JP2019170310A - 障害物検知システム - Google Patents

障害物検知システム Download PDF

Info

Publication number
JP2019170310A
JP2019170310A JP2018064515A JP2018064515A JP2019170310A JP 2019170310 A JP2019170310 A JP 2019170310A JP 2018064515 A JP2018064515 A JP 2018064515A JP 2018064515 A JP2018064515 A JP 2018064515A JP 2019170310 A JP2019170310 A JP 2019170310A
Authority
JP
Japan
Prior art keywords
range
obstacle
masking
tractor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018064515A
Other languages
English (en)
Other versions
JP6923480B2 (ja
Inventor
横山 和寿
Kazuhisa Yokoyama
和寿 横山
卓也 岩瀬
Takuya IWASE
卓也 岩瀬
士郎 ▲杉▼田
士郎 ▲杉▼田
Shiro SUGITA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2018064515A priority Critical patent/JP6923480B2/ja
Priority to US17/042,109 priority patent/US20210100156A1/en
Priority to KR1020207010826A priority patent/KR20200139125A/ko
Priority to CN201980007057.5A priority patent/CN111886518A/zh
Priority to EP19777988.7A priority patent/EP3779512A4/en
Priority to PCT/JP2019/007682 priority patent/WO2019187937A1/ja
Publication of JP2019170310A publication Critical patent/JP2019170310A/ja
Application granted granted Critical
Publication of JP6923480B2 publication Critical patent/JP6923480B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】障害物を検知しない範囲が大きくなるのを抑制しながら、作業装置を障害物として誤検知するのを防止する障害物検知システムを提供する。【解決手段】作業車両1に備えられ、測定対象物までの距離を測定可能な距離センサ101,102と、距離センサ101,102の測定結果に基づいて、所定距離内の測定対象物を障害物として検知すると、衝突回避制御を行う障害物用制御部と、障害物としての検知を行わずに、障害物用制御部による衝突回避制御の実行を制限するマスキング範囲を設定するマスキング範囲設定部と、作業車両1に連結自在な作業装置12について、作業装置12の種類と可動範囲とを関連付けた種類・可動範囲情報を記憶する記憶部とが備えられ、マスキング範囲設定部は、実際に作業車両1に連結される作業装置12の種類、及び、記憶部に記憶された種類・可動範囲情報に応じて、マスキング範囲を設定している。【選択図】図11

