程S2後の繊維強化樹脂成形品11の表面に下塗り剤を塗装して、下塗り層41を形成する工程である。
≪First painting process≫
As shown in FIG. 5, the first coating step S <b> 31 is a step of forming the undercoat layer 41 by applying a primer to the surface of the fiber reinforced resin molded article 11 after the first heating step S <b> 2.

このとき、下塗り層41は、上述の凹部37aを隠して、繊維強化樹脂成形品11の表面が平坦化するように形成される。   At this time, the undercoat layer 41 is formed so as to flatten the surface of the fiber reinforced resin molded article 11 while hiding the above-described concave portion 37a.

下塗り剤は、繊維強化樹脂成形品11の凹部37a等の凹凸模様を隠して平坦化する役割に加え、その他の表面欠陥等を補修する役割や、繊維強化樹脂成形品11と第2塗装工程S33で形成される上塗り層42,43との密着性を向上させる役割、そして塗装製品1の色調整の役割等を有している。下塗り剤としては、例えばCOODE(登録商標)フィラー(関西ペイント株式会社製)、COODE(登録商標)W/Wプライマープラス(関西ペイント株式会社製)、ポリタン車輛用サーフェーサーゴールド(大日本塗料株式会社製)、ウレタンプラサフジタン(日本ペイント株式会社製)等のプライマー剤等を用いることができる。   In addition to the role of concealing and flattening the concave and convex patterns such as the concave portions 37a of the fiber reinforced resin molded product 11, the undercoat agent repairs other surface defects and the like, and the fiber reinforced resin molded product 11 and the second coating step S33. It has the role of improving the adhesion with the overcoat layers 42 and 43 formed by the above, the role of color adjustment of the coated product 1, and the like. As the undercoat, for example, COODE (registered trademark) filler (manufactured by Kansai Paint Co., Ltd.), COODE (registered trademark) W / W Primer Plus (manufactured by Kansai Paint Co., Ltd.), Polytan vehicle surfacer gold (manufactured by Dainippon Paint Co., Ltd.) ) And a primer agent such as urethane plasafujitan (manufactured by Nippon Paint Co., Ltd.).

下塗り剤の塗装方法としては、特に限定されるものではなく、エアスプレー塗装、エアレススプレー塗装、刷毛塗り塗装等を用いることができる。また、繊維強化樹脂成形品11の表面に下塗り剤を載せ、その表面形状に倣った成形面を有する成形型を押し付けて上記表面全体に下塗り剤を拡げるようにしてもよい。下塗り剤を塗装した後は、常温で例えば20分〜1時間程度大気乾燥することにより、下塗り剤を硬化させて下塗り層41を形成することができる。   The method for applying the primer is not particularly limited, and air spray coating, airless spray coating, brush coating and the like can be used. Alternatively, an undercoat may be placed on the surface of the fiber reinforced resin molded article 11, and a forming die having a molding surface following the surface shape may be pressed to spread the undercoat over the entire surface. After the undercoat is applied, the undercoat layer 41 can be formed by curing the undercoat by drying in the air at room temperature for about 20 minutes to 1 hour, for example.

下塗り層41の仕上げ工程S4後の膜厚、すなわち塗装製品1における下塗り層41の膜厚は、例えば図6に示すように、凹部37a以外の平坦部37bの平均厚さとして、塗装製品1の軽量化を図りつつ下塗り層41の上記機能を発現させる観点から、好ましくは5μm以上50μm以下、より好ましくは6μm以上45μm以下、特に好ましくは7μm以上40μm以下である。   The film thickness of the undercoat layer 41 after the finishing step S4, that is, the film thickness of the undercoat layer 41 in the coated product 1 is the average thickness of the flat portion 37b other than the concave portion 37a as shown in FIG. From the viewpoint of developing the above function of the undercoat layer 41 while achieving weight reduction, it is preferably 5 μm or more and 50 μm or less, more preferably 6 μm or more and 45 μm or less, and particularly preferably 7 μm or more and 40 μm or less.

≪研磨工程≫
塗装製品1の表面平滑性をさらに向上させる観点から、第1塗装工程S31後であり且つ第2塗装工程S33前に、下塗り層41の表面を研磨する研磨工程S32を備える構成としてもよい。なお、研磨工程S32は任意の工程であり、研磨工程S32を行わず第1塗装工程S31後にそのまま第2塗装工程S33を行ってもよい。
≪Polishing process≫
From the viewpoint of further improving the surface smoothness of the coated product 1, a polishing step S32 for polishing the surface of the undercoat layer 41 may be provided after the first coating step S31 and before the second coating step S33. The polishing step S32 is an optional step, and the second coating step S33 may be performed as it is after the first coating step S31 without performing the polishing step S32.

研磨工程S32は、特に限定されるものではないが、下塗り層41の表面をサンドペーパー、バフ布等で研磨することにより行うことができる。また、乾式研磨でもよいし、水研磨等の湿式研磨でもよい。   The polishing step S32 is not particularly limited, but can be performed by polishing the surface of the undercoat layer 41 with sandpaper, a buff cloth, or the like. Also, dry polishing or wet polishing such as water polishing may be used.

研磨工程S32を行う場合は、下塗り層41の表面平滑性を向上させる観点から、研磨工程S32において、下塗り層41の上記膜厚が、研磨工程S32前の膜厚に比べて好ましくは80%以上99%以下、より好ましくは85%以上98%以下、特に好ましくは90%以上97%以下の厚さになるまで研磨することが望ましい。   In the case of performing the polishing step S32, from the viewpoint of improving the surface smoothness of the undercoat layer 41, in the polishing step S32, the thickness of the undercoat layer 41 is preferably 80% or more compared to the thickness before the polishing step S32. It is desirable to polish to a thickness of 99% or less, more preferably 85% or more and 98% or less, and particularly preferably 90% or more and 97% or less.

≪第2塗装工程≫
繊維強化樹脂成形品11の下塗り層41の表面上に、上塗り剤を塗装することにより、上塗り層42,43を形成する。なお、上塗り層42,43は、着色層42と保護層43とよりなる。
≪Second painting process≫
On the surface of the undercoat layer 41 of the fiber reinforced resin molded article 11, the overcoat layers 42 and 43 are formed by applying an overcoat agent. The overcoat layers 42 and 43 are composed of a colored layer 42 and a protective layer 43.

