JP2019167829A - Special rubber supporting bearing for vertical long-sized pump and special rubber damper device for vertical long-sized pump - Google Patents

Special rubber supporting bearing for vertical long-sized pump and special rubber damper device for vertical long-sized pump Download PDF

Info

Publication number
JP2019167829A
JP2019167829A JP2018054044A JP2018054044A JP2019167829A JP 2019167829 A JP2019167829 A JP 2019167829A JP 2018054044 A JP2018054044 A JP 2018054044A JP 2018054044 A JP2018054044 A JP 2018054044A JP 2019167829 A JP2019167829 A JP 2019167829A
Authority
JP
Japan
Prior art keywords
damper
bearing
friction
rubber
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054044A
Other languages
Japanese (ja)
Other versions
JP2019167829A5 (en
JP6892406B2 (en
Inventor
隆義 小室
Takayoshi Komuro
隆義 小室
博 神吉
Hiroshi Kamiyoshi
博 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINRYO KOGYO KK
Original Assignee
SHINRYO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINRYO KOGYO KK filed Critical SHINRYO KOGYO KK
Priority to JP2018054044A priority Critical patent/JP6892406B2/en
Publication of JP2019167829A publication Critical patent/JP2019167829A/en
Publication of JP2019167829A5 publication Critical patent/JP2019167829A5/ja
Application granted granted Critical
Publication of JP6892406B2 publication Critical patent/JP6892406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a special rubber supporting bearing for a vertical long-sized pump capable of avoiding a dry friction whirl.SOLUTION: A dumper inner cylinder 2 is outwardly fitted to a bearing inner cylinder 1 accepting a rotating shaft, a damper member 4 is interposed between the damper inner cylinder 2 and a damper outer cylinder 3, a bearing case 5 supported by a fixed structure portion of a vertical pump is installed outside the damper outer cylinder 3 and rubber showing a tangent loss more than a value attained by a following process is applied to the damper member 4. A destabilization coefficient Kxy derived from a friction coefficient μ that becomes a cause of a dry friction whirl is converted. This invention is characterized in that if this value is larger than the maximum coefficient of friction (μc>μreal) that can be attained at the bearing, a friction whirl is not generated, and a tangent loss tanδ(=Cω/K) showing μc>μreal is calculated so as to adopt a rubber for realizing it.SELECTED DRAWING: Figure 1

Description

本発明は立形長尺ポンプの特殊ゴム支持軸受及び立形長尺ポンプの特殊ゴム防振装置に関する。   The present invention relates to a special rubber support bearing for a vertical long pump and a special rubber vibration isolator for a vertical long pump.

従来から、揚水等に使用される立形ポンプが種々提案されている(特許文献1、特許文献2)。この立形ポンプでは、駆動機の伝達軸とポンプの回転軸とが外部軸継手と連結され、回転軸は少なくとも上下の2箇所で軸受によって回転自在に支持される構造が一般的である。   Conventionally, various vertical pumps used for pumping water have been proposed (Patent Document 1, Patent Document 2). This vertical pump generally has a structure in which a transmission shaft of a driving machine and a rotary shaft of the pump are connected to an external shaft joint, and the rotary shaft is rotatably supported by bearings at least at two upper and lower positions.

ところで、この種の立形ポンプには先行待機ポンプが知られており(特許文献3)、先行待機ポンプはポンプの吸込水槽に水がない状態からポンプを全速の運転状態で待機でき、吸込水槽の水位が回転する羽根車先端付近の高さに至ると、揚水を開始することができる。通常の立形ポンプでは発生する渦の影響で大振動や大音響が発生するが、先行待機ポンプは大気から空気を取り入れて渦の発生を抑制し、気中運転から揚水運転への移行を円滑に行うことができるようになっている。   By the way, a prior standby pump is known as this type of vertical pump (Patent Document 3), and the prior standby pump can wait for the pump in a full-speed operation state from a state where there is no water in the suction water tank of the pump. When the water level reaches the height near the tip of the rotating impeller, the pumping can be started. The normal vertical pump generates large vibrations and sounds due to the vortices that are generated, but the standby pump suppresses the generation of vortices by taking in air from the atmosphere and smoothly transitions from air operation to pumping operation. To be able to do that.

特開平11−37082号公報JP 11-37082 A 特開2000−345990号公報JP 2000-345990 A 特開2000−266042号公報JP 2000-266042 A

しかし、特許文献3記載の先行待機ポンプではポンプのドライ運転(気中運転)に水中に位置すべき軸受(以下、「水中軸受」という)の摩擦係数によってはドライフリクションホワールを発生し、異常振動と軸受や軸受スリーブの焼損等のダメージを惹起することがある。   However, the prior standby pump described in Patent Document 3 generates a dry friction whirl depending on the friction coefficient of a bearing (hereinafter referred to as “submersible bearing”) that should be located underwater during the dry operation (in-air operation) of the pump. This may cause damage such as burnout of the bearing and the bearing sleeve.

本発明はかかる問題点に鑑み、ドライフリクションホワールを回避できるようにした立形長尺ポンプの特殊ゴム支持軸受を提供することを課題とする。   This invention makes it a subject to provide the special rubber | gum support bearing of a vertical elongate pump which enabled it to avoid a dry friction whirl in view of this problem.

そこで、本発明に係る立形長尺ポンプの特殊ゴム支持軸受は、回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に立形長尺ポンプの固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数μrealよりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるようなtanδ(=Cω/K)を求め、これを実現するゴムを採用することになる。 Therefore, in the special rubber support bearing of the vertical long pump according to the present invention, a damper inner cylinder is fitted on the bearing inner cylinder that receives the rotation shaft, and a damper member is provided between the damper inner cylinder and the damper outer cylinder. A bearing box which is interposed and supported by the fixed structure portion of the vertical long pump is provided outside the damper outer cylinder. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient [mu] real that the bearing can take ([mu] c> [mu] real), no friction whirl is generated, and if [mu] <[mu] real, a friction whirl is generated. A tan δ (= Cω / K) such that μc> μreal is obtained, and a rubber that realizes this is employed.