Description

本発明は、作業車両に用いられる障害物検知システムに関する。
上記のような障害物検知システムは、測定対象物までの距離を測定する距離センサ(レーダ)が作業車両に取り付けられ、距離センサの測定情報に基づいて、所定距離内の測定対象物を障害物として検知する障害物検知処理を行う。障害物検知処理において、障害物を検知すると、報知ブザーを作動させる等の衝突回避制御を行っている(例えば、特許文献1参照。)。
作業車両では、昇降ラダー等の作業車両に備えられる部材が作業車両の周囲に配置されることがある。よって、距離センサの測定範囲内に、作業車両に備えられる部材等が入り込んでしまうと、作業車両に備えられる部材等を障害物として誤検知してしまう可能性がある。
そこで、特許文献1に記載のシステムでは、距離センサの測定範囲のうち、作業車両に備えられる部材等が入り込んだ範囲を、障害物としての検知を行わずに衝突回避制御の実行を制限するマスキング範囲として設定している。これにより、作業車両に備えられる部材等を障害物として誤検知するのを防止している。
国際公開第2016/174977号
作業車両に連結される作業装置は、複数の種類があり、どのような作業を行うか等の作業状況に応じて、複数の種類から選択された種類の作業装置を作業車両に連結している。この作業装置が距離センサの測定範囲内に入り込んだ場合にも、上述の如く、作業装置を障害物として誤検知しないようにするために、マスキング範囲を設定することが必要となる。
作業装置は、種類によって、高さ、幅及び長さ等の大きさが異なるので、距離センサの測定範囲内に入り込む作業装置の大きさが異なることになる。そこで、例えば、全ての種類の作業装置を障害物として誤検知しないようにするために、大きな範囲をマスキング範囲として設定することが考えられる。しかしながら、マスキング範囲を大きな範囲に設定すると、障害物を検知しない範囲が大きくなってしまう。逆に、マスキング範囲を小さくすると、障害物を検知しない範囲が大きくなるのを抑制できるものの、全ての種類の作業装置を障害物として誤検知しないようにすることが難しくなる。このように、複数の種類を有する作業装置に対してマスキング範囲を設定する場合には、どのような範囲をマスキング範囲として設定するかが難しいものとなっている。
この実情に鑑み、本発明の主たる課題は、障害物を検知しない範囲が大きくなるのを抑制しながら、作業装置を障害物として誤検知するのを防止することができる障害物検知システムを提供する点にある。
本発明の第1特徴構成は、作業車両に備えられ、測定対象物までの距離を測定可能な距離センサと、
その距離センサの測定結果に基づいて、所定距離内の測定対象物を障害物として検知すると、衝突回避制御を行う障害物用制御部と、
障害物としての検知を行わずに、前記障害物用制御部による衝突回避制御の実行を制限するマスキング範囲を設定するマスキング範囲設定部と、
前記作業車両に連結自在な作業装置について、作業装置の種類と可動範囲とを関連付けた種類・可動範囲情報を記憶する記憶部とが備えられ、
前記マスキング範囲設定部は、実際に作業車両に連結される作業装置の種類、及び、前記記憶部に記憶された種類・可動範囲情報に応じて、マスキング範囲を設定している点にある。
作業装置は、複数の種類が存在するが、種類によって、作業装置の可動範囲を区分けすることができる。そこで、本構成によれば、記憶部は、作業装置の種類と可動範囲とを関連付けた種類・可動範囲情報を記憶している。マスキング範囲設定部は、実際に作業車両に連結される作業装置の種類を取得するだけで、記憶部に記憶された種類・可動範囲情報から作業装置に対応する可動範囲を特定することができ、特定した可動範囲に応じて、マスキング範囲を設定することができる。これにより、例えば、ユーザ等が、実際に作業車両に連結される作業装置の種類を入力するだけで、その作業装置に適したマスキング範囲を設定することができるので、マスキング範囲の設定作業の簡素化を図りながら、作業装置に対するマスキング範囲を適切に設定することができる。
本発明の第2特徴構成は、前記マスキング範囲設定部は、前記作業装置の可動状態に応じて、マスキング範囲を変更設定している点にある。
例えば、作業装置の可動範囲の全体に応じて、マスキング範囲を一定の範囲に設定すると、作業装置が可動するので、マスキング範囲が大きくなってしまい、作業装置の可動状態によって障害物としての検知が行えない範囲が大きくなる可能性がある。そこで、本構成によれば、マスキング範囲設定部は、作業装置の可動状態に応じて、マスキング範囲を変更設定している。これにより、作業装置の可動状態に応じた適切なマスキング範囲を設定することができ、障害物としての検知が行えない範囲が大きくなるのを防止できる。
本発明の第3特徴構成は、前記マスキング範囲設定部は、作業車両に連結された作業装置を実際に可動させたときの可動範囲に応じて、マスキング範囲を補正自在に構成されている点にある。
本構成によれば、マスキング範囲設定部は、実際に作業装置にて作業を行うときの正確な作業装置の可動範囲に応じて、マスキング範囲を補正することができ、実際の作業装置での作業に合わせたマスキング範囲を適切に設定することができる。これにより、障害物としての検知が行えない範囲が大きくなるのをより適切に抑制できながら、作業装置を障害物として誤検知するのを防止することをより適切に行うことができる。
自動走行システムの概略構成を示す図 自動走行システムの概略構成を示すブロック図 目標走行経路を示す図 正面視におけるトラクタの上方側部位を示す図 背面視におけるトラクタの上方側部位を示す図 側面視における使用位置でのアンテナユニット及び前ライダーセンサを示す図 アンテナユニット及び前ライダーセンサの支持構造を示す斜視図 側面視における非使用位置でのアンテナユニット及び前ライダーセンサを示す図 使用位置及び非使用位置における側面視でのルーフ、アンテナユニット、前ライダーセンサ、及び、後ライダーセンサを示す図 後ライダーセンサの支持構造を示す斜視図 側面視における前ライダーセンサ及び後ライダーセンサの測定範囲を示す図 平面視における前ライダーセンサ、後ライダーセンサ及びソナーユニットの測定範囲を示す図 前ライダーセンサの測定結果から生成した3次元画像を示す図 作業装置を下降位置に位置させた状態での後ライダーセンサの測定結果から生成した3次元画像を示す図 作業装置を上昇位置に位置させた状態での後ライダーセンサの測定結果から生成した3次元画像を示す図 第1マスキング処理における動作の流れを示すフローチャート 第2マスキング処理における動作の流れを示すフローチャート 種類・可動範囲情報を示す表 作業装置を下降位置に位置させた状態での後ライダーセンサの測定結果から生成した3次元画像を示す図 作業装置を上昇位置に位置させた状態での後ライダーセンサの測定結果から生成した3次元画像を示す図
本発明に係る障害物検知システムを備えた作業車両を自動走行システムに適用した場合の実施形態を図面に基づいて説明する。
この自動走行システムにおいては、図1に示すように、作業車両としてトラクタ1を適用しているが、トラクタ以外の、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車等の乗用作業車両、及び、無人草刈機等の無人作業車両を適用することができる。
この自動走行システムは、図1及び図2に示すように、トラクタ1に搭載された自動走行ユニット2、及び、自動走行ユニット2と通信可能に通信設定された携帯通信端末3を備えている。携帯通信端末3には、タッチ操作可能な表示部51(例えば、液晶パネル)等を有するタブレット型のパーソナルコンピュータやスマートフォン等を採用することができる。
トラクタ1は、駆動可能な操舵輪として機能する左右の前輪5、及び、駆動可能な左右の後輪6を有する走行機体7が備えられている。走行機体7の前方側には、ボンネット8が配置され、ボンネット8内には、コモンレールシステムを備えた電子制御式のディーゼルエンジン(以下、エンジンと称する)9が備えられている。走行機体7のボンネット8よりも後方側には、搭乗式の運転部を形成するキャビン10が備えられている。
走行機体7の後部には、3点リンク機構11を介して、作業装置12の一例であるロータリ耕耘装置を昇降可能かつローリング可能に連結することで、トラクタ1をロータリ耕耘仕様に構成することができる。トラクタ1の後部には、ロータリ耕耘装置に代えて、プラウ、ハロー、バーチカルハロー、スタブルカルチ、播種装置、散布装置、等の作業装置12を連結することができる。
トラクタ1には、図2に示すように、エンジン9からの動力を変速する電子制御式の変速装置13、左右の前輪5を操舵する全油圧式のパワーステアリング機構14、左右の後輪6を制動する左右のサイドブレーキ(図示せず)、左右のサイドブレーキの油圧操作を可能にする電子制御式のブレーキ操作機構15、ロータリ耕耘装置等の作業装置12への伝動を断続する作業クラッチ(図示せず)、作業クラッチの油圧操作を可能にする電子制御式のクラッチ操作機構16、ロータリ耕耘装置等の作業装置12を昇降駆動する電子油圧制御式の昇降駆動機構17、トラクタ1の自動走行等に関する各種の制御プログラム等を有する車載電子制御ユニット18、トラクタ1の車速を検出する車速センサ19、前輪5の操舵角を検出する舵角センサ20、及び、トラクタ1の現在位置及び現在方位を測定する測位ユニット21等が備えられている。
なお、エンジン9には、電子ガバナを備えた電子制御式のガソリンエンジンを採用してもよい。変速装置13には、油圧機械式無段変速装置(HMT)、静油圧式無段変速装置(HST)、又は、ベルト式無段変速装置等を採用することができる。パワーステアリング機構14には、電動モータを備えた電動式のパワーステアリング機構14等を採用してもよい。
キャビン10は、図4及び図5に示すように、キャビン10の骨組みを形成するキャビンフレーム31と、前方側を覆うフロントガラス32と、後方側を覆うリアガラス33と、上下方向に沿う軸心周りで揺動開閉可能な左右一対のドア34(図1参照)と、天井側のルーフ35とを備えた箱状に構成されている。キャビンフレーム31は、前端部に配置された左右一対の前側支柱36と、後端部に配置された左右一対の後側支柱37とを備えている。平面視において、前方側の左右両側の隅部に前側支柱36が配置され、後方側の左右両側の隅部に後側支柱37が配置されている。キャビンフレーム31は、弾性体等の防振部材を介して走行機体7上に支持されており、走行機体7等からの振動がキャビン10に伝達されるのを防止する防振対策が施された状態で、キャビン10が備えられている。
キャビン10の内部には、図1に示すように、パワーステアリング機構14(図2参照)を介した左右の前輪5の手動操舵を可能にするステアリングホイール38、搭乗者用の運転席39、タッチパネル式の表示部、及び、各種の操作具等が備えられている。キャビン10の前方側部位の両横側部には、キャビン10(運転席39)への乗降部となる乗降ステップ41が備えられている。
図2に示すように、車載電子制御ユニット18は、変速装置13の作動を制御する変速制御部181、左右のサイドブレーキの作動を制御する制動制御部182、ロータリ耕耘装置等の作業装置12の作動を制御する作業装置制御部183、自動走行時に左右の前輪5の目標操舵角を設定してパワーステアリング機構14に出力する操舵角設定部184、及び、予め設定された自動走行用の目標走行経路P(例えば、図3参照)等を記憶する不揮発性の車載記憶部185等を有している。
図2に示すように、測位ユニット21には、衛星測位システム(NSS:Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用してトラクタ1の現在位置と現在方位とを測定する衛星航法装置22、及び、3軸のジャイロスコープ及び3方向の加速度センサ等を有してトラクタ1の姿勢や方位等を測定する慣性計測装置(IMU:Inertial Measurement Unit)23等が備えられている。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK−GPS(Real Time Kinematic GPS:干渉測位方式)等がある。本実施形態においては、移動体の測位に適したRTK−GPSが採用されている。そのため、圃場周辺の既知位置には、図1及び図2に示すように、RTK−GPSによる測位を可能にする基準局4が設置されている。
トラクタ1と基準局4との夫々には、図2に示すように、GPS衛星71(図1参照)から送信された電波を受信するGPSアンテナ24,61、及び、トラクタ1と基準局4との間における測位データを含む各種データの無線通信を可能にする通信モジュール25,62等が備えられている。これにより、衛星航法装置22は、トラクタ側のGPSアンテナ24がGPS衛星71からの電波を受信して得た測位データと、基地局側のGPSアンテナ61がGPS衛星71からの電波を受信して得た測位データとに基づいて、トラクタ1の現在位置及び現在方位を高い精度で測定することができる。また、測位ユニット21は、衛星航法装置22と慣性計測装置23とを備えることにより、トラクタ1の現在位置、現在方位、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。
トラクタ1に備えられるGPSアンテナ24、通信モジュール25、及び、慣性計測装置23は、図1に示すように、アンテナユニット80に収納されている。アンテナユニット80は、キャビン10の前面側の上部位置に配置されている。
図2に示すように、携帯通信端末3には、表示部51等の作動を制御する各種の制御プログラム等を有する端末電子制御ユニット52、及び、トラクタ側の通信モジュール25との間における測位データを含む各種データの無線通信を可能にする通信モジュール55、等が備えられている。端末電子制御ユニット52は、トラクタ1を自動走行させるための走行案内用の目標走行経路P(例えば、図3参照)を生成する走行経路生成部53、及び、ユーザが入力した各種の入力データや走行経路生成部53が生成した目標走行経路P等を記憶する不揮発性の端末記憶部54、等を有している。
走行経路生成部53が目標走行経路Pを生成するに当たり、携帯通信端末3の表示部51に表示された目標走行経路設定用の入力案内に従って、運転者や管理者等のユーザ等が作業車両や作業装置12の種類や機種等の車体データを入力しており、入力された車体データが端末記憶部54に記憶されている。目標走行経路Pの生成対象となる走行領域S(図3参照)を圃場としており、携帯通信端末3の端末電子制御ユニット52は、圃場の形状や位置を含む圃場データを取得して端末記憶部54に記憶している。
圃場データの取得について説明すると、ユーザ等が運転してトラクタ1を実際に走行させることで、端末電子制御ユニット52は、測位ユニット21にて取得するトラクタ1の現在位置等から圃場の形状や位置等を特定するための位置情報を取得することができる。端末電子制御ユニット52は、取得した位置情報から圃場の形状及び位置を特定し、その特定した圃場の形状及び位置から特定した走行領域Sを含む圃場データを取得している。図3では、矩形状の走行領域Sが特定された例を示している。
特定された圃場の形状や位置等を含む圃場データが端末記憶部54に記憶されると、走行経路生成部53は、端末記憶部54に記憶されている圃場データや車体データを用いて、目標走行経路Pを生成する。
図3に示すように、走行経路生成部53は、走行領域S内を中央領域R1と外周領域R2とに区分け設定している。中央領域R1は、走行領域Sの中央部に設定されており、先行してトラクタ1を往復方向に自動走行させて所定の作業(例えば、耕耘等の作業)を行う往復作業領域となっている。外周領域R2は、中央領域R1の周囲に設定されており、中央領域R1に後続してトラクタ1を周回方向に自動走行させて所定の作業を行う周回作業領域となっている。走行経路生成部53は、例えば、車体データに含まれる旋回半径やトラクタ1の前後幅及び左右幅等から、トラクタ1を圃場の畔際で旋回走行させるために必要となる旋回走行用のスペース等を求めている。走行経路生成部53は、中央領域R1の外周に求めたスペース等を確保するように、走行領域S内を中央領域R1と外周領域R2とに区分けしている。
走行経路生成部53は、図3に示すように、車体データや圃場データ等を用いて、目標走行経路Pを生成している。例えば、目標走行経路Pは、中央領域R1において同じ直進距離を有して作業幅に対応する一定距離をあけて平行に配置設定された複数の作業経路P1と、隣接する作業経路P1の始端と終端とを連結する連結経路P2と、外周領域R2において周回する周回経路P3(図中点線にて示している)とを有している。複数の作業経路P1は、トラクタ1を直進走行させながら、所定の作業を行うための経路である。連結経路P2は、所定の作業を行わずに、トラクタ1の走行方向を180度転換させるためのUターン経路であり、作業経路P1の終端と隣接する次の作業経路P1の始端とを連結している。周回経路P3は、外周領域R2にてトラクタ1を周回走行させながら、所定の作業を行うための経路である。周回経路P3は、走行領域Sの四隅に相当する位置において、トラクタ1を前進走行と後進走行とに切り替えることで、トラクタ1の走行方向を90度転換させるようにしている。ちなみに、図3に示す目標走行経路Pは、あくまで一例であり、どのような目標走行経路を設定するかは適宜変更が可能である。