着色層42は、塗装層4に発色を与えるための層であり、水性ベース塗料、油性(溶剤型)ベース塗料等のベース塗料の塗装によって形成することができる。水性ベース塗料に関し、その主成分である水性樹脂については、アクリルエマルション、水溶性アクリル樹脂等からなるアクリル樹脂や、ポリエステル樹脂、ポリウレタン樹脂、ビニル樹脂等を用いることができる。水性ベース塗料には着色剤として顔料を添加するが、顔料としては、例えば、有機系のアゾキレート系顔料、不溶性アゾ系顔料、縮合アゾ系顔料、ジケトピロロピロール系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、インジゴ顔料、ペリノン系顔料、ペリレン系顔料、ジオキサン系顔料、キナクリドン系顔料、イソインドリノン系顔料、金属錯体顔料等の有機系着色顔料、黄鉛、黄色酸化鉄、ベンガラ、カーボンブラック、二酸化チタン等の無機系着色顔料、炭酸カルシウム、硫酸バリウム、クレー、タルク等の体質顔料、メタルフレーク等の光輝性顔料等が挙げられる。また、水性ベース塗料は、必要に応じて、架橋剤、扁平顔料、硬化触媒、増粘剤、有機溶剤、塩基性中和剤、紫外線吸収剤、光安定剤、表面調整剤、酸化防止剤、シランカップリング剤等の塗料用添加剤等を配合することができる。油性(溶剤型)ベース塗料は、具体的には例えば、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、及び着色顔料を含むメラミン硬化型油性塗料等を用いることができる。ベース塗料は、例えば、エアスプレー塗装、エアレススプレー塗装、刷毛塗り塗装、回転霧化塗装、カーテンコート塗装等により、下塗り層41の上に塗装することができる。着色層42の仕上げ工程S4後の膜厚は、例えば10〜20μmとすることができる。   The colored layer 42 is a layer for imparting color to the paint layer 4 and can be formed by painting a base paint such as an aqueous base paint or an oil-based (solvent type) base paint. With respect to the aqueous base paint, an aqueous resin that is a main component thereof may be an acrylic resin made of an acrylic emulsion, a water-soluble acrylic resin, or the like, a polyester resin, a polyurethane resin, a vinyl resin, or the like. A pigment is added as a colorant to the aqueous base paint. Examples of the pigment include organic azo chelate pigments, insoluble azo pigments, condensed azo pigments, diketopyrrolopyrrole pigments, benzimidazolone pigments, Organic color pigments such as phthalocyanine pigments, indigo pigments, perinone pigments, perylene pigments, dioxane pigments, quinacridone pigments, isoindolinone pigments, metal complex pigments, yellow lead, yellow iron oxide, bengara, carbon black Inorganic color pigments such as titanium dioxide, extender pigments such as calcium carbonate, barium sulfate, clay and talc, and glitter pigments such as metal flakes. In addition, the water-based base paint is a cross-linking agent, a flat pigment, a curing catalyst, a thickener, an organic solvent, a basic neutralizing agent, an ultraviolet absorber, a light stabilizer, a surface conditioner, an antioxidant, if necessary. Additives for paints such as silane coupling agents can be blended. As the oil-based (solvent type) base paint, specifically, for example, a melamine curable oil-based paint containing a polyurethane resin, an acrylic resin, a melamine resin, and a color pigment can be used. The base paint can be applied onto the undercoat layer 41 by, for example, air spray coating, airless spray coating, brush coating, rotary atomization coating, curtain coat coating, or the like. The film thickness after the finishing step S4 of the colored layer 42 can be set to, for example, 10 to 20 μm.

保護層43は、着色層42を保護するとともに、塗装製品1の外観性を高めるための層である。保護層43を形成する樹脂としては、特に限定されるものではないが、水酸基含有アクリル樹脂及びポリイソシアネート化合物を含有する2液ウレタンクリヤ塗料、アクリル樹脂及び/又はポリエステル樹脂とアミノ樹脂との組み合わせによるクリヤ塗料、或いはカルボン酸・エポキシ硬化系を有するアクリル樹脂及び/又はポリエステル樹脂のクリヤ塗料等が挙げられる。クリヤ塗料には、必要に応じて、顔料類、非水分散樹脂、ポリマー微粒子、硬化触媒、紫外線吸収剤、光安定剤、塗面調整剤、酸化防止剤、流動性調整剤、ワックス等を適宜含有することができる。硬化触媒の例としては、有機錫化合物、トリエチルアミン、ジエタノールアミン等が挙げられる。紫外線吸収剤の例としては、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、サリシレート系、蓚酸アニリド系等の化合物、ヒンダードアミン系化合物等の紫外線安定剤が挙げられる。クリヤ塗料は、着色層42の上に、エアスプレー塗装、エアレススプレー塗装、刷毛塗り塗装、回転霧化塗装、カーテンコート塗装等により塗装することができる。保護層43の仕上げ工程S4後の膜厚は、例えば20〜50μmとすることができる。   The protective layer 43 is a layer for protecting the colored layer 42 and enhancing the appearance of the coated product 1. Although it does not specifically limit as resin which forms the protective layer 43, By the combination of 2-component urethane clear coating containing a hydroxyl-containing acrylic resin and a polyisocyanate compound, an acrylic resin and / or a polyester resin, and an amino resin Examples thereof include clear paints, and clear paints of acrylic resins and / or polyester resins having a carboxylic acid / epoxy curing system. If necessary, the clear paint contains pigments, non-aqueous dispersion resins, polymer fine particles, curing catalysts, ultraviolet absorbers, light stabilizers, coating surface conditioners, antioxidants, fluidity conditioners, waxes, etc. as appropriate. Can be contained. Examples of the curing catalyst include organotin compounds, triethylamine, diethanolamine and the like. Examples of the ultraviolet absorber include ultraviolet stabilizers such as benzophenone-based, benzotriazole-based, cyanoacrylate-based, salicylate-based, oxalic acid anilide-based compounds, and hindered amine-based compounds. The clear coating can be applied on the colored layer 42 by air spray coating, airless spray coating, brush coating, rotary atomization coating, curtain coating, or the like. The film thickness after finishing process S4 of the protective layer 43 can be 20-50 micrometers, for example.

−仕上げ工程−
仕上げ工程S4は、塗料を定着させるための工程であり、例えば常温で30分〜2時間程度、大気乾燥させることにより塗料を定着させてもよい。
-Finishing process-
The finishing step S4 is a step for fixing the paint. For example, the paint may be fixed by air drying at room temperature for about 30 minutes to 2 hours.

また、塗装層4のより確実な定着を図る観点から、例えば炉を用いて塗装工程S3後の繊維強化樹脂成形品に対し、100℃〜160℃の温度で10分〜30分程度熱処理を施す第2加熱工程としてもよい。   Further, from the viewpoint of more surely fixing the coating layer 4, for example, a furnace is used to heat-treat the fiber reinforced resin molded product after the coating step S3 at a temperature of 100 ° C. to 160 ° C. for about 10 minutes to 30 minutes. It is good also as a 2nd heating process.

なお、図6に示すように、仕上げ工程S4後の凹部37aの凹み深さtは、tとなる。仕上げ工程S4では、凹部37aの凹み深さtが増加することもあり得るし、また増加しないこともあり得る。凹部37aの凹み深さtが増加する場合にはtはtよりも大きくなる。また、凹部37aの凹み深さtが増加しない場合には、tはtと同一となる。凹部37aの凹み深さtが増加する場合であっても、tとtとの差は僅かである。 Incidentally, as shown in FIG. 6, recess depth t of the recess 37a after the finishing step S4 is a t 2. In the finishing step S4, the recess depth t of the recess 37a may increase or may not increase. T 2 is greater than t 1 when the recess depth t of the recess 37a is increased. Further, when the recess depth t of the recessed portion 37a does not increase, t 2 is the same as t 1. Even when dents depth t of the recess 37a is increased, the difference between t 2 and t 1 is small.

