JP2019170020A - Movement amount control device for moving member - Google Patents

Movement amount control device for moving member Download PDF

Info

Publication number
JP2019170020A
JP2019170020A JP2018054639A JP2018054639A JP2019170020A JP 2019170020 A JP2019170020 A JP 2019170020A JP 2018054639 A JP2018054639 A JP 2018054639A JP 2018054639 A JP2018054639 A JP 2018054639A JP 2019170020 A JP2019170020 A JP 2019170020A
Authority
JP
Japan
Prior art keywords
frequency
ripple
peak
window plate
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054639A
Other languages
Japanese (ja)
Other versions
JP7069914B2 (en
Inventor
貴史 山▲崎▼
Takafumi Yamazaki
貴史 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018054639A priority Critical patent/JP7069914B2/en
Priority to CN201910217000.XA priority patent/CN110295819B/en
Publication of JP2019170020A publication Critical patent/JP2019170020A/en
Application granted granted Critical
Publication of JP7069914B2 publication Critical patent/JP7069914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/689Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings specially adapted for vehicle windows
    • E05F15/695Control circuits therefor
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

To appropriately control the movement amount of a moving member when the ration state of an electric motor is difficult to accurately get to know because of generation of electric noise.SOLUTION: The movement amount control device controls the movement amount of a window plate that moves by being driven by a brush-provided electric motor. A ripple frequency detection unit 328 performs frequency analysis of the detected waveform of an electric current flowing through the electric motor so as to detect a peak frequency, and detects the peak frequency as a ripple frequency which is the frequency of a ripple generated in the electric current. A movement control unit 336 detects the rotation state of the electric motor on the basis of the ripple frequency, and controls the movement amount of the window plate. When there are a plurality of the peak frequencies. The ripple frequency detection unit 328 selects a peak frequency to be detected as the ripple frequency, on the basis of the moving direction of the window plate at the detection time of the detected waveform.SELECTED DRAWING: Figure 2

Description

本発明は、電動モータの駆動により移動する移動部材の移動量制御装置に関する。   The present invention relates to a moving amount control device for a moving member that moves by driving of an electric motor.

従来、電動モータの回転状態を把握する方法として、ブラシノイズから発生する電流波形(リップル波形)の周期をカウントし、回転量を検出する手法が知られている。
例えば、下記特許文献1には、ブラシを備えるモータと、モータに供給する電力を制御するモータ制御手段と、モータに流れる電流を検出する電流検出手段と、検出した電流波形の周波数分析を行いブラシ部分から発するリップル周波数を検出してモータの回転数を検出する速度検出手段とを備え、モータ制御手段が、速度検出手段の検出した回転数が目標回転数になるように制御することにより、エンコーダのような外部検出手段なしで、温度やモータのばらつきの影響を受けにくい、精度のよい制御を行うように構成したブラシモータの速度制御装置が開示されている。
また、下記特許文献2には、ノイズの影響を低減して、電動モータの回転情報を精度よく検出することを目的とした電動モータの回転情報検出方法が開示されている。より詳細には、電動モータに流れる電流の時系列波形データを周波数解析して、得られた周波数のスペクトルの低域にある極大値を有する周波数を基本周波数候補Fbとし、基本周波数候補Fbのうち、最大振幅を有する周波数Fbmに、電動モータの整流子数と電動モータに流れる電流の変化特性とに基づいて予め設定された係数を乗じて、リップル周波数候補Frbを算出する。周波数のスペクトルでリップル周波数候補Frbの両隣にある極大値を有する周波数をリップル周波数候補Frr、Frlとして追加する。これらリップル周波数候補Frb、Frr、Frlの最大振幅が所定のしきい値以上である場合に、該最大振幅を有するリップル周波数候補Frlをリップル周波数と推定する。このリップル周波数に基づいて、電動モータの回転情報を検出する。
Conventionally, as a method of grasping the rotation state of the electric motor, a method of detecting the amount of rotation by counting the period of a current waveform (ripple waveform) generated from brush noise is known.
For example, in Patent Document 1 below, a brush is provided; a motor control unit that controls power supplied to the motor; a current detection unit that detects a current flowing through the motor; Speed detection means for detecting the rotation frequency of the motor by detecting the ripple frequency emitted from the portion, and the motor control means controls the rotation speed detected by the speed detection means so as to become the target rotation speed. There is disclosed a brush motor speed control device configured to perform highly accurate control without being affected by temperature and motor variations without using an external detection means such as the above.
Patent Document 2 listed below discloses a method for detecting rotation information of an electric motor for the purpose of reducing the influence of noise and accurately detecting rotation information of the electric motor. More specifically, frequency analysis is performed on the time-series waveform data of the current flowing through the electric motor, and the frequency having the maximum value in the low band of the obtained frequency spectrum is set as the basic frequency candidate Fb, and among the basic frequency candidates Fb The ripple frequency candidate Frb is calculated by multiplying the frequency Fbm having the maximum amplitude by a coefficient set in advance based on the number of commutators of the electric motor and the change characteristics of the current flowing through the electric motor. In the frequency spectrum, the frequencies having the maximum values on both sides of the ripple frequency candidate Frb are added as ripple frequency candidates Frr and Frl. When the maximum amplitude of these ripple frequency candidates Frb, Frr, Frl is equal to or greater than a predetermined threshold, the ripple frequency candidate Frl having the maximum amplitude is estimated as the ripple frequency. Based on this ripple frequency, rotation information of the electric motor is detected.

特開2004−080921号公報Japanese Patent Application Laid-Open No. 2004-080921 特開2013−212028号公報JP 2013-212028 A

車両のパワーウィンドウやパワースライドドアなどでは、電動モータの回転状態に基づいて移動部材(窓板やドア板など)の位置を認識し、挟み込み防止制御等を行っている。
しかしながら、モータ電源に車両から発生する周期的なノイズが混ざった場合には、リップル波形を正確に捉えることができない場合があるという課題がある。
本発明は、このような事情に鑑みなされたものであり、その目的は、電気的なノイズが生じて電動モータの回転状態を正確に把握するのが困難となった場合に、移動部材の状態を適切に制御することにある。
In a vehicle power window, a power slide door, and the like, the position of a moving member (window plate, door plate, etc.) is recognized based on the rotation state of the electric motor, and pinch prevention control or the like is performed.
However, when the periodic noise generated from the vehicle is mixed in the motor power source, there is a problem that the ripple waveform may not be accurately captured.
The present invention has been made in view of such circumstances, and an object of the present invention is to determine the state of the moving member when it is difficult to accurately grasp the rotation state of the electric motor due to electrical noise. It is to control appropriately.