走行経路生成部53にて生成された目標走行経路Pは、表示部51に表示可能であり、車体データ及び圃場データ等と関連付けた経路データとして端末記憶部54に記憶されている。経路データには、目標走行経路Pの方位角、及び、目標走行経路Pでのトラクタ1の走行形態等に応じて設定された設定エンジン回転速度や目標走行速度、等が含まれている。
このようにして、走行経路生成部53が目標走行経路Pを生成すると、端末電子制御ユニット52が、携帯通信端末3からトラクタ1に経路データを転送することで、トラクタ1の車載電子制御ユニット18が、経路データを取得することができる。車載電子制御ユニット18は、取得した経路データに基づいて、測位ユニット21にて自己の現在位置(トラクタ1の現在位置)を取得しながら、目標走行経路Pに沿ってトラクタ1を自動走行させることができる。測位ユニット21にて取得するトラクタ1の現在位置については、リアルタイム(例えば、数秒周期)でトラクタ1から携帯通信端末3に送信されており、携帯通信端末3にてトラクタ1の現在位置を把握している。
経路データの転送に関しては、トラクタ1が自動走行を開始する前の段階において、経路データの全体を端末電子制御ユニット52から車載電子制御ユニット18に一挙に転送することができる。また、例えば、目標走行経路Pを含む経路データを、データ量の少ない所定距離ごとの複数の経路部分に分割することもできる。この場合には、トラクタ1が自動走行を開始する前の段階においては、経路データの初期経路部分のみが端末電子制御ユニット52から車載電子制御ユニット18に転送される。自動走行の開始後は、トラクタ1がデータ量等に応じて設定された経路取得地点に達するごとに、その地点に対応する以後の経路部分のみの経路データが端末電子制御ユニット52から車載電子制御ユニット18に転送するようにしてもよい。
トラクタ1の自動走行を開始する場合には、例えば、ユーザ等がスタート地点にトラクタ1を移動させて、各種の自動走行開始条件が満たされると、携帯通信端末3にて、ユーザが表示部51を操作して自動走行の開始を指示することで、携帯通信端末3は、自動走行の開始指示をトラクタ1に送信する。これにより、トラクタ1では、車載電子制御ユニット18が、自動走行の開始指示を受けることで、測位ユニット21にて自己の現在位置(トラクタ1の現在位置)を取得しながら、目標走行経路Pに沿ってトラクタ1を自動走行させる自動走行制御を開始する。車載電子制御ユニット18が、測位ユニット21(衛星測位システムに相当する)により取得されるトラクタ1の測位情報に基づいて、目標走行経路Pに沿ってトラクタ1を自動走行させる自動走行制御を行う自動走行制御部として構成されている。
自動走行制御には、変速装置13の作動を自動制御する自動変速制御、ブレーキ操作機構15の作動を自動制御する自動制動制御、左右の前輪5を自動操舵する自動操舵制御、及び、ロータリ耕耘装置等の作業装置12の作動を自動制御する作業用自動制御、等が含まれている。
自動変速制御においては、変速制御部181が、目標走行速度を含む目標走行経路Pの経路データと測位ユニット21の出力と車速センサ19の出力とに基づいて、目標走行経路Pでのトラクタ1の走行形態等に応じて設定された目標走行速度がトラクタ1の車速として得られるように変速装置13の作動を自動制御する。
自動制動制御においては、制動制御部182が、目標走行経路Pと測位ユニット21の出力とに基づいて、目標走行経路Pの経路データに含まれている制動領域において左右のサイドブレーキが左右の後輪6を適正に制動するようにブレーキ操作機構15の作動を自動制御する。
自動操舵制御においては、トラクタ1が目標走行経路Pを自動走行するように、操舵角設定部184が、目標走行経路Pの経路データと測位ユニット21の出力とに基づいて左右の前輪5の目標操舵角を求めて設定し、設定した目標操舵角をパワーステアリング機構14に出力する。パワーステアリング機構14が、目標操舵角と舵角センサ20の出力とに基づいて、目標操舵角が左右の前輪5の操舵角として得られるように左右の前輪5を自動操舵する。
作業用自動制御においては、作業装置制御部183が、目標走行経路Pの経路データと測位ユニット21の出力とに基づいて、トラクタ1が作業経路P1(例えば、図3参照)の始端等の作業開始地点に達するのに伴って作業装置12による所定の作業(例えば耕耘作業)が開始され、かつ、トラクタ1が作業経路P1(例えば、図3参照)の終端等の作業終了地点に達するのに伴って作業装置12による所定の作業が停止されるように、クラッチ操作機構16及び昇降駆動機構17の作動を自動制御する。
このようにして、トラクタ1においては、変速装置13、パワーステアリング機構14、ブレーキ操作機構15、クラッチ操作機構16、昇降駆動機構17、車載電子制御ユニット18、車速センサ19、舵角センサ20、測位ユニット21、及び、通信モジュール25、等によって自動走行ユニット2が構成されている。
この実施形態では、キャビン10にユーザ等が搭乗せずにトラクタ1を自動走行させるだけでなく、キャビン10にユーザ等が搭乗した状態でトラクタ1を自動走行させることも可能となっている。よって、キャビン10にユーザ等が搭乗せずに、車載電子制御ユニット18による自動走行制御により、トラクタ1を目標走行経路Pに沿って自動走行させることができるだけでなく、キャビン10にユーザ等が搭乗している場合でも、車載電子制御ユニット18による自動走行制御により、トラクタ1を目標走行経路Pに沿って自動走行させることができる。
キャビン10にユーザ等が搭乗している場合には、車載電子制御ユニット18にてトラクタ1を自動走行させる自動走行状態と、ユーザ等の運転に基づいてトラクタ1を走行させる手動走行状態とに切り替えることができる。よって、自動走行状態にて目標走行経路Pを自動走行している途中に、自動走行状態から手動走行状態に切り替えることができ、逆に、手動走行状態にて走行している途中に、手動走行状態から自動走行状態に切り替えることができる。手動走行状態と自動走行状態との切り替えについては、例えば、運転席39の近傍に、自動走行状態と手動走行状態とに切り替えるための切替操作部を備えることができるとともに、その切替操作部を携帯通信端末3の表示部51に表示させることもできる。また、車載電子制御ユニット18による自動走行制御中に、ユーザがステアリングホイール38を操作すると、自動走行状態から手動走行状態に切り替えることができる。
トラクタ1には、図1及び図2に示すように、トラクタ1(走行機体7)の周囲における障害物を検知して、障害物との衝突を回避するための障害物検知システム100が備えられている。障害物検知システム100は、レーザを用いて測定対象物までの距離を3次元で測定可能な複数のライダーセンサ(距離センサに相当する)101,102と、超音波を用いて測定対象物までの距離を測定可能な複数のソナーを有するソナーユニット103,104と、障害物用制御部107とが備えられている。ここで、ライダーセンサ101,102及びソナーユニット103,104にて測定する測定対象物は、物体や人等としている。
障害物用制御部107は、ライダーセンサ101,102及びソナーユニット103,104の測定情報に基づいて、所定距離内の物体や人等の測定対象物を障害物として検知する障害物検知処理を行い、その障害物検知処理において、障害物を検知すると、衝突回避制御を行うように構成されている。障害物用制御部107は、ライダーセンサ101,102及びソナーユニット103,104の測定情報に基づく障害物検知処理をリアルタイムで繰り返し行い、物体や人等の障害物を適切に検知して、その障害物との衝突を回避するための衝突回避制御を行うようにしている。
障害物用制御部107は、車載電子制御ユニット18に備えられている。車載電子制御ユニット18は、コモンレールシステムに含まれたエンジン用の電子制御ユニット、ライダーセンサ101,102、及び、ソナーユニット103,104、等にCAN(Controller Area Network)を介して通信可能に接続されている。
ライダーセンサ101,102は、レーザ光(例えば、パルス状の近赤外レーザ光)が測定対象物に当たって跳ね返ってくるまでの往復時間から測定対象物までの距離を測定している(Time Of Flight)。ライダーセンサ101,102は、レーザ光を上下方向及び左右方向に高速で走査し、各走査角における測定対象物までの距離を順次測定していくことで、測定対象物までの距離を3次元で測定している。ライダーセンサ101,102は、測定範囲内における測定対象物までの距離をリアルタイムで繰り返し測定している。ライダーセンサ101,102は、測定結果から3次元画像を生成して外部に出力可能に構成されている。ライダーセンサ101,102の測定結果から生成された3次元画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等に障害物の有無を視認させることができる。ちなみに、3次元画像では、例えば、色等を用いて遠近方向での距離を示すことができる。
ライダーセンサ101,102として、図11及び図12に示すように、トラクタ1(走行機体7)の前方側を測定範囲Cとし、トラクタ1の前方側での障害物を検知するために用いる前ライダーセンサ101と、トラクタ1(走行機体7)の後方側を測定範囲Dとし、トラクタ1の後方側での障害物を検知するために用いる後ライダーセンサ102とが備えられている。
以下、前ライダーセンサ101及び後ライダーセンサ102について説明するが、前ライダーセンサ101の支持構造、後ライダーセンサ102の支持構造、前ライダーセンサ101の測定範囲C、後ライダーセンサ102の測定範囲Dの順に説明する。
前ライダーセンサ101の支持構造について説明する。
前ライダーセンサ101は、図1及び図7に示すように、キャビン10の前面側の上部位置に配置されたアンテナユニット80の底部に取り付けられているので、まず、アンテナユニット80の支持構造について説明し、次に、アンテナユニット80の底部への前ライダーセンサ101の取り付け構造を説明する。
アンテナユニット80は、図4、図6及び図7に示すように、走行機体7の左右方向においてキャビン10の全長に亘るパイプ状のアンテナユニット支持ステー81に取り付けられている。アンテナユニット80は、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。アンテナユニット支持ステー81は、キャビン10の左右斜め前方側に位置する左右のミラー取付部45に亘る状態で固定連結されている。ミラー取付部45は、前側支柱36に固定されたミラー取付用基材46と、ミラー取付用基材46に固定されたミラー取付用ブラケット47と、ミラー取付用ブラケット47に設けられたヒンジ部49により回動自在なミラー取付用アーム48とが備えられている。アンテナユニット支持ステー81は、図7に示すように、その左右両端側部位が下方側に湾曲されたブリッジ状に形成されている。アンテナユニット支持ステー81の左右両端部が、第1取付プレート201を介して、ミラー取付用ブラケット47の上端側部位に固定連結されている。図6及び図7に示すように、ミラー取付用ブラケット47の上端側部位には、水平面状の取付面が形成され、第1取付プレート201の下端側部位にも、水平面状の取付面が形成されている。両取付面を上下に重ね合わせる状態でボルトナット等の連結具50にて締結することで、アンテナユニット支持ステー81が水平方向に延びる姿勢で固定連結されている。アンテナユニット80は、アンテナユニット支持ステー81及びミラー取付部45を介して、キャビンフレーム31を構成する前側支柱36に支持されているので、アンテナユニット80への振動の伝達等を防止しながら、アンテナユニット80が強固に支持されている。
アンテナユニット支持ステー81に対するアンテナユニット80の取り付け構造については、図6及び図7に示すように、アンテナユニット80側に固定された第2取付プレート202とアンテナユニット支持ステー81側に固定された第3取付プレート203とをボルトナット等の連結具50により締結することで、アンテナユニット80がアンテナユニット支持ステー81に取り付けられている。
第2取付プレート202は、図7に示すように、走行機体7の左右方向に所定間隔を隔てて左右一対備えられている。第2取付プレート202は、左右方向に延びるユニット側取付部202aの外側端部から下方側に延びるステー側取付部202bを有するL字状に屈曲された板状体にて構成されている。第2取付プレート202は、ユニット側取付部202aが連結具50等によりアンテナユニット80の底部に固定連結され、ステー側取付部202bが下方側に延びる姿勢で取り付けられている。第2取付プレート202のステー側取付部202bには、図示は省略するが、連結具等による連結用の丸孔が前後一対形成されている。
第3取付プレート203は、図6及び図7に示すように、前方側部位が後方側部位よりも下方側に延びるL字状の板状体にて構成されている。第3取付プレート203は、第2取付プレート202と同様に、走行機体7の左右方向に所定間隔を隔てて左右一対備えられている。第3取付プレート203は、後方側部位の下端縁が溶接等によりアンテナユニット支持ステー81の上部に固定連結され、前方側部位がアンテナユニット支持ステー81の前方側に位置する姿勢で取り付けられている。第3取付プレート203には、前方側部位から後方側部位に亘って走行機体7の前後方向に沿って延びる長尺な長孔203aが形成され、前方側部位の下方側に連結用の丸孔203bが形成されている。
アンテナユニット80をアンテナユニット支持ステー81に取り付ける場合には、図6及び図7に示すように、アンテナユニット80を、アンテナユニット支持ステー81の上方側に配置させて、通信モジュール25のアンテナが上方側に延びる使用位置に位置させる。第2取付プレート202のステー側取付部202bにおける前後の丸孔を第3取付プレート203の長孔203aにおける前方側端部と後方側端部に合致させるように、第2取付プレート202を第3取付プレート203よりも内方側に位置させる状態で第2取付プレート202と第3取付プレート203とを重ね合わせる。第2取付プレート202の前後の丸孔と第3取付プレート203の長孔203aとに亘って連結具50を挿通させて締結することで、アンテナユニット80を使用位置にてアンテナユニット支持ステー81に取り付けることができる。このとき、長孔203aにおける前方側端部と後方側端部に相当する箇所が連結具50による連結箇所に設定されており、左右一対の第2取付プレート202及び第3取付プレート203の夫々における前方側部位と後方側部位との合計4箇所が連結具50による連結箇所となっている。
アンテナユニット80は、図6に示すように、使用位置だけでなく、図8に示すように、アンテナユニット支持ステー81の前方側にアンテナユニット80を位置させて、通信モジュール25のアンテナが前方側に延びる非使用位置でも、アンテナユニット支持ステー81に取付自在に構成されている。
アンテナユニット80を非使用位置にてアンテナユニット支持ステー81に取り付ける場合には、図8に示すように、アンテナユニット80を非使用位置に位置させ、第2取付プレート202のステー側取付部202bにおける前後の丸孔を第3取付プレート203の丸孔203bと長孔203aの前方側端部に合致させるように、第2取付プレート202を第3取付プレート203よりも内方側に位置させる状態で第2取付プレート202と第3取付プレート203とを重ね合わせる。第2取付プレート202のステー側取付部202bにおける前側の丸孔と第3取付プレート203の丸孔203bに亘って連結具50を挿通させるとともに、第2取付プレート202のステー側取付部202bにおける後側の丸孔と長孔203aの前方側端部とに亘って連結具50を挿通させて締結することで、アンテナユニット80を非使用位置にてアンテナユニット支持ステー81に取り付けることができる。
例えば、アンテナユニット80を使用位置(図6参照)から非使用位置(図8参照)に変更する場合には、図6に示すように、第3取付プレート203の長孔203aの前方側端部に位置する連結具50を取り外し、第3取付プレート203の長孔203aの後方側端部に位置する連結具50を緩めて、その連結具50を長孔203aに挿通させた状態を維持する。連結具50を長孔203aに沿って後方側端部から前方側端部まで前方側に移動操作して、連結具50を枢支軸としてアンテナユニット80を前方下方側に垂下させることで、図8に示すように、アンテナユニット80を非使用位置に位置変更させる。よって、第2取付プレート202の前側の丸孔と第3取付プレート203の丸孔203bに亘って連結具50を挿通させるとともに、第2取付プレート202の後側の丸孔と長孔203aの前方側端部とに亘って連結具50を挿通させて締結することができ、アンテナユニット80を使用位置から非使用位置に位置変更することができる。