<繊維強化樹脂成形品の塗装製品>
上記のごとく得られた繊維強化樹脂成形品11の塗装製品1は、図6に示すように、強化繊維36を含み、熱硬化性樹脂37をマトリクスとする繊維強化樹脂層3を備えた繊維強化樹脂成形品11と、繊維強化樹脂成形品11の表面に形成された塗装層4とを備えている。
<Fiber-reinforced resin molded products>
As shown in FIG. 6, the coated product 1 of the fiber reinforced resin molded article 11 obtained as described above includes a fiber reinforced resin layer 3 including a reinforced fiber 36 and having a thermosetting resin 37 as a matrix. A resin molded product 11 and a coating layer 4 formed on the surface of the fiber reinforced resin molded product 11 are provided.

−作用効果−
ここに、本実施形態に係る繊維強化樹脂成形品11の塗装方法は、第1加熱工程S2を備えることを特徴とする。以下、その作用効果について説明する。
-Effects-
Here, the coating method of the fiber reinforced resin molded article 11 according to the present embodiment includes the first heating step S2. Hereinafter, the function and effect will be described.

図7に、図3の繊維強化樹脂成形品11に対して、第1加熱工程S2を得ることなく第1塗装工程S31を行った状態を示す。凹部37aの凹み深さtは図3のtのまま下塗り層41が形成される。その後、研磨工程S32、第2塗装工程S33を経て、上塗り層42,43が形成される。そして、仕上げ工程S4を経て、図8に示す繊維強化樹脂成形品11の塗装製品1が得られる。 FIG. 7 shows a state in which the first coating step S31 is performed on the fiber reinforced resin molded article 11 of FIG. 3 without obtaining the first heating step S2. Recess depth t of the recess 37a remains undercoat layer 41 of t 0 in FIG. 3 is formed. Thereafter, the overcoat layers 42 and 43 are formed through the polishing step S32 and the second coating step S33. Then, through the finishing step S4, the coated product 1 of the fiber reinforced resin molded product 11 shown in FIG. 8 is obtained.

仕上げ工程S4において、常温での乾燥や、加熱による乾燥を行うことで、熱硬化性樹脂37の収縮が促進され得る。そうすると、熱硬化性樹脂37の凹部37aの凹み深さtがtにまで成長し得る。すると、繊維強化樹脂成形品11の表面に形成された下塗り層41、上塗り層42,43は、凹部37aの成長に追従して凹み、塗装製品1の表面には、凹部37aが反映された形で塗装層凹部4a、すなわち凹凸模様が形成され得る。塗装層凹部4aの凹み深さtは、図8に示すように、繊維束36a1,36a2の上側に位置する塗装層4、すなわち塗装層平坦部4bの表面高さと、隣り合う繊維束36a1,36a2間の上側に位置する塗装層4、すなわち塗装層凹部4aの底部の表面高さとの差tとなる。そして、塗装層凹部4aの凹み深さtは、tとtとの差の値を反映した値となる。なお、本明細書において、凹部37aの凹み深さt,t,t及び塗装層凹部4aの凹み深さtをまとめて「凹み深さt」という。 In the finishing step S4, shrinkage of the thermosetting resin 37 can be promoted by drying at room temperature or drying by heating. Then, recess depth t of the recessed portion 37a of the thermosetting resin 37 can grow up to t 2. Then, the undercoat layer 41 and the overcoat layers 42 and 43 formed on the surface of the fiber reinforced resin molded article 11 are recessed following the growth of the recessed portion 37a, and the surface of the coated product 1 reflects the recessed portion 37a. Thus, a coating layer recess 4a, that is, an uneven pattern can be formed. As shown in FIG. 8, the depth t of the coating layer recess 4a is determined by the coating layer 4 positioned above the fiber bundles 36a1 and 36a2, that is, the surface height of the coating layer flat portion 4b and the adjacent fiber bundles 36a1 and 36a2. It becomes a difference t 3 from the surface height of the coating layer 4 located on the upper side, that is, the bottom of the coating layer recess 4a. The recess depth t 3 of paint layers recess 4a is a value that reflects the value of the difference between t 2 and t 0. In this specification, the recess depths t 0 , t 1 , t 2 of the recess 37a and the recess depth t 3 of the coating layer recess 4a are collectively referred to as “a recess depth t”.

これに対し、本実施形態に係る繊維強化樹脂成形品11の塗装方法では、繊維強化樹脂成形品11の表面に塗装を施す塗装工程S3前に、第1加熱工程S2として、繊維強化樹脂成形品11に対し所定温度で所定時間加熱処理を施す。本構成により、予め熱硬化性樹脂の収縮を促進させて、図4に示すように、強化繊維36と熱硬化性樹脂37との互いの収縮率の差異に起因する凹凸を予め繊維強化樹脂成形品11の表面に形成することができる。そうして、塗装工程S3において、表面の凹凸を隠すように下塗り層41、延いては上塗り層42,43を形成することにより、仕上げ工程S4後に得られた塗装製品1の表面に強化繊維36に起因する凹凸が現れるのを抑制し、その平滑性を向上させて、外観性に優れた塗装製品1を得ることができる。すなわち、図6に示すように、塗装層凹部4aの凹み深さtは、tとtとの差の値を反映した値となり、図8のものに比べて小さい値となる。 On the other hand, in the coating method of the fiber reinforced resin molded article 11 according to the present embodiment, the fiber reinforced resin molded article is used as the first heating process S2 before the painting process S3 for coating the surface of the fiber reinforced resin molded article 11. 11 is heated at a predetermined temperature for a predetermined time. With this configuration, the shrinkage of the thermosetting resin is promoted in advance, and as shown in FIG. 4, the unevenness caused by the difference in shrinkage between the reinforcing fiber 36 and the thermosetting resin 37 is preliminarily formed in the fiber reinforced resin molding. It can be formed on the surface of the product 11. Then, in the coating step S3, the reinforcing fiber 36 is formed on the surface of the coated product 1 obtained after the finishing step S4 by forming the undercoat layer 41 and thus the overcoat layers 42 and 43 so as to hide the surface irregularities. It is possible to obtain the coated product 1 having excellent appearance by suppressing the appearance of irregularities due to the above, and improving the smoothness thereof. That is, as shown in FIG. 6, the depth t 3 of the coating layer recess 4 a reflects a value of the difference between t 2 and t 1, and is smaller than that in FIG. 8.