また、本発明に係る立形長尺ポンプの特殊ゴム支持軸受は、回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に回転機械の固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数よりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるようなtanδ(=Cω/K)を求め、これを実現するゴムを採用することになる。当該ゴムは一次危険速度での共振倍率が小さい振幅の振動となるような倍率となっていることを特徴とする。 Further, in the special long rubber support bearing of the vertical long pump according to the present invention, a damper inner cylinder is externally fitted to a bearing inner cylinder that receives a rotating shaft, and a damper member is provided between the damper inner cylinder and the damper outer cylinder. A bearing box that is interposed and supported by the fixed structure portion of the rotating machine is provided outside the damper outer cylinder. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient that the bearing can take (μc> μreal), no friction whirl is generated, and if μc <μreal, a friction whirl is generated. A tan δ (= Cω / K) such that μc> μreal is obtained, and a rubber that realizes this is employed. The rubber is characterized in that the resonance magnification at the primary critical speed is such that the vibration becomes a small amplitude vibration.

さらに、本発明に係る立形長尺ポンプの特殊ゴム支持軸受ではダンパー内筒及びダンパー部材を冷却する装置を更に備えるのが好ましい。   Furthermore, the special rubber support bearing of the vertical long pump according to the present invention preferably further includes a device for cooling the damper inner cylinder and the damper member.

さらに、本発明に係る立形長尺ポンプの特殊ゴム支持軸受ではダンパー部材の正接損失は少なくとも0.3であるのが好ましい。   Further, in the special rubber support bearing of the vertical long pump according to the present invention, it is preferable that the tangent loss of the damper member is at least 0.3.

また、本発明によれば、立形ポンプの回転軸と駆動機の伝達軸を連結する外部軸受の直下の回転軸に設けられる立形長尺ポンプの特殊ゴム防振装置であって、上記回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に立形ポンプの固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数よりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるような正接損失tanδ(=Cω/K)を求め、これを実現するゴムを採用することになる。当該ゴムは立形長尺ポンプの特殊ゴム防振装置を提供することができる。 Further, according to the present invention, there is provided a special rubber vibration isolator for a vertical long pump provided on a rotary shaft directly below an external bearing that connects a rotary shaft of a vertical pump and a transmission shaft of a drive machine, A damper inner cylinder is fitted on the bearing inner cylinder that receives the shaft, and a damper member is interposed between the damper inner cylinder and the damper outer cylinder, and is supported by the fixed structure portion of the vertical pump outside the damper outer cylinder. A bearing housing is provided. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient that the bearing can take (μc> μreal), no friction whirl is generated, and if μc <μreal, a friction whirl is generated. A tangent loss tan δ (= Cω / K) such that μc> μreal is obtained, and a rubber that realizes this is employed. The rubber can provide a special rubber vibration isolator for a vertical long pump.

本発明に係る立形長尺ポンプの特殊ゴム支持軸受の好ましい実施形態を示す図である。It is a figure which shows preferable embodiment of the special rubber support bearing of the vertical elongate pump which concerns on this invention. 特殊ゴム及び通常ゴムの正接損失と温度との関係を示す図である。It is a figure which shows the relationship between the tangent loss and temperature of special rubber and normal rubber. 微小振動に対する軸受の動特性を模式的に示す図である。It is a figure which shows typically the dynamic characteristic of the bearing with respect to a minute vibration. ドライフリクションホワール安定性解析手法を模式的に示す図である。It is a figure which shows typically the dry friction whirl stability analysis method. モデルポンプの構造及びそれを単純化した軸系を示す図である。It is a figure which shows the structure of a model pump, and the shaft system which simplified it. 正接損失が0.1と0.6における固有振動数fiと減衰比ζiの関係を示す図である。It is a figure which shows the relationship between the natural frequency fi and damping ratio (zeta) i in tangent loss 0.1 and 0.6. 回転数に対する振動応答倍率の関係を示す図である。It is a figure which shows the relationship of the vibration response magnification with respect to rotation speed. ゴムの冷却装置を備えた立形長尺ポンプの特殊ゴム支持軸受の好ましい実施形態を示す図である。It is a figure which shows preferable embodiment of the special rubber support bearing of a vertical elongate pump provided with the cooling device of rubber | gum. ゴムの他の冷却装置を備えた立形長尺ポンプの特殊ゴム支持軸受の好ましい実施形態を示す図である。It is a figure which shows preferable embodiment of the special rubber support bearing of the vertical long pump provided with the other cooling device of rubber | gum. ゴムのさらに他の冷却装置を備えた立形長尺ポンプの特殊ゴム支持軸受の好ましい実施形態を示す図である。It is a figure which shows preferable embodiment of the special rubber support bearing of the vertical long pump provided with the further cooling device of rubber | gum. 本発明に係る立形長尺ポンプの特殊ゴム防振装置の好ましい実施形態を示す図である。It is a figure which shows preferable embodiment of the special rubber vibration isolator of the vertical long pump which concerns on this invention. 本発明に係る立形長尺ポンプの特殊ゴム防振装置の第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of the special rubber vibration isolator of the vertical long pump which concerns on this invention. 立形長尺ポンプにおける外部軸受の構造例を示す図である。It is a figure which shows the structural example of the external bearing in a vertical long pump. 本発明に係る立形長尺ポンプの特殊ゴム防振装置の第3の実施形態を示す図である。It is a figure which shows 3rd Embodiment of the special rubber vibration isolator of the vertical long pump which concerns on this invention. 本発明による振動対策例を模式的に示す図である。It is a figure which shows typically the example of a countermeasure against vibration by this invention. 本発明において振動対策を行った場合と行わなかった場合の回転数に対する振動振幅の関係を示す図である。It is a figure which shows the relationship of the vibration amplitude with respect to the rotation speed when the vibration countermeasure is performed in the present invention and when it is not performed. ロータダイナミックス解析の手法の1例を示す図である。It is a figure which shows one example of the method of a rotor dynamics analysis. 一次モードの限界μと正接損失tanδ(=Cω/Kxx)の関係を示す図である。It is a figure which shows the relationship between the limit (micro | micron | mu) of primary mode, and tangent loss tan-delta (= Comega / Kxx).