アンテナユニット80を使用位置にて取り付けた状態では、図9(a)に示すように、ルーフ35の最高部位35aを通る最高位線Zよりもアンテナユニット80の一部が上方側に突出しており、通信モジュール25のアンテナをより上方側に配置させることができ、通信モジュール25の無線通信を適切に行えるようにしている。それに対して、アンテナユニット80を非使用位置にて取り付けた状態では、図9(b)に示すように、アンテナユニット80の上端部を最高位線Zと同じ高さ位置又は最高位線Zよりも低い位置に配置させている。これにより、トラクタ1を輸送する際やトラクタ1を納屋等の収納箇所に収納する際に、アンテナユニット80が最高位線Zよりも上方側に突出することなく、アンテナユニット80が邪魔になったり、障害物等への接触によるアンテナユニット80の破損等が生じるのを防止することができる。
アンテナユニット80に対する前ライダーセンサ101の取り付け構造は、図7に示すように、第4取付プレート204及び第5取付プレート205を介して、ボルトナット等の連結具50により締結することで、前ライダーセンサ101がアンテナユニット80の底部に取り付けられている。第4取付プレート204は、左右方向に延びる取付面部204aを有し、取付面部204aの両端部が下方側に延設されたブリッジ状に形成されている。第5取付プレート205は、左右方向で対向する左右一対の取付面部205aを有し、取付面部205aの上端部同士が連結されたブリッジ状に形成されている。第4取付プレート204の取付面部204aが、連結具50によりアンテナユニット80の底部に固定連結されている。第4取付プレート204の前方側部位と第5取付プレート205の後方側部位とが連結具50により固定連結されている。第5取付プレート205の左右一対の取付面部205aが連結具50により前ライダーセンサ101の両横側部に固定連結されている。前ライダーセンサ101は、左右方向で第5取付プレート205の左右の取付面部205aにて挟み込まれる状態で取り付けられている。
前ライダーセンサ101は、図7に示すように、第4取付プレート204及び第5取付プレート205を介して、アンテナユニット80に着脱自在に構成されている。前ライダーセンサ101を後付けすることも可能であり、前ライダーセンサ101だけを取り外すことも可能となっている。また、アンテナユニット80も、アンテナユニット支持ステー81を介して、ミラー取付部45に着脱自在に構成されているので、前ライダーセンサ101は、前ライダーセンサ101単体で走行機体7に対して着脱することができるとともに、アンテナユニット80とともに走行機体7に対して着脱することもできる。前ライダーセンサ101は、アンテナユニット80を支持するアンテナユニット支持ステー81等を共通の支持ステーとして利用しており、アンテナユニット80と同様に、前ライダーセンサ101への振動の伝達等を防止しながら強固に支持されている。
前ライダーセンサ101は、アンテナユニット80に一体的に備えられているので、アンテナユニット80を使用位置と非使用位置との間で位置変更することで、図6に示すように、前ライダーセンサ101も、走行機体7の前方側を向いて走行機体7の前方側の障害物検知に使用される使用位置と、図8に示すように、下方側を向いて障害物検知に使用されない非使用位置とに位置変更自在に構成されている。
前ライダーセンサ101が使用位置に位置するときには、図6及び図9(a)に示すように、前ライダーセンサ101が、上下方向において、キャビン10(運転席39)への乗降部となる乗降ステップ41(図1参照)よりも高い位置で、ルーフ35に相当する位置に配置されている。前ライダーセンサ101は、前方側部位ほど下方側に位置する前下がり姿勢にて取り付けられている。前ライダーセンサ101は、走行機体7の前方側を斜め上方側から見下ろす状態で測定するように備えられている。アンテナユニット支持ステー81は、走行機体7の前後方向でルーフ35の前端部位35bと重複する位置で、且つ、上下方向でルーフ35の前端部位35bの近傍位置に配置されているので、前ライダーセンサ101は、アンテナユニット80の下方側空間を利用して、ルーフ35の前端部位35bに対して前方斜め上方側の近傍位置に配置されている。これにより、図11に示すように、運転席39に着座する搭乗者Tの視線から、前ライダーセンサ101の少なくとも一部がルーフ35の前端部位35bと重複することになる。前ライダーセンサ101の配置位置は、ルーフ35の前端部位35bにて前ライダーセンサ101の少なくとも一部が隠れる位置となっている。運転席39に着座する搭乗者Tの前方側の視認可能範囲B1から前ライダーセンサ101の一部が外れる位置に存在しており、運転席39に着座する搭乗者Tの視界が前ライダーセンサ101にて遮られるのを抑制することができる。
前ライダーセンサ101が非使用位置に位置するときには、図8及び図9(b)に示すように、アンテナユニット80と同様に、前ライダーセンサ101の上端部を最高位線Z(図9(b)参照)よりも低い位置に配置させている。これにより、トラクタ1を輸送する際やトラクタ1を納屋等の収納箇所に収納する際に、アンテナユニット80だけでなく、前ライダーセンサ101も最高位線Zよりも上方側に突出するのを防止している。
前ライダーセンサ101の配置位置について、走行機体7の左右方向では、アンテナユニット80の左右方向の中央部に配置されている。アンテナユニット80は、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されているので、前ライダーセンサ101も、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。
第5取付プレート205には、図6及び図7に示すように、前ライダーセンサ101に加えて、走行機体7の前方側を撮像範囲とする前カメラ108が連結具等により取り付けられている。前カメラ108は、前ライダーセンサ101の上方側に配置されている。前カメラ108は、前ライダーセンサ101と同様に、前方側部位ほど下方側に位置する前下がり姿勢にて取り付けられている。前カメラ108は、走行機体7の前方側を斜め上方側から見下ろす状態で撮像するように備えられている。前カメラ108にて撮像した撮像画像を外部に出力可能に構成されている。前カメラ108の撮像画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等にトラクタ1の周囲の状況を視認させることができる。
次に、後ライダーセンサ102の支持構造について説明する。
後ライダーセンサ102は、図5及び図10に示すように、走行機体7の左右方向においてキャビン10の全長に亘るパイプ状のセンサ支持ステー301に取り付けられている。後ライダーセンサ102は、走行機体7の左右方向においてキャビン10の中央部に相当する位置に配置されている。
センサ支持ステー301は、図5及び図10に示すように、キャビン10の左右両端部に位置する左右の後側支柱37に亘る状態で固定連結されている。センサ支持ステー301は、その左右両端側部位が斜め前方側に湾曲された平面視でブリッジ状に形成されている。センサ支持ステー301の左右両端部は、第6取付プレート206を介して、左右の後側支柱37の上端側部位に備えられた取付部材に固定連結されている。センサ支持ステー301の左右両端部には、溶接等により第6取付プレート206が固定連結されている。第6取付プレート206と後側支柱37の上端側部位に備えられた取付部材とを連結具50にて締結することで、センサ支持ステー301が水平方向に延びる姿勢で固定連結されている。
センサ支持ステー301に対する後ライダーセンサ102の取り付け構造は、図10に示すように、第7取付プレート207及び第8取付プレート208を介して、後ライダーセンサ102がセンサ支持ステー301に取り付けられている。第7取付プレート207は、左右方向で対向する左右一対の側壁面部207aを有し、側壁面部207aの上端部同士が連結されたブリッジ状に形成されている。第8取付プレート208は、左右方向で対向する左右一対の取付面部208aを有し、取付面部208aの上端部同士が連結されたブリッジ状に形成されている。第7取付プレート207の側壁面部207aにおける下端縁が溶接等によりセンサ支持ステー301に固定連結されている。第7取付プレート207の後方側部位と第8取付プレート208の前方側部位とが連結具50により固定連結されている。第8取付プレート208の左右一対の取付面部208aが連結具50により後ライダーセンサ102の両横側部に固定連結されている。後ライダーセンサ102は、左右方向で第8取付プレート208の左右の取付面部208aにて挟み込まれる状態で取り付けられている。第7取付プレート207の前方側部位には、補強プレート302が連結具等により固定連結されている。補強プレート302の前方側部位がルーフ35の上面部に連結具50により固定連結されている。補強プレート302は、左右方向の両側端部を上方側に折り曲げた起立壁を有するU字状で前後方向に延びており、ルーフ35と第7取付プレート207及びセンサ支持ステー301とに亘る状態で備えられている。
後ライダーセンサ102は、図9(b)及び図10に示すように、上下方向において、乗降ステップ41(図1参照)よりも高い位置で、ルーフ35に相当する位置に配置されている。後ライダーセンサ102は、後方側部位ほど下方側に位置する後下がり姿勢にてセンサ支持ステー301に取り付けられている。後ライダーセンサ102は、走行機体7の後方側を斜め上方側から見下ろす状態で測定するように備えられている。センサ支持ステー301は、走行機体7の前後方向でルーフ35の後端部位35cの近傍位置で、且つ、上下方向でルーフ35の後端部位35cと重複する位置に配置されているので、後ライダーセンサ102は、ルーフ35の後端部位35cに対して略同じ高さ又はそれよりも後方斜め上方側の近傍位置に配置されている。これにより、図11に示すように、運転席39に着座する搭乗者Tの視線から、後ライダーセンサ102の少なくとも一部がルーフ35の後端部位35cと重複することになる。後ライダーセンサ102の配置位置は、ルーフ35の後端部位35cにて後ライダーセンサ102の少なくとも一部が隠れる位置となっている。運転席39に着座する搭乗者Tにおいて、後方側の視認可能範囲B2から後ライダーセンサ102の一部が外れる位置に存在しており、運転席39に着座する搭乗者Tの視界が後ライダーセンサ102にて遮られるのを抑制することができる。
後ライダーセンサ102は、図10に示すように、センサ支持ステー301、第7取付プレート207及び第8取付プレート208を介して、後側支柱37に着脱自在に構成されている。後ライダーセンサ102を後付けすることも可能であり、後ライダーセンサ102を取り外すことも可能となっている。後ライダーセンサ102は、センサ支持ステー301を介して、キャビンフレーム31を構成する後側支柱37に支持されているので、後ライダーセンサ102への振動の伝達等を防止しながら強固に支持されている。
第8取付プレート208には、図10に示すように、後ライダーセンサ102に加えて、走行機体7の後方側を撮像範囲とする後カメラ109が連結具等により取り付けられている。後カメラ109は、後ライダーセンサ102の上方側に配置されている。後カメラ109は、後ライダーセンサ102と同様に、後方側部位ほど下方側に位置する後下がり姿勢にて取り付けられている。後カメラ109は、走行機体7の後方側を斜め上方側から見下ろす状態で撮像するように備えられている。後カメラ109にて撮像した撮像画像を外部に出力可能に構成されている。後カメラ109の撮像画像は、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させて、ユーザ等にトラクタ1の周囲の状況を視認させることができる。
前ライダーセンサ101の測定範囲Cについて説明する。
前ライダーセンサ101は、図12に示すように、左右方向における左右測定範囲C1を有しているとともに、図11に示すように、上下方向における上下測定範囲C2を有している。これにより、前ライダーセンサ101は、自己から第1設定距離X1(図12参照)だけ離れた位置までの範囲において、左右測定範囲C1と上下測定範囲C2に含まれる上下、左右及び前後の四角錐形状の測定範囲Cが設定されている。
前ライダーセンサ101における左右測定範囲C1は、図12に示すように、走行機体7の左右方向において走行機体7の左右中心線を対称軸とする左右対称な範囲である。左右測定範囲C1は、前ライダーセンサ101から延びる第1境界線E1と第2境界線E2との間の第1設定角度α1の範囲に設定されている。このように、前ライダーセンサ101は、左右測定範囲C1を有するが、左右測定範囲C1の全体を障害物の検知範囲としておらず、左右測定範囲C1の中央側を障害物の検知範囲としている。左右測定範囲C1には、走行機体7の左右方向の中央側に、障害物を検知する検知範囲Jが設定され、その検知範囲Jの外側に、障害物を検知しない非検知範囲Kが設定されている。これにより、障害物用制御部107は、前ライダーセンサ101の測定情報に基づく障害物検知処理にて障害物を検知する範囲は、左右方向において、検知範囲Jとなっている。検知範囲Jは、走行機体7の左右方向において、走行機体7の中央部を基準として左右両側に第2設定距離X2だけ離れた位置までの範囲に設定されている。検知範囲Jは、走行機体7の横幅方向において、トラクタ1の横幅、及び、作業装置12の横幅よりも大きな範囲に設定されている。検知範囲Jは、どのような大きさの範囲とするかは適宜変更が可能であり、例えば、第2設定距離X2を任意に変更することで、検知範囲Jの大きさを変更することができる。
前ライダーセンサ101における上下測定範囲C2は、図11に示すように、前ライダーセンサ101から延びる第3境界線E3と第4境界線E4との間の第2設定角度α2の範囲に設定されている。第3境界線E3は、前ライダーセンサ101から前方側に水平方向に沿って延びる水平線に設定され、第4境界線E4は、前ライダーセンサ101から前輪5の前上部への第1接線G1よりも下方側に位置する直線に設定されている。上下測定範囲C2は、第3境界線E3と第4境界線E4との間の第1中心線F1が、ボンネット8よりも上方側に位置するように設定されており、ボンネット8の上方側に十分な大きさの測定範囲を確保している。第4境界線E4を第1接線G1よりも下方側に設定することで、走行機体7の前方側端部(ボンネット8の前方側端部)の近傍位置等に物体や人等の測定対象物が存在していても、その測定対象物を測定可能としている。
前ライダーセンサ101における上下測定範囲C2には、図11に示すように、ボンネット8の一部、及び、前輪5の一部が入り込んでいるので、障害物用制御部107が、前ライダーセンサ101の測定情報に基づいて障害物検知処理を行うと、ボンネット8の一部や前輪5の一部を障害物として誤検知してしまう可能性がある。そこで、その誤検知を防止するための第1マスキング処理が施されている。第1マスキング処理では、前ライダーセンサ101の測定範囲C内において、ボンネット8の一部及び前輪5の一部が存在する範囲を、障害物としての検知を行わないマスキング範囲L(図13参照)として予め設定している。この第1マスキング処理については後述する。
このようにして、障害物用制御部107は、前ライダーセンサ101の測定情報に基づいて障害物検知処理を行うことで、左右方向で検知範囲J(図12参照)に含まれ、且つ、上下方向で上下測定範囲C2(図11参照)に含まれる範囲において、マスキング範囲Lを除く範囲にて障害物の存否を検知している。
後ライダーセンサ102の測定範囲Dについて説明する。
後ライダーセンサ102は、前ライダーセンサ101と同様に、図12に示すように、左右方向における左右測定範囲D1を有しているとともに、図11に示すように、上下方向における上下測定範囲D2を有している。これにより、後ライダーセンサ102は、自己から第3設定距離X3(図12参照)だけ離れた位置までの範囲において、左右測定範囲D1と上下測定範囲D2に含まれる上下、左右及び前後の四角錐形状の測定範囲Dが設定されている。ちなみに、X1とX3は、同じ距離に設定したり、異なる距離に設定することもできる。
後ライダーセンサ102における左右測定範囲D1は、図12に示すように、前ライダーセンサ101と同様に、後ライダーセンサ102から延びる第5境界線E5と第6境界線E6との間の第3設定角度α3の範囲に設定されている。左右測定範囲D1には、走行機体7の左右方向の中央側に検知範囲Jが設定され、検知範囲Jの外側に非検知範囲Kが設定されている。障害物用制御部107は、後ライダーセンサ102の測定情報に基づく障害物検知処理にて障害物を検知する範囲は、左右方向において、検知範囲Jとなっている。