上述の目的を達成するため、請求項1の発明にかかる移動部材の移動量制御装置は、ブラシを備えた電動モータの駆動により移動する移動部材の移動量制御装置であって、前記電動モータに流れる電流を検出する電流検出部と、前記電流の検出波形を周波数解析してピーク周波数を検出し、前記ピーク周波数を前記電流に発生するリップルの周波数であるリップル周波数として検出するリップル周波数検出部と、前記リップル周波数に基づいて前記電動モータの回転状態を検出し、前記移動部材の移動量を制御する移動制御部と、を備え、前記リップル周波数検出部は、前記ピーク周波数が複数ある場合、前記検出波形の検出時における前記移動部材の移動方向に基づいて、前記リップル周波数として検出する前記ピーク周波数を選択する、ことを特徴とする。
請求項2の発明にかかる移動部材の移動量制御装置は、前記移動部材は開口部を開閉する開閉部材であり、前記リップル周波数検出部は、前記検出波形の検出時が前記開閉部材の閉塞時である場合には最も低周波側の前記ピーク周波数を前記リップル周波数とし、前記検出波形の検出時が前記開閉部材の開放時である場合には最も高周波側の前記ピーク周波数を前記リップル周波数とする、ことを特徴とする。
請求項3の発明にかかる移動部材の移動量制御装置は、前記開口部は、車両の窓開口であり、前記開閉部材は、前記窓開口を開閉する窓板である、ことを特徴とする。
In order to achieve the above-mentioned object, a moving amount control device for a moving member according to the invention of claim 1 is a moving amount control device for a moving member that moves by driving of an electric motor provided with a brush. A current detection unit that detects a flowing current; a ripple frequency detection unit that detects a peak frequency by performing frequency analysis on a detection waveform of the current; and detects the peak frequency as a ripple frequency that is a frequency of a ripple generated in the current; A movement control unit that detects a rotation state of the electric motor based on the ripple frequency and controls a movement amount of the moving member, and when the ripple frequency detection unit has a plurality of the peak frequencies, Based on the moving direction of the moving member at the time of detection of the detection waveform, the peak frequency to be detected as the ripple frequency is selected. And wherein the door.
According to a second aspect of the present invention, there is provided a movement amount control device for a moving member, wherein the moving member is an opening / closing member that opens and closes an opening, and the ripple frequency detection unit detects when the detection waveform is closed The peak frequency on the lowest frequency side is set as the ripple frequency, and when the detection waveform is detected when the opening / closing member is opened, the peak frequency on the highest frequency side is set as the ripple frequency. It is characterized by that.
According to a third aspect of the present invention, the moving member moving amount control device is characterized in that the opening is a window opening of a vehicle, and the opening and closing member is a window plate that opens and closes the window opening.

請求項1の発明によれば、電気的なノイズ等に起因してピーク周波数が複数検出された場合に、検出波形の検出時における移動部材の移動方向に基づいてリップル周波数として検出するピーク周波数を選択するので、移動部材の位置が正確に把握できなくなった場合でも移動部材の状態を適切に制御する上で有利となる。
請求項2の発明によれば、検出波形の検出時が開閉部材の閉塞時である場合には最も低周波側のピーク周波数をリップル周波数とし、検出波形の検出時が開閉部材の開放時である場合には最も高周波側のピーク周波数をリップル周波数とするので、開閉部材の閉塞位置側に所定の制御の不感帯が設定されている場合に、開閉部材が不感帯にあると誤検知することを回避して、所定の制御を確実に実施する上で有利となる。
請求項3の発明によれば、車両の窓開口を開閉する窓板を開閉部材としたので、車両のパワーウィンドウシステムにおいて、挟み込み防止機能を確実に作動させる上で有利となる。
According to the invention of claim 1, when a plurality of peak frequencies are detected due to electrical noise or the like, the peak frequency detected as the ripple frequency based on the moving direction of the moving member at the time of detecting the detected waveform is Since the selection is made, it is advantageous in appropriately controlling the state of the moving member even when the position of the moving member cannot be accurately grasped.
According to the invention of claim 2, when the detection waveform is detected when the switching member is closed, the peak frequency on the lowest frequency side is set as the ripple frequency, and the detection waveform is detected when the switching member is opened. In this case, the peak frequency on the highest frequency side is set as the ripple frequency, so that it is possible to avoid erroneously detecting that the opening / closing member is in the dead zone when a predetermined control dead zone is set on the closing position side of the opening / closing member. Thus, it is advantageous for reliably performing the predetermined control.
According to the invention of claim 3, since the window plate for opening and closing the window opening of the vehicle is used as the opening and closing member, it is advantageous for reliably operating the pinching prevention function in the vehicle power window system.

実施の形態にかかるパワーウィンドウシステム10の構成を示す図である。It is a figure showing composition of power window system 10 concerning an embodiment. 窓板位置検出部320の詳細構成を示すブロック図である。3 is a block diagram showing a detailed configuration of a window plate position detection unit 320. FIG. 各種波形を示すグラフである。It is a graph which shows various waveforms. リップル周波数検出方法を模式的に示す説明図である。It is explanatory drawing which shows a ripple frequency detection method typically. 挟み込み防止機能における不感帯を模式的に示す説明図である。It is explanatory drawing which shows typically the dead zone in a pinching prevention function. 窓板16の閉塞時(上方移動時)を模式的に示す説明図である。It is explanatory drawing which shows typically the time of obstruction | occlusion of the window board 16 (at the time of upward movement). 窓板16の開放時(下方移動時)を模式的に示す説明図である。It is explanatory drawing which shows typically the time of opening of the window board 16 (at the time of a downward movement).

以下に添付図面を参照して、本発明にかかる移動部材の移動量制御装置の好適な実施の形態を詳細に説明する。
本実施の形態では、車両のパワーウィンドウシステムにおける窓位置制御、すなわち電動モータの移動対象物である移動部材が車両の窓開口(開口部)を開閉する窓板である場合について説明する。
Exemplary embodiments of a moving member moving amount control apparatus according to the present invention will be explained below in detail with reference to the accompanying drawings.
In the present embodiment, a description will be given of window position control in a vehicle power window system, that is, a case where a moving member that is a moving object of an electric motor is a window plate that opens and closes a vehicle window opening (opening).