このように、本実施形態に係る塗装製品1は表面平滑性に優れており、塗装層凹部4aの凹み深さtは、外観性に優れた塗装製品1をもたらす観点から、好ましくは0.5μm以下、より好ましくは0.4μm以下、特に好ましくは0.3μm以下である。また、塗装製品1の算術平均表面粗さ、すなわち塗装層4の表面の算術平均表面粗さRaは、外観性に優れた塗装製品1をもたらす観点から、例えば0.1μm以下とすることができる。 Thus, paint products 1 according to the present embodiment is excellent in surface smoothness, dent depth t 3 of paint layer recesses 4a, from the viewpoint of bring paint product 1 with excellent appearance, preferably 0. It is 5 μm or less, more preferably 0.4 μm or less, and particularly preferably 0.3 μm or less. In addition, the arithmetic average surface roughness of the coated product 1, that is, the arithmetic average surface roughness Ra of the surface of the coating layer 4 can be set to, for example, 0.1 μm or less from the viewpoint of providing the coated product 1 with excellent appearance. .

−塗装製品の用途−
繊維強化樹脂成形品11の塗装製品1は、例えば車両部品、例えばエンジンカバー等のエンジン部品、ボンネット、リヤフェンダー、ルーフ、ドア、フロントパネル、リアパネル、リフトゲート等の車両部品外板部材等に好適に用いることができ、好ましくは車両部品外板部材に好適に用いることができる。これにより、表面平滑性に優れ、軽量且つ高強度の車両部品、特に車両部品外板部材を得ることができる。
-Applications of painted products-
The coated product 1 of the fiber reinforced resin molded article 11 is suitable for, for example, vehicle parts, engine parts such as an engine cover, bonnets, rear fenders, roofs, doors, front panels, rear panels, lift parts such as lift gates. Preferably, it can be used suitably for a vehicle component outer plate member. Thereby, it is excellent in surface smoothness, and a lightweight and high intensity | strength vehicle component, especially a vehicle component outer plate member can be obtained.

(その他の実施形態)
以下、本発明に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
(Other embodiments)
Hereinafter, other embodiments according to the present invention will be described in detail. In the description of these embodiments, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態1では、塗装工程S3は、研磨工程S32を備える構成であったが、備えない構成としてもよい。なお、塗装製品1の表面平滑性の向上及び塗装方法全体の工程の簡素化を両立させる観点からは、研磨工程S32を1回行う実施形態1の構成が望ましい。   In the first embodiment, the coating process S3 includes the polishing process S32. However, the coating process S3 may be configured not to include the polishing process S32. In addition, the structure of Embodiment 1 which performs grinding | polishing process S32 once from the viewpoint of making the improvement of the surface smoothness of the coating product 1 and the simplification of the process of the whole coating method desirable is desirable.

また、第1塗装工程S31と第2塗装工程S33により下塗り層41と上塗り層42,43とを積層させる構成であったが、当該構成に限定されるものではなく、単層、又はさらに複数の層を積層させる構成としてもよい。また、更に複数の層を積層させる場合は、研磨工程S32を複数回行う構成としてもよい。なお、塗装製品1の平滑性及び外観性を効果的に向上させる観点から、塗装層4を積層構造とする構成が望ましい。   Moreover, although it was the structure which laminates the undercoat layer 41 and the overcoat layers 42 and 43 by 1st coating process S31 and 2nd coating process S33, it is not limited to the said structure, A single layer, or several more It is good also as a structure which laminates | stacks a layer. Further, when a plurality of layers are further laminated, the polishing step S32 may be performed a plurality of times. In addition, the structure which makes the coating layer 4 a laminated structure from a viewpoint of improving the smoothness and external appearance property of the coating product 1 effectively is desirable.

さらに、他の実施形態として、上述のごとく、繊維強化樹脂層3は、強化繊維36繊維束の配向が互いに異なる複数のプリプレグ層を積層させてなるものであってもよい。   Furthermore, as another embodiment, as described above, the fiber reinforced resin layer 3 may be formed by laminating a plurality of prepreg layers having different orientations of the reinforcing fiber 36 fiber bundle.

具体的には、図9に示すように、UD材の縦プリプレグ層32と、この縦プリプレグ層32の繊維束の配向と直交する向きに繊維束が配向したUD材の横プリプレグ層33(なお、以下の説明において、縦プリプレグ層32と横プリプレグ層33を併せて「プリプレグ層32,33」と称することがある)を、それぞれ2枚ずつ、積層方向に対して互いに対称となるように積層させてなる繊維強化樹脂層3としてもよい。なお、プリプレグ層32,33を積層方向に対して互いに対称となるように積層させることにより、繊維強化樹脂成形品11の反り等を抑えることができる。   Specifically, as shown in FIG. 9, a UD material longitudinal prepreg layer 32 and a UD material transverse prepreg layer 33 in which fiber bundles are oriented in a direction perpendicular to the orientation of the fiber bundles of the longitudinal prepreg layer 32 (note that In the following description, the vertical prepreg layer 32 and the horizontal prepreg layer 33 may be collectively referred to as “prepreg layers 32, 33”. It is good also as the fiber reinforced resin layer 3 made to do. In addition, the warp of the fiber reinforced resin molded product 11 can be suppressed by laminating the prepreg layers 32 and 33 so as to be symmetric with respect to the laminating direction.

また、図10に示すように、繊維強化樹脂層3の構成について、UD材からなるプリプレグ層をさらに複数枚積層させる構成としてもよい。具体的には、縦プリプレグ層32と横プリプレグ層33との間に、所定方向に配向した強化繊維36の繊維束の配向が45度の斜プリプレグ層34を配置すると共に、2枚の横プリプレグ層33間に所定方向に配向した強化繊維36の繊維束の配向が斜プリプレグ層34と逆方向に斜め45度に傾いた逆斜プリプレグ層35を2枚配置する構成としてもよい。斜プリプレグ層34及び逆斜プリプレグ層35を配置することにより、繊維強化樹脂層3の強度が増し、延いては繊維強化樹脂成形品11の強度が向上する。   Moreover, as shown in FIG. 10, it is good also as a structure which laminates | stacks more than one prepreg layer which consists of UD materials about the structure of the fiber reinforced resin layer 3. As shown in FIG. Specifically, between the vertical prepreg layer 32 and the horizontal prepreg layer 33, an oblique prepreg layer 34 having a fiber bundle orientation of 45 degrees oriented in a predetermined direction is disposed and two horizontal prepreg layers are arranged. Two reverse oblique prepreg layers 35 in which the orientation of the fiber bundle of the reinforcing fibers 36 oriented in a predetermined direction between the layers 33 is inclined by 45 degrees in the opposite direction to the oblique prepreg layer 34 may be arranged. By arranging the oblique prepreg layer 34 and the inverted oblique prepreg layer 35, the strength of the fiber reinforced resin layer 3 is increased, and the strength of the fiber reinforced resin molded product 11 is improved.

さらに、他の実施形態では、図11に示すように、繊維強化樹脂成形品11の繊維強化樹脂層3の表面に、繊維強化樹脂層3を保護する観点から、熱硬化性樹脂からなる最外層2を備える構成としてもよい。   Furthermore, in other embodiment, as shown in FIG. 11, it is the outermost layer which consists of a thermosetting resin from a viewpoint which protects the fiber reinforced resin layer 3 on the surface of the fiber reinforced resin layer 3 of the fiber reinforced resin molded article 11. It is good also as a structure provided with 2. FIG.