後ライダーセンサ102における上下測定範囲D2は、図11に示すように、後ライダーセンサ102から延びる第7境界線E7と第8境界線E8との間の第4設定角度α4の範囲に設定されている。作業装置12は、上昇位置と下降位置との間で昇降自在に備えられているので、図11では、下降位置に位置する作業装置12を実線にて示しており、上昇位置に位置する作業装置12を点線にて示している。第7境界線E7は、後ライダーセンサ102から後方側に水平方向に沿って延びる水平線に設定され、第8境界線E8は、後ライダーセンサ102から下降位置に位置する作業装置12の後上部に向かう第2接線G2よりも下方側に位置する直線に設定されている。上下測定範囲D2は、第7境界線E7と第8境界線E8との間の第2中心線F2が、上昇位置の作業装置12(図11中点線にて示す)よりも上方側に位置するように設定されており、上昇位置の作業装置12の上方側に十分な大きさの測定範囲を確保している。第8境界線E8を第2接線G2よりも下方側に設定することで、下降位置の作業装置12の後方側端部の近傍位置等に物体や人等の測定対象物が存在していても、その測定対象物を測定可能としている。
後ライダーセンサ102における上下測定範囲D2には、作業装置12の一部が入り込んでいるので、障害物用制御部107が、後ライダーセンサ102の測定情報に基づいて障害物検知処理を行うと、作業装置12の一部を障害物として誤検知してしまう可能性がある。そこで、その誤検知を防止するための第2マスキング処理が施されている。第2マスキング処理では、後ライダーセンサ102の測定範囲D内において、作業装置12の一部が存在する範囲を、障害物としての検知を行わないマスキング範囲L(図14、図15参照)として予め設定している。
作業装置12は、図12に示すように、下降位置と上昇位置(図中、点線にて示す位置)との間で昇降される。トラクタ1は、作業装置12を下降位置に下降させて所定の作業を行いながら走行し、作業装置12を上昇位置に上昇させて所定の作業を行わずに走行だけを行う。そこで、第2マスキング処理では、マスキング範囲Lとして、図14に示すように、下降位置用のマスキング範囲L1と、図15に示すように、上昇位置用のマスキング範囲L2とを設定している。第2マスキング処理については後述する。
このようにして、障害物用制御部107は、後ライダーセンサ102の測定情報に基づいて障害物検知処理を行うことで、左右方向で検知範囲J(図12参照)に含まれ、且つ、上下方向で上下測定範囲D2(図11参照)に含まれる範囲において、マスキング範囲L1,L2を除く範囲にて障害物の存否を検知している。障害物用制御部107は、作業装置12が下降位置に位置するときには、下降位置用のマスキング範囲L1を用いて障害物検知処理を行っており、作業装置12が上昇位置に位置するときには、上昇位置用のマスキング範囲L2を用いて障害物検知処理を行っている。
以下、ソナーユニット103,104について説明する。
ソナーユニット103,104は、投射した超音波が測定対象物に当たって跳ね返ってくるまでの往復時間から測定対象物までの距離を測定するように構成されている。
ソナーユニット103,104として、図12に示すように、トラクタ1(走行機体7)の右側を測定範囲とする右側のソナーユニット103と、図12に示すように、トラクタ1(走行機体7)の左側を測定範囲とする左側のソナーユニット104とが備えられている。
図12に示すように、右側のソナーユニット103の測定範囲Nと、左側のソナーユニット104の測定範囲Nとは、走行機体7から延びる方向が左右逆方向になっている点が異なるだけであり、右側と左側とで左右対称の測定範囲Nとなっている。
ソナーユニット103,104は、走行機体7の機体外方を測定対象とするものである。ソナーユニット103,104は、水平方向よりも所定角度だけ下方側に向けて超音波を投射するように走行機体7に取り付けられ、ソナーユニット103,104から所定角度だけ下方側を向く方向に延びるように測定範囲Nが設定されている。ソナーユニット103,104の測定範囲Nは、ソナーユニット103,104から走行機体7の外方側に向けて所定距離までの距離を半径とする範囲であり、走行機体7の前後方向において、前ライダーセンサ101における左右測定範囲C1と後ライダーセンサ102における左右測定範囲D1との間に設定されている。
このようにして、障害物用制御部107は、ソナーユニット103,104の測定情報に基づいて障害物検知処理を行うことで、左右の測定範囲Nにて障害物の存否を検知している。
以下、障害物用制御部107による衝突回避制御について説明するが、まず、ライダーセンサ101,102の測定情報に基づく障害物検知処理において障害物を検知した場合の衝突回避制御について説明し、次に、ソナーユニット103,104の測定情報に基づく障害物検知処理において障害物を検知した場合の衝突回避制御を説明する。
ライダーセンサとして、前ライダーセンサ101と後ライダーセンサ102との2つのライダーセンサを備えているが、障害物用制御部107は、目標走行経路Pに含まれた前後進切り替え地点での前後進の切り替え、又は、キャビン10の内部に備えられた前後進切り替え用のリバーサレバーによる前後進の切り替えに基づいて障害物検知状態を切り替える。トラクタ1が前進走行する場合には、前ライダーセンサ101による測定を行い、障害物用制御部107が前ライダーセンサ101の測定情報に基づく障害物検知処理を行う前進検知状態に切り替え、トラクタ1が後進走行する場合には、後ライダーセンサ102による測定を行い、障害物用制御部107が後ライダーセンサ102の測定情報に基づく障害物検知処理を行う後進検知状態に切り替えている。このように、トラクタ1が前進走行しているか後進走行しているかによって、前ライダーセンサ101と後ライダーセンサ102のどちらのライダーセンサを用いて障害物の検知を行うかを切り替えることで、処理負担の軽減を図りながら、障害物の検知を行うようにしている。
前進検知状態では、障害物用制御部107が、前ライダーセンサ101の測定情報に基づいて障害物検知処理を行い、左右方向で検知範囲J(図12参照)に含まれ、且つ、上下方向で上下測定範囲C2(図11参照)に含まれる範囲において、マスキング範囲L(図13参照)を除く範囲にて障害物の存否を検知している。後進検知状態では、作業装置12が下降位置に位置する場合に、障害物用制御部107が、後ライダーセンサ102の測定情報に基づいて障害物検知処理を行い、左右方向で検知範囲J(図12参照)に含まれ、且つ、上下方向で上下測定範囲D2(図11参照)に含まれる範囲において、下降位置用のマスキング範囲L1(図14参照)を除く範囲にて障害物の存否を検知している。後進検知状態では、作業装置12が上昇位置に位置する場合に、障害物用制御部107が、後ライダーセンサ102の測定情報に基づいて障害物検知処理を行い、左右方向で検知範囲J(図12参照)に含まれ、且つ、上下方向で上下測定範囲D2(図11参照)に含まれる範囲において、上昇位置用のマスキング範囲L2(図15参照)を除く範囲にて障害物の存否を検知している。
前ライダーセンサ101又は後ライダーセンサ102を用いて障害物を検知した場合には、図12に示すように、検知範囲Jのうち、どの範囲にて障害物を検知したかによって、障害物用制御部107による衝突回避制御の制御内容が異なるように設定されている。検知範囲Jは、前ライダーセンサ101又は後ライダーセンサ102からの距離に応じて、第1検知範囲J1と第2検知範囲J2と第3検知範囲J3との3つの範囲が設定されている。第1検知範囲J1は、前ライダーセンサ101又は後ライダーセンサ102からの距離が、第4設定距離X4から第1設定距離X1まで又は第4設定距離X4から第3設定距離X3までの範囲に設定されている。第2検知範囲J2は、前ライダーセンサ101又は後ライダーセンサ102からの距離が第5設定距離X5から第4設定距離X4までの範囲に設定されている。第3検知範囲J3は、前ライダーセンサ101又は後ライダーセンサ102からの距離が第5設定距離X5までの範囲に設定されている。よって、前ライダーセンサ101、後ライダーセンサ102、及び、作業装置12を含むトラクタ1に対して、第1検知範囲J1、第2検知範囲J2、第3検知範囲J3がその順に近くなるように設定されている。
前ライダーセンサ101又は後ライダーセンサ102を用いて障害物を検知した場合の衝突回避制御の制御内容は、トラクタ1が前進走行している場合も後進走行している場合も同様であるので、以下、トラクタ1が前進走行している場合について説明する。
トラクタ1が前進走行しているときに、図12に示すように、障害物検知処理において第1検知範囲J1内で障害物を検知した場合には、障害物用制御部107が、衝突回避制御として、報知ブザーや報知ランプ等の報知装置26を制御して、第1検知範囲J1内に障害物が存在することを報知する第1報知制御を行う。第1報知制御では、例えば、障害物用制御部107が、報知ブザーを所定周波数にて断続作動させ、且つ、報知ランプを所定色にて点灯させるように、報知装置26を制御している。
障害物検知処理において第2検知範囲J2内で障害物を検知した場合には、障害物用制御部107が、衝突回避制御として、報知ブザーや報知ランプ等の報知装置26を制御して、第2検知範囲J2内に障害物が存在することを報知する第2報知制御を行うとともに、トラクタ1の車速を減速させる第1減速制御を行う。第2報知制御では、例えば、障害物用制御部107が、報知ブザーを所定周波数にて断続作動させ、且つ、報知ランプを所定色にて点灯させるように、報知装置26を制御している。第1減速制御では、例えば、障害物用制御部107が、現在のトラクタ1の車速や障害物までの距離等に基づいて、トラクタ1が障害物に衝突するまでの衝突予測時間を求めている。障害物用制御部107は、求めた衝突予測時間が設定時間(例えば、3秒)に維持される状態でトラクタ1の車速を減速させるように、エンジン9、変速装置13及びブレーキ操作機構15等を制御している。
障害物検知処理において第3検知範囲J3内で障害物を検知した場合には、障害物用制御部107が、衝突回避制御として、報知ブザーや報知ランプ等の報知装置26を制御して、第3検知範囲J3内に障害物が存在することを報知する第3報知制御を行うとともに、トラクタ1を停止させる停止制御を行う。第3報知制御では、例えば、障害物用制御部107が、報知ブザーを連続作動させ、且つ、報知ランプを所定色にて点灯させるように、報知装置26を制御している。停止制御では、例えば、障害物用制御部107が、トラクタ1を停止させるように、ブレーキ操作機構15等を制御している。
ちなみに、第1報知制御及び第2報知制御において報知ブザーを断続させる所定周波数は、同じ周波数でもよく、異なる周波数でもよい。また、第1〜第3報知制御において報知ランプを点灯させる所定色は、同じ色でもよく、異なる色でもよい。障害物用制御部107は、第1〜第3報知制御において、トラクタ1の報知装置26の制御に加えて、第1〜第3検知範囲J1〜J3の何れかに障害物が存在することを示す表示内容を携帯通信端末3の表示部51に表示させるように、端末電子制御ユニット52を制御することもできる。
例えば、第1検知範囲J1内で障害物が検知された場合には、障害物用制御部107が第1報知制御を行うことで、第1検知範囲J1内に障害物が存在することをユーザ等に報知することができる。そのままトラクタ1の走行が継続されて、障害物の検知範囲が第1検知範囲J1から第2検知範囲J2に近づくと、障害物用制御部107が、第2報知制御に加えて、第1減速制御を行うことで、トラクタ1と障害物との衝突を回避可能とするために、トラクタ1の車速を減速させておくことができる。トラクタ1を減速させても、障害物の検知範囲が第2検知範囲J2から第3検知範囲J3に近づくと、障害物用制御部107が、第3報知制御に加えて、停止制御を行うことで、トラクタ1を停止させることができ、トラクタ1と障害物との衝突を適切に回避することができる。
ライダーセンサ101,102を用いる場合には、人等の移動する測定対象物も障害物として検知する。よって、検知範囲J内で障害物が検知されても、障害物自体が移動することで、障害物が検知範囲Jから外れることがある。そこで、障害物が第1検知範囲J1から外れた場合には、障害物用制御部107が、第1報知制御を終了する。障害物が第2検知範囲J2から外れた場合には、障害物用制御部107が、第2報知制御を終了するとともに、トラクタ1の車速を設定車速まで増速させるように、エンジン9や変速装置13等を制御する車速回復制御を行う。障害物が第3検知範囲J3から外れた場合には、障害物用制御部107が、トラクタ1を走行停止状態に維持しながら、第3報知制御を終了する。この場合には、ユーザ等によりトラクタ1の自動走行の再開等が指令されることで、トラクタ1の自動走行を再開することができる。
次に、ソナーユニット103,104の測定情報に基づく障害物検知処理にて障害物を検知した場合の衝突回避制御について説明する。
ソナーユニット103,104は、左右に備えられているが、トラクタ1が前進走行する場合もトラクタ1が後進走行する場合も、障害物用制御部107は、左右両側のソナーユニット103,104の全ての測定情報に基づいて障害物検知処理を行う。
ソナーユニット103,104の測定情報に基づく障害物検知処理にて障害物を検知した場合には、障害物用制御部107が、衝突回避制御として、報知ブザーや報知ランプ等の報知装置26を制御して、ソナーユニット103,104の何れかの測定範囲N内に障害物が存在することを報知する第4報知制御を行うとともに、トラクタ1の車速を減速させる第2減速制御を行う。第4報知制御では、例えば、障害物用制御部107が、報知ブザーを所定周波数にて断続作動させ、且つ、報知ランプを所定色にて点灯させるように、報知装置26を制御している。第2減速制御では、例えば、障害物用制御部107が、トラクタ1の車速を設定車速に減速させるように、エンジン9、変速装置13及びブレーキ操作機構15等を制御している。
このようにして、障害物検知システム100は、前ライダーセンサ101及び後ライダーセンサ102を用いて走行機体7の前方側及び後方側における障害物の存否を検知するとともに、ソナーユニット103,104を用いて走行機体7の左右における障害物の存否を検知することができる。障害物検知システム100は、障害物の存在を検知すると、障害物用制御部107が衝突回避制御を行うことによって、障害物の存在をユーザ等に報知して、ユーザ等に障害物との衝突を回避するように促すことができるとともに、仮にトラクタ1と障害物とが衝突する可能性が生じても、トラクタ1を減速や停止させて、トラクタ1と障害物との衝突を適切に回避することができる。
自動走行状態では、車載電子制御ユニット18にて自動走行制御が行われるので、障害物検知システム100によりトラクタ1を減速や停止させて、障害物との衝突を回避しながら、トラクタ1を自動走行させることができる。手動走行状態においても、運転しているユーザ等に対しても、障害物検知システム100により障害物の存在を報知したり、トラクタ1と障害物との衝突を回避するための運転をサポートすることができる。
以下、第1マスキング処理、及び、第2マスキング処理について説明を加える。
まず、マスキング範囲L(図13〜図15参照)について説明すると、マスキング範囲Lは、障害物としての検知を行わずに、障害物用制御部107による衝突回避制御の実行を制限する範囲となっている。マスキング範囲Lでは、ライダーセンサ101,102にて、何らかの測定対象物を測定しても、障害物検知処理において、障害物用制御部107が、その測定対象物を障害物としては検知していない。
図12に示すように、前ライダーセンサ101の測定範囲C内に、ボンネット8の一部、及び、前輪7の一部が存在する場合に、第1マスキング処理を行ってマスキング範囲L(図13参照)を設定することで、障害物用制御部107が、ボンネット8の一部、及び、前輪7の一部を障害物として誤って検知するのを防止し、その誤検知により衝突回避制御が実行されるのを防止している。また、図12に示すように、後ライダーセンサ102の測定範囲D内に作業装置12の一部が存在する場合に、第2マスキング処理を行ってマスキング範囲L(図14及び図15参照)を設定することで、障害物用制御部107が、作業装置12の一部を障害物として誤って検知するのを防止し、その誤検知により衝突回避制御が実行されるのを防止している。
前ライダーセンサ101の測定範囲C内には、図12に示すように、ボンネット8の一部、及び、前輪5の一部が入り込んでいる。ボンネット8は、一定の位置に存在するものの、前輪5は、ステアリングホイール38やパワーステアリング機構14等の操作によって左右に操舵されるので、前輪5が可動部となる。よって、第1マスキング処理では、前輪5の可動範囲に応じてマスキング範囲Lを設定することが求められる。
