JP2019166451A - Oxidation catalyst, catalyst support structure, production method for oxidation catalyst, and production method for catalyst support structure - Google Patents

Oxidation catalyst, catalyst support structure, production method for oxidation catalyst, and production method for catalyst support structure Download PDF

Info

Publication number
JP2019166451A
JP2019166451A JP2018055160A JP2018055160A JP2019166451A JP 2019166451 A JP2019166451 A JP 2019166451A JP 2018055160 A JP2018055160 A JP 2018055160A JP 2018055160 A JP2018055160 A JP 2018055160A JP 2019166451 A JP2019166451 A JP 2019166451A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
catalyst
cerium dioxide
dioxide particles
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055160A
Other languages
Japanese (ja)
Other versions
JP7076241B2 (en
Inventor
有仁枝 泉
Yunie Izumi
有仁枝 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018055160A priority Critical patent/JP7076241B2/en
Priority to US16/295,137 priority patent/US10946336B2/en
Priority to CN201910187009.0A priority patent/CN110292934B/en
Priority to DE102019106906.8A priority patent/DE102019106906A1/en
Publication of JP2019166451A publication Critical patent/JP2019166451A/en
Application granted granted Critical
Publication of JP7076241B2 publication Critical patent/JP7076241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • B01J35/56
    • B01J35/657
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/65Catalysts not containing noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification

Abstract

To provide an oxidation catalyst containing cerium dioxide particles in which the heat resistance is improved.SOLUTION: The oxidation catalyst 2 comprises a cerium dioxide particle 21 and a metal oxide 22. The cerium dioxide particle 21 contains an auxiliary component that is at least one of lanthanum, aluminum and iron. The metal oxide 22 contains iron and manganese and is held on the cerium dioxide particle 21. In the oxidation catalyst 2, the heat resistance can be improved. Further, an improvement in oxidation performance in a filter supporting the oxidation catalyst 2 can be realized.SELECTED DRAWING: Figure 5

Description

本発明は、酸化触媒、触媒担持構造体、酸化触媒の製造方法、および、触媒担持構造体の製造方法に関する。   The present invention relates to an oxidation catalyst, a catalyst supporting structure, a method for manufacturing an oxidation catalyst, and a method for manufacturing a catalyst supporting structure.

特許文献1および2では、鉄およびマンガンを含む遷移金属酸化物を、表面または内部に備える二酸化セリウム粒子が提案されている。このような二酸化セリウム粒子は、例えば、DOC(Diesel Oxidation Catalyst)およびCSF(Catalyzed Soot Filter)を含むDPF(Diesel Particulate Filter)において、酸化触媒として利用することが想定されている。   Patent Documents 1 and 2 propose cerium dioxide particles having a transition metal oxide containing iron and manganese on the surface or inside thereof. Such cerium dioxide particles are supposed to be used as an oxidation catalyst in DPF (Diesel Particulate Filter) including, for example, DOC (Diesel Oxidation Catalyst) and CSF (Catalyzed Soot Filter).

特開2017−186220号公報JP 2017-186220 A 特開2017−185481号公報JP 2017-185481 A

ところで、DPFでは、捕集したススの燃焼により高温状態となる。上記酸化触媒における二酸化セリウム粒子は、通常、二酸化セリウムの微粒子の集合体(凝集粒子)であるため、上記高温状態において、二酸化セリウム粒子が部分的に焼結して比表面積が減少することがある。この場合、触媒性能が低下してしまう。したがって、二酸化セリウム粒子を含む酸化触媒において耐熱性を向上することが求められる。   By the way, in DPF, it becomes a high temperature state by combustion of the collected soot. Since the cerium dioxide particles in the oxidation catalyst are usually aggregates (aggregated particles) of cerium dioxide fine particles, the cerium dioxide particles may partially sinter at the high temperature state to reduce the specific surface area. . In this case, catalyst performance will fall. Therefore, it is required to improve heat resistance in an oxidation catalyst containing cerium dioxide particles.

本発明は上記課題に鑑みなされたものであり、二酸化セリウム粒子を含む酸化触媒において、耐熱性を向上することを目的としている。   This invention is made | formed in view of the said subject, and aims at improving heat resistance in the oxidation catalyst containing a cerium dioxide particle.

本発明に係る酸化触媒は、ランタン、アルミニウムおよび鉄の少なくとも一種である補助成分を含む二酸化セリウム粒子と、前記二酸化セリウム粒子に保持されるとともに、鉄およびマンガンを含む金属酸化物とを備える。   The oxidation catalyst according to the present invention includes cerium dioxide particles containing an auxiliary component that is at least one of lanthanum, aluminum, and iron, and a metal oxide that is held by the cerium dioxide particles and contains iron and manganese.

本発明の一の好ましい形態では、前記補助成分の質量の比率が、前記二酸化セリウム粒子に含まれるセリウムに対して酸化物換算で3〜45質量%である。   In one preferable form of the present invention, the mass ratio of the auxiliary component is 3 to 45 mass% in terms of oxide with respect to cerium contained in the cerium dioxide particles.

本発明の他の好ましい形態では、前記金属酸化物の質量の比率が、前記酸化触媒の全体に対して5〜40質量%である。   In another preferred embodiment of the present invention, the mass ratio of the metal oxide is 5 to 40 mass% with respect to the whole of the oxidation catalyst.

本発明に係る触媒担持構造体は、内部が隔壁により複数のセルに仕切られたセル構造体と、前記隔壁に担持される上記酸化触媒とを備える。   The catalyst support structure according to the present invention includes a cell structure whose interior is partitioned into a plurality of cells by partition walls, and the oxidation catalyst supported by the partition walls.

好ましい触媒担持構造体は、貴金属を含まない。   Preferred catalyst support structures do not contain noble metals.

本発明に係る酸化触媒の製造方法は、ランタン、アルミニウムおよび鉄の少なくとも一種である補助成分を含む二酸化セリウム粒子を生成する工程と、鉄およびマンガンを含む金属酸化物を前記二酸化セリウム粒子に保持させる工程とを備える。   The method for producing an oxidation catalyst according to the present invention includes a step of generating cerium dioxide particles containing an auxiliary component that is at least one of lanthanum, aluminum, and iron, and a metal oxide containing iron and manganese is held in the cerium dioxide particles. A process.

本発明に係る触媒担持構造体の製造方法は、内部が隔壁により複数のセルに仕切られたセル構造体を準備する準備工程と、上記酸化触媒の製造方法により製造された酸化触媒を、前記隔壁に担持させる担持工程とを備える。   The method for manufacturing a catalyst-supporting structure according to the present invention includes a preparation step of preparing a cell structure that is internally partitioned into a plurality of cells by partition walls, and an oxidation catalyst manufactured by the oxidation catalyst manufacturing method. And a supporting step for supporting the substrate.

例えば、前記担持工程において、前記セル構造体に対して前記酸化触媒を分散させた液が付与される。   For example, in the supporting step, a liquid in which the oxidation catalyst is dispersed is applied to the cell structure.

本発明によれば、二酸化セリウム粒子を含む酸化触媒において、耐熱性を向上することができる。また、酸化触媒を担持したフィルタにおける酸化性能の向上を実現することができる。   According to the present invention, heat resistance can be improved in an oxidation catalyst containing cerium dioxide particles. Moreover, the improvement of the oxidation performance in the filter carrying the oxidation catalyst can be realized.