最外層2は、熱硬化性樹脂のみからなる構成としてもよいし、衝撃強度向上の観点から、所定方向に配向したランダム配向の強化繊維又は不織布を含有してもよい。なお、最外層2に含まれるランダム配向の強化繊維又は不織布は、最外層2と繊維強化樹脂層3との収縮差を緩和させる観点から、ポリエステル製、セルロース製、ガラス繊維製であることが好ましく、特にポリエステル製であることが好ましい。   The outermost layer 2 may be composed of only a thermosetting resin, or may contain reinforced fibers or nonwoven fabrics randomly oriented in a predetermined direction from the viewpoint of improving impact strength. In addition, it is preferable that the randomly oriented reinforcing fiber or nonwoven fabric contained in the outermost layer 2 is made of polyester, cellulose, or glass fiber from the viewpoint of reducing the shrinkage difference between the outermost layer 2 and the fiber reinforced resin layer 3. In particular, it is preferably made of polyester.

最外層2に含まれる熱硬化性樹脂は、熱硬化性樹脂37と同様に、エポキシ樹脂、ウレタン、ビニルエステル等を用いることができるが、繊維強化樹脂成形品11の外観性を高める観点から、エポキシ樹脂が望ましい。なお、最外層2に含まれる熱硬化性樹脂は、繊維強化樹脂層3に含まれる熱硬化性樹脂37と同一の材料であってもよいし異なる材料であってもよい。   The thermosetting resin contained in the outermost layer 2 can use an epoxy resin, urethane, vinyl ester or the like, similar to the thermosetting resin 37, but from the viewpoint of enhancing the appearance of the fiber reinforced resin molded article 11, Epoxy resin is desirable. The thermosetting resin included in the outermost layer 2 may be the same material as the thermosetting resin 37 included in the fiber reinforced resin layer 3 or may be a different material.

次に、具体的に実施した実施例について説明する。   Next, specific examples will be described.

<繊維強化樹脂成形品>
(供試材1)
繊維強化樹脂成形品11としてのシート状(厚さ8mm)の炭素繊維強化プラスチック材(GIGANTEX社製)を縦20cm×横20cmのサイズに切り出して、供試材1とした。
<Fiber-reinforced resin molded product>
(Sample 1)
A sheet-like (thickness 8 mm) carbon fiber reinforced plastic material (manufactured by GIGANTEX) as the fiber reinforced resin molded article 11 was cut into a size of 20 cm in length and 20 cm in width to obtain a test material 1.

≪加熱試験1≫
凹み深さtに対する加熱温度の影響を確認するため、供試材1の表面に形成された強化繊維由来の凹凸模様の凹部について、例えば図3,図4に示すように、加熱前及び加熱後の凹み深さtを測定した。
≪Heating test 1≫
In order to confirm the influence of the heating temperature on the dent depth t, as shown in FIGS. 3 and 4, for example, as shown in FIG. 3 and FIG. The dent depth t was measured.

具体的に、加熱前の供試材1の表面の凹部の凹み深さtを接触式表面粗さ計(株式会社ミツトヨ製)を用いて測定した。その後、供試材1を所定の加熱温度まで昇温させたオーブン(エスペック株式会社製)内に配置し、その加熱温度で30分保持した後、供試材1をオーブンから取り出し、加熱前に凹み深さtを測定した凹部と同一の凹部の凹み深さtを上記表面粗さ計を用いて測定した。オーブンを次の測定温度まで昇温させ、供試材1をオーブン内に戻して30分間保持した後、同様に凹み深さtを測定した。以後、同様の操作を繰り返して測定を行った。測定温度は、23℃、110℃、130℃、155℃、180℃、210℃、230℃である。結果を図12に示す。   Specifically, the depth t of the concave portion on the surface of the test material 1 before heating was measured using a contact-type surface roughness meter (manufactured by Mitutoyo Corporation). Then, after arrange | positioning in the oven (made by Espec Co., Ltd.) which heated up the test material 1 to predetermined | prescribed heating temperature, and hold | maintaining for 30 minutes at the heating temperature, the test material 1 is taken out from oven and before heating The concave depth t of the same concave portion as the concave portion where the concave depth t was measured was measured using the surface roughness meter. The oven was heated up to the next measurement temperature, the specimen 1 was returned to the oven and held for 30 minutes, and the dent depth t was measured in the same manner. Thereafter, the same operation was repeated for measurement. Measurement temperature is 23 degreeC, 110 degreeC, 130 degreeC, 155 degreeC, 180 degreeC, 210 degreeC, 230 degreeC. The results are shown in FIG.

図12に示すように、凹部の凹み深さtは、加熱前の0.32μm(0℃)から、1.42μm(110℃)、1.73μm(130℃)、2μm(155℃)、2.37μm(180℃)、2.5μm(210℃)、2.86μm(230℃)と、加熱温度の上昇に比例して大きくなることが判った。   As shown in FIG. 12, the depth t of the recess is changed from 0.32 μm (0 ° C.) before heating to 1.42 μm (110 ° C.), 1.73 μm (130 ° C.), 2 μm (155 ° C.), 2 It was found that the increase was .37 μm (180 ° C.), 2.5 μm (210 ° C.), 2.86 μm (230 ° C.) in proportion to the increase in heating temperature.

≪加熱試験2≫
加熱回数に対する加熱温度の影響を確認するため、加熱試験1と同様のオーブン及び表面粗さ計を用い、加熱条件120℃×30分の加熱を所定回数行って、同一の凹部の凹み深さtを測定した。図13に結果を示す。
≪Heating test 2≫
In order to confirm the influence of the heating temperature on the number of times of heating, using the same oven and surface roughness meter as in the heating test 1, heating conditions of 120 ° C. × 30 minutes were performed a predetermined number of times, and the depth of the recess in the same recess t Was measured. The results are shown in FIG.

図13に示すように、1回目の加熱を行った段階で、凹み深さtは加熱前の0.34μmから、2.43μmへと増加した。その後、2回目以降は2.19μm(2回目)、2.47μm(3回目)、2.47μm(4回目)とほぼ一定となることが判った。   As shown in FIG. 13, at the stage of the first heating, the dent depth t increased from 0.34 μm before heating to 2.43 μm. After that, it was found that after the second time, it was almost constant at 2.19 μm (second time), 2.47 μm (third time), and 2.47 μm (fourth time).