そこで、第1マスキング処理において、可動部の可動範囲に応じたマスキング範囲Lを設定するために、トラクタ1には、図2に示すように、ライダーセンサ101,102、及び、障害物用制御部107に加えて、前輪5等の可動部の可動範囲等を取得する可動範囲取得部110、マスキング範囲Lを設定するマスキング範囲設定部111が備えられている。
第1マスキング処理では、例えば、前ライダーセンサ101を使用する前処理として、実際に前ライダーセンサ101による測定を行い、そのときの測定結果から生成した3次元画像を、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させながら、マスキング範囲L(図13参照)を設定している。
図16に示すフローチャートに基づいて、第1マスキング処理での動作の流れについて説明する。
第1マスキング処理では、まず、前ライダーセンサ101の測定を開始することで、前ライダーセンサ101の測定結果から3次元画像を生成し、図13に示すように、生成した3次元画像をトラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させている(ステップ#1)。
ユーザ等がステアリングホイール38等を操作して、可動部である前輪5を左右に操舵させる。これにより、可動範囲取得部110は、前ライダーセンサ101の測定情報に基づいて、前輪5を実際に左右に操舵させたときの可動範囲(右側の操舵位置及び左側の操舵位置)を取得する(ステップ#2、#3)。このとき、図13の点線で示すように、可動範囲取得部110にて取得された前輪5の可動範囲を含めた3次元画像を、トラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させている。
可動範囲取得部110は、取得した前輪5の可動範囲を車載記憶部185(記憶部に相当する)に記憶させる(ステップ#4)。マスキング範囲設定部111は、図13に示すように、可動範囲取得部110にて取得した前輪5の可動範囲に応じて、マスキング範囲Lを設定している(ステップ#5)。
図13に示すものでは、マスキング範囲設定部111が、ボンネット8の一部が存在する範囲La、及び、前輪5の可動範囲Lbを含む基準範囲よりも設定範囲だけ大きな山形形状の範囲をマスキング範囲Lとして設定している。マスキング範囲Lについては、例えば、ボンネット8の一部が存在する範囲La、及び、前輪5の可動範囲Lbだけを含むように、ボンネット8や前輪5の形状に応じた形状に設定することもでき、マスキング範囲Lをどのような範囲及び形状とするかは適宜変更が可能である。
マスキング範囲設定部111にてマスキング範囲Lを設定するに当たり、3次元画像が表示装置に表示されているので、マスキング範囲設定部111は、ユーザ等が表示装置上で指定した範囲をマスキング範囲Lと設定することもできる。表示装置には、ボンネット8の一部が存在する範囲La、及び、前輪5の可動範囲Lbを含めた3次元画像が表示されているので、ユーザ等は、ボンネット8の一部が存在する範囲La、及び、前輪5の可動範囲Lbを含む範囲を簡易に指定することができる。
後ライダーセンサ102の測定範囲D内には、作業装置12の一部が入り込んでいる。作業装置12は、図12に示すように、下降位置と上昇位置(図中点線にて示す位置)との間で昇降されるので、作業装置12は可動部となる。よって、第2マスキング処理では、作業装置12の可動範囲に応じてマスキング範囲Lを設定することが求められる。
第2マスキング処理では、作業装置12の種類と可動範囲を関連付けた種類・可動範囲情報(図18参照)を用いて、マスキング範囲Lを設定している。作業装置12は、ロータリ耕耘装置だけでなく、ハロー、バーチカルハロー、スタブルカルチ等、複数の種類の作業装置12が3点リンク機構11に連結自在である。そこで、図18に示すように、種類・可動範囲情報は、複数の種類の作業装置12の夫々について、その種類と可動範囲とを関連付けた情報としている。
第2マスキング処理では、後ライダーセンサ102を使用する前処理として、種類・可動範囲情報を予め後ライダーセンサ102に持たせておき、作業装置12の種類等の情報を入力することで、種類・可動範囲情報を用いて、マスキング範囲Lを設定している。
図17に示すフローチャートに基づいて、第2マスキング処理での動作の流れについて説明する。
第2マスキング処理では、後ライダーセンサ102のセンサ記憶部102a(図2参照)に、種類・可動範囲情報(図18参照)を記憶させておく種類・可動範囲情報記憶処理を予め行っている(ステップ#11)。種類・可動範囲記憶処理では、実験等により複数の種類の作業装置12の夫々について作業装置12の可動範囲を取得し、作業装置12の種類と可動範囲とを関連付けた種類・可動範囲情報(図18参照)をセンサ記憶部102a(記憶部に相当する)に記憶させている。
ちなみに、種類・可動範囲記憶処理では、種類・可動範囲情報をセンサ記憶部102aに記憶させているが、例えば、車載記憶部185に種類・可動範囲情報を記憶させることができ、種類・可動範囲情報をどのような記憶部に記憶させるかについては適宜変更可能である。
上述の如く、トラクタ1は、作業装置12を下降位置に下降させて所定の作業を行いながら走行し、作業装置12を上昇位置に上昇させて所定の作業を行わずに走行だけを行う。そこで、第2マスキング処理では、マスキング範囲Lとして、作業装置12が下降位置に存在するときの下降位置用のマスキング範囲L1(図14参照)と作業装置12が上昇位置に存在するときの上昇位置用のマスキング範囲L2(図15参照)とを設定している。
図14及び図15は、後ライダーセンサ102の測定範囲Dにおける3次元画像を表示装置に表示させた状態を示している。図14及び図15において、作業装置12について、後ライダーセンサ102の測定範囲D内に存在する部分を実線にて示しており、後ライダーセンサ102の測定範囲D外に存在する部分を点線にて示している。よって、図14における作業装置12が存在する位置が、作業装置12の昇降範囲の下限位置に相当し、図15における作業装置12が存在する位置が、作業装置12の昇降範囲の上限位置に相当する。
図14及び図15に示すものでは、作業装置12の可動範囲Lc(昇降範囲の下限位置又は上限位置)を含む基準範囲よりも設定範囲だけ大きな矩形状の範囲をマスキング範囲L1,L2として設定している。マスキング範囲Lについては、例えば、作業装置12の可動範囲Lcだけを含むように、作業装置12の形状に応じた形状に設定することもでき、マスキング範囲L1,L2をどのような範囲及び形状とするかは適宜変更が可能である。
種類・可動範囲情報記憶処理では、複数の種類の作業装置12の夫々について作業装置12の可動範囲を取得すると、その可動範囲から、下降位置用のマスキング範囲及び上昇位置用のマスキング範囲を設定している。よって、図18に示すように、種類・可動範囲情報は、作業装置12の種類と可動範囲とを関連付けた情報だけでなく、作業装置12の種類に対して下降位置用のマスキング範囲及び上昇位置用のマスキング範囲を関連付けた情報を含む情報となっている。例えば、作業装置20の種類がハローであれば、ハローを実際に可動させたときの可動範囲がA2であり、下降位置用のマスキング範囲がL1bに設定され、上昇位置用のマスキング範囲がL2bに設定されている。
作業装置12の可動範囲の取得方法については、上述の如く、実験等により取得可能であるが、他の取得方法を適用することもできる。例えば、ユーザ等が、携帯通信端末3等を用いて、作業装置12の作業装置幅、長さ及び高さ等を含む作業装置12の大きさに関する大きさデータを入力すると、その大きさデータから作業装置12の可動範囲を求めることができる。作業装置12は、図1に示すように、走行機体7の後部の3点リンク機構11に連結されており、トラクタ1における3点リンク機構11の配置位置、及び、3点リンク機構11の昇降範囲が規定値となっている。これにより、入力された大きさデータ、及び、トラクタ1における3点リンク機構11の配置位置等の規定値を用いて、作業装置12の可動範囲を求めることができる。
図17に戻り、種類・可動範囲情報記憶処理を行うことで、図18に示すような種類・可動範囲情報がセンサ記憶部102aに記憶されている。実際に走行機体7の後部に連結される作業装置12の種類が入力されると、マスキング範囲設定部111は、入力された種類に応じて、種類・可動範囲情報から入力された種類に対応する作業装置12の可動範囲を特定し、特定した作業装置12の可動範囲に応じて、マスキング範囲Lを設定している(ステップ#12〜#14)。
図18に示すような種類・可動範囲情報が記憶されている場合には、作業装置12の種類に対して、可動範囲だけでなく、下降位置用のマスキング範囲及び上昇位置用のマスキング範囲が関連付けられている。マスキング範囲設定部111は、入力された種類に応じて、種類・可動範囲情報から入力された種類に対応する作業装置12の可動範囲、下降位置用のマスキング範囲L1及び上昇位置用のマスキング範囲L2を特定して、図14及び図15に示すように、下降位置用のマスキング範囲L1及び上昇位置用のマスキング範囲L2を設定している。
例えば、作業装置12の種類がハローであれば、図18に示すように、マスキング範囲設定部111は、可動範囲をA2に設定し、下降位置用のマスキング範囲をL1bに設定し、上昇位置用のマスキング範囲をL2bに設定している。作業装置12の種類の入力については、上述の如く、走行経路生成部53にて目標走行経路P(図3参照)を生成する際に、作業装置12の種類等の車体データを入力している。よって、この車体データが入力されることで、マスキング範囲設定部111は、作業装置12の種類を取得することができる。
このようにして、マスキング範囲設定部111は、センサ記憶部102aに記憶された種類・可動範囲情報(図18参照)を用いて、マスキング範囲Lを設定しているが、マスキング範囲設定部111は、設定済みのマスキング範囲Lを補正する補正処理を実行可能である(ステップ#15)。
補正処理では、後ライダーセンサ102の測定を開始した状態で、ユーザ等がキャビン10内の昇降用の操作具等を操作して、作業装置12を上昇位置と下降位置との間で昇降させることで、実際に作業を行うように作業装置12を可動させる。実際の作業では、作業装置12によって、昇降されるだけでなく、走行機体7の上下方向や左右方向に可動するものもあるので、実際の作業に合わせて作業装置12を可動させる。これにより、可動範囲取得部110は、後ライダーセンサ102の測定情報に基づいて、実際の作業に合わせて作業装置12を可動させたときの可動範囲を取得する。このとき、後ライダーセンサ102の測定結果から3次元画像を生成し、生成した3次元画像をトラクタ1の表示部や携帯通信端末3の表示部51等の表示装置に表示させている。
マスキング範囲設定部111は、可動範囲取得部110にて取得した実際の作業装置12の可動範囲と種類・可動範囲情報から特定した作業装置12の可動範囲とを比較し、範囲のズレが生じていると、設定済みのマスキング範囲Lを補正している。マスキング範囲設定部111は、実際の作業装置12の可動範囲に応じて、設定済みのマスキング範囲Lを補正している。
図19及び図20に基づいて、補正処理について説明する。
図19及び図20は、後ライダーセンサ102の測定結果から生成した3次元画像を表示装置に表示させた状態を示している。図19では、作業装置12やマスキング範囲Lについて下降位置での状態を示している。図20では、作業装置12やマスキング範囲Lについて上昇位置での状態を示している。図19及び図20において、作業装置12について、後ライダーセンサ102の測定範囲D内に存在する部分を実線にて示しており、後ライダーセンサ102の測定範囲D外に存在する部分を点線にて示している。よって、図19における作業装置12が存在する位置が作業装置12の昇降範囲の下限位置に相当し、図20における作業装置12が存在する位置が、作業装置12の昇降範囲の上限位置に相当する。
図19(a)及び図20(a)に示すように、マスキング範囲設定部111は、種類・可動範囲情報から特定した作業装置12の可動範囲A5として、作業装置12の昇降範囲の下限位置(下降位置)及び上限位置(上昇位置)を取得している。よって、マスキング範囲設定部111は、作業装置12の可動範囲A5に応じて、下降位置用のマスキング範囲L1e及び上昇位置用のマスキング範囲L2eを設定している。図19(a)及び図20(a)では、後ライダーセンサ102の測定結果から生成した3次元画像上において、作業装置12の可動範囲A5、下降位置用のマスキング範囲L1e、及び、上昇位置用のマスキング範囲L2eの夫々を例示している。
このとき、補正処理を実行することで、実際に作業装置12を可動させて、図19(b)及び図20(b)に示すように、後ライダーセンサ102の測定情報に基づいて、可動範囲取得部110が、実際の作業装置12の可動範囲A6を取得する。このときの可動範囲A6として、作業装置12の昇降範囲の下限位置(下降位置)及び上限位置(上昇位置)を取得している。マスキング範囲設定部111は、図19(a)及び図20(a)に示す可動範囲A5と図19(b)及び図20(b)に示す可動範囲A6とを比較して、範囲のズレが生じているか否かを判定する。
この場合は、図19(a)及び図20(a)に示す可動範囲A5が、図19(b)及び図20(b)に示す可動範囲A6よりも左側にずれているので、マスキング範囲設定部111は、範囲のズレが生じているとして、設定済みの下降位置用のマスキング範囲L1e及び上昇位置用のマスキング範囲L2eを補正している。マスキング範囲設定部111は、図19(b)及び図20(b)に示す可動範囲A6に応じて、設定済みの下降位置用のマスキング範囲L1e及び上昇位置用のマスキング範囲L2eを補正後の下降位置用のマスキング範囲L1f及び上昇位置用のマスキング範囲L2fに補正している。
補正処理については、実行するか否かをユーザ等が選択自在に構成されている。例えば、ユーザ等は、携帯通信端末3を用いて、補正処理の実行を指示することができる。また、補正処理をどのようなタイミングで行うかも、ユーザ等の判断に委ねられている。例えば、後ライダーセンサ102を使用する前処理として補正処理を行うこともできるが、これに限らず、実際に自動走行状態にてトラクタ1を自動走行させた後に、補正処理を行うこともできる。これにより、作業装置12の使用状況によって、作業装置12の下降位置や上昇位置が当初の位置から位置ズレした場合でも、補正処理を行うことで、実際の作業装置12の可動範囲に応じて、マスキング範囲Lを適切に補正することができる。
〔別実施形態〕
本発明の他の実施形態について説明する。
尚、以下に説明する各実施形態の構成は、夫々単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
(1)作業車両の構成は種々の変更が可能である。
例えば、作業車両は、エンジン9と走行用の電動モータとを備えるハイブリット仕様に構成されていてもよく、また、エンジン9に代えて走行用の電動モータを備える電動仕様に構成されていてもよい。
例えば、作業車両は、走行部として、左右の後輪6に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
例えば、作業車両は、左右の後輪6が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。
(2)上記実施形態では、前ライダーセンサ101及び後ライダーセンサ102を、上下方向において、ルーフ35に相当する位置に配置しているが、配置位置については適宜変更が可能である。例えば、前ライダーセンサ101をボンネット8の前方側端部に配置し、後ライダーセンサ102をルーフ35に相当する位置に配置することができる。
(3)上記実施形態では、前ライダーセンサ101と後ライダーセンサ102の2つのライダーセンサを備えた例を示したが、ライダーセンサの数については適宜変更が可能であり、1つや3つ以上とすることができる。
(4)上記実施形態において、前ライダーセンサ101及び後ライダーセンサ102の測定範囲をどのように設定するかは適宜変更が可能である。
(5)上記実施形態では、障害物用制御部107が、ライダーセンサ101,102の測定情報に基づいて、障害物検知処理を行うようにしているが、ライダーセンサ101,102に制御部を備えて、その制御部が障害物検知処理を行うこともできる。このように、障害物検知処理については、センサ側で行うか、作業車両側で行うかは、適宜変更が可能である。
(6)上記実施形態では、障害物用制御部107、可動範囲取得部110、マスキング範囲設定部111をトラクタ1に備えた例を示したが、例えば、携帯通信端末3等、トラクタ1とは別の装置に備えさせることもできる。
1 トラクタ(作業車両)
12 作業装置
102 後ライダーセンサ(距離センサ)
102a センサ記憶部(記憶部)
107 障害物用制御部
111 マスキング範囲設定部