排ガス浄化システムの構成を示す図である。It is a figure which shows the structure of an exhaust gas purification system. 触媒担持構造体を示す図である。It is a figure which shows a catalyst carrying structure. 触媒担持構造体を示す断面図である。It is sectional drawing which shows a catalyst carrying structure. 隔壁の一部を拡大して示す図である。It is a figure which expands and shows a part of partition. 酸化触媒を示す図である。It is a figure which shows an oxidation catalyst. 酸化触媒を製造する処理の流れを示す図である。It is a figure which shows the flow of the process which manufactures an oxidation catalyst. 触媒担持構造体を製造する処理の流れを示す図である。It is a figure which shows the flow of the process which manufactures a catalyst support structure.

<排ガス浄化システム>
図1は、排ガス浄化システム8の構成を示す図である。排ガス浄化システム8は、エンジンから排出される排ガスを浄化するものである。排ガス浄化システム8は、DPF(Diesel Particulate Filter)81と、SCR(Selective Catalytic Reduction)触媒コンバータ85と、尿素噴射器86とを備える。DPF81、尿素噴射器86およびSCR触媒コンバータ85は、排ガスが流れる方向に沿って、この順にて配置される。
<Exhaust gas purification system>
FIG. 1 is a diagram showing the configuration of the exhaust gas purification system 8. The exhaust gas purification system 8 purifies exhaust gas discharged from the engine. The exhaust gas purification system 8 includes a DPF (Diesel Particulate Filter) 81, an SCR (Selective Catalytic Reduction) catalytic converter 85, and a urea injector 86. The DPF 81, the urea injector 86, and the SCR catalytic converter 85 are arranged in this order along the direction in which the exhaust gas flows.

DPF81は、DOC(Diesel Oxidation Catalyst)82と、CSF(Catalyzed Soot Filter)83とを備える。DOC82は、内部が隔壁により複数のセルに仕切られたハニカム構造体と、当該隔壁に担持された貴金属の酸化触媒とを備える。CSF83は、上記と同様のハニカム構造体と、当該ハニカム構造体の隔壁に担持された非貴金属系の酸化触媒とを備える。CSF83の構造の詳細については後述する。尿素噴射器86は、DPF81とSCR触媒コンバータ85との間における排ガスの経路に設けられる。SCR触媒コンバータ85は、上記と同様のハニカム構造体と、当該ハニカム構造体の隔壁に担持されたSCR触媒とを備える。   The DPF 81 includes a DOC (Diesel Oxidation Catalyst) 82 and a CSF (Catalyzed Soot Filter) 83. The DOC 82 includes a honeycomb structure that is internally partitioned into a plurality of cells by partition walls, and a noble metal oxidation catalyst supported on the partition walls. The CSF 83 includes a honeycomb structure similar to the above, and a non-noble metal-based oxidation catalyst supported on the partition walls of the honeycomb structure. Details of the structure of the CSF 83 will be described later. The urea injector 86 is provided in the exhaust gas path between the DPF 81 and the SCR catalytic converter 85. The SCR catalytic converter 85 includes a honeycomb structure similar to the above and an SCR catalyst supported on the partition walls of the honeycomb structure.

エンジンから排出された排ガスは、DPF81のDOC82に流入する。排ガスには、一酸化窒素(NO)、酸素(O)、窒素(N)が含まれており、DOC82において、下記式1および式2の反応が起こる。式1の反応では、二酸化窒素(NO)が生成される。なお、下記式2におけるSOF(可溶性有機成分:Soluble Organic Fraction)は、排ガス中のPM(粒子状物質)に含まれるものである。 The exhaust gas discharged from the engine flows into the DOC 82 of the DPF 81. The exhaust gas contains nitric oxide (NO), oxygen (O 2 ), and nitrogen (N 2 ), and reactions of the following formulas 1 and 2 occur in the DOC 82. In the reaction of Formula 1, nitrogen dioxide (NO 2 ) is generated. In addition, SOF (Soluble Organic Fraction) in the following formula 2 is included in PM (particulate matter) in exhaust gas.

2NO+O=2NO (式1) 2NO + O 2 = 2NO 2 (Formula 1)

SOF+O=CO,CO,HO (式2) SOF + O 2 = CO, CO 2 , H 2 O (Formula 2)

CSF83では、排ガスに含まれる炭素(スス)が捕集される。また、CSF83では、当該ススとNOとの下記式3、式4および式5の反応(燃焼反応)が起こり、NOからNOが生成される。 In CSF83, carbon (soot) contained in the exhaust gas is collected. Further, the CSF83, the following formula 3 between the soot and NO 2, reaction of formula 4 and formula 5 (combustion reaction) occurs, NO is generated from the NO 2.

C(スス)+2NO=CO+2NO (式3) C (soot) + 2NO 2 = CO 2 + 2NO (Formula 3)

C(スス)+NO=CO+NO (式4) C (soot) + NO 2 = CO + NO (Formula 4)

C(スス)+1/2O+NO=CO+NO (式5) C (soot) +1/2 O 2 + NO 2 = CO 2 + NO (Formula 5)

尿素噴射器86では、CSF83から排出された排ガスに尿素が混合され、尿素から分解生成されたアンモニア(NH)を含む排ガスがSCR触媒コンバータ85に流入する。SCR触媒コンバータ85では、下記式6、式7および式8の反応が起こることにより、排ガスに含まれるNOxが浄化される。 In the urea injector 86, urea is mixed with the exhaust gas discharged from the CSF 83, and the exhaust gas containing ammonia (NH 3 ) decomposed from urea flows into the SCR catalytic converter 85. In the SCR catalytic converter 85, NOx contained in the exhaust gas is purified by the reactions of the following formulas 6, 7 and 8.

4NO+4NH+O=4N+6HO (式6) 4NO + 4NH 3 + O 2 = 4N 2 + 6H 2 O (Formula 6)

NO+NO+2NH=2N+3HO (式7) NO + NO 2 + 2NH 3 = 2N 2 + 3H 2 O (Formula 7)

6NO+8NH=7N+12HO (式8) 6NO 2 + 8NH 3 = 7N 2 + 12H 2 O (Formula 8)

式7の反応は、Fast SCR反応と呼ばれており、式6および式8の反応よりも反応速度が速い。式7に従って、SCR触媒コンバータ85における反応を効率よく進めるには、SCR触媒コンバータ85に流入するNOの物質量とNOの物質量とが1:1となることが求められる。一方、CSF83では、既述の式3、式4および式5のように、ススの燃焼により多くのNOが消費され、NOが生成されてしまう。 The reaction of Formula 7 is called a Fast SCR reaction, and the reaction rate is faster than the reactions of Formula 6 and Formula 8. In order to efficiently advance the reaction in the SCR catalytic converter 85 according to Equation 7, it is required that the amount of NO flowing into the SCR catalytic converter 85 and the amount of NO 2 be 1: 1. On the other hand, in CSF83, as shown in the above-described Expression 3, Expression 4, and Expression 5, a large amount of NO 2 is consumed by soot combustion, and NO is generated.

そこで、本発明に係る排ガス浄化システム8では、CSF83の下流側部位として、後述の酸化触媒を担持する触媒担持構造体が設けられる。触媒担持構造体は、一部のNOを酸化してNOを生成する、すなわち、NOをNOに変換する。これにより、SCR触媒コンバータ85に流入するNOの物質量とNOの物質量とを1:1に近づけて、SCR触媒コンバータ85における反応を効率よく進めることが可能となる。 Therefore, in the exhaust gas purification system 8 according to the present invention, a catalyst carrying structure that carries an oxidation catalyst described later is provided as a downstream portion of the CSF 83. The catalyst-supporting structure oxidizes part of NO to generate NO 2 , that is, converts NO into NO 2 . As a result, the amount of NO and the amount of NO 2 flowing into the SCR catalytic converter 85 can be made close to 1: 1, and the reaction in the SCR catalytic converter 85 can be advanced efficiently.