≪加熱試験3≫
加熱時間に対する加熱温度の影響を確認するため、加熱試験1と同様のオーブン及び表面粗さ計を用いて実験を行った。具体的に、110℃に昇温させたオーブン内に供試材1を配置して5分間保持した後、凹部の凹み深さtを測定した。その後さらに5分間ずつ加熱し、同一凹部の凹み深さtの測定を繰り返した。図14に結果を示す。なお、図14の加熱時間は、累積加熱時間である。
≪Heating test 3≫
In order to confirm the influence of the heating temperature on the heating time, an experiment was conducted using the same oven and surface roughness meter as those in the heating test 1. Specifically, after placing the specimen 1 in an oven heated to 110 ° C. and holding it for 5 minutes, the depth t of the recess was measured. Thereafter, the sample was further heated for 5 minutes, and the measurement of the recess depth t of the same recess was repeated. The results are shown in FIG. Note that the heating time in FIG. 14 is the cumulative heating time.

図14に示すように、凹み深さtは加熱前には0.64μmであったのに対し、最初の5分間の加熱によって2.63μmまで増加した。その後、加熱時間10分、15分、20分、25分、30分における凹み深さtはそれぞれ2.57μm、2.71μm、2.93μm、2.86μm、2.81μmであり、その凹み深さtはほとんど一定であることが判った。   As shown in FIG. 14, the dent depth t was 0.64 μm before heating, but increased to 2.63 μm by the first 5 minutes of heating. Thereafter, the depth t of the dent at the heating time of 10 minutes, 15 minutes, 20 minutes, 25 minutes, and 30 minutes is 2.57 μm, 2.71 μm, 2.93 μm, 2.86 μm, and 2.81 μm, respectively. It was found that t was almost constant.

<繊維強化樹脂成形品の塗装製品>
(実施例1)
第1加熱工程として、供試材1を110℃に昇温させた上述のオーブンに入れ、30分間加熱を行い、供試材1をオーブンから取り出して常温まで冷却した。その後、第1塗装工程として、供試材1の表面に下塗り剤をエアスプレー塗装した。下塗り剤は、COODE(登録商標)フィラーグレー(L55)ベース(関西ペイント株式会社製)100gに対して、硬化剤20g、希釈シンナー20gを加えて混合し、調製した。下塗り剤をエアスプレー塗装後、20分間大気中で風乾して下塗り層を形成した。その後、下塗り層の表面を#2000のサンドペーパーで研磨(水研ぎ)した。その後、下塗り層の表面に上塗り剤として、水性ベース塗料(日本ペイントオートモーティブコーティングス株式会社製)及びクリヤー塗料(日本ペイントオートモーティブコーティングス株式会社製)をエアスプレー塗装した。仕上げ工程として、上塗り剤を塗装した供試材1を110℃のオーブンに入れ、20分間加熱した。その後、供試材1をオーブンから取り出して、常温まで冷却し、塗装製品の試験片TPを得た。
<Fiber-reinforced resin molded products>
Example 1
As a 1st heating process, it put into the above-mentioned oven which heated up the sample material 1 at 110 degreeC, heated for 30 minutes, took out the sample material 1 from the oven, and cooled to normal temperature. Thereafter, as a first coating step, an undercoat was applied to the surface of the test material 1 by air spray. The primer was prepared by adding 20 g of a curing agent and 20 g of diluted thinner to 100 g of COODE (registered trademark) filler gray (L55) base (manufactured by Kansai Paint Co., Ltd.) and mixing them. The undercoat was air-dried and then air-dried in the air for 20 minutes to form an undercoat layer. Thereafter, the surface of the undercoat layer was polished (water sharpened) with # 2000 sandpaper. Thereafter, an aqueous base paint (manufactured by Nippon Paint Automotive Coatings Co., Ltd.) and a clear paint (manufactured by Nippon Paint Automotive Coatings Co., Ltd.) were applied as an overcoat onto the surface of the undercoat layer by air spray. As a finishing step, the test material 1 coated with the top coat was placed in an oven at 110 ° C. and heated for 20 minutes. Thereafter, the test material 1 was taken out of the oven and cooled to room temperature to obtain a test piece TP of a coated product.

(比較例1)
第1加熱工程の加熱を省略した以外は、実施例1と同様に試験片TPを作製した。
(Comparative Example 1)
A test piece TP was prepared in the same manner as in Example 1 except that the heating in the first heating step was omitted.

≪凹み深さ測定試験≫
実施例1及び比較例1の試験片TPについて、第1加熱工程前後、研磨工程後、仕上げ工程後の供試材1の凹部の凹み深さtを測定した。結果を表1に示す。
≪Indentation depth measurement test≫
About the test piece TP of Example 1 and Comparative Example 1, the dent depth t of the concave portion of the test material 1 before and after the first heating process, after the polishing process, and after the finishing process was measured. The results are shown in Table 1.

Figure 2019171241
Figure 2019171241

第1加熱工程前には、実施例1及び比較例1の両方の試験片TPにおいて、凹部が観察され、凹み深さtはそれぞれ0.52μm及び0.81μmであった。そして、第1加熱工程を行わなかった比較例1の試験片TPでは、仕上げ工程後に凹み深さtが0.56μmとなり、試験片TPの表面に凹凸の形成が確認された。一方、第1加熱工程を行った実施例1の試験片TPでは、仕上げ工程後にも試験片TPの表面に凹凸はほとんど観察されなかった。   Prior to the first heating step, in each of the test pieces TP of Example 1 and Comparative Example 1, recesses were observed, and the recess depths t were 0.52 μm and 0.81 μm, respectively. And in the test piece TP of the comparative example 1 which did not perform the 1st heating process, the dent depth t became 0.56 micrometer after the finishing process, and formation of the unevenness | corrugation was confirmed on the surface of the test piece TP. On the other hand, in the test piece TP of Example 1 which performed the 1st heating process, the unevenness | corrugation was hardly observed on the surface of the test piece TP even after the finishing process.

≪塗面平滑性評価試験≫
図15に示すように、実施例1及び比較例1の試験片TPを地面Gに静置し、試験片TPの表面を試験者Aにより目視で観察した。試験方法は以下の通りである。
≪Coating smoothness evaluation test≫
As shown in FIG. 15, the test pieces TP of Example 1 and Comparative Example 1 were left on the ground G, and the surface of the test piece TP was visually observed by the tester A. The test method is as follows.

すなわち、試験者Aは、つま先を試験片TPの端部に接触させて腰を下ろした状態で、試験片TP表面を目視により観察し、凹部を観察することができなかった場合は○、凹部を観察することができた場合は、凹部に視線を合わせたまま立ち上がりつつ目の位置を試験片TPから徐々に離していき、目視で凹部が見えなくなった位置で静止し、試験者Aの目の位置から試験片TPの凹部までの距離dを測定して、その距離dを評価結果とした。   That is, when the tester A makes the toe contact the end of the test piece TP and sits down, the tester TP observes the surface of the test piece TP with the naked eye, and the concave portion cannot be observed. Can be observed, the eye position is gradually separated from the test piece TP while standing with the line of sight aligned with the concave portion, and the eye stops at the position where the concave portion cannot be visually observed. The distance d from the position to the recess of the test piece TP was measured, and the distance d was taken as the evaluation result.