この種の軸受の構造を説明すると、図1(a)(b)に示されるように、回転軸を受ける軸受内筒1にはダンパー内筒2が外嵌され、該ダンパー内筒2とダンパー外筒3との間にダンパー部材4が介在され、ダンパー外筒3の外側に回転機械の固定構造部分に支持される軸受箱5が設けられている。   The structure of this type of bearing will be described. As shown in FIGS. 1A and 1B, a damper inner cylinder 2 is fitted on a bearing inner cylinder 1 that receives a rotating shaft. A damper member 4 is interposed between the outer cylinder 3 and a bearing box 5 supported by a fixed structure portion of the rotary machine is provided outside the damper outer cylinder 3.

従来、先行待機ポンプにおいて、水中軸受がドライフリクションホワールを回避できる正接損失tanδ(=Cω/K)を理論的に予測する簡易な手立てがなかったが、本願発明者らの着想に基づく新しい安定性解析法によりドライフリクションホワールを回避するCω/Kを予測できるようになった。更に、当該ドライフリクションホワールを回避できるCω/Kを実現する高い減衰特性を有する特殊ゴムを採用することによってドライフリクションホワールを回避できるようになった。   Conventionally, there has been no simple method for theoretically predicting the tangent loss tanδ (= Cω / K) in which the underwater bearing can avoid the dry friction whirl in the preceding standby pump. The analysis method can predict Cω / K that avoids dry friction whirl. Further, by adopting a special rubber having a high damping characteristic that realizes Cω / K that can avoid the dry friction whirl, the dry friction whirl can be avoided.

新しい安定性解析は次の関係で行える。一般に、軸受の動特性は微小振動に対して図3および数式1の12個の動的係数で表すことができる。
但し、X、Y:直交軸座標,K:無次元ばね,C:無次元減衰,M:無次元慣性,F:加振力,Z:伝達関数,ω:角速度(rad/s),f:回転周波数(Hz /s),tanδ:正接損失又は減衰能,μ:等価摩擦係数,ζ:減衰比,Q:共振倍率Qファクター=1/(2ζ),とする。
The new stability analysis can be performed in the following relationship. In general, the dynamic characteristics of the bearing can be expressed by twelve dynamic coefficients of FIG.
However, X, Y: Cartesian axis coordinates, K: Dimensionless spring, C: Dimensionless damping, M: Dimensionless inertia, F: Excitation force, Z: Transfer function, ω: Angular velocity (rad / s), f: Rotation frequency (Hz / s), tan δ: tangent loss or damping capacity, μ: equivalent friction coefficient, ζ: damping ratio, Q: resonance magnification Q factor = 1 / (2ζ).

Figure 2019167829
Figure 2019167829


本件発明者らは、ロータの軸振動解析に使うプログラムを利用してこれまで計算できなかったフリクションホワールの安定性を検討する方法を発明した。オイルホイップなどを計算できる複素固有値解析プログラムを利用し、下記段落「0018」「0019」に示すように摩擦の効果を軸受の連成ばね係数に置き換えて計算する新しい方法によって、回転軸が軸受内面に当たっている状態を解析するというものである。ギャップの中で動いている状態は解析できないが、実用的には十分な精度が得られることが確認された。   The inventors of the present invention have invented a method for examining the stability of the friction whirl that has not been calculated so far by using a program used for analyzing the shaft vibration of the rotor. Using a complex eigenvalue analysis program that can calculate oil whip, etc., as shown in the following paragraphs “0018” and “0019”, a new method of calculating by replacing the friction effect with the coupled spring coefficient of the bearing is used to rotate the rotating shaft Is to analyze the state of hitting. Although it is not possible to analyze the moving state in the gap, it has been confirmed that sufficient accuracy can be obtained practically.

1)ゴムの特性
安定解析にはゴムの特性が必要になる。
静的ばね:Kxx, Kyy、ゴムダンピング:Cxxω=tanδ*Kxx,Cyyω=tanδ*Kyy、正接損失:tanδ=Cxxω/Kxx、とする。
固有値計算にはCが必要であるが、ゴムのCはωで変化するので、C=Cω/2πfからCを求めて入力することとする。
1) Rubber properties Rubber properties are required for stability analysis.
Static springs: Kxx, Kyy, rubber damping: Cxxω = tanδ * Kxx, Cyyω = tanδ * Kyy, tangent loss: tanδ = Cxxω / Kxx.
Although C is necessary for the eigenvalue calculation, since C of rubber changes with ω, C is obtained from C = Cω / 2πf and input.

2)新しいKxyの定義
摩擦による不安定化力は(FU )=μF(μ:摩擦係数、F:ラジアル荷重)である。軸が軸受に当たっている状態を考えると、F=KX又はF=(K2+(Cω)21/2 *X と表せ、不安定化力は FU =μF=μ*(K2+(Cω)21/2 *X 又は減衰が小さいと、FU =μKX となるので、Kxy=FU /X=μ*(K2+(Cω)21/2 又は μK となる。(K2+(Cω)21/2 はゴムで決まるので、これを一定にすれば、Kxyを変えることはμを変えることに相当する。この考え方は今までにない取扱いである。
2) Definition of new Kxy The destabilizing force due to friction is (FU) = μF (μ: friction coefficient, F: radial load). Considering the state where the shaft is in contact with the bearing, it can be expressed as F = KX or F = (K 2 + (Cω) 2 ) 1/2 * X, and the destabilizing force is FU = μF = μ * (K 2 + (Cω If) 2) 1/2 * X or attenuation is small, since the FU = μKX, the Kxy = FU / X = μ * (K 2 + (Cω) 2) 1/2 or .mu.K. Since (K 2 + (Cω) 2 ) 1/2 is determined by the rubber, if this is made constant, changing Kxy is equivalent to changing μ. This concept is an unprecedented treatment.

3)具体的な計算例
本発明に係る高減衰の軸受の有効性を説明するため、図5(a)に示されるモデルポンプを単純化した軸系(図5(b))でゴムの正接損失(=Cω/Kxx)を0.1(通常ゴム)とした場合と、0.6(高減衰特殊ゴム)とした場合について安定解析にて減衰比(ζ)が負になる限界Kxyを求め、限界摩擦係数を導出して比較した。
3) Specific Calculation Example In order to explain the effectiveness of the high-damping bearing according to the present invention, a rubber tangent is obtained with a simplified shaft system (FIG. 5B) of the model pump shown in FIG. When the loss (= Cω / Kxx) is 0.1 (normal rubber) and 0.6 (high damping special rubber), the limit Kxy at which the damping ratio (ζ) is negative is obtained by stability analysis. The critical friction coefficient was derived and compared.