<触媒担持構造体>
図2は、酸化触媒を担持する触媒担持構造体1を簡略化して示す図である。触媒担持構造体1は、一方向に長い筒状部材であり、図2では、触媒担持構造体1の長手方向における一方側の端面を示している。図3は、触媒担持構造体1を示す断面図であり、図3では、触媒担持構造体1の長手方向に沿う断面の一部を示している。
<Catalyst carrying structure>
FIG. 2 is a diagram schematically showing the catalyst support structure 1 that supports the oxidation catalyst. The catalyst support structure 1 is a cylindrical member that is long in one direction, and FIG. 2 shows an end face on one side in the longitudinal direction of the catalyst support structure 1. FIG. 3 is a cross-sectional view showing the catalyst support structure 1, and FIG. 3 shows a part of a cross section along the longitudinal direction of the catalyst support structure 1.

触媒担持構造体1は、ハニカム構造体10と、酸化触媒とを備える。ハニカム構造体10は、筒状外壁11と、隔壁12とを備える。筒状外壁11は、長手方向に延びる筒状である。長手方向に垂直な筒状外壁11の断面形状は、例えば円形であり、多角形等であってもよい。隔壁12は、筒状外壁11の内部に設けられ、当該内部を複数のセル13に仕切る。ハニカム構造体10は、内部が隔壁12により複数のセル13に仕切られたセル構造体である。筒状外壁11および隔壁12は、多孔質材料により形成される。酸化触媒は、多孔質材料の細孔内に担持される。後述するように、排ガスは隔壁12の細孔を通過する。触媒担持構造体1の強度を向上するには、隔壁12の厚さは、例えば、50μm(マイクロメートル)以上であり、好ましくは100μm以上であり、より好ましくは150μm以上である。隔壁12における圧力損失を低減するには、隔壁12の厚さは、例えば500μm以下であり、好ましくは450μm以下である。   The catalyst carrying structure 1 includes a honeycomb structure 10 and an oxidation catalyst. The honeycomb structure 10 includes a cylindrical outer wall 11 and partition walls 12. The cylindrical outer wall 11 has a cylindrical shape extending in the longitudinal direction. The cross-sectional shape of the cylindrical outer wall 11 perpendicular to the longitudinal direction is, for example, a circle, and may be a polygon or the like. The partition wall 12 is provided inside the cylindrical outer wall 11 and partitions the interior into a plurality of cells 13. The honeycomb structure 10 is a cell structure that is internally partitioned into a plurality of cells 13 by partition walls 12. The cylindrical outer wall 11 and the partition wall 12 are formed of a porous material. The oxidation catalyst is supported in the pores of the porous material. As will be described later, the exhaust gas passes through the pores of the partition wall 12. In order to improve the strength of the catalyst support structure 1, the thickness of the partition wall 12 is, for example, 50 μm (micrometers) or more, preferably 100 μm or more, and more preferably 150 μm or more. In order to reduce the pressure loss in the partition 12, the thickness of the partition 12 is, for example, 500 μm or less, preferably 450 μm or less.

各セル13は、長手方向に延びる空間である。長手方向に垂直なセル13の断面形状は、例えば多角形(三角形、四角形、五角形、六角形等)であり、円形等であってもよい。複数のセル13は、典型的には同じ断面形状を有する。複数のセル13には、異なる断面形状のセル13が含まれてもよい。酸化性能を向上するには、セル密度は、例えば8セル/cm(平方センチメートル)以上であり、好ましくは15セル/cm以上である。圧力損失を低減するには、セル密度は、例えば95セル/cm以下であり、好ましくは78セル/cm以下である。 Each cell 13 is a space extending in the longitudinal direction. The cross-sectional shape of the cell 13 perpendicular to the longitudinal direction is, for example, a polygon (triangle, quadrangle, pentagon, hexagon, etc.), and may be a circle or the like. The plurality of cells 13 typically have the same cross-sectional shape. The plurality of cells 13 may include cells 13 having different cross-sectional shapes. In order to improve the oxidation performance, the cell density is, for example, 8 cells / cm 2 (square centimeter) or more, and preferably 15 cells / cm 2 or more. In order to reduce the pressure loss, the cell density is, for example, 95 cells / cm 2 or less, preferably 78 cells / cm 2 or less.

CSF83に用いられる触媒担持構造体1では、長手方向におけるハニカム構造体10の一端側を入口とし、他端側を出口として、DOC82からの排ガスが流れる。所定数のセル13において、入口側の端部に封止部14が設けられ、残りのセル13において、出口側の端部に封止部14が設けられる。したがって、ハニカム構造体10内に流入する排ガスは、入口側が封止されないセル13から、隔壁12を通過して、出口側が封止されないセル13へと移動する(図3中の矢印A1参照)。このとき、隔壁12に担持される酸化触媒によって排ガスが酸化される。ハニカム構造体10の入口側の端部、および、出口側の端部のそれぞれでは、セル13の配列方向に沿って1つ置きに封止部14が設けられることが好ましい。   In the catalyst support structure 1 used for the CSF 83, exhaust gas from the DOC 82 flows with one end side of the honeycomb structure 10 in the longitudinal direction as an inlet and the other end side as an outlet. In a predetermined number of cells 13, a sealing portion 14 is provided at an end on the inlet side, and in the remaining cells 13, a sealing portion 14 is provided on an end on the outlet side. Therefore, the exhaust gas flowing into the honeycomb structure 10 moves from the cell 13 whose inlet side is not sealed through the partition wall 12 to the cell 13 whose outlet side is not sealed (see arrow A1 in FIG. 3). At this time, the exhaust gas is oxidized by the oxidation catalyst supported on the partition wall 12. In each of the end portion on the inlet side and the end portion on the outlet side of the honeycomb structure 10, it is preferable that every other sealing portion 14 is provided along the arrangement direction of the cells 13.

図4は、隔壁12の一部を拡大して示す図である。隔壁12を形成する多孔質材料には、多数の細孔121が設けられており、酸化触媒2は細孔121内に担持される。図4では、黒い丸により酸化触媒2を示している。触媒担持構造体1において、NOからNOへの変換率(以下、単に「NO変換率」という。)を向上するには、酸化触媒2の担持量は、例えば3g/L(グラム毎リットル)以上であり、好ましくは5g/L以上であり、より好ましくは8g/L以上である。圧力損失を低減するには、酸化触媒2の担持量は、例えば50g/L以下であり、好ましくは45g/L以下であり、より好ましくは40g/L以下である。酸化触媒2の担持量(g/L)は、ハニカム構造体10の単位容積(L)当たりに担持される酸化触媒2の量(g)を示す。酸化触媒2の詳細については後述する。 FIG. 4 is an enlarged view showing a part of the partition wall 12. The porous material forming the partition wall 12 is provided with a large number of pores 121, and the oxidation catalyst 2 is supported in the pores 121. In FIG. 4, the oxidation catalyst 2 is indicated by a black circle. In order to improve the conversion rate from NO to NO 2 (hereinafter simply referred to as “NO 2 conversion rate”) in the catalyst support structure 1, the supported amount of the oxidation catalyst 2 is, for example, 3 g / L (gram per liter). ) Or more, preferably 5 g / L or more, more preferably 8 g / L or more. In order to reduce the pressure loss, the loading amount of the oxidation catalyst 2 is, for example, 50 g / L or less, preferably 45 g / L or less, more preferably 40 g / L or less. The supported amount (g / L) of the oxidation catalyst 2 indicates the amount (g) of the oxidation catalyst 2 supported per unit volume (L) of the honeycomb structure 10. Details of the oxidation catalyst 2 will be described later.

