JP2019166587A - Manufacturing method of automotive outer panel - Google Patents

Manufacturing method of automotive outer panel Download PDF

Info

Publication number
JP2019166587A
JP2019166587A JP2018054468A JP2018054468A JP2019166587A JP 2019166587 A JP2019166587 A JP 2019166587A JP 2018054468 A JP2018054468 A JP 2018054468A JP 2018054468 A JP2018054468 A JP 2018054468A JP 2019166587 A JP2019166587 A JP 2019166587A
Authority
JP
Japan
Prior art keywords
buffing
polishing
metal plate
buff
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018054468A
Other languages
Japanese (ja)
Inventor
亮介 伊達
Ryosuke Date
亮介 伊達
隆史 藤井
Takashi Fujii
隆史 藤井
雅博 山本
Masahiro Yamamoto
雅博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018054468A priority Critical patent/JP2019166587A/en
Publication of JP2019166587A publication Critical patent/JP2019166587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a manufacturing method of an automotive outer panel capable of removing a surface defect, while reducing strain generation on the surface by a simple method.SOLUTION: In a polishing process for polishing a metal plate surface after press working of the metal plate, only a buffing abrasive is used, whose particle size is in the range of #320(34.2 μm-94 μm) to #600(18 μm-72 μm), or otherwise, a buff 3 is used, whose abrasive grain density exposed to a polished surface is, for example, 20/mmor more, preferably 35/mmor more, more preferably 50/mmor more.SELECTED DRAWING: Figure 1

Description

本発明は、自動車外板の製造方法に関する。   The present invention relates to a method for manufacturing an automobile skin.

自動車外板のプレス時に、異物の噛み込みや傷付き等の表面欠陥が発生する場合がある。このような表面欠陥は、研磨等による方法で、傷等を除去することで解消することができ、バフ研磨(例えば、特許文献1参照)を行うことで、平滑化して高精度、高品質の光沢仕上げを行うことが可能となる。   When pressing the outer plate of the automobile, surface defects such as biting of foreign matter and scratches may occur. Such surface defects can be eliminated by removing scratches or the like by a method such as polishing, etc., and smoothing with high accuracy and high quality by performing buffing (see, for example, Patent Document 1). A glossy finish can be performed.

特開平9−262752号公報JP-A-9-262552

近年、自動車外板は薄板化しており、従来の厚い外板では問題とはならなかった残留応力が、薄板化によって歪みとして顕在化している。そのため、研磨最表層に残留応力が発生し、研磨面が凸となるように歪んでしまい、傷等の表面欠陥除去は可能であるものの、前記歪みによる面品質の低下が新たに生じてしまうという問題が発生した。   In recent years, automobile outer plates have been made thinner, and residual stress, which has not been a problem with conventional thick outer plates, has become manifest as distortion due to the thinner plates. Therefore, residual stress is generated in the outermost polishing layer, and the polished surface is distorted to be convex, and surface defects such as scratches can be removed, but the surface quality is newly deteriorated due to the distortion. Problem has occurred.

本発明は上記問題点を解決するものであり、表面の歪み発生を簡易な方法で低減しながら表面欠陥の除去が可能である、自動車外板の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described problems, and an object of the present invention is to provide a method for manufacturing an automobile outer plate that can remove surface defects while reducing the occurrence of surface distortion by a simple method.

上記目的を達成するために、本発明の自動車外板の製造方法は、
金属板のプレス加工後の、前記金属板表面のバフ研磨を行う研磨工程において、粒子サイズが、#320(34.2μm〜94μm)〜#600(18μm〜72μm)の範囲内のみのバフ砥粒を用いることを特徴とする。
In order to achieve the above object, a method for manufacturing an automobile outer plate of the present invention includes:
In the polishing step for buffing the surface of the metal plate after press working of the metal plate, the buffing grains having a particle size only in the range of # 320 (34.2 μm to 94 μm) to # 600 (18 μm to 72 μm) It is characterized by using.

また、本発明の他の自動車外板の製造方法は、
金属板のプレス加工後の、前記金属板表面のバフ研磨を行う研磨工程において、砥粒サイズが#100(125〜212μm)であって、研磨面に露出した砥粒密度が、20個/mm以上であるバフを用いることを特徴とする。
In addition, another method for manufacturing an automobile outer plate of the present invention includes:
In the polishing step of buffing the surface of the metal plate after pressing the metal plate, the abrasive grain size is # 100 (125 to 212 μm), and the abrasive density exposed on the polishing surface is 20 / mm A buff that is 2 or more is used.

本発明によれば、表面の歪み発生を簡易な方法で低減しながら表面欠陥の除去が可能である、自動車外板の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the motor vehicle outer plate which can remove a surface defect can be provided, reducing the generation | occurrence | production of surface distortion with a simple method.