図4はドライフリクションホワール安定性解析手法を模式的に示す。まず、ロータダイナミックス解析用のKxy, −Kyxを計算する(ステップS1)。次に、ロータダイナミックス解析プログラムの安定性解析機能の計算を行い(ステップS2)、これによって固有振動数fiと減衰比ζiが求められる(ステップS3)。ロータダイナミックス解析の手法の1例を図17に示す。この処理を繰り返し(ステップS4)、計算結果の固有振動数fiと減衰比ζiをプロットし(図6参照)、減衰比ζiが0になる安定限界を求め(ステップS5)、摩擦係数μに変換すると(ステップS6)、限界摩擦係数μcが求まる(ステップS7)。限界摩擦係数μcが軸受のとり得る最大摩擦係数よりも大きいと、ドライフリクションホワールに対して十分に安全であることが結論づけられる。   FIG. 4 schematically shows a dry friction whirl stability analysis technique. First, Kxy and -Kyx for rotor dynamics analysis are calculated (step S1). Next, the stability analysis function of the rotor dynamics analysis program is calculated (step S2), thereby obtaining the natural frequency fi and the damping ratio ζi (step S3). An example of a rotor dynamics analysis technique is shown in FIG. This process is repeated (step S4), the natural frequency fi and the damping ratio ζi of the calculation result are plotted (see FIG. 6), the stability limit at which the damping ratio ζi becomes 0 is obtained (step S5), and converted to the friction coefficient μ Then (step S6), the limit friction coefficient μc is obtained (step S7). It can be concluded that if the limiting coefficient of friction μc is greater than the maximum coefficient of friction that the bearing can take, it is sufficiently safe against dry friction whirls.

1)安定性解析計算
摩擦の効果をKxy、Kyxの値として変化させ、安定性を評価するため、Kxy=−Kyxの値を次のように変化させ、安定性(減衰比)の変化を求めた。Kxy=−5×103,Kxy=−1×104,Kxy=−3×104,Kxy=−5×104,Kxy=−1×105,Kxy=−3×105,Kxy=−5×105,Kxy=−1×106(N/m)の各々のケースで求めた振動数と減衰比を横軸−Kxyの値でプロットしたのが図6である。この図6より、各正接損失tanδ(=Cω/Kxx)・モード毎にドライフリクションホワールが発生する限界の−Kxyと限界μは次のようになる。
Cω/Kxx=0.1
一次モード 限界−Kxy=1.7×104N/m,限界μ=0.065
二次モード 限界−Kxy=2.5×104N/m,限界μ=0.095
Cω/Kxx=0.6
一次モード 限界−Kxy=1.3×105N/m,限界μ=0.45
二次モード 限界−Kxy=1.5×105N/m,限界μ=0.52
1) Stability analysis calculation In order to evaluate the stability by changing the friction effect as the values of Kxy and Kyx, change the value of Kxy = -Kyx as follows to obtain the change in stability (damping ratio). It was. Kxy = −5 × 10 3 , Kxy = −1 × 10 4 , Kxy = −3 × 10 4 , Kxy = −5 × 10 4 , Kxy = −1 × 10 5 , Kxy = −3 × 10 5 , Kxy = FIG. 6 is a graph in which the frequency and damping ratio obtained in each case of −5 × 10 5 and Kxy = −1 × 10 6 (N / m) are plotted with the value of the horizontal axis −Kxy. From FIG. 6, the limit −Kxy and the limit μ at which the dry friction whirl is generated for each tangent loss tan δ (= Cω / Kxx) · mode are as follows.
Cω / Kxx = 0.1
Primary mode limit -Kxy = 1.7 × 10 4 N / m, limit μ = 0.065
Secondary mode limit -Kxy = 2.5 × 10 4 N / m, limit μ = 0.095
Cω / Kxx = 0.6
Primary mode limit -Kxy = 1.3 × 10 5 N / m, limit μ = 0.45
Secondary mode limit -Kxy = 1.5 × 10 5 N / m, limit μ = 0.52

一次モードの限界μと正接損失tanδ(=Cω/Kxx)の関係を図18に示す。通常考えられるμrealは0.2程度が最大であるので、正接損失tanδ(=Cω/Kxx)が0.3以上であればμC>μrealの関係にあり、フリクションホワールが発生しないことが理解できる。 FIG. 18 shows the relationship between the limit μ of the primary mode and the tangent loss tan δ (= Cω / Kxx). Usually, μreal has a maximum value of about 0.2. Therefore, it can be understood that if tangent loss tan δ (= Cω / Kxx) is 0.3 or more, μ C > μreal and the friction whirl does not occur. .

ところで、立形ポンプの一次危険速度を超えて使用する軸系では、減衰が少ないと、図7に示されるように、軸のアンバランスに起因して一次危険速度通過時に大きな振幅の振動を発生し、運転の続行が困難になることがある。一次危険速度を乗り越えて使用できる軸系を実現する対策技術が必要とされている。   By the way, in a shaft system used exceeding the primary critical speed of a vertical pump, if the damping is small, as shown in FIG. 7, a large amplitude vibration is generated when the primary critical speed is passed due to the unbalance of the shaft. However, it may be difficult to continue driving. There is a need for countermeasure technology to realize a shaft system that can be used over the primary critical speed.

本発明に係る立形長尺ポンプの特殊ゴム支持軸受では高い減衰特性を有するゴムを採用しているので、図7に示されるように、一次危険速度通過時に発生する大きな振幅の振動を減衰効果によって抑制して安全に運転ができることが期待できる。   Since the special rubber support bearing of the vertical long pump according to the present invention employs rubber having high damping characteristics, as shown in FIG. 7, the large amplitude vibration generated when the primary dangerous speed is passed is attenuated. It can be expected that the vehicle can be operated safely while being suppressed.