隔壁12を形成する多孔質材料の好ましい一例は、セラミックである。強度、耐熱性、耐食性等の観点では、コージェライト、炭化珪素、アルミナ、ムライト、アルミニウムチタネート、窒化珪素、珪素−炭化珪素系複合材料等が用いられることが好ましい。なお、珪素−炭化珪素系複合材料は、炭化珪素を骨材とし、金属珪素を結合材として形成される。   A preferred example of the porous material forming the partition wall 12 is ceramic. From the viewpoint of strength, heat resistance, corrosion resistance, etc., cordierite, silicon carbide, alumina, mullite, aluminum titanate, silicon nitride, silicon-silicon carbide based composite material, etc. are preferably used. The silicon-silicon carbide based composite material is formed using silicon carbide as an aggregate and metallic silicon as a binder.

圧力損失を低減するには、多孔質材料(隔壁12)の開気孔率は、例えば25%以上であり、好ましくは30%以上であり、より好ましくは35%以上である。隔壁12の強度の観点では、多孔質材料の開気孔率は、例えば70%以下であり、好ましくは65%以下である。開気孔率は、例えば、純水を媒体としてアルキメデス法により測定可能である。。多孔質材料の平均細孔径は、例えば5μm以上であり、好ましくは8μm以上である。開気孔率と同様に、平均細孔径が大きいほど、圧力損失が低くなる。酸化性能を向上するには、多孔質材料の平均細孔径は、例えば40μm以下であり、好ましくは30μm以下であり、より好ましくは25μm以下である。平均細孔径は、例えば水銀圧入法(JIS R1655準拠)により測定される。触媒担持構造体1の設計によっては、封止部14が省略され、セル13の表面に、酸化触媒2が層状に保持されてもよい。   In order to reduce the pressure loss, the open porosity of the porous material (partition wall 12) is, for example, 25% or more, preferably 30% or more, and more preferably 35% or more. From the viewpoint of the strength of the partition wall 12, the open porosity of the porous material is, for example, 70% or less, and preferably 65% or less. The open porosity can be measured by, for example, Archimedes method using pure water as a medium. . The average pore diameter of the porous material is, for example, 5 μm or more, and preferably 8 μm or more. Similar to the open porosity, the larger the average pore diameter, the lower the pressure loss. In order to improve the oxidation performance, the average pore diameter of the porous material is, for example, 40 μm or less, preferably 30 μm or less, and more preferably 25 μm or less. The average pore diameter is measured, for example, by a mercury intrusion method (based on JIS R1655). Depending on the design of the catalyst support structure 1, the sealing portion 14 may be omitted, and the oxidation catalyst 2 may be held in layers on the surface of the cell 13.

<酸化触媒>
図5は、酸化触媒2の1つの粒子を模式的に示す図である。酸化触媒2は、二酸化セリウム(CeO)粒子21と、二酸化セリウム粒子21により保持される金属酸化物22とを備える。各二酸化セリウム粒子21は、例えば二酸化セリウムの微粒子の集合体(凝集粒子)である。図5では、凝集粒子である1つの二酸化セリウム粒子21を1つの丸により示している。二酸化セリウム粒子21は、ランタン(La)、アルミニウム(Al)および鉄(Fe)の少なくとも一種である補助成分を含む。補助成分は、ランタン、アルミニウムおよび鉄からなる群から選択される一種または二種以上である。後述するように、二酸化セリウム粒子21が補助成分を含むことにより、酸化触媒2の耐熱性が向上する。
<Oxidation catalyst>
FIG. 5 is a diagram schematically showing one particle of the oxidation catalyst 2. The oxidation catalyst 2 includes cerium dioxide (CeO 2 ) particles 21 and metal oxides 22 held by the cerium dioxide particles 21. Each cerium dioxide particle 21 is an aggregate (aggregated particle) of fine particles of cerium dioxide, for example. In FIG. 5, one cerium dioxide particle 21 which is an aggregated particle is indicated by one circle. The cerium dioxide particles 21 include an auxiliary component that is at least one of lanthanum (La), aluminum (Al), and iron (Fe). The auxiliary component is one or more selected from the group consisting of lanthanum, aluminum and iron. As will be described later, when the cerium dioxide particles 21 contain an auxiliary component, the heat resistance of the oxidation catalyst 2 is improved.

酸化触媒2の耐熱性をより確実に向上するには、補助成分の質量比率は、二酸化セリウム粒子21に含まれるセリウムに対して酸化物換算で、例えば3質量%以上であり、好ましくは5質量%以上であり、より好ましくは8質量%以上である。二酸化セリウムによる所定の性能を維持するという観点では、補助成分の質量比率は、例えば45質量%以下であり、好ましくは40質量%以下であり、より好ましくは35質量%以下である。補助成分が複数種の元素を含む場合には、上記質量比率は、当該複数種の元素における合計の質量比率である。酸化触媒2における構成成分の質量比率は、例えばICP(Inductively Coupled Plasma)発光分光法により定量することが可能である。後述する酸化触媒2の製造の一例において、二酸化セリウム粒子21を生成する際に、二酸化セリウムと補助成分の原料との混合比を変更することにより、上記質量比率は調整可能である。   In order to improve the heat resistance of the oxidation catalyst 2 more reliably, the mass ratio of the auxiliary component is, for example, 3% by mass or more, preferably 5% by mass in terms of oxide with respect to cerium contained in the cerium dioxide particles 21. % Or more, and more preferably 8% by mass or more. In terms of maintaining predetermined performance with cerium dioxide, the mass ratio of the auxiliary component is, for example, 45% by mass or less, preferably 40% by mass or less, and more preferably 35% by mass or less. When the auxiliary component includes a plurality of types of elements, the mass ratio is a total mass ratio of the plurality of types of elements. The mass ratio of the constituent components in the oxidation catalyst 2 can be quantified by, for example, ICP (Inductively Coupled Plasma) emission spectroscopy. In an example of the production of the oxidation catalyst 2 to be described later, when the cerium dioxide particles 21 are generated, the mass ratio can be adjusted by changing the mixing ratio of cerium dioxide and the auxiliary component raw material.

二酸化セリウム粒子21の一例では、補助成分の酸化物(例えば、酸化ランタン(La)、酸化アルミニウム(Al)または酸化鉄(Fe))の微粒子が、二酸化セリウムの微粒子と共に凝集する。二酸化セリウム粒子21の他の例では、二酸化セリウムの結晶中に、補助成分が固溶する。もちろん、二酸化セリウム粒子21において、補助成分の酸化物の微粒子、および、二酸化セリウムの結晶中に固溶した補助成分の双方が存在してもよい。 In an example of the cerium dioxide particles 21, fine particles of an auxiliary component oxide (for example, lanthanum oxide (La 2 O 3 ), aluminum oxide (Al 2 O 3 ), or iron oxide (Fe 2 O 3 )) are formed of cerium dioxide. Aggregates with fine particles. In another example of the cerium dioxide particles 21, the auxiliary component is dissolved in the cerium dioxide crystals. Of course, in the cerium dioxide particles 21, both the oxide fine particles of the auxiliary component and the auxiliary component dissolved in the crystal of cerium dioxide may exist.