図1は、実施の形態にかかるパワーウィンドウシステム10の構成を示す図である。
パワーウィンドウシステム10は、車両のドア部材12に設けられた窓開口14を開閉するための窓板16の位置を、電動モータ40で移動させる機構である。
図1に示すように、ドア部材12の内部にはドアサッシュ18が備えられ、ドアサッシュ18には窓板16が昇降自在(開閉自在)に支持されている。ドア部材12のドアパネルの内部にはウインドウレギュレータ20が配され、ウインドウレギュレータ20により窓板16が昇降駆動(開閉駆動)される。
FIG. 1 is a diagram illustrating a configuration of a power window system 10 according to an embodiment.
The power window system 10 is a mechanism for moving the position of the window plate 16 for opening and closing the window opening 14 provided in the door member 12 of the vehicle by the electric motor 40.
As shown in FIG. 1, a door sash 18 is provided inside the door member 12, and a window plate 16 is supported on the door sash 18 so as to be movable up and down (openable and closable). A window regulator 20 is disposed inside the door panel of the door member 12, and the window plate 16 is driven up and down (opening and closing) by the window regulator 20.

より詳細には、ウインドウレギュレータ20には電動モータ40が設けられ、電動モータ40の駆動により、駆動ギヤ22、昇降アーム24、従動アーム26を介して窓板16が昇降駆動(開閉駆動)される。
窓板16の移動量(開放量)は、車両の乗員が車室内の操作スイッチ32を操作することにより決定される。操作スイッチ32は、窓板16の移動量制御装置30に接続されており、操作スイッチ32が操作されると、移動量制御装置30は電動モータ40に駆動制御信号を出力する。駆動制御信号に基づいて電動モータ40が駆動し、ウインドウレギュレータ20が作動することにより、窓板16が所望の位置まで移動する。
More specifically, the window regulator 20 is provided with an electric motor 40, and by driving the electric motor 40, the window plate 16 is driven up and down (open / close drive) via the drive gear 22, the lift arm 24, and the driven arm 26. .
The amount of movement (opening amount) of the window plate 16 is determined by the vehicle occupant operating the operation switch 32 in the passenger compartment. The operation switch 32 is connected to the movement amount control device 30 of the window plate 16, and when the operation switch 32 is operated, the movement amount control device 30 outputs a drive control signal to the electric motor 40. The electric motor 40 is driven based on the drive control signal and the window regulator 20 is operated, whereby the window plate 16 moves to a desired position.

電動モータ40は、ブラシと整流子を備えたDC(直流)モータである。電動モータ40は、バッテリ28に接続されており、バッテリ28から供給される電流により駆動する。電動モータ40に流れる電流(以下、「モータ電流」という)は、電流検出部34により検出され、検出値は移動量制御装置30に出力される。   The electric motor 40 is a DC (direct current) motor including a brush and a commutator. The electric motor 40 is connected to the battery 28 and is driven by a current supplied from the battery 28. A current flowing through the electric motor 40 (hereinafter referred to as “motor current”) is detected by the current detector 34, and the detected value is output to the movement amount control device 30.

移動量制御装置30は、窓板位置検出部320および挟み込み防止機能部340を備える。
窓板位置検出部320は、電動モータ40の回転状態(回転数など)を検出し、これに基づいて窓板16の位置を検出する。窓板位置検出部320の詳細は、図2を用いて説明する。
挟み込み防止機能部340は、窓板16と窓枠との間への物体の挟み込みを防止するため、挟み込み防止制御を実行する。挟み込み防止制御とは、窓板16の閉塞時における電動モータ40の回転速度を検出し、回転速度が所定値以下となった場合は挟み込みが生じていると判定し、電動モータ40の回転を反転させて窓板16を開放方向に移動させるものである。
The movement amount control device 30 includes a window plate position detection unit 320 and a pinching prevention function unit 340.
The window plate position detection unit 320 detects the rotation state (the number of rotations, etc.) of the electric motor 40 and detects the position of the window plate 16 based on this. Details of the window plate position detector 320 will be described with reference to FIG.
The pinching prevention function unit 340 executes pinching prevention control in order to prevent the object from being caught between the window plate 16 and the window frame. In the pinching prevention control, the rotation speed of the electric motor 40 when the window plate 16 is closed is detected, and when the rotation speed becomes a predetermined value or less, it is determined that pinching has occurred and the rotation of the electric motor 40 is reversed. Thus, the window plate 16 is moved in the opening direction.

ここで、電動モータ40の回転速度の低下は、挟み込みが生じた時のみならず、窓板16が窓枠の上端位置および下端位置(移動限界位置)に到達した際にも生じる。このような場合にも移動方向を反転させると、窓板16の位置を適切に保つことができない。
よって、挟み込み防止機能部340は、図5に示すように窓枠の上端位置から所定距離以内を不感帯とし、窓板16の上端位置が不感帯に位置する際に電動モータ40の回転速度の低下を検知しても、挟み込み防止機能を作動させないようにしている。
Here, the decrease in the rotation speed of the electric motor 40 occurs not only when the pinching occurs but also when the window plate 16 reaches the upper end position and the lower end position (movement limit position) of the window frame. Even in such a case, if the moving direction is reversed, the position of the window plate 16 cannot be maintained appropriately.
Therefore, the pinching prevention function unit 340 makes the dead zone within a predetermined distance from the upper end position of the window frame as shown in FIG. 5 and reduces the rotation speed of the electric motor 40 when the upper end position of the window plate 16 is located in the dead zone. Even if it is detected, the pinch prevention function is not activated.

図5には、窓板16および窓開口14を模式的に示している。
上述したように、窓板16は、ウインドウレギュレータ20の作動により上下に移動可能である。窓開口14は、開口上端位置F1と開口下端位置F2とがあり、窓板16の上端位置T0は、開口上端位置F1と開口下端位置F2との間で移動可能である。
ここで、窓板16が上方に移動している際(窓閉塞時)に、窓板16の上端位置T0と開口上端位置F1との間に物体が挟まると、窓板16の動き(電動モータ40の回転数)が遅くなる。挟み込み防止機能部340は、このような電動モータ40の回転数の低下が生じた際には、電動モータ40の動きを反転させて窓板16の移動方向を下方(窓開放方向)に変更する。
FIG. 5 schematically shows the window plate 16 and the window opening 14.
As described above, the window plate 16 can be moved up and down by the operation of the window regulator 20. The window opening 14 has an opening upper end position F1 and an opening lower end position F2. The upper end position T0 of the window plate 16 is movable between the opening upper end position F1 and the opening lower end position F2.
Here, when the window plate 16 moves upward (when the window is closed), if an object is sandwiched between the upper end position T0 of the window plate 16 and the upper end position F1 of the opening, the movement of the window plate 16 (electric motor) 40). When such a decrease in the rotational speed of the electric motor 40 occurs, the pinching prevention function unit 340 reverses the movement of the electric motor 40 and changes the movement direction of the window plate 16 downward (window opening direction). .