他の方法、例えば潤滑油が使用できれば、正接損失tanδ(=Cω/Kxx)=1.0が得られるので、減衰効果によって一次危険速度を超えて使用が可能である。しかし、水中で使用する立形ポンプにおいて一次危険速度以上の回転数で使用する場合は油軸受が使用できない。そこで、本発明に係る軸受によれば一次危険速度を超えて安全確実に運転できる。   If other methods, for example, lubricating oil can be used, the tangent loss tan δ (= Cω / Kxx) = 1.0 can be obtained, so that it can be used beyond the primary critical speed due to the damping effect. However, an oil bearing cannot be used when the vertical pump used in water is used at a rotational speed higher than the primary critical speed. Therefore, the bearing according to the present invention can be operated safely and reliably exceeding the primary critical speed.

すなわち、本発明に係る立形長尺ポンプの特殊ゴム支持軸受は、回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に回転機械の固定構造部分に支持される軸受箱が設けられている。上記ダンパー部材の正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を算出する。この値が軸受のとり得る最大摩擦係数よりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるような正接損失tanδ(=Cω/K)を求め、これを実現するゴムを採用することになる。当該ゴムは一次危険速度での共振倍率が小さい振幅の振動となるような倍率となっていることを特徴とする。 That is, in the special rubber support bearing for the vertical long pump according to the present invention, the damper inner cylinder is fitted on the bearing inner cylinder that receives the rotation shaft, and the damper member is disposed between the damper inner cylinder and the damper outer cylinder. A bearing box that is interposed and supported by the fixed structure portion of the rotating machine is provided outside the damper outer cylinder. A rubber whose tangent loss of the damper member is equal to or greater than a value obtained by the following method is used. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is calculated. If this value is larger than the maximum friction coefficient that the bearing can take (μc> μreal), no friction whirl is generated, and if μc <μreal, a friction whirl is generated. A tangent loss tan δ (= Cω / K) such that μc> μreal is obtained, and a rubber that realizes this is employed. The rubber is characterized in that the resonance magnification at the primary critical speed is such that the vibration becomes a small amplitude vibration.

1)一次危険速度通過時の振動
図6の一次モードについて各正接損失tanδ(=Cω/Kxx)におけるKxy=0、μ=0の時の減衰比(ζ)から共振倍率Qファクターを求めることができる。
Cω/Kxx=0.1:
一次モード減衰比(ζ)=0.024 共振倍率Qファクター=20.8
Cω/Kxx=0.6:
1) Vibration at the time of passing through the first critical speed The resonance magnification Q factor can be obtained from the damping ratio (ζ) when Kxy = 0 and μ = 0 in each tangent loss tan δ (= Cω / Kxx) in the primary mode of FIG. it can.
Cω / Kxx = 0.1:
Primary mode damping ratio (ζ) = 0.024 Resonance magnification Q factor = 20.8
Cω / Kxx = 0.6:

一次モード減衰比(ζ)=0.143 共振倍率Qファクター=3.5
一次危険速度350min-1を通過する時の各Cω/Kxxにおける振動応答を図7に示す。高い減衰特性を有するゴムを使うことでQファクターを約1/6にすることができ、一次危険速度を容易に乗り越えられる特性が得られることが分かる。
Primary mode damping ratio (ζ) = 0.143 Resonance magnification Q factor = 3.5
FIG. 7 shows the vibration response at each Cω / Kxx when passing through the primary critical speed 350 min −1 . It can be seen that by using rubber having a high damping characteristic, the Q factor can be reduced to about 1/6, and a characteristic capable of easily overcoming the primary dangerous speed can be obtained.

また、高い減衰特性を有するゴムで支持される軸受は気中運転を無潤滑で運転できるが、前述のゴムは振動エネルギーを吸収する際に熱を発生する性質があるので、ゴムの温度が上昇し、図2に示されるように、ゴムが軟化してばね定数が低下する。気中運転においてはゴムの性能を確保できるように温度上昇を抑制する冷却技術が必要である。   Also, bearings supported by rubber with high damping characteristics can be operated in the air without lubrication, but the aforementioned rubber has the property of generating heat when absorbing vibration energy, so the temperature of the rubber rises. As shown in FIG. 2, the rubber softens and the spring constant decreases. In the air operation, a cooling technique that suppresses the temperature rise is necessary so as to ensure the performance of the rubber.

そこで、本発明に係る回転機械の軸受はゴム(ダンピング部材)の温度上昇を抑制できる冷却装置を更に備えるのがよい。ゴムの冷却装置には空気冷却、ヒートパイプ、純銅製フレキシブル導体による伝熱などの方式が採用できる。   Therefore, it is preferable that the bearing of the rotary machine according to the present invention further includes a cooling device that can suppress the temperature rise of the rubber (damping member). For the rubber cooling device, methods such as air cooling, heat pipes, and heat transfer using a pure copper flexible conductor can be adopted.

1)空気冷却方式
ゴム内筒に通風用の縦溝を軸受と接する面に設ける。その構造例を図8(a)〜(c)に示す。図において、10は回転軸、11は軸受内筒、12は内面に複数の縦溝12Aが凹設されたダンパー内筒、13はダンパー外筒、14はゴム(ダンパー部材)、15は軸受箱、16は軸受スリーブ、17は羽根車である。気中運転時、羽根車17のファン送風圧力を利用してダンパー内筒縦溝12Aを通風冷却し、計装配管等の大気圧側に繋がる配管を利用して排風することでゴム14を冷却することができる。
1) Air cooling system A vertical groove for ventilation is provided in the rubber inner cylinder on the surface in contact with the bearing. Examples of the structure are shown in FIGS. In the figure, 10 is a rotating shaft, 11 is a bearing inner cylinder, 12 is a damper inner cylinder having a plurality of longitudinal grooves 12A formed on the inner surface, 13 is a damper outer cylinder, 14 is rubber (damper member), and 15 is a bearing box. , 16 is a bearing sleeve, and 17 is an impeller. During the air operation, the damper 14 is blown and cooled using the fan blow pressure of the impeller 17 and exhausted using a pipe connected to the atmospheric pressure side such as an instrumentation pipe to thereby remove the rubber 14. Can be cooled.