多孔質材料の細孔径を考慮すると、二酸化セリウム粒子21の平均粒径は、例えば30μm以下であり、好ましくは20μm以下であり、より好ましくは10μm以下である。また、二酸化セリウム粒子21の平均粒径は、例えば0.5μm以上であり、好ましくは1μm以上であり、より好ましくは2μm以上である。二酸化セリウム粒子21の平均粒径は、例えば、走査型電子顕微鏡(SEM)を用いて酸化触媒2を所定の倍率で撮影した画像において、二酸化セリウム粒子21の粒径の平均値を算出することにより求められる。平均粒径は、レーザー回折法により求められてもよい。   Considering the pore diameter of the porous material, the average particle diameter of the cerium dioxide particles 21 is, for example, 30 μm or less, preferably 20 μm or less, more preferably 10 μm or less. Moreover, the average particle diameter of the cerium dioxide particles 21 is, for example, 0.5 μm or more, preferably 1 μm or more, and more preferably 2 μm or more. The average particle diameter of the cerium dioxide particles 21 is calculated by, for example, calculating the average value of the particle diameters of the cerium dioxide particles 21 in an image obtained by photographing the oxidation catalyst 2 at a predetermined magnification using a scanning electron microscope (SEM). Desired. The average particle diameter may be obtained by a laser diffraction method.

金属酸化物22は、鉄(Fe)およびマンガン(Mn)を含む。酸化触媒2では、金属酸化物22の存在により、排ガスに含まれるNOをNOに適切に酸化することが可能となる。典型的には、金属酸化物22は、二酸化セリウム粒子21の表面上において分散しつつ当該表面に付着する。すなわち、金属酸化物22は、二酸化セリウム粒子21に対する付着微粒子である。二酸化セリウム粒子21を担体と捉えると、金属酸化物22は被担持物である。図5では、金属酸化物22に含まれる鉄酸化物22aおよびマンガン酸化物22bを小さい丸で示している。金属酸化物22は、二酸化セリウム粒子21の表面を被覆している状態であってもよい。また、一部の金属酸化物22の微粒子が、二酸化セリウム粒子21の内部(例えば、二酸化セリウムの微粒子の間)に保持されてもよい。金属酸化物22の平均粒径は、二酸化セリウム粒子21の平均粒径よりも小さく、例えば0.5μm以下である。金属酸化物22の平均粒径は、二酸化セリウム粒子21と同様に走査型電子顕微鏡を用いて求めることが可能である。 The metal oxide 22 contains iron (Fe) and manganese (Mn). In the oxidation catalyst 2, the presence of the metal oxide 22, it is possible to properly oxidize NO contained in the exhaust gas to NO 2. Typically, the metal oxide 22 adheres to the surface of the cerium dioxide particles 21 while being dispersed on the surface. That is, the metal oxide 22 is fine particles attached to the cerium dioxide particles 21. When the cerium dioxide particles 21 are regarded as carriers, the metal oxide 22 is a supported material. In FIG. 5, the iron oxide 22a and the manganese oxide 22b included in the metal oxide 22 are indicated by small circles. The metal oxide 22 may be in a state of covering the surface of the cerium dioxide particles 21. Also, some of the fine particles of the metal oxide 22 may be held inside the cerium dioxide particles 21 (for example, between the fine particles of cerium dioxide). The average particle diameter of the metal oxide 22 is smaller than the average particle diameter of the cerium dioxide particles 21 and is, for example, 0.5 μm or less. The average particle diameter of the metal oxide 22 can be obtained using a scanning electron microscope, similarly to the cerium dioxide particles 21.

金属酸化物22の一例は、鉄を含む酸化物、および、マンガンを含む酸化物のみにより構成される。本実施の形態では、金属酸化物22は、FeMnO、Fe、および、Mnの少なくとも一種である。Fe中にMnが固溶してもよく、Mn中にFeが固溶してもよい。FeおよびMnは、200〜800℃の温度範囲においても安定である。酸化触媒2の設計によっては、金属酸化物22が、他の金属元素を含んでもよい。典型的には、金属酸化物22は、遷移金属のみを含む遷移金属酸化物である。 An example of the metal oxide 22 is composed only of an oxide containing iron and an oxide containing manganese. In the present embodiment, the metal oxide 22 is at least one of FeMnO 3 , Fe 2 O 3 , and Mn 2 O 3 . May be Mn solid solution in Fe 2 O 3, Fe may be solved in Mn 2 O 3. Fe 2 O 3 and Mn 2 O 3 are stable even in a temperature range of 200 to 800 ° C. Depending on the design of the oxidation catalyst 2, the metal oxide 22 may contain other metal elements. Typically, the metal oxide 22 is a transition metal oxide containing only a transition metal.

金属酸化物22による高い触媒性能を発揮するには、酸化触媒2における金属酸化物22の質量の比率、本実施の形態では、鉄を含む酸化物およびマンガンを含む酸化物の合計質量の比率は、酸化触媒2の全体に対して、例えば5質量%以上であり、好ましくは10質量%以上であり、より好ましくは15質量%以上である。金属酸化物22の質量の比率が過度に高くなると、二酸化セリウム粒子21の表面全体が金属酸化物22により被覆され、二酸化セリウム粒子21による一酸化窒素の吸着性能が低下する。したがって、二酸化セリウム粒子21による、ある程度の吸着性能を確保するという観点では、金属酸化物22の質量の比率は、例えば40質量%以下であり、好ましくは35質量%以下であり、より好ましくは30質量%以下である。   In order to exert high catalytic performance by the metal oxide 22, the ratio of the mass of the metal oxide 22 in the oxidation catalyst 2, in this embodiment, the ratio of the total mass of the oxide containing iron and the oxide containing manganese is For example, it is 5% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more with respect to the entire oxidation catalyst 2. When the mass ratio of the metal oxide 22 becomes excessively high, the entire surface of the cerium dioxide particles 21 is covered with the metal oxide 22, and the adsorption performance of nitrogen monoxide by the cerium dioxide particles 21 decreases. Therefore, from the viewpoint of securing a certain degree of adsorption performance by the cerium dioxide particles 21, the mass ratio of the metal oxide 22 is, for example, 40% by mass or less, preferably 35% by mass or less, more preferably 30%. It is below mass%.

金属酸化物22におけるマンガンの質量比率は、鉄およびマンガンの合計質量に対して酸化物換算で、例えば10質量%以上であり、好ましくは20質量%以上である。マンガンの質量比率は、例えば90質量%以下であり、好ましくは80質量%以下である。後述する酸化触媒2の製造の一例において、二酸化セリウム粒子21に金属酸化物22を保持させる際に使用する溶液におけるマンガンおよび鉄の組成比を変更することにより、上記質量比率は調整可能である。さらに、焼成温度の変更により、金属酸化物22の結晶構造も調整することができる。金属酸化物22の結晶構造は、例えば、ヘマタイト型(Mn固溶Fe)や、ビクスバイト型(Fe固溶Mn)である。 The mass ratio of manganese in the metal oxide 22 is, for example, 10% by mass or more, and preferably 20% by mass or more in terms of oxide with respect to the total mass of iron and manganese. The mass ratio of manganese is, for example, 90% by mass or less, and preferably 80% by mass or less. In one example of the production of the oxidation catalyst 2 described later, the mass ratio can be adjusted by changing the composition ratio of manganese and iron in the solution used when the cerium dioxide particles 21 hold the metal oxide 22. Furthermore, the crystal structure of the metal oxide 22 can be adjusted by changing the firing temperature. The crystal structure of the metal oxide 22 is, for example, a hematite type (Mn solid solution Fe 2 O 3 ) or a bixbite type (Fe solid solution Mn 2 O 3 ).