Claims (3)

  1. 作業車両に備えられ、測定対象物までの距離を測定可能な距離センサと、
    その距離センサの測定結果に基づいて、所定距離内の測定対象物を障害物として検知すると、衝突回避制御を行う障害物用制御部と、
    障害物としての検知を行わずに、前記障害物用制御部による衝突回避制御の実行を制限するマスキング範囲を設定するマスキング範囲設定部と、
    前記作業車両に連結自在な作業装置について、作業装置の種類と可動範囲とを関連付けた種類・可動範囲情報を記憶する記憶部とが備えられ、
    前記マスキング範囲設定部は、実際に作業車両に連結される作業装置の種類、及び、前記記憶部に記憶された種類・可動範囲情報に応じて、マスキング範囲を設定している障害物検知システム。
  2. 前記マスキング範囲設定部は、前記作業装置の可動状態に応じて、マスキング範囲を変更設定している請求項1に記載の障害物検知システム。
  3. 前記マスキング範囲設定部は、作業車両に連結された作業装置を実際に可動させたときの可動範囲に応じて、マスキング範囲を補正自在に構成されている請求項1又は2に記載の障害物検知システム。

JP2018064515A 2018-03-29 2018-03-29 障害物検知システム Active JP6923480B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018064515A JP6923480B2 (ja) 2018-03-29 2018-03-29 障害物検知システム
US17/042,109 US20210100156A1 (en) 2018-03-29 2019-02-27 Obstacle Detection System and Work Vehicle
KR1020207010826A KR20200139125A (ko) 2018-03-29 2019-02-27 장애물 검지 시스템, 및, 작업 차량
CN201980007057.5A CN111886518A (zh) 2018-03-29 2019-02-27 障碍物检测系统以及作业车辆
EP19777988.7A EP3779512A4 (en) 2018-03-29 2019-02-27 Obstacle detection system and work vehicle
PCT/JP2019/007682 WO2019187937A1 (ja) 2018-03-29 2019-02-27 障害物検知システム、及び、作業車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064515A JP6923480B2 (ja) 2018-03-29 2018-03-29 障害物検知システム