2)ヒートパイプ方式
図9はヒートパイプ方式によるゴムの冷却装置の構造例を示し、図において図8と同一符号は同一又は相当部分を示す。図において、20はヒートパイプ、21は作動液、22は蒸気流、23は毛細間隙材、24は蒸発部、25は凝縮部である。
2) Heat Pipe System FIG. 9 shows an example of the structure of a rubber cooling device using the heat pipe system, and the same reference numerals as those in FIG. In the figure, 20 is a heat pipe, 21 is a working fluid, 22 is a steam flow, 23 is a capillary gap material, 24 is an evaporating part, and 25 is a condensing part.

ヒートパイプは図9(c)に示されるように、蒸発部24で熱が加わると作動液(水やアルコール等)21が沸騰し、蒸気流22となって凝縮部25へ音速で移動すると同時に、凝縮潜熱を放出して外部の熱を奪う一方、凝縮部25では外部より冷却されて蒸気流22となった作動液21を液化する。凝縮した作動液21はウイック(毛細間隙材)23の毛細管力によって蒸発部24へ戻りこのサイクルを繰り返す。   As shown in FIG. 9 (c), when heat is applied at the evaporation section 24, the heat pipe boiles the working fluid (water, alcohol, etc.) 21, becomes a steam flow 22, and moves to the condensation section 25 at the speed of sound. While the condensation latent heat is released and the external heat is taken away, the condensing unit 25 liquefies the hydraulic fluid 21 that has been cooled from the outside to become the vapor stream 22. The condensed hydraulic fluid 21 returns to the evaporator 24 by the capillary force of the wick (capillary gap material) 23 and repeats this cycle.

ゴムの冷却は図9(a)(b)に示されるように、ヒートパイプ20の蒸発部24をゴム14の中に埋め込み、ゴム14が均等に冷却されるようにダンパーゴム14の上下両端面において周方向、深さ方向を調整する。発生した蒸気流22はヒートパイプ20を延長することで凝縮部25となるフィン挿し型ヒートパイプ・ヒートシンク26に繋がれ、冷却され作動液21が凝縮することとなる。   As shown in FIGS. 9 (a) and 9 (b), the rubber is cooled by embedding the evaporating portion 24 of the heat pipe 20 in the rubber 14 so that the rubber 14 is cooled evenly. The circumferential direction and depth direction are adjusted at. The generated steam flow 22 is connected to a fin insertion type heat pipe / heat sink 26 which becomes a condensing portion 25 by extending the heat pipe 20, and is cooled to condense the working fluid 21.

3)空気冷却方式
羽根車による空気の流れを利用してフィンを効率的に冷却できるようにフィン挿し型ヒートパイプ・ヒートシンクをポンプ内部、またはポンプ外部に設置する。
3) Air cooling system A fin-inserted heat pipe / heat sink is installed inside the pump or outside the pump so that the fins can be efficiently cooled using the air flow from the impeller.

4)純銅製フレキシブル導体による伝熱
また、図10に示されるように、軸受内筒11と接触するダンパー内筒12下端部に純銅製圧着端子付フレキシブル導体30の片側を必要数ねじ止めし、もう一方の圧着端子をダンパー外筒13取付フランジ裏側に明けた溝穴を通して水中の軸受箱15に明けたネジ穴に取付ける。これにより、軸受の発熱により温度上昇するダンパー内筒12及びゴム14の熱を純銅製フレキシブル導体30を介して軸受箱15から案内羽根17へ熱伝導し、冷却することができる。
4) Heat transfer by pure copper flexible conductor As shown in FIG. 10, one side of the flexible conductor 30 with pure copper crimp terminal is screwed to the lower end of the damper inner cylinder 12 in contact with the bearing inner cylinder 11, The other crimp terminal is attached to the screw hole opened in the underwater bearing box 15 through the groove hole opened on the back side of the mounting flange of the damper outer cylinder 13. Thereby, the heat of the damper inner cylinder 12 and the rubber 14 that rise in temperature due to the heat generated by the bearing can be thermally conducted from the bearing box 15 to the guide vanes 17 through the pure copper flexible conductor 30 to be cooled.

図10において、10は回転軸、11は軸受内筒、12はダンパー内筒、13はダンパー外筒、14はダンパーゴム(ダンパー部材)、15は水中軸受箱、16は軸受スリーブ、17は羽根車、18は案内羽根、である。   In FIG. 10, 10 is a rotating shaft, 11 is a bearing inner cylinder, 12 is a damper inner cylinder, 13 is a damper outer cylinder, 14 is a damper rubber (damper member), 15 is an underwater bearing box, 16 is a bearing sleeve, and 17 is a blade. A car 18 is a guide vane.

ところで、ダンパー軸受はスクイーズフィルムオイルダンパー軸受など、油を利用したものが一般的であるが、油が使えない箇所でも高い減衰特性を発揮するダンパー軸受が必要とされる。   By the way, the damper bearing generally uses oil such as a squeeze film oil damper bearing, but a damper bearing that exhibits high damping characteristics is required even in places where oil cannot be used.

そこで、本発明では高い減衰特性を有するゴムで支持される軸受をダンパーゴム軸受として採用することができる。すなわち、本発明によれば、高い減衰特性で支持される軸受を図11に示されるように外部軸継手40の直下に設置したり、図12及び図14に示されるように外部軸受40の本体を高い減衰特性のゴムで支持するように設置することでダンパー効果が得られ、軸の振動振幅の低減やホワール等の自励振動の回避に役立てることができる。   Therefore, in the present invention, a bearing supported by rubber having high damping characteristics can be employed as the damper rubber bearing. That is, according to the present invention, a bearing supported with high damping characteristics is installed immediately below the external shaft joint 40 as shown in FIG. 11, or the main body of the external bearing 40 as shown in FIGS. Is installed so as to be supported by rubber having a high damping characteristic, a damper effect can be obtained, and it can be used to reduce vibration amplitude of the shaft and avoid self-excited vibration such as whirl.