なお、試験者Aは、A1〜A5の5人(男性5人、30歳〜50歳、身長165cm〜180cm、裸眼視力又は矯正視力0.8〜2.0)とした。結果を表2に示す。   The tester A was five persons A1 to A5 (5 males, 30 to 50 years old, height 165 cm to 180 cm, naked eye sight or corrected eyesight 0.8 to 2.0). The results are shown in Table 2.

Figure 2019171241
Figure 2019171241

表2に示すように、比較例1の試験片TPでは、試験者A1〜A5の全員が凹部の存在を確認し、その距離dの平均値は137cmであった。一方、実施例1の試験片TPでは、試験者A1〜A5の全員が凹部の存在を確認できなかった。   As shown in Table 2, in the test piece TP of Comparative Example 1, all of the testers A1 to A5 confirmed the presence of the recess, and the average value of the distance d was 137 cm. On the other hand, in the test piece TP of Example 1, all of the testers A1 to A5 could not confirm the presence of the recess.

本発明は、塗装工程後の製品の表面に強化繊維由来の凹凸が現れるのを抑制するとともに、塗装工程を簡潔化することができる繊維強化樹脂成形品の塗装方法及び塗装製品を提供することができるので、極めて有用である。   The present invention provides a coating method and a coated product of a fiber reinforced resin molded article that can suppress the appearance of unevenness derived from reinforcing fibers on the surface of a product after the painting process and can simplify the painting process. It is extremely useful because it can.

1 (繊維強化樹脂成形品の)塗装製品
11 繊維強化樹脂成形品
2 最外層
3 繊維強化樹脂層
31 プリプレグ層
32 縦プリプレグ層
33 横プリプレグ層
34 斜プリプレグ層
35 逆斜プリプレグ層
36 強化繊維
37 熱硬化性樹脂
S1 準備工程
S2 第1加熱工程
S3 塗装工程
S31 第1塗装工程
S32 研磨工程
S33 第2塗装工程
S4 仕上げ工程
DESCRIPTION OF SYMBOLS 1 Coated product (of fiber reinforced resin molded product) 11 Fiber reinforced resin molded product 2 Outermost layer 3 Fiber reinforced resin layer 31 Prepreg layer 32 Vertical prepreg layer 33 Horizontal prepreg layer 34 Oblique prepreg layer 35 Reverse oblique prepreg layer 36 Reinforced fiber 37 Heat Curable resin S1 Preparation step S2 First heating step S3 Coating step S31 First coating step S32 Polishing step S33 Second coating step S4 Finishing step

Claims (13)

強化繊維を含み、熱硬化性樹脂をマトリクスとする繊維強化樹脂層を備えた繊維強化樹脂成形品の表面に塗装を施す方法であって、
前記繊維強化樹脂成形品に所定温度で所定時間加熱処理を施す第1加熱工程と、
前記第1加熱工程後に、前記繊維強化樹脂成形品の表面に塗装を施して塗装層を形成する塗装工程とを備えた
ことを特徴とする繊維強化樹脂成形品の塗装方法。
A method of coating the surface of a fiber reinforced resin molded article comprising a fiber reinforced resin layer containing a reinforced fiber and having a thermosetting resin as a matrix,
A first heating step of subjecting the fiber-reinforced resin molded product to a heat treatment at a predetermined temperature for a predetermined time;
A coating method for a fiber reinforced resin molded product, comprising: a coating step of coating the surface of the fiber reinforced resin molded product to form a coating layer after the first heating step.
請求項1において、
前記塗装工程は、
前記第1加熱工程後の前記繊維強化樹脂成形品の表面に下塗り層を形成する第1塗装工程と、
前記繊維強化樹脂成形品の前記下塗り層の表面上に上塗り層を形成する第2塗装工程とを備えた
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In claim 1,
The painting process includes
A first coating step of forming an undercoat layer on the surface of the fiber-reinforced resin molded article after the first heating step;
And a second coating step of forming an overcoat layer on a surface of the undercoat layer of the fiber reinforced resin molded product.
請求項2において、
前記塗装工程は、前記第1塗装工程後であり且つ前記第2塗装工程前に、前記下塗り層の表面を研磨する研磨工程を備えた
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In claim 2,
The method for coating a fiber reinforced resin molded article, wherein the coating step includes a polishing step for polishing the surface of the undercoat layer after the first coating step and before the second coating step.
請求項1乃至請求項3のいずれか一において、
前記塗装工程後に、前記繊維強化樹脂成形品に熱処理を施す第2加熱工程を備えた
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claim 1 thru | or 3,
A method for coating a fiber-reinforced resin molded product, comprising a second heating step of performing a heat treatment on the fiber-reinforced resin molded product after the coating step.
請求項4において、
前記第1加熱工程における前記所定温度は、第2加熱工程における温度以上である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In claim 4,
The said predetermined temperature in a said 1st heating process is more than the temperature in a 2nd heating process, The coating method of the fiber reinforced resin molded product characterized by the above-mentioned.
請求項1乃至請求項5のいずれか一において、
前記繊維強化樹脂層に含まれる前記強化繊維は所定方向に配向している
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claims 1 thru | or 5,
The method for coating a fiber-reinforced resin molded product, wherein the reinforcing fibers contained in the fiber-reinforced resin layer are oriented in a predetermined direction.
請求項6において、
前記繊維強化樹脂層は、前記強化繊維の配向が異なる複数の層を積層させてなる
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In claim 6,
The fiber-reinforced resin layer is formed by laminating a plurality of layers having different orientations of the reinforcing fibers.
請求項6又は請求項7において、
前記所定方向に配向した強化繊維は、織物材、編物材、組物材、UD材及びノンクリンプファブリック材の少なくとも1種である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In claim 6 or claim 7,
The reinforcing fiber oriented in the predetermined direction is at least one of a woven material, a knitted material, a braided material, a UD material, and a non-crimp fabric material.
請求項1乃至請求項8のいずれか一において、
前記強化繊維は、炭素繊維である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claims 1 thru | or 8,
The method for coating a fiber-reinforced resin molded product, wherein the reinforcing fiber is a carbon fiber.
請求項1乃至請求項9のいずれか一において、
前記熱硬化性樹脂は、エポキシ樹脂である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claims 1 thru | or 9,
The said thermosetting resin is an epoxy resin, The coating method of the fiber reinforced resin molded product characterized by the above-mentioned.
請求項1乃至請求項10のいずれか一において、
前記第1加熱工程における前記所定温度は、100℃以上250℃以下であり、
前記第1加熱工程における前記所定時間は、5分以上60分以下である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claims 1 thru | or 10,
The predetermined temperature in the first heating step is 100 ° C. or more and 250 ° C. or less,
The method for coating a fiber-reinforced resin molded product, wherein the predetermined time in the first heating step is 5 minutes or more and 60 minutes or less.
請求項1乃至請求項11のいずれか一において、
前記繊維強化樹脂成形品は、車両部品外板部材用である
ことを特徴とする繊維強化樹脂成形品の塗装方法。
In any one of Claims 1 thru | or 11,
The fiber-reinforced resin molded product is a vehicle component outer plate member, and the method for painting a fiber-reinforced resin molded product.
強化繊維を含み、熱硬化性樹脂をマトリクスとする繊維強化樹脂層を備えた繊維強化樹脂成形品と、
前記繊維強化樹脂成形品の表面に形成された塗装層と
を備えた繊維強化樹脂成形品の塗装製品であって、
前記繊維強化樹脂層は、一定の方向に配向した前記強化繊維からなる繊維束を複数含んでおり、
前記複数の繊維束は、前記繊維強化樹脂成形品の表面と平行な方向に互いに隣り合う2つの繊維束を備えており、
前記塗装製品の縦断面図において、前記繊維束の上側に位置する前記塗装層の表面高さと、隣り合う前記繊維束間の上側に位置する前記塗装層の表面高さとの差が0.5μm以下である
ことを特徴とする繊維強化樹脂成形品の塗装製品。
A fiber reinforced resin molded article comprising a fiber reinforced resin layer containing a reinforced fiber and having a thermosetting resin as a matrix;
A coated product of a fiber reinforced resin molded product comprising a coating layer formed on the surface of the fiber reinforced resin molded product,
The fiber reinforced resin layer includes a plurality of fiber bundles composed of the reinforcing fibers oriented in a certain direction,
The plurality of fiber bundles includes two fiber bundles adjacent to each other in a direction parallel to the surface of the fiber reinforced resin molded product,
In the longitudinal cross-sectional view of the coated product, the difference between the surface height of the coating layer located above the fiber bundle and the surface height of the coating layer located above between the adjacent fiber bundles is 0.5 μm or less. A coated product of fiber-reinforced resin molded product characterized by
JP2018059962A 2018-03-27 2018-03-27 Coating method for fiber reinforced resin molded product Active JP7159585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059962A JP7159585B2 (en) 2018-03-27 2018-03-27 Coating method for fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059962A JP7159585B2 (en) 2018-03-27 2018-03-27 Coating method for fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2019171241A true JP2019171241A (en) 2019-10-10
JP7159585B2 JP7159585B2 (en) 2022-10-25