Publications (2)

Publication Number Publication Date
JP2019170310A true JP2019170310A (ja) 2019-10-10
JP6923480B2 JP6923480B2 (ja) 2021-08-18

Family

ID=68166292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064515A Active JP6923480B2 (ja) 2018-03-29 2018-03-29 障害物検知システム

Country Status (1)

Country Link
JP (1) JP6923480B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808434B (zh) * 2020-07-02 2023-07-11 日商豐田自動織機股份有限公司 障礙物檢測裝置及障礙物檢測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226675A (ja) * 2011-04-22 2012-11-15 Hitachi Industrial Equipment Systems Co Ltd 移動体
JP2015208789A (ja) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 動作制限装置及び動作制限方法
WO2016174977A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法
EP3091342A1 (en) * 2015-05-07 2016-11-09 Conti Temic microelectronic GmbH Optical sensor device for a vehicle
JP2017211696A (ja) * 2016-05-23 2017-11-30 株式会社Subaru 車両の後側方検知装置
JP2018113937A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 自動走行作業車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226675A (ja) * 2011-04-22 2012-11-15 Hitachi Industrial Equipment Systems Co Ltd 移動体
JP2015208789A (ja) * 2014-04-24 2015-11-24 トヨタ自動車株式会社 動作制限装置及び動作制限方法
WO2016174977A1 (ja) * 2015-04-28 2016-11-03 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法
EP3091342A1 (en) * 2015-05-07 2016-11-09 Conti Temic microelectronic GmbH Optical sensor device for a vehicle
JP2017211696A (ja) * 2016-05-23 2017-11-30 株式会社Subaru 車両の後側方検知装置
JP2018113937A (ja) * 2017-01-20 2018-07-26 株式会社クボタ 自動走行作業車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808434B (zh) * 2020-07-02 2023-07-11 日商豐田自動織機股份有限公司 障礙物檢測裝置及障礙物檢測方法

Also Published As

Publication number Publication date
JP6923480B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
WO2019187937A1 (ja) 障害物検知システム、及び、作業車両
JP6926020B2 (ja) 障害物検知システム
JP7356829B2 (ja) 自動走行システム
WO2019187884A1 (ja) 作業車両の自動走行装置
JP6942664B2 (ja) 作業車両の走行制御システム
JP2019169059A (ja) 走行領域形状特定装置
JP7122845B2 (ja) 作業車両の自動走行装置
US20210018617A1 (en) Obstacle Detection System for Work Vehicle
JP2019175261A (ja) 走行領域形状特定装置
WO2020044802A1 (ja) 障害物検知システム
JP7162704B2 (ja) 作業車両の自動走行装置
JP2019170312A (ja) 作業車両用の自動走行システム
JP2022159351A (ja) 作業車両
JP2019168888A (ja) 障害物検知システム
JP2021182001A (ja) 作業車両
JP2021185523A (ja) 作業車両の走行制御システム
WO2019187938A1 (ja) 作業車両の走行制御システム
JP7016747B2 (ja) 協調作業システム
JP6923480B2 (ja) 障害物検知システム
JP2019175318A (ja) 作業車両の走行制御システム
WO2020044800A1 (ja) 障害物検知システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210729

R150 Certificate of patent or registration of utility model

Ref document number: 6923480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150