1)外部軸受の本体を高い減衰特性のゴムで支持した例(図12)
複数の丸形防振ゴム(ダンパーゴム)14を外部軸受40の本体下方に円形状に配置し、ポンプスラスト荷重と外部軸受40から上のポンプ重量はダンパーゴム14で支持し、水平方向には振動応答できるようにゴム形状は鉛直向に剛で水平方向に柔となるように決定する。
1) Example of external bearing body supported by rubber with high damping characteristics (Fig. 12)
A plurality of round anti-vibration rubbers (damper rubbers) 14 are arranged in a circular shape below the main body of the external bearing 40, and the pump thrust load and the pump weight above the external bearing 40 are supported by the damper rubber 14 in the horizontal direction. The rubber shape is determined so as to be rigid in the vertical direction and flexible in the horizontal direction so that vibration response is possible.

2)鉛直方向は支柱ピン、水平方向はダンパーゴムで支持する例(図14)
支柱ピン43は外部軸受40の本体下部に円形状に配置し、ポンプスラスト荷重と外部軸受40から上のポンプ荷重を支持し、水平方向の振動荷重は外部軸受40のラジアル軸受位置にダンパーゴムを配置して支持させる。
2) An example in which the vertical direction is supported by a support pin and the horizontal direction is supported by a damper rubber (FIG. 14).
The support pin 43 is arranged in a circular shape at the lower part of the body of the external bearing 40 to support the pump thrust load and the pump load above the external bearing 40, and the vibration vibration in the horizontal direction applies a damper rubber to the radial bearing position of the external bearing 40. Place and support.

ここで、外部軸受40は図13に示されるように、立形ポンプの場合では吐出曲管の上にラジアル軸受41とスラスト軸受42をセットで設置している軸受である。   Here, as shown in FIG. 13, in the case of a vertical pump, the external bearing 40 is a bearing in which a radial bearing 41 and a thrust bearing 42 are installed as a set on a discharge curved pipe.

〔具体例〕
以下、本発明を具体例に基づいて詳細に説明する。立形長尺ポンプで定格回転数585min-1、回転数制御範囲80%〜100%(468min-1〜585min-1)で使用する場合、危険速度が80%回転数にあり、運転範囲から危険速度を外す必要があった。本例のポンプの既設水中軸受のばね定数は106 N/mであるが、本例の装置では共振倍率Qファクターを改善して、振動ピークを低減すると共に、ばね定数を5×106 N/mに下げて危険速度を運転範囲から外す対策を行った結果、回転数制御範囲が広くなりスムーズな運転ができた。
ここで、図15は上記具体例における振動対策例を模式的に示し、図16は振動対策を行った場合と行わなかった場合の回転数に対する振動振幅の関係を示す。
〔Concrete example〕
Hereinafter, the present invention will be described in detail based on specific examples. When using a vertical pump with a rated speed of 585 min -1 and a speed control range of 80% to 100% (468 min -1 to 585 min -1 ), the critical speed is at 80% speed and dangerous from the operating range. It was necessary to remove the speed. The spring constant of the existing submerged bearing of the pump of this example is 10 6 N / m. However, in the apparatus of this example, the resonance magnification Q factor is improved, the vibration peak is reduced, and the spring constant is 5 × 10 6 N. As a result of taking measures to remove the dangerous speed from the operating range by lowering to / m, the rotational speed control range was widened and smooth operation was possible.
Here, FIG. 15 schematically shows a vibration countermeasure example in the above specific example, and FIG. 16 shows the relationship of the vibration amplitude to the rotation speed when the vibration countermeasure is taken and when it is not taken.

1 軸受内筒
2 ダンパ内筒
3 ダンパ外筒
4 ダンパ部材
5 軸受箱
DESCRIPTION OF SYMBOLS 1 Bearing inner cylinder 2 Damper inner cylinder 3 Damper outer cylinder 4 Damper member 5 Bearing box

Claims (5)