Family

ID=68167880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059962A Active JP7159585B2 (en) 2018-03-27 2018-03-27 Coating method for fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP7159585B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194878A (en) * 1988-12-02 1990-08-01 Ppg Ind Inc Method for coating plastic base material with powder coating composition
JP2002126628A (en) * 2000-10-18 2002-05-08 Nippon Paint Co Ltd Method for forming multilayered coating film and coated material
JP2010260014A (en) * 2009-05-08 2010-11-18 Nippon Bee Chemical Co Ltd Method of forming coating film to carbon fiber-reinforced plastics
JP2012200680A (en) * 2011-03-25 2012-10-22 Kansai Paint Co Ltd Coating film forming method and coated article
JP2012200681A (en) * 2011-03-25 2012-10-22 Kansai Paint Co Ltd Coating film forming method and coated article
JP2013522031A (en) * 2010-03-19 2013-06-13 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal or plastic substrates, coatings obtained therefrom, and coated substrates
WO2015107903A1 (en) * 2014-01-17 2015-07-23 東レ株式会社 Coated fiber-reinforced resin molding and process for producing same
JP3198893U (en) * 2009-09-17 2015-07-30 ヘクセル コーポレイション Composite structures using pre-laminated multi-directional continuous fiber laminates
JP2017170829A (en) * 2016-03-25 2017-09-28 富士通株式会社 Housing and method for manufacturing housing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194878A (en) * 1988-12-02 1990-08-01 Ppg Ind Inc Method for coating plastic base material with powder coating composition
JP2002126628A (en) * 2000-10-18 2002-05-08 Nippon Paint Co Ltd Method for forming multilayered coating film and coated material
JP2010260014A (en) * 2009-05-08 2010-11-18 Nippon Bee Chemical Co Ltd Method of forming coating film to carbon fiber-reinforced plastics
JP3198893U (en) * 2009-09-17 2015-07-30 ヘクセル コーポレイション Composite structures using pre-laminated multi-directional continuous fiber laminates
JP2013522031A (en) * 2010-03-19 2013-06-13 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating metal or plastic substrates, coatings obtained therefrom, and coated substrates
JP2012200680A (en) * 2011-03-25 2012-10-22 Kansai Paint Co Ltd Coating film forming method and coated article
JP2012200681A (en) * 2011-03-25 2012-10-22 Kansai Paint Co Ltd Coating film forming method and coated article
WO2015107903A1 (en) * 2014-01-17 2015-07-23 東レ株式会社 Coated fiber-reinforced resin molding and process for producing same
JP2017109502A (en) * 2014-01-17 2017-06-22 東レ株式会社 Coated fiber-reinforced resin molding
JP2017170829A (en) * 2016-03-25 2017-09-28 富士通株式会社 Housing and method for manufacturing housing

Also Published As

Publication number Publication date
JP7159585B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US7059665B2 (en) CFRP plate material and method for preparation thereof
KR101511454B1 (en) Protective material having guard plates and substrates with improved surface properties
JP4603978B2 (en) Manufacturing method of fiber reinforced composite material molded article
JP6094668B2 (en) Method for producing coated fiber reinforced resin molded article
ES2773747T3 (en) Solar reflective coating systems
CN107385940B (en) A kind of solvent-free bloom lacquer painting superfine fiber polyurethane leather and preparation method thereof
WO2013125653A1 (en) Interior finish skin material and interior molding using same
RU2614679C2 (en) Method for carbon fiber fabric production and fabrics obtained by this method
KR20140079773A (en) Decorative laminate sheet
CN101825729A (en) Anti-glare hardened film for in-mold decoration
CN109153241A (en) Ornament materials
WO2013045114A2 (en) Fibre-reinforced composite component and method for producing such a composite component
US20080210120A1 (en) Heat releasable composite coatings and related methods
JP2019171241A (en) Method for coating fiber-reinforced resin molded article and coated product of the same
US20180066396A1 (en) Surfacing fabrics, composites comprising the same, and compositions and methods for preparing the same
US20220032558A1 (en) Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof
KR20120089611A (en) Foaming printing method and foaming printed fabric thereof
JP2013226792A (en) Carbon fiber-reinforced plastic laminate sheet, laminate composite material and method for manufacturing the laminate composite material
JP4759303B2 (en) Composite material using multiaxial fabric
KR20140078213A (en) Bath tub with polyurethane with enhanced properties
KR101645364B1 (en) Method of producing a durable composite fabric for marine leisure
US20120157612A1 (en) In-mold coated articles prepared in association with cationic-stabilized dispersions and methods for manufacturing same
KR20190056546A (en) Manufacturing method for environmental-friendly textile fabrics and environmental-friendly textile fabrics manufactured by the same
US20210115624A1 (en) Coloring of a textile layer and a textile layer
US10307988B2 (en) Method for manufacturing hybrid-nature leather having excellent appearance quality and durability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150