<酸化触媒の製造方法>
図6は、酸化触媒2を製造する処理の流れを示す図である。まず、補助成分の原料を水に溶解させ、補助成分の水溶液が得られる。補助成分の原料は、例えば、硝酸ランタン(La(NO・6HO)、硝酸アルミニウム(Al(NO・9HO)、硝酸鉄(Fe(NO・9HO)である。続いて、二酸化セリウムの粉末が当該水溶液に混合される。当該水溶液から水を蒸発させ、補助成分および二酸化セリウムを含む混合物の粉末が得られる。そして、当該粉末を所定の温度(例えば、500〜700℃)にて大気中で焼成することにより、補助成分を含む二酸化セリウム粒子21が生成される(ステップS11)。二酸化セリウム粒子21では、例えば、補助成分の酸化物の微粒子が、二酸化セリウムの微粒子と共に凝集する、または、二酸化セリウムの結晶中に、補助成分が固溶する。
<Method for producing oxidation catalyst>
FIG. 6 is a diagram showing a flow of processing for manufacturing the oxidation catalyst 2. First, the raw material of the auxiliary component is dissolved in water to obtain an aqueous solution of the auxiliary component. The raw materials for the auxiliary components are, for example, lanthanum nitrate (La (NO 3 ) 3 .6H 2 O), aluminum nitrate (Al (NO 3 ) 3 · 9H 2 O), iron nitrate (Fe (NO 3 ) 3 · 9H 2 ). O). Subsequently, cerium dioxide powder is mixed into the aqueous solution. Water is evaporated from the aqueous solution to obtain a powder of a mixture containing the auxiliary component and cerium dioxide. And the said powder is baked in air | atmosphere at predetermined temperature (for example, 500-700 degreeC), The cerium dioxide particle 21 containing an auxiliary component is produced | generated (step S11). In the cerium dioxide particles 21, for example, oxide fine particles of the auxiliary component are aggregated together with the fine particles of cerium dioxide, or the auxiliary component is dissolved in the cerium dioxide crystal.

続いて、金属酸化物22の原料を水に溶解させた水溶液に、上記二酸化セリウム粒子21が混合される。金属酸化物22の原料は、鉄およびマンガンを含み、例えば硝酸鉄(Fe(NO・9HO)および硝酸マンガン(Mn(NO・6HO)である。当該水溶液から水を蒸発させ、鉄、マンガンおよび二酸化セリウム粒子21を含む混合物の粉末が得られる。そして、当該粉末を所定の温度(例えば、500〜700℃)にて大気中で焼成することにより、鉄およびマンガンを含む金属酸化物22が二酸化セリウム粒子21に保持(担持)される(ステップS12)。以上の処理により、酸化触媒2が製造される。典型的には、金属酸化物22は、二酸化セリウム粒子21の表面上において分散しつつ当該表面に付着する。 Subsequently, the cerium dioxide particles 21 are mixed in an aqueous solution in which the raw material of the metal oxide 22 is dissolved in water. The raw material of the metal oxide 22 contains iron and manganese, for example, iron nitrate (Fe (NO 3 ) 3 · 9H 2 O) and manganese nitrate (Mn (NO 3 ) 2 · 6H 2 O). Water is evaporated from the aqueous solution, and a powder of a mixture containing iron, manganese and cerium dioxide particles 21 is obtained. And the metal oxide 22 containing iron and manganese is hold | maintained (supported) by the cerium dioxide particle 21 by baking the said powder in air | atmosphere at predetermined temperature (for example, 500-700 degreeC) (step S12). ). The oxidation catalyst 2 is manufactured by the above process. Typically, the metal oxide 22 adheres to the surface of the cerium dioxide particles 21 while being dispersed on the surface.

<触媒担持構造体の製造方法>
次に、酸化触媒2を用いた触媒担持構造体1の製造について説明する。図7は、触媒担持構造体1を製造する処理の流れを示す図である。まず、ハニカム構造体10が作製されて準備される(ステップS21)。ハニカム構造体10の作製では、例えば、セラミック原料、バインダ、造孔材等を含む坏土を押出成形することにより、成形体が作製される。成形体は、筒状部材であり、内部が隔壁により複数のセルに仕切られる。各セルの一方の端部には、必要に応じて、封止部を形成するためのスラリーが充填される。そして、成形体を焼成することにより、ハニカム構造体10が作製される。成形体の焼成前に、成形体を乾燥および仮焼してもよい。
<Method for producing catalyst-supporting structure>
Next, production of the catalyst support structure 1 using the oxidation catalyst 2 will be described. FIG. 7 is a diagram showing a flow of processing for manufacturing the catalyst carrying structure 1. First, the honeycomb structure 10 is prepared and prepared (step S21). In the manufacture of the honeycomb structure 10, for example, a formed body is manufactured by extruding a clay containing a ceramic raw material, a binder, a pore former, and the like. The molded body is a cylindrical member, and the inside is partitioned into a plurality of cells by partition walls. One end of each cell is filled with a slurry for forming a sealing portion as necessary. And the honeycomb structure 10 is produced by baking a molded object. Prior to firing the molded body, the molded body may be dried and calcined.

ハニカム構造体10が準備されると、酸化触媒2を分散させた液(スラリー)が、ハニカム構造体10に対して付与される。一例では、酸化触媒2を水に分散させたスラリーにハニカム構造体10が浸漬される。ハニカム構造体10は、スラリーから取り出された後、乾燥される。そして、乾燥後のハニカム構造体10の重量が測定される。乾燥後のハニカム構造体10の重量が、予め測定したスラリー付与前の重量から所定量だけ増加するまで、ハニカム構造体10に対する上記スラリーの付与、および、乾燥が繰り返される。その後、ハニカム構造体10が、所定の温度(例えば、300℃)で焼成される。当該温度は、酸化触媒2の製造時の焼成温度、および、上記成形体の焼成温度よりも低いことが好ましい。このようにして、酸化触媒2がハニカム構造体10の隔壁12に担持される(ステップS22)。本実施の形態では、酸化触媒2は、隔壁12の細孔121内に担持される。以上の処理により、触媒担持構造体1が製造される。好ましい触媒担持構造体1は、貴金属の触媒を含まないため、低コストで製造することが可能である。   When the honeycomb structure 10 is prepared, a liquid (slurry) in which the oxidation catalyst 2 is dispersed is applied to the honeycomb structure 10. In one example, the honeycomb structure 10 is immersed in a slurry in which the oxidation catalyst 2 is dispersed in water. The honeycomb structure 10 is dried after being taken out of the slurry. Then, the weight of the honeycomb structure 10 after drying is measured. The application of the slurry to the honeycomb structure 10 and the drying are repeated until the weight of the honeycomb structure 10 after drying increases by a predetermined amount from the pre-measured weight before applying the slurry. Thereafter, the honeycomb structure 10 is fired at a predetermined temperature (for example, 300 ° C.). It is preferable that the said temperature is lower than the calcination temperature at the time of manufacture of the oxidation catalyst 2, and the calcination temperature of the said molded object. In this way, the oxidation catalyst 2 is supported on the partition walls 12 of the honeycomb structure 10 (step S22). In the present embodiment, the oxidation catalyst 2 is supported in the pores 121 of the partition walls 12. The catalyst carrying structure 1 is manufactured by the above processing. Since the preferred catalyst-supporting structure 1 does not contain a noble metal catalyst, it can be manufactured at low cost.