開口上端位置F1から下方向に距離dの範囲には、不感帯Dが設定されている。これは、窓板16が開口上端位置F1に達した際に上記反転制御を行うと、窓を完全に閉塞することができなくなるためである。
よって、挟み込み防止機能部340は、窓板16の上端位置T0が不感帯Dに位置する際には反転制御を実施せず、窓板16の上端位置T0が不感帯D以外の領域である反転域Eに位置する際には反転制御を実施する。
このように、挟み込み防止機能を適切に機能させるためには、移動量制御装置30で窓板16の位置を把握する必要がある。
A dead zone D is set in a range of a distance d downward from the opening upper end position F1. This is because if the reversal control is performed when the window plate 16 reaches the opening upper end position F1, the window cannot be completely closed.
Therefore, the pinching prevention function unit 340 does not perform reversal control when the upper end position T0 of the window plate 16 is located in the dead zone D, and the reversal region E where the upper end position T0 of the window plate 16 is a region other than the dead zone D. When it is positioned at, reversal control is performed.
As described above, in order to properly function the pinching prevention function, it is necessary to grasp the position of the window plate 16 by the movement amount control device 30.

つぎに、図2を用いて窓板位置検出部320の詳細について説明する。
窓板位置検出部320は、傾向補正部322、周波数解析部326、リップル周波数検出部328、フィルタ設計部330、フィルタリング処理部332、パルス処理部334、移動制御部336を備える。
Next, details of the window plate position detector 320 will be described with reference to FIG.
The window plate position detection unit 320 includes a tendency correction unit 322, a frequency analysis unit 326, a ripple frequency detection unit 328, a filter design unit 330, a filtering processing unit 332, a pulse processing unit 334, and a movement control unit 336.

傾向補正部322は、電流検出部34により検出されたモータ電流の時系列波形データの傾向を補正する。より詳細には、傾向補正部322は、図3Aに示すようなモータ電流の時系列波形データを、最小二乗法により2次関数で近似して近似データを算出する。そして、モータ電流の時系列波形データの各値から、近似データの各値を減算して、モータ電流の時系列波形データの傾向を補正する。なお、図3Aの波形にはノイズ成分が含まれている。   The trend correction unit 322 corrects the trend of the time series waveform data of the motor current detected by the current detection unit 34. More specifically, the trend correction unit 322 calculates approximate data by approximating the time series waveform data of the motor current as shown in FIG. 3A with a quadratic function by the least square method. Then, each value of the approximate data is subtracted from each value of the time series waveform data of the motor current to correct the tendency of the time series waveform data of the motor current. Note that the waveform in FIG. 3A includes a noise component.

周波数解析部326は、傾向補正後のモータ電流の時系列波形データ(電流の検出波形)を、FFT(高速フーリエ変換)により周波数解析する。これにより、図3Aに示すようなモータ電流の時系列波形データが、たとえば図3Bに示すような周波数のスペクトル(周波数単位の波形データ)に変換される。   The frequency analysis unit 326 performs frequency analysis on the time-series waveform data (current detection waveform) of the motor current after the trend correction by FFT (Fast Fourier Transform). Thereby, the time-series waveform data of the motor current as shown in FIG. 3A is converted into a frequency spectrum (waveform data in frequency units) as shown in FIG. 3B, for example.

リップル周波数検出部328は、周波数解析部326の解析結果からピーク周波数を検出し、当該ピーク周波数を電流に発生するリップルの周波数であるリップル周波数として検出する。
図4は、リップル周波数検出方法を模式的に示す説明図である。
図4Aはノイズ等がない理想的なモータ電流の時系列波形データであり、左図は電動モータ40の回転が比較的遅い場合の波形、右図は電動モータ40の回転が比較的速い場合の波形を示している。
モータ電流は、電動モータ40の回転に伴ってブラシノイズに起因するリップル波形が現れる。リップル波形は周期的な波形であるため、周波数解析を行うと突出したピークを取る。すなわち、図4A左図のように電動モータ40の回転が遅い場合は、図4B左図のように低周波側にピークが出現し、図4A右図のように電動モータ40の回転が速い場合は、図4B右図のように高周波側にピークが出現する。
このように、周波数解析を行ったモータ電流のピーク周波数を検出することにより、リップル周波数を検出することができる。
The ripple frequency detection unit 328 detects the peak frequency from the analysis result of the frequency analysis unit 326, and detects the peak frequency as a ripple frequency that is a frequency of a ripple generated in the current.
FIG. 4 is an explanatory diagram schematically showing a ripple frequency detection method.
FIG. 4A shows time series waveform data of an ideal motor current free from noise, etc., the left figure shows a waveform when the rotation of the electric motor 40 is relatively slow, and the right figure shows a case where the rotation of the electric motor 40 is relatively fast. The waveform is shown.
In the motor current, a ripple waveform due to brush noise appears as the electric motor 40 rotates. Since the ripple waveform is a periodic waveform, a prominent peak is obtained when frequency analysis is performed. That is, when the rotation of the electric motor 40 is slow as shown in the left figure of FIG. 4A, a peak appears on the low frequency side as shown in the left figure of FIG. 4B, and the rotation of the electric motor 40 is fast as shown in the right figure of FIG. In FIG. 4B right, a peak appears on the high frequency side.
As described above, the ripple frequency can be detected by detecting the peak frequency of the motor current subjected to the frequency analysis.

一方で、図3Aに示すように、実際のモータ電流の波形には車両から発生するノイズが混ざっている。このような波形を周波数変換すると、図3Bに示すようにピーク周波数が複数出現する場合がある。例えば、図3Bでは2つのピーク周波数P1,P2が検出されている。
このように周波数解析後の波形にピーク周波数が複数ある場合、リップル周波数検出部328は、モータ電流の検出波形の検出時における窓板16(移動部材)の移動方向に基づいて、リップル周波数として検出するピーク周波数を選択する。
より詳細には、リップル周波数検出部328は、モータ電流(検出波形)の検出時が窓板16の閉塞時である場合には最も低周波側のピーク周波数をリップル周波数とし、モータ電流(検出波形)の検出時が窓板16の開放時である場合には最も高周波側のピーク周波数をリップル周波数とする。
これは、仮に選択したピーク周波数が間違いであった場合でも、挟み込み防止機能を確実に機能させるためである。
On the other hand, as shown in FIG. 3A, noise generated from the vehicle is mixed in the actual motor current waveform. When such a waveform is frequency-converted, a plurality of peak frequencies may appear as shown in FIG. 3B. For example, in FIG. 3B, two peak frequencies P1 and P2 are detected.
Thus, when there are a plurality of peak frequencies in the waveform after frequency analysis, the ripple frequency detection unit 328 detects the ripple frequency based on the moving direction of the window plate 16 (moving member) when detecting the detected waveform of the motor current. Select the peak frequency to be used.
More specifically, the ripple frequency detector 328 uses the lowest peak frequency as the ripple frequency when the motor current (detected waveform) is detected when the window plate 16 is closed, and the motor current (detected waveform). When the window plate 16 is opened, the peak frequency on the highest frequency side is set as the ripple frequency.
This is to ensure that the pinching prevention function functions even if the selected peak frequency is wrong.