図1は、本発明の自動車外板の製造方法における歪みの発生を説明する図である。FIG. 1 is a diagram for explaining the occurrence of distortion in the method for manufacturing an automobile outer plate of the present invention. 図2は、本発明による効果を示したグラフである。FIG. 2 is a graph showing the effect of the present invention.

以下、この発明の実施の形態を、図面を参照しながら説明する。ただし、本発明は、以下の例に限定および制限されない。なお、以下で参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited or limited to the following examples. The drawings referred to below are schematically described, and the ratio of the dimensions of objects drawn in the drawings may be different from the ratio of dimensions of actual objects. The dimensional ratio of the object may be different between the drawings.

図1は、本発明の自動車外板の製造方法における歪みの発生を説明する図である。図1(a)は、自動車外板1にバフ3を用いて回転バフ研磨を行う様子を模式的に表した図である。図1(b)は、バフ研磨を行った後の自動車外板1であり、図1(c)は、図1(b)のA−A断面図であり、バフ研磨部5を横切る断面を示している。図1に示すように、バフ研磨後の自動車外板1には、研磨面が凸となるような歪み7が発生する場合がある。これは、研磨最表層に残留応力が発生するためである。前記残留応力は、従来の厚い自動車外板(例えば、厚みが0.7mm程度)では形状に及ぼす影響がない程度のものであるため、この現象は問題にはならなかった。面歪み発生メカニズムを解析した結果、バフ研磨工程によって自動車外板表面に発生する残留応力は、駆動力であることが判明した。残留応力の発生は、バフ砥粒が自動車外板材表面を削り取る際の塑性変形に伴うものである。本発明では、研磨工程により発生する残留応力を低減させるために、バフ砥粒に着目した2つのアプローチによって、自動車外板1の歪みを低減させるという課題を解決した。   FIG. 1 is a diagram for explaining the occurrence of distortion in the method for manufacturing an automobile outer plate of the present invention. FIG. 1A is a diagram schematically showing a state where rotary buffing is performed using a buff 3 on an automobile outer plate 1. FIG. 1B is an automotive outer plate 1 after buffing, and FIG. 1C is a cross-sectional view taken along the line AA in FIG. Show. As shown in FIG. 1, the automobile outer plate 1 after buffing may generate a distortion 7 with a polished surface. This is because residual stress is generated in the outermost polishing layer. Since the residual stress is such that it does not affect the shape of a conventional thick automobile outer plate (for example, a thickness of about 0.7 mm), this phenomenon has not been a problem. As a result of analyzing the surface distortion generation mechanism, it was found that the residual stress generated on the outer surface of the automobile by the buffing process is a driving force. The generation of the residual stress is accompanied by plastic deformation when the buffing abrasive scrapes the surface of the automobile outer plate. In this invention, in order to reduce the residual stress which generate | occur | produces by a grinding | polishing process, the subject of reducing the distortion of the motor vehicle outer plate | board 1 by two approaches which paid its attention to the buffing abrasive grain was solved.

第1のアプローチは、プレス加工後の金属板表面にバフ研磨を行う研磨工程を有し、前記研磨工程において、粒子サイズが、#320(34.2μm〜94μm)〜#600(18μm〜72μm)の範囲内のみのバフ砥粒を用いることを特徴とする。バフ砥粒の粒子サイズは、研磨工程後の残留応力によって発生する凸部の大きさや高さに応じて、前記の範囲において調整することが好ましい。   The first approach has a polishing step of buffing the surface of the metal plate after press working, and in the polishing step, the particle size is # 320 (34.2 μm to 94 μm) to # 600 (18 μm to 72 μm). It is characterized by using buffing abrasive grains only in the range. The particle size of the buff abrasive grains is preferably adjusted in the above range according to the size and height of the convex portions generated by the residual stress after the polishing process.

前記研磨工程では、従来は#100程度の番手のバフ砥粒を用いていた。本発明では、例えば、#600のような、中間/仕上げバフとして使用される番手を使用して研磨する。   In the polishing step, buffing grains having a count of about # 100 are conventionally used. In the present invention, polishing is performed using a count used as an intermediate / finish buff, for example, # 600.

なお、バフ研磨の方法を、往復動バフ研磨とすると、回転バフ研磨の場合と比べて残留応力は発生しにくくなるので、好ましい。回転バフ研磨では、研磨が一方向に偏りやすいが、往復動バフを用いると、研磨方向を制御することができ、残留応力の発生を低減させることができる。   Note that it is preferable that the buffing method is reciprocating buffing because residual stress is less likely to occur than in the case of rotary buffing. In rotating buff polishing, polishing tends to be biased in one direction. However, if a reciprocating buff is used, the polishing direction can be controlled and the generation of residual stress can be reduced.