回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に立形ポンプの固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数μrealよりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるような正接損失tanδ(=Cω/K)を求め、これを実現するゴムを採用することを特徴とする立形長尺ポンプの特殊ゴム支持軸受。 A damper inner cylinder is externally fitted to the bearing inner cylinder that receives the rotation shaft, and a damper member is interposed between the damper inner cylinder and the damper outer cylinder, and the fixed structure portion of the vertical pump is disposed outside the damper outer cylinder. A supported bearing box is provided. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient [mu] real that the bearing can take ([mu] c> [mu] real), no friction whirl is generated, and if [mu] <[mu] real, a friction whirl is generated. A special rubber support bearing for a long vertical pump characterized by obtaining a tangent loss tan δ (= Cω / K) such that μc> μreal, and adopting a rubber that realizes this. 回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に回転機械の固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数μrealよりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるような正接損失tanδ(=Cω/K)を求め、これを実現するゴムを採用することによって一次危険速度での共振倍率が小さい振幅の振動となるような倍率となっていることを特徴とする立形長尺ポンプの特殊ゴム支持軸受。 A damper inner cylinder is externally fitted to the bearing inner cylinder that receives the rotating shaft, and a damper member is interposed between the damper inner cylinder and the damper outer cylinder, and is supported on the fixed structure portion of the rotating machine outside the damper outer cylinder. A bearing housing is provided. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient [mu] real that the bearing can take ([mu] c> [mu] real), no friction whirl is generated, and if [mu] <[mu] real, a friction whirl is generated. By calculating the tangent loss tan δ (= Cω / K) such that μc> μreal and adopting a rubber that realizes this, the resonance magnification at the primary critical speed becomes a vibration with a small amplitude. Special rubber support bearings for vertical long pumps. 上記ダンパー内筒及びダンパー部材を冷却する装置を更に備えた請求項1又は2記載の立形長尺ポンプの特殊ゴム支持軸受。   The special rubber support bearing for a vertical long pump according to claim 1 or 2, further comprising a device for cooling the damper inner cylinder and the damper member. 上記ダンパー部材の正接損失は少なくとも0.3である請求項1又は2記載の立形長尺ポンプの特殊ゴム支持軸受。   The special rubber support bearing for a vertical long pump according to claim 1 or 2, wherein the tangent loss of the damper member is at least 0.3. 立形ポンプの回転軸と駆動機の伝達軸を連結する外部軸受の直下の回転軸に設けられる立形長尺ポンプの特殊ゴム防振装置であって、
上記回転軸を受ける軸受内筒にはダンパー内筒が外嵌され、該ダンパー内筒とダンパー外筒との間にダンパー部材が介在され、上記ダンパー外筒の外側に立形ポンプの固定構造部分に支持される軸受箱が設けられている。ダンパー部材の特性は静的ばね:K、ダンピング:Cω=tanδ*K,正接損失:tanδ=Cω/Kの関係にある。上記ダンパー部材に正接損失が次の手法で求める値以上となるゴムを用いる。ドライフリクションホワールの原因となる摩擦係数μから導いた不安定化係数Kxy=-μK=-μ*(K2+(Cω)21/2を用いてロータダイナミックス解析により限界Kxyを求めた後に限界摩擦係数μc=限界Kxy/(K2+(Cω)21/2を換算する。この値が軸受のとり得る最大摩擦係数μrealよりも大きければ(μc>μreal)フリクションホワールは発生せず、μc<μrealならばフリクションホワールが発生する。μc>μrealになるような正接損失tanδ(=Cω/K)を求め、これを実現するゴムを採用することを特徴とする立形長尺ポンプの特殊ゴム防振装置。
A special rubber vibration isolator for a vertical long pump provided on a rotary shaft directly below an external bearing connecting a rotary shaft of a vertical pump and a transmission shaft of a driving machine,
A damper inner cylinder is externally fitted to the bearing inner cylinder that receives the rotating shaft, a damper member is interposed between the damper inner cylinder and the damper outer cylinder, and a fixed structure portion of the vertical pump outside the damper outer cylinder Is provided with a bearing box supported by the housing. The characteristics of the damper member are as follows: static spring: K, damping: Cω = tanδ * K, tangent loss: tanδ = Cω / K. The damper member is made of rubber whose tangent loss is not less than the value obtained by the following method. It was determined limit Kxy by the rotor dynamics analysis using the dry friction destabilizing factor derived from the causative friction coefficient μ ho Waal Kxy = -μK = -μ * (K 2 + (Cω) 2) 1/2 Later, the limit friction coefficient μc = limit Kxy / (K 2 + (Cω) 2 ) 1/2 is converted. If this value is larger than the maximum friction coefficient [mu] real that the bearing can take ([mu] c> [mu] real), no friction whirl is generated, and if [mu] <[mu] real, a friction whirl is generated. A special rubber vibration isolator for a vertical long pump characterized by obtaining a tangent loss tan δ (= Cω / K) such that μc> μreal and adopting a rubber that realizes this.
JP2018054044A 2018-03-22 2018-03-22 Design and manufacturing method of special rubber support bearing for vertical long pump and special rubber anti-vibration device for vertical long pump Active JP6892406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054044A JP6892406B2 (en) 2018-03-22 2018-03-22 Design and manufacturing method of special rubber support bearing for vertical long pump and special rubber anti-vibration device for vertical long pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054044A JP6892406B2 (en) 2018-03-22 2018-03-22 Design and manufacturing method of special rubber support bearing for vertical long pump and special rubber anti-vibration device for vertical long pump

Publications (3)

Publication Number Publication Date
JP2019167829A true JP2019167829A (en) 2019-10-03
JP2019167829A5 JP2019167829A5 (en) 2019-12-12
JP6892406B2 JP6892406B2 (en) 2021-06-23

Family

ID=68108249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054044A Active JP6892406B2 (en) 2018-03-22 2018-03-22 Design and manufacturing method of special rubber support bearing for vertical long pump and special rubber anti-vibration device for vertical long pump

Country Status (1)

Country Link
JP (1) JP6892406B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266042A (en) * 1999-03-17 2000-09-26 Kubota Corp Slide bearing device for vertical-axis pump
JP2007270931A (en) * 2006-03-31 2007-10-18 Kubota Corp Sliding bearing device and pumping device
JP2017166380A (en) * 2016-03-15 2017-09-21 株式会社荏原製作所 Rotating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266042A (en) * 1999-03-17 2000-09-26 Kubota Corp Slide bearing device for vertical-axis pump
JP2007270931A (en) * 2006-03-31 2007-10-18 Kubota Corp Sliding bearing device and pumping device
JP2017166380A (en) * 2016-03-15 2017-09-21 株式会社荏原製作所 Rotating machine

Also Published As

Publication number Publication date
JP6892406B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
Black Effects of hydraulic forces in annular pressure seals on the vibrations of centrifugal pump rotors
JP6409049B2 (en) Rotating machine with adaptive bearing journal and method of operation
JP2008519662A (en) Dental handpiece with airfoil bearing
JP2019167829A (en) Special rubber supporting bearing for vertical long-sized pump and special rubber damper device for vertical long-sized pump
EP3372840A1 (en) Turbo compressor
JP6295773B2 (en) Vacuum pump
JP6745876B2 (en) Vertical pump
JP2001050267A (en) Damping bearing and rotary machine using same
TWI541441B (en) Fan vibration damping structure and fan with the vibration damping structure
US11859662B2 (en) Dampened bearing component, bearing including said component, and rotary machine including said bearing
CN108253012A (en) A kind of method for improving air foil bearing supporting rotor system stability
JP2007064139A (en) High speed rotation device
KR100643692B1 (en) Air foil bearing
JP7482138B2 (en) Damped bearing component, bearing including said component, and rotating machine including said bearing
TWM507984U (en) Shock absorbing structure of fan and fan with shock absorbing structure
JP2017223187A (en) Turbomachine
JP2019157870A (en) Vibration damping device of bearing
JP2017020495A (en) Turbomachine
KR102197850B1 (en) A rotating device and controlling method thereof
JP2024516913A (en) High-speed rotor and turbo compressor including same
Matsushita et al. Stability of a Rotor in Plain Bearings
Nicholas et al. Shifting Critical Speeds Out Of The Operating Range By Changing From Tilting Pad To Sleeve Bearings.
JP2014070514A (en) Turbomachine with thrust bearing device
KR200476603Y1 (en) Apparatus for Supporting Motor shaft for Blower
RU2561876C2 (en) Method of dumping of radial oscillations of shaft rotating using inserted parts on hydrostatic suspension of journal bearing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210527

R150 Certificate of patent or registration of utility model

Ref document number: 6892406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150