例えば図3Bのようにピーク周波数が2つ出現した場合、一方のピーク周波数が真のリップル周波数、他方のピーク周波数がノイズに起因するピークとなる。2つのピーク周波数のうち1つをリップル周波数として採用した場合、真のリップル周波数を選択できれば実際の電動モータの回転量、すなわち窓板16の位置を正しく算出できるが、ノイズに起因するピークを採用した場合、窓板16の位置を正しく算出することができない。
例えば、真のリップル周波数がP1である場合に、高周波側にあるピークP2をリップル周波数とした場合、実際よりも窓板16の移動量が大きく算出されることになる。また、真のリップル周波数がP2である場合に、低周波側にあるピークP1をリップル周波数とした場合、実際よりも窓板16の移動量が小さく算出されることになる。
For example, when two peak frequencies appear as shown in FIG. 3B, one peak frequency is a true ripple frequency and the other peak frequency is a peak due to noise. When one of the two peak frequencies is adopted as the ripple frequency, the actual amount of rotation of the electric motor, that is, the position of the window plate 16 can be correctly calculated if the true ripple frequency can be selected, but the peak due to noise is adopted. In this case, the position of the window plate 16 cannot be calculated correctly.
For example, when the true ripple frequency is P1 and the peak P2 on the high frequency side is set as the ripple frequency, the movement amount of the window plate 16 is calculated to be larger than the actual amount. When the true ripple frequency is P2, and the peak P1 on the low frequency side is set as the ripple frequency, the movement amount of the window plate 16 is calculated to be smaller than the actual amount.

図6は、窓板16の閉塞時(上方移動時)を模式的に示す説明図であり、図6Aは実際のリップル周波数よりも高周波側のピーク値をリップル周波数として採用した場合、図6Bは実際のリップル周波数よりも低周波側のピーク値をリップル周波数として採用した場合を示している。
図6Aにおいて、実線で示すのが実際の窓板16の位置、点線で示すのは実際のリップル周波数よりも高周波側のピーク値をリップル周波数として採用した場合の誤検知した窓板16の位置である。上述のように、実際よりも高周波側のピークをリップル周波数とした場合、実際よりも窓板16の移動量が大きく算出される。よって、誤検知した窓板16の上端位置T1は、実際の窓板16の上端位置T0よりも高い位置となる。
この場合、実際の上端位置T0が反転域Eにあるにも関わらず、誤検知した上端位置T1が不感帯Dにあると判断され、挟み込み防止機能が働かない場合がある。
FIG. 6 is an explanatory diagram schematically showing when the window plate 16 is closed (upward movement). FIG. 6A shows a case where a peak value on the higher frequency side than the actual ripple frequency is adopted as the ripple frequency. The case where the peak value on the lower frequency side than the actual ripple frequency is adopted as the ripple frequency is shown.
In FIG. 6A, the solid line indicates the position of the actual window plate 16, and the dotted line indicates the position of the erroneously detected window plate 16 when the peak value on the higher frequency side than the actual ripple frequency is adopted as the ripple frequency. is there. As described above, when the peak on the higher frequency side than the actual is the ripple frequency, the amount of movement of the window plate 16 is calculated to be larger than the actual. Therefore, the upper end position T1 of the erroneously detected window plate 16 is higher than the actual upper end position T0 of the window plate 16.
In this case, although the actual upper end position T0 is in the inversion area E, it may be determined that the erroneously detected upper end position T1 is in the dead zone D, and the pinching prevention function may not work.

また、図6Bにおいて、実線で示すのが実際の窓板16の位置、点線で示すのは実際のリップル周波数よりも低周波側のピーク値をリップル周波数として採用した場合の誤検知した窓板16の位置である。上述のように、実際よりも低周波側のピークをリップル周波数とした場合、実際よりも窓板16の移動量が小さく算出される。よって、誤検知した窓板16の上端位置T2は、実際の窓板16の上端位置T0よりも低い位置となる。
この場合、実際の上端位置T0が不感帯Dにある場合でも、誤検知した上端位置T2が反転域Eにあると判断され、挟み込み防止機能が作動する。結果、窓枠の開口上端位置F1で窓板16が反転し、窓を完全に閉塞できない可能性はあるものの、物体の挟み込みは防止することができる。
よって、リップル周波数検出部328は、周波数解析後の波形にピーク周波数が複数ある場合、モータ電流(検出波形)の検出時が窓板16の閉塞時である時には最も低周波側のピーク周波数をリップル周波数とする。
In FIG. 6B, the solid line indicates the position of the actual window plate 16, and the dotted line indicates the erroneously detected window plate 16 when a peak value on the lower frequency side than the actual ripple frequency is adopted as the ripple frequency. Is the position. As described above, when the peak on the lower frequency side than the actual is the ripple frequency, the amount of movement of the window plate 16 is calculated to be smaller than the actual. Therefore, the upper end position T2 of the window plate 16 erroneously detected is lower than the upper end position T0 of the actual window plate 16.
In this case, even when the actual upper end position T0 is in the dead zone D, it is determined that the erroneously detected upper end position T2 is in the inversion area E, and the pinching prevention function is activated. As a result, although the window plate 16 is inverted at the opening upper end position F1 of the window frame and the window may not be completely closed, it is possible to prevent the object from being caught.
Therefore, the ripple frequency detector 328 ripples the peak frequency on the lowest frequency side when the motor current (detected waveform) is detected when the window plate 16 is closed, when there are a plurality of peak frequencies in the waveform after frequency analysis. The frequency.