<触媒担持構造体の比較例との比較>
ここで、酸化触媒の二酸化セリウム粒子が補助成分を含まない触媒担持構造体を比較例の触媒担持構造体として、上記触媒担持構造体1と比較する。比較例の触媒担持構造体は、二酸化セリウム粒子が補助成分を含まない点を除き、触媒担持構造体1と同様である。
<Comparison with Comparative Example of Catalyst Support Structure>
Here, the catalyst support structure in which the cerium dioxide particles of the oxidation catalyst do not contain an auxiliary component is compared with the catalyst support structure 1 as a catalyst support structure of a comparative example. The catalyst support structure of the comparative example is the same as the catalyst support structure 1 except that the cerium dioxide particles do not contain an auxiliary component.

酸化触媒の担持量が互いに同じである触媒担持構造体1と比較例の触媒担持構造体とを比較した場合、触媒担持構造体1では、ススが堆積していないときの圧力損失(一定流量のガスに対する圧力損失であり、初期圧力損失とも呼ばれる。)が比較例の触媒担持構造体より小さくなる。圧力損失が小さくなる理由は明確ではないが、これらの触媒担持構造体の断面を走査型電子顕微鏡で観察した場合に、比較例の触媒担持構造体では、ある程度の量の酸化触媒が固まって(凝集して)隔壁に付着している部分が散見される。これに対し、触媒担持構造体1では、酸化触媒2の分散の度合いが、比較例の触媒担持構造体よりも高くなっている。したがって、触媒担持構造体1では、固まって存在する酸化触媒2(すなわち、細孔121をおよそ閉塞する酸化触媒2)が少ないことが、圧力損失が小さくなる一因であると考えられる。   When comparing the catalyst support structure 1 having the same amount of the oxidation catalyst supported with the catalyst support structure of the comparative example, the catalyst support structure 1 has a pressure loss (so that a constant flow rate) when no soot is deposited. This is a pressure loss with respect to gas and is also called an initial pressure loss.) Is smaller than that of the catalyst support structure of the comparative example. The reason why the pressure loss is small is not clear, but when the cross section of these catalyst supporting structures is observed with a scanning electron microscope, a certain amount of the oxidation catalyst is solidified in the catalyst supporting structure of the comparative example ( There are some parts that are agglomerated) and attached to the partition walls. On the other hand, in the catalyst supporting structure 1, the degree of dispersion of the oxidation catalyst 2 is higher than that of the catalyst supporting structure of the comparative example. Therefore, in the catalyst-supporting structure 1, it is considered that the fact that the oxidation catalyst 2 that is present in a solid state (that is, the oxidation catalyst 2 that substantially closes the pores 121) is small is one factor that reduces the pressure loss.

触媒担持構造体1において酸化触媒2の分散の度合いが高くなる理由としては、酸化触媒をハニカム構造体に担持させる際に、酸化触媒2の水中における分散状態が、比較例の酸化触媒と相違することが考えられる。具体的には、比較例の酸化触媒は、水中において凝集しやすいのに対し、酸化触媒2では、二酸化セリウム粒子21が補助成分を含むことにより、水中における表面電位が、比較例の酸化触媒の表面電位と相違し、水中において酸化触媒2が分散しやすくなると推測される。   The reason why the degree of dispersion of the oxidation catalyst 2 in the catalyst supporting structure 1 is high is that when the oxidation catalyst is supported on the honeycomb structure, the dispersion state of the oxidation catalyst 2 in water is different from the oxidation catalyst of the comparative example. It is possible. Specifically, the oxidation catalyst of the comparative example tends to agglomerate in water, whereas the oxidation catalyst 2 has an auxiliary component in the cerium dioxide particles 21, so that the surface potential in water is that of the oxidation catalyst of the comparative example. Unlike the surface potential, it is presumed that the oxidation catalyst 2 is easily dispersed in water.

触媒担持構造体を、図1の排ガス浄化システム8におけるCSF83に用いる場合、酸化触媒の担持量を増大することにより、NOからNOへの変換率(すなわち、NO変換率)を向上することが可能となる。一方、酸化触媒の担持量を増大すると、初期圧力損失も増大してしまう。排ガス浄化システム8では、許容可能な初期圧力損失の最大値が設定されており、圧力損失が低くなる酸化触媒2では、比較例の酸化触媒よりも触媒担持構造体における担持量を増大することが可能となる。その結果、酸化触媒2を担持したフィルタである触媒担持構造体1において、酸化性能を向上することができる。 When the catalyst supporting structure is used for the CSF 83 in the exhaust gas purification system 8 of FIG. 1, the conversion rate from NO to NO 2 (that is, the NO 2 conversion rate) is improved by increasing the supported amount of the oxidation catalyst. Is possible. On the other hand, when the amount of the oxidation catalyst supported is increased, the initial pressure loss also increases. In the exhaust gas purification system 8, the maximum allowable initial pressure loss is set, and in the oxidation catalyst 2 in which the pressure loss is low, the supported amount in the catalyst supporting structure can be increased as compared with the oxidation catalyst of the comparative example. It becomes possible. As a result, the oxidation performance of the catalyst-carrying structure 1 that is a filter carrying the oxidation catalyst 2 can be improved.

実際には、触媒担持構造体1では、酸化触媒2の分散の度合いが高いことにより、酸化触媒2における排ガスとの接触面積が増大する。また、補助成分の影響により、金属酸化物22の活性が高くなると考えられる。したがって、二酸化セリウム粒子21が補助成分を含む触媒担持構造体1では、このような観点においても、NO変換率が高くなると期待される。なお、触媒担持構造体1では、排ガスに含まれる炭化水素(HC)等のSOF(可溶性有機成分)や一酸化炭素(CO)の酸化も行われてよい。 Actually, in the catalyst-supporting structure 1, the contact area of the oxidation catalyst 2 with the exhaust gas increases due to the high degree of dispersion of the oxidation catalyst 2. Further, it is considered that the activity of the metal oxide 22 is increased due to the influence of the auxiliary component. Therefore, in the catalyst-supporting structure 1 in which the cerium dioxide particles 21 include the auxiliary component, it is expected that the NO 2 conversion rate is increased also from this viewpoint. In the catalyst support structure 1, oxidation of SOF (soluble organic component) such as hydrocarbon (HC) and carbon monoxide (CO) contained in the exhaust gas may be performed.

また、既述のように、CSF83は、捕集したススの燃焼により高温状態となる。上記高温状態を想定した熱処理(例えば、750℃での熱処理)を、比較例の触媒担持構造体、および、触媒担持構造体1の双方に行う場合、比較例の触媒担持構造体では、微粒子の凝集粒子である二酸化セリウム粒子が部分的に焼結して、酸化触媒の比表面積が大幅に減少する。その結果、酸化触媒と排ガスとの接触面積が減少し、比較例の触媒担持構造体では、熱処理後におけるNO変換率が低くなる。 In addition, as described above, the CSF 83 becomes a high temperature state by the combustion of the collected soot. When the heat treatment assuming the high temperature state (for example, heat treatment at 750 ° C.) is performed on both the catalyst support structure of the comparative example and the catalyst support structure 1, the catalyst support structure of the comparative example The cerium dioxide particles that are agglomerated particles are partially sintered, and the specific surface area of the oxidation catalyst is greatly reduced. As a result, the contact area between the oxidation catalyst and the exhaust gas decreases, and the NO 2 conversion rate after the heat treatment becomes low in the catalyst support structure of the comparative example.