第2のアプローチは、プレス加工後の金属板表面にバフ研磨を行う研磨工程を有し、前記研磨工程において、砥粒サイズが#100(125〜212μm)であって、研磨面に露出した砥粒密度が、20個/mm以上であるバフを用いることを特徴とする。前記砥粒密度は、好ましくは、35個/mm以上であり、より好ましくは、50個/mm以上である。前記砥粒密度は、研磨工程後の残留応力によって発生する凸部の大きさや高さに応じて、前記の範囲において調整することが好ましい。 The second approach has a polishing step of buffing the surface of the metal plate after press working. In the polishing step, the abrasive grain size is # 100 (125 to 212 μm), and the abrasive is exposed on the polishing surface. A buff having a particle density of 20 particles / mm 2 or more is used. The abrasive density is preferably 35 pieces / mm 2 or more, and more preferably 50 pieces / mm 2 or more. The abrasive density is preferably adjusted in the above range according to the size and height of the convex portions generated by the residual stress after the polishing step.

砥粒密度を上記の範囲内とする上記方法によると、従来に比べて砥粒1個あたりのバフ研磨時の付加面圧を低減することが可能となり、砥粒1個が金属板に与える塑性変形を抑制して残留応力の発生を低減させることができる。   According to the above method for setting the abrasive density within the above range, it is possible to reduce the additional surface pressure during buffing per abrasive grain as compared with the conventional method, and the plasticity that one abrasive grain gives to the metal plate. Deformation can be suppressed and the occurrence of residual stress can be reduced.

(実施例1)
亜鉛メッキ加工を施した0.55mmの金属薄板からなる自動車外板(薄板アウタパネル)について、#600のバフによる回転バフ研磨を行った。回転バフ研磨後に、バフ研磨部の歪強さを測定した。前記歪強さは、計測した自動車外板(薄板アウタパネル)の三次元形状データに基づいて、その曲率を解析し、前記パネルにおける歪みの大きさを数値化したものである。
Example 1
Rotating buffing with a buff of # 600 was performed on an automobile outer plate (thin plate outer panel) made of a galvanized 0.55 mm thin metal plate. After rotating buffing, the strain strength of the buffing part was measured. The strain strength is obtained by analyzing the curvature based on the measured three-dimensional shape data of an automobile outer plate (thin plate outer panel) and digitizing the magnitude of the strain in the panel.

(比較例1)
回転バフ研磨を、従来の回転バフ研磨に用いる#100のバフを用いて行った以外は、実施例1と同様にして自動車外板の製造を行った。回転バフ研磨後に、実施例1と同様に、バフ研磨部の歪強さを測定した。
(Comparative Example 1)
An automobile outer plate was manufactured in the same manner as in Example 1 except that the rotating buffing was performed using a # 100 buff used for conventional rotating buffing. After rotating buffing, the strain strength of the buffing part was measured in the same manner as in Example 1.

実施例1および比較例1の歪強さの測定結果を図2(a)に示す。実施例1での歪強さは21、比較例1での歪強さは4であり、#600のバフを用いることによって、歪み値は従来の約5分の1まで低減した。   The measurement results of the strain strength of Example 1 and Comparative Example 1 are shown in FIG. The strain strength in Example 1 was 21, and the strain strength in Comparative Example 1 was 4. By using # 600 buff, the strain value was reduced to about 1/5 of the conventional one.

(実施例2)
前記薄板アウタパネルに生じる歪み量について、動的陽解法によるCAE解析を行った。具体的には、砥粒に見立てたボール状の剛体を鋼板表面に擦り付けるモデルにおいて、発生する残留応力を動的陽解法によって算出した。解析においては、砥粒密度(個/mm)から導出される砥粒1個あたりの分担荷重をパラメータとして用いた。従来の回転バフ研磨に用いる#100のバフに対して、砥粒を5倍に高密度化したバフについて解析した結果を図2(b)に示す。同図においては、従来の砥粒密度を1として横軸を取っている。砥粒1個あたりの荷重が5分の1である場合、歪み量(Z方向変位(mm))が、0.06から0.03に半減していることがわかる。この結果は、砥粒密度が5倍となった場合に相当する。
(Example 2)
CAE analysis by a dynamic explicit method was performed on the amount of strain generated in the thin outer panel. Specifically, in a model in which a ball-shaped rigid body that looks like abrasive grains is rubbed against the steel sheet surface, the generated residual stress is calculated by a dynamic explicit method. In the analysis, the shared load per abrasive grain derived from the abrasive density (pieces / mm 2 ) was used as a parameter. FIG. 2 (b) shows the result of analyzing a buff in which abrasive grains are densified five times with respect to the # 100 buff used in conventional rotary buff polishing. In the figure, the horizontal axis is taken with a conventional abrasive density of 1. When the load per abrasive grain is 1/5, it can be seen that the strain amount (displacement in the Z direction (mm)) is halved from 0.06 to 0.03. This result corresponds to the case where the abrasive density is 5 times.