図7は、窓板16の開放時(下方移動時)を模式的に示す説明図であり、図7Aは実際のリップル周波数よりも高周波側のピーク値をリップル周波数として採用した場合、図7Bは実際のリップル周波数よりも低周波側のピーク値をリップル周波数として採用した場合を示している。
図7Aにおいて、実線で示すのが実際の窓板16の位置、点線で示すのは実際のリップル周波数よりも高周波側のピーク値をリップル周波数として採用した場合の誤検知した窓板16の位置である。上述のように、実際よりも高周波側のピークをリップル周波数とした場合、実際よりも窓板16の移動量が大きく算出される。よって、誤検知した窓板16の上端位置T3は、実際の窓板16の上端位置T0よりも低い位置となる。
この場合、実際の上端位置T0が不感帯Dにある場合でも、誤検知した上端位置T3が反転域Eにあると判断され、例えば窓板16の移動方向を反転させた際に窓開口14内に物体があった場合などに挟み込み防止機能が作動する。
FIG. 7 is an explanatory view schematically showing when the window plate 16 is opened (during downward movement). FIG. 7A shows a case where a peak value on the higher frequency side than the actual ripple frequency is adopted as the ripple frequency. The case where the peak value on the lower frequency side than the actual ripple frequency is adopted as the ripple frequency is shown.
In FIG. 7A, the solid line indicates the position of the actual window plate 16, and the dotted line indicates the position of the erroneously detected window plate 16 when the peak value on the higher frequency side than the actual ripple frequency is adopted as the ripple frequency. is there. As described above, when the peak on the higher frequency side than the actual is the ripple frequency, the amount of movement of the window plate 16 is calculated to be larger than the actual. Thus, the erroneously detected upper end position T3 of the window plate 16 is lower than the actual upper end position T0 of the window plate 16.
In this case, even when the actual upper end position T0 is in the dead zone D, it is determined that the erroneously detected upper end position T3 is in the reversal area E. For example, when the moving direction of the window plate 16 is reversed, The trapping prevention function is activated when an object is present.

また、図7Bにおいて、実線で示すのが実際の窓板16の位置、点線で示すのは実際のリップル周波数よりも低周波側のピーク値をリップル周波数として採用した場合の誤検知した窓板16の位置である。上述のように、実際よりも低周波側のピークをリップル周波数とした場合、実際よりも窓板16の移動量が小さく算出される。よって、誤検知した窓板16の上端位置T4は、実際の窓板16の上端位置T0よりも高い位置となる。
この場合、実際の上端位置T0が反転域Eにあるにも関わらず、誤検知した上端位置T1が不感帯Dにあると判断され、例えば窓板16の移動方向を反転させた際に窓開口14内に物体があった場合などに挟み込み防止機能が作動しない場合がある。
このため、リップル周波数検出部328は、周波数解析後の波形にピーク周波数が複数ある場合、モータ電流(検出波形)の検出時が窓板16の閉塞時である時には最も低周波側のピーク周波数をリップル周波数とする。
このように、リップル周波数検出部328は、モータ電流(検出波形)の検出時が窓板16の開放時である場合には最も高周波側のピーク周波数をリップル周波数とする。
In FIG. 7B, the solid line indicates the position of the actual window plate 16, and the dotted line indicates the erroneously detected window plate 16 when the peak value on the lower frequency side than the actual ripple frequency is adopted as the ripple frequency. Is the position. As described above, when the peak on the lower frequency side than the actual is the ripple frequency, the amount of movement of the window plate 16 is calculated to be smaller than the actual. Thus, the erroneously detected upper end position T4 of the window plate 16 is higher than the actual upper end position T0 of the window plate 16.
In this case, it is determined that the erroneously detected upper end position T1 is in the dead zone D even though the actual upper end position T0 is in the reversal zone E. For example, when the moving direction of the window plate 16 is reversed, the window opening 14 The pinch prevention function may not work when there is an object inside.
For this reason, the ripple frequency detector 328 selects the lowest peak frequency when the motor current (detected waveform) is detected when the window plate 16 is closed when there are a plurality of peak frequencies in the waveform after frequency analysis. Ripple frequency.
Thus, the ripple frequency detection unit 328 sets the peak frequency on the highest frequency side as the ripple frequency when the motor current (detection waveform) is detected when the window plate 16 is opened.

図2の説明に戻り、フィルタ設計部330は、リップル周波数検出部328で検出されたリップル周波数に基づいて、低域側および高域側のエッジ周波数をそれぞれ設定する。より詳細には、リップル周波数を所定比率C%増減した値を、それぞれ高域側と低域側のエッジ周波数とする。
そして、低域側と高域側のエッジ周波数に基づいてバンドパスフィルタ係数を算出する。より詳細には、窓関数法による一般的なFIR(有限インパルス応答)フィルタを設計して、各フィルタ係数を算出する。
Returning to the description of FIG. 2, the filter design unit 330 sets the low frequency side and high frequency side edge frequencies based on the ripple frequency detected by the ripple frequency detection unit 328. More specifically, values obtained by increasing / decreasing the ripple frequency by a predetermined ratio C% are set as edge frequencies on the high frequency side and the low frequency side, respectively.
Then, bandpass filter coefficients are calculated based on the low frequency side and high frequency side edge frequencies. More specifically, a general FIR (finite impulse response) filter based on the window function method is designed to calculate each filter coefficient.

フィルタリング処理部332は、フィルタ設計部330で設計されたフィルタを用いて、モータ電流の時系列波形データをフィルタリング処理して、リップル電流の時系列波形データを抽出する。この結果、図3Aに示すようなノイズを含むモータ電流の時系列波形データから、図3Cに示すようなリップル電流のみの時系列波形データを抽出することができる。
パルス処理部334は、図3Cのようなリップル電流の時系列波形データを二値化処理して、図3Dに示すような矩形波のリップルパルス信号を生成する。
The filtering processing unit 332 filters the time-series waveform data of the motor current using the filter designed by the filter design unit 330 and extracts the time-series waveform data of the ripple current. As a result, it is possible to extract time series waveform data only of ripple current as shown in FIG. 3C from time series waveform data of motor current including noise as shown in FIG. 3A.
The pulse processing unit 334 binarizes the time-series waveform data of the ripple current as shown in FIG. 3C to generate a rectangular wave ripple pulse signal as shown in FIG. 3D.

移動制御部336は、リップル周波数(より詳細にはパルス処理部334で生成されたリップルパルス信号)に基づいて電動モータ40の回転状態を検出し、窓板16の移動量を制御する。
移動制御部336は、電動モータ40の回転数と回転角などの回転情報を検出し、窓板16の現在位置(例えば窓板16の上端位置T0)を算出する。そして、窓板16の現在位置に基づいて電動モータ40の回転量を制御することにより、窓板16の移動量を制御する。
なお、電動モータ40の回転数は、例えば電動モータ40の整流子数と単位時間あたりのパルス数とに基づいて算出したり、1パルスの幅の逆数を算出したりする。また、電動モータ40の回転角は、例えば基点からのパルス数に基づいて算出する。
The movement control unit 336 detects the rotation state of the electric motor 40 based on the ripple frequency (more specifically, the ripple pulse signal generated by the pulse processing unit 334), and controls the movement amount of the window plate 16.
The movement control unit 336 detects rotation information such as the rotation speed and rotation angle of the electric motor 40 and calculates the current position of the window plate 16 (for example, the upper end position T0 of the window plate 16). Then, the amount of movement of the window plate 16 is controlled by controlling the amount of rotation of the electric motor 40 based on the current position of the window plate 16.
Note that the rotation speed of the electric motor 40 is calculated based on, for example, the number of commutators of the electric motor 40 and the number of pulses per unit time, or the reciprocal of the width of one pulse. Further, the rotation angle of the electric motor 40 is calculated based on, for example, the number of pulses from the base point.

本実施の形態で示した波形の演算方法は一例であり、各種の変形例を適用可能である。例えば、本実施の形態では、周波数解析部326がモータ電流の時系列波形データをFFTで周波数解析する例を示したが、例えばDFT(離散フーリエ変換)などの他のアルゴリズムで周波数解析するようにしてもよい。
また、本実施の形態では、リップル周波数に基づいて窓関数法によるFIRフィルタを設計して、バンドパスフィルタ係数を算出し、FIRフィルタ演算によりモータ電流の時系列データからリップルパルス電流の時系列データを抽出する例を示したが、これ以外のリップル周波数に基づく信号処理方法により、モータ電流の時系列データからリップルパルス電流の時系列データを抽出するようにしてもよい。
The waveform calculation method shown in this embodiment mode is an example, and various modifications can be applied. For example, in the present embodiment, an example in which the frequency analysis unit 326 performs frequency analysis on the time series waveform data of the motor current by FFT has been described, but frequency analysis is performed by another algorithm such as DFT (Discrete Fourier Transform). May be.
Further, in the present embodiment, an FIR filter based on the window function method is designed based on the ripple frequency, a band pass filter coefficient is calculated, and time series data of ripple pulse current is calculated from time series data of motor current by FIR filter calculation. However, the time series data of the ripple pulse current may be extracted from the time series data of the motor current by a signal processing method based on other ripple frequencies.

以上説明したように、実施の形態にかかる移動量制御装置30によれば、電気的なノイズ等に起因して周波数解析後のピーク周波数が複数検出された場合に、検出波形の検出時における窓板16の移動方向に基づいてリップル周波数として検出するピーク周波数を選択するので、窓板16の位置が正確に把握できなくなった場合でも窓板16の状態を適切に制御する上で有利となる。
また、移動量制御装置30によれば、検出波形の検出時が窓板16の閉塞時である場合には最も低周波側のピーク周波数をリップル周波数とし、検出波形の検出時が窓板16の開放時である場合には最も高周波側のピーク周波数をリップル周波数とするので、窓板16の閉塞位置側に挟み込み防止機能の不感帯が設定されている場合に、窓板16が不感帯にあると誤検知することを回避して、挟み込み防止機能を確実に実施する上で有利となる。
As described above, according to the movement amount control device 30 according to the embodiment, when a plurality of peak frequencies after frequency analysis are detected due to electrical noise or the like, a window at the time of detection of a detected waveform is detected. Since the peak frequency to be detected as the ripple frequency is selected based on the moving direction of the plate 16, it is advantageous in appropriately controlling the state of the window plate 16 even when the position of the window plate 16 cannot be accurately grasped.
Further, according to the movement amount control device 30, when the detection waveform is detected when the window plate 16 is closed, the peak frequency on the lowest frequency side is set as the ripple frequency, and the detection waveform is detected when the detection waveform is detected. Since the peak frequency on the highest frequency side is set as the ripple frequency when it is open, it is erroneously assumed that the window plate 16 is in the dead zone when the dead zone of the pinching prevention function is set on the closed position side of the window plate 16. This is advantageous in avoiding detection and reliably implementing the pinching prevention function.

なお、本実施の形態では、窓板16の閉塞位置側(開口上端位置F1側)に挟み込み防止機能の不感帯が設定されている場合について説明したが、例えば窓板16の開放位置側(開口下端位置F2側)に所定の制御の不感帯が設定されている場合も考えられる。
この場合は、リップル周波数検出部は、検出波形の検出時が開閉部材の閉塞時である場合には最も高周波側のピーク周波数をリップル周波数とし、検出波形の検出時が開閉部材の開放時である場合には最も低周波側のピーク周波数をリップル周波数とすればよい。
In the present embodiment, the case where the dead zone of the pinching prevention function is set on the closing position side (opening upper end position F1 side) of the window plate 16 has been described. For example, the opening position side (opening lower end) of the window plate 16 is described. It is also conceivable that a dead zone for predetermined control is set on the position F2 side).
In this case, when the detection waveform is detected when the opening / closing member is closed, the ripple frequency detection unit sets the peak frequency on the highest frequency side as the ripple frequency, and the detection waveform is detected when the opening / closing member is open. In this case, the peak frequency on the lowest frequency side may be set as the ripple frequency.

また、本実施形態では、電動モータ40がパワーウィンドウシステムに適用される例を示したが、これ以外のブラシを備えた電動モータの回転情報が必要な種々の装置、例えば車両のパワースライドドアシステムなどにも本発明は適用することが可能である。   In the present embodiment, the example in which the electric motor 40 is applied to the power window system has been shown. However, various devices that require rotation information of the electric motor including other brushes, for example, a power slide door system of a vehicle. The present invention can also be applied to the above.

10 パワーウィンドウシステム
12 ドア部材
14 窓開口
16 窓板
18 ドアサッシュ
20 ウインドウレギュレータ
28 バッテリ
30 移動量制御装置
34 電流検出部
40 電動モータ
320 窓板位置検出部
322 傾向補正部
326 周波数解析部
328 リップル周波数検出部
330 フィルタ設計部
332 フィルタリング処理部
334 パルス処理部
336 移動制御部
340 挟み込み防止機能部
DESCRIPTION OF SYMBOLS 10 Power window system 12 Door member 14 Window opening 16 Window board 18 Door sash 20 Window regulator 28 Battery 30 Movement control apparatus 34 Current detection part 40 Electric motor 320 Window board position detection part 322 Trend correction part 326 Frequency analysis part 328 Ripple frequency Detection unit 330 Filter design unit 332 Filtering processing unit 334 Pulse processing unit 336 Movement control unit 340 Anti-pinch function unit

Claims (3)