以上、上記実施形態に示したように、本発明によれば、研磨工程に発生する残留応力を、粒子サイズが小さいバフ砥粒を用いる、あるいは、砥粒密度が高いバフを用いて研磨工程を行うことで、歪み等の外観不良の発生を抑制することができる。   As described above, according to the present invention, according to the present invention, the residual stress generated in the polishing process is performed by using a buff abrasive grain having a small particle size or a polishing process using a buff having a high abrasive density. By doing so, it is possible to suppress appearance defects such as distortion.

1 …自動車外板
3 …バフ
5 …バフ研磨部
7 …凸部
DESCRIPTION OF SYMBOLS 1 ... Automotive outer plate 3 ... Buff 5 ... Buffing part 7 ... Convex part

Claims (2)

金属板のプレス加工後の、前記金属板表面のバフ研磨を行う研磨工程において、
粒子サイズが、#320(34.2μm〜94μm)〜#600(18μm〜72μm)の範囲内のみのバフ砥粒を用いることを特徴とする自動車外板の製造方法。
In the polishing step of buffing the surface of the metal plate after the metal plate is pressed,
A method for producing an automobile outer plate, characterized by using buffing abrasive grains having a particle size in a range of # 320 (34.2 μm to 94 μm) to # 600 (18 μm to 72 μm).
金属板のプレス加工後の、前記金属板表面のバフ研磨を行う研磨工程において、砥粒サイズが#100(125〜212μm)であって、研磨面に露出した砥粒密度が20個/mm以上であるバフを用いることを特徴とする自動車外板の製造方法。 In the polishing step for buffing the surface of the metal plate after the metal plate is pressed, the abrasive grain size is # 100 (125 to 212 μm), and the abrasive grain density exposed on the polishing surface is 20 / mm 2. The manufacturing method of the outer plate | board of the motor vehicle characterized by using the buff which is the above.
JP2018054468A 2018-03-22 2018-03-22 Manufacturing method of automotive outer panel Pending JP2019166587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054468A JP2019166587A (en) 2018-03-22 2018-03-22 Manufacturing method of automotive outer panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054468A JP2019166587A (en) 2018-03-22 2018-03-22 Manufacturing method of automotive outer panel

Publications (1)

Publication Number Publication Date
JP2019166587A true JP2019166587A (en) 2019-10-03

Family

ID=68105961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054468A Pending JP2019166587A (en) 2018-03-22 2018-03-22 Manufacturing method of automotive outer panel

Country Status (1)

Country Link
JP (1) JP2019166587A (en)

Similar Documents

Publication Publication Date Title
Palmer et al. An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing
Zhao et al. Material removal mechanism in ultrasonic vibration assisted polishing of micro cylindrical surface on SiC
CN106826535B (en) Aluminum alloy mirror surface processing method
JP5076334B2 (en) Mold having fine irregularities on its surface, method for producing the die, and method for producing an antiglare film using the die
TWI724311B (en) Hollow spring and manufacturing method thereof
WO2009054175A1 (en) Press mold for sheet metal forming, method of treating press mold surface, and process for manufacturing automobile body
EP2498951A1 (en) Rotary buffing pad
CN102139470A (en) Shot peening method for die material surface
Jiang et al. Experimental investigation of brittle material removal fraction on an optical glass surface during ultrasound-assisted grinding
TWI488713B (en) Method for producing large-size synthetic quartz glass substrate
JP2019166587A (en) Manufacturing method of automotive outer panel
JP6011627B2 (en) Glass substrate polishing method
CN105189045A (en) Workpiece polishing device
Qureshi et al. Analysis of effect of ball and roller burnishing processes on surface roughness on EN8 steel
JP2009061556A (en) Surface grinding method
CN111465842A (en) Glass plate, method for manufacturing glass plate, and end face inspection method
JP4317573B2 (en) Press die for sheet metal molding, processing method of press die surface, and production method of vehicle body
CN103898435A (en) Method for repairing surface cracks of titanium alloy plate
Fujimoto et al. Wear behavior of grain cutting edge in ultrasonic assisted grinding using mini-size wheel
JP2015069674A (en) Manufacturing method of magnetic disk glass substrate, and polishing treatment carrier
CN1935449B (en) Clutch friction plate steel back-steel friction plate working method
JP3476495B2 (en) Sheet steel for press working
TWM349819U (en) Speed reducing device for the grinding disk of grinding machine
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
JP2019085276A (en) 3d cover glass, and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180509