ブラシを備えた電動モータの駆動により移動する移動部材の移動量制御装置であって、
前記電動モータに流れる電流を検出する電流検出部と、
前記電流の検出波形を周波数解析してピーク周波数を検出し、前記ピーク周波数を前記電流に発生するリップルの周波数であるリップル周波数として検出するリップル周波数検出部と、
前記リップル周波数に基づいて前記電動モータの回転状態を検出し、前記移動部材の移動量を制御する移動制御部と、を備え、
前記リップル周波数検出部は、前記ピーク周波数が複数ある場合、前記検出波形の検出時における前記移動部材の移動方向に基づいて、前記リップル周波数として検出する前記ピーク周波数を選択する、
ことを特徴とする移動部材の移動量制御装置。
A moving amount control device for a moving member that moves by driving an electric motor provided with a brush,
A current detector for detecting a current flowing through the electric motor;
A ripple frequency detection unit that detects a peak frequency by performing frequency analysis on the detection waveform of the current, and detects the peak frequency as a ripple frequency that is a frequency of a ripple generated in the current;
A movement control unit that detects a rotation state of the electric motor based on the ripple frequency and controls a movement amount of the moving member;
The ripple frequency detection unit selects the peak frequency to be detected as the ripple frequency based on the moving direction of the moving member at the time of detection of the detection waveform when there are a plurality of the peak frequencies.
A moving amount control device for a moving member.
前記移動部材は開口部を開閉する開閉部材であり、
前記リップル周波数検出部は、前記検出波形の検出時が前記開閉部材の閉塞時である場合には最も低周波側の前記ピーク周波数を前記リップル周波数とし、前記検出波形の検出時が前記開閉部材の開放時である場合には最も高周波側の前記ピーク周波数を前記リップル周波数とする、
ことを特徴とする請求項1記載の移動部材の移動量制御装置。
The moving member is an opening and closing member for opening and closing the opening;
The ripple frequency detection unit sets the peak frequency on the lowest frequency side as the ripple frequency when the detection waveform is detected when the switching member is closed, and the detection waveform is detected when the detection waveform is detected. If it is open, the peak frequency on the highest frequency side is the ripple frequency,
The moving amount control device for a moving member according to claim 1.
前記開口部は、車両の窓開口であり、
前記開閉部材は、前記窓開口を開閉する窓板である、
ことを特徴とする請求項2記載の移動部材の移動量制御装置。
The opening is a window opening of a vehicle;
The opening and closing member is a window plate that opens and closes the window opening.
The moving amount control device for a moving member according to claim 2.
JP2018054639A 2018-03-22 2018-03-22 Movement amount control device for moving members Active JP7069914B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018054639A JP7069914B2 (en) 2018-03-22 2018-03-22 Movement amount control device for moving members
CN201910217000.XA CN110295819B (en) 2018-03-22 2019-03-21 Moving amount control device for moving member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054639A JP7069914B2 (en) 2018-03-22 2018-03-22 Movement amount control device for moving members

Publications (2)

Publication Number Publication Date
JP2019170020A true JP2019170020A (en) 2019-10-03
JP7069914B2 JP7069914B2 (en) 2022-05-18

Family

ID=68026418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054639A Active JP7069914B2 (en) 2018-03-22 2018-03-22 Movement amount control device for moving members

Country Status (2)

Country Link
JP (1) JP7069914B2 (en)
CN (1) CN110295819B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940910A1 (en) * 2020-07-16 2022-01-19 Inalfa Roof Systems Group B.V. Method and system for obstruction detection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111706199B (en) * 2020-05-26 2021-09-17 南京天擎汽车电子有限公司 Vehicle window position judging method and device, vehicle, equipment and medium
CN114809854A (en) * 2022-04-20 2022-07-29 重庆长安汽车股份有限公司 Anti-pinch control method for car window and car window control system with anti-pinch function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536355A (en) * 2000-06-06 2003-12-02 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト How to calculate the rotational position of the drive shaft of a DC motor
JP2007236170A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Method and device for measuring rotational speed of motor
JP2007318837A (en) * 2006-05-23 2007-12-06 Aisin Seiki Co Ltd Ripple detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126167A1 (en) * 2001-05-30 2002-12-05 Kostal Leopold Gmbh & Co Kg Method for correcting a rotational position determination of a drive shaft of a commutated direct current motor
JP4939298B2 (en) * 2007-05-09 2012-05-23 アイシン精機株式会社 DC motor ripple detection device, motor rotational position detection device, and ripple detection method
JP5773932B2 (en) * 2012-03-30 2015-09-02 オムロンオートモーティブエレクトロニクス株式会社 Electric motor rotation information detection method, electric motor rotation information detection device, electric motor control device
JP5936269B2 (en) * 2012-09-12 2016-06-22 オムロンオートモーティブエレクトロニクス株式会社 Vehicle window opening and closing control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536355A (en) * 2000-06-06 2003-12-02 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト How to calculate the rotational position of the drive shaft of a DC motor
JP2007236170A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Method and device for measuring rotational speed of motor
JP2007318837A (en) * 2006-05-23 2007-12-06 Aisin Seiki Co Ltd Ripple detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940910A1 (en) * 2020-07-16 2022-01-19 Inalfa Roof Systems Group B.V. Method and system for obstruction detection
US11718163B2 (en) 2020-07-16 2023-08-08 Inalfa Roof Systems Group B.V. Method and system for obstruction detection

Also Published As

Publication number Publication date
CN110295819A (en) 2019-10-01
CN110295819B (en) 2020-11-13
JP7069914B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP7069914B2 (en) Movement amount control device for moving members
US6605911B1 (en) Drive device and method for moving a vehicle part
US11655661B2 (en) Anti-pinch method for an apparatus for automatic movement of sliding windows in a motor vehicle, in particular a power-window apparatus, and corresponding device
JP4788114B2 (en) Control device for opening and closing body
US6870339B2 (en) Method for operating an electrical drive unit
US8513909B2 (en) Processing a motor variable of a DC motor and actuating device for a motor vehicle
JP5632959B2 (en) Vehicle opening / closing part control device and vehicle opening / closing part control method
US20200186062A1 (en) Ripple counting filtering and peak detection method and system
JP2019125362A (en) Controlling motor of closure and/or blind in vehicle body based on disturbance observer signal
KR20160098052A (en) Apparatus and method for detecting and preventing movement of a motor in a device of system
JP2018162623A (en) Opening/closing body driving device
Xu et al. Electric window regulator based on intelligent control
US8222843B2 (en) Method for determining the angular position of the rotor of a mechanically commutated d.c. servo motor
US10211772B2 (en) Method for operating an electrical machine and electrical machine
JP2013212028A (en) Rotation information detection method of electric motor, rotation information detection device of electric motor and electric motor controller
WO2019202931A1 (en) Opening and closing member control device and opening and closing member control method
EP3971380A1 (en) Door pinch detection device, railway door device and program
WO2019208579A1 (en) Rotating electric machine load detection device and interposition detection device
JP2019167791A (en) Control device of power window
JP3555226B2 (en) Moving object position detection device
JP2021013261A (en) Motor control device
JP2018013025A (en) Opening and closing member driving device
JPH10109534A (en) Catch detector by dc motor
JP2022094458A (en) Position detection device for mobile body and rotation amount detection device for motor
JP5715203B2 (en) Opening and closing body control device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7069914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151