これに対し、触媒担持構造体1では、二酸化セリウム粒子21が補助成分を含むことにより、焼結が抑制され、酸化触媒2の比表面積の減少を抑制することができる。その結果、熱処理前後におけるNO変換率の劣化率が小さくなり、酸化触媒の担持量が同じである比較例の触媒担持構造体よりも、熱処理後におけるNO変換率が高くなる。このように、酸化触媒2では、熱処理による触媒性能の低下を抑制する、すなわち、耐熱性を向上することができる。既述のように、酸化触媒2では、比較例の酸化触媒に比べて、触媒担持構造体における担持量を増大することができる。したがって、上記の比表面積の減少の抑制と相俟って、フィルタにおける酸化性能を大幅に向上することができる。なお、比表面積の測定は、例えばBET法が利用可能である。 On the other hand, in the catalyst-supporting structure 1, the cerium dioxide particles 21 contain an auxiliary component, so that sintering is suppressed and a decrease in the specific surface area of the oxidation catalyst 2 can be suppressed. As a result, the deterioration rate of the NO 2 conversion rate before and after the heat treatment is reduced, and the NO 2 conversion rate after the heat treatment is higher than that of the catalyst support structure of the comparative example in which the amount of the oxidation catalyst supported is the same. Thus, in the oxidation catalyst 2, it is possible to suppress a decrease in catalyst performance due to heat treatment, that is, to improve heat resistance. As described above, in the oxidation catalyst 2, the amount of the catalyst supported structure can be increased as compared with the oxidation catalyst of the comparative example. Therefore, coupled with the suppression of the decrease in the specific surface area, the oxidation performance of the filter can be greatly improved. For example, the BET method can be used for measuring the specific surface area.

<実施例>
次に、実施例について述べる。ここでは、実施例1〜11、並びに、比較例1〜3として、表1中に示す条件にて酸化触媒および触媒担持構造体を作製した。
<Example>
Next, examples will be described. Here, as Examples 1 to 11 and Comparative Examples 1 to 3, an oxidation catalyst and a catalyst-supporting structure were produced under the conditions shown in Table 1.

Figure 2019166451
Figure 2019166451

(実施例1〜11)
酸化触媒の作製では、まず、補助成分の硝酸塩(La(NO・6HO、Al(NO・9HO、Fe(NO・9HO)の粉末および水を秤量し、硝酸塩を容器内の水に溶解させて補助成分を含む水溶液を得た。実施例1〜6、9〜11では、ランタン(La)を補助成分として用い、実施例7では、アルミニウム(Al)を補助成分として用い、実施例8では、鉄(Fe)を補助成分として用いた。
(Examples 1 to 11)
In the preparation of the oxidation catalyst, first, powder of auxiliary nitrate (La (NO 3 ) 3 .6H 2 O, Al (NO 3 ) 3 · 9H 2 O, Fe (NO 3 ) 3 · 9H 2 O) and water Were weighed and nitrate was dissolved in water in the container to obtain an aqueous solution containing auxiliary components. In Examples 1 to 6 and 9 to 11, lanthanum (La) is used as an auxiliary component, in Example 7, aluminum (Al) is used as an auxiliary component, and in Example 8, iron (Fe) is used as an auxiliary component. It was.

次に、二酸化セリウム(CeO)の粉末を秤量して上記水溶液に混合した。補助成分とセリウム(Ce)との混合比(モル比)は、表1中の「La/Ceモル比」、「Al/Ceモル比」および「Fe/Ceモル比」に示す通りである。ホットスターラーを用いて水溶液を90℃で5時間ほど攪拌した。容器内の水分が無くなったことを目視により確認した後、乾燥機において容器内の混合物を90℃で5時間ほど十分に乾燥させ、補助成分および二酸化セリウムを含む粉末を得た。当該粉末を大気中において500〜700℃で焼成し、その後、乳鉢で解砕した。解砕した粉末を200メッシュの篩を通して整粒し、補助成分を含む二酸化セリウム粒子を得た。 Next, cerium dioxide (CeO 2 ) powder was weighed and mixed with the aqueous solution. The mixing ratio (molar ratio) between the auxiliary component and cerium (Ce) is as shown in “La / Ce molar ratio”, “Al / Ce molar ratio” and “Fe / Ce molar ratio” in Table 1. The aqueous solution was stirred at 90 ° C. for about 5 hours using a hot stirrer. After visually confirming that the water in the container had disappeared, the mixture in the container was sufficiently dried at 90 ° C. for about 5 hours in a dryer to obtain a powder containing auxiliary components and cerium dioxide. The powder was fired at 500 to 700 ° C. in the air, and then crushed in a mortar. The pulverized powder was sized through a 200-mesh sieve to obtain cerium dioxide particles containing auxiliary components.

続いて、硝酸鉄(Fe(NO・9HO)の粉末、硝酸マンガン(Mn(NO・6HO)の粉末および水を秤量し、これらの粉末を容器内の水に溶解させて鉄(Fe)およびマンガン(Mn)を含む水溶液を得た。鉄とマンガンとの混合比(モル比)は、表1中の「Fe/Mnモル比」に示す通りである。補助成分を含む二酸化セリウム粒子を秤量して上記水溶液に混合し、ホットスターラーを用いて水溶液を90℃で5時間ほど攪拌した。容器内の水分が無くなったことを目視により確認した後、乾燥機において容器内の混合物を90℃で5時間ほど十分に乾燥させ、鉄、マンガンおよび二酸化セリウム粒子を含む粉末を得た。乾燥した当該粉末を大気中において700℃で焼成し、その後、乳鉢で解砕した。解砕した粉末を200メッシュの篩を通して整粒し、鉄およびマンガンの酸化物(金属酸化物)を保持する二酸化セリウム粒子を得た。このようにして、実施例1〜11の酸化触媒を作製した。 Subsequently, iron nitrate (Fe (NO 3 ) 3 · 9H 2 O) powder, manganese nitrate (Mn (NO 3 ) 2 · 6H 2 O) powder and water were weighed, and these powders were weighed in water in the container. To obtain an aqueous solution containing iron (Fe) and manganese (Mn). The mixing ratio (molar ratio) of iron and manganese is as shown in “Fe / Mn molar ratio” in Table 1. The cerium dioxide particles containing the auxiliary component were weighed and mixed with the aqueous solution, and the aqueous solution was stirred at 90 ° C. for about 5 hours using a hot stirrer. After visually confirming that the moisture in the container had disappeared, the mixture in the container was sufficiently dried at 90 ° C. for about 5 hours in a dryer to obtain a powder containing iron, manganese and cerium dioxide particles. The dried powder was fired at 700 ° C. in the air, and then crushed in a mortar. The pulverized powder was sized through a 200-mesh sieve to obtain cerium dioxide particles retaining iron and manganese oxides (metal oxides). Thus, the oxidation catalyst of Examples 1-11 was produced.

実施例1〜11(並びに、比較例1〜3)の酸化触媒における構成成分のモル比率を表2に示す。表2では、各構成成分のモル比率を質量比率に変換した値、および、二酸化セリウム粒子に含まれるセリウムに対する補助成分の酸化物換算での質量比率(すなわち、補助成分の酸化物の質量比率を二酸化セリウムの質量比率で割った値)も示している。なお、酸化触媒の全体に対する金属酸化物の質量比率は、いずれも20質量%である。   Table 2 shows the molar ratios of the constituent components in the oxidation catalysts of Examples 1 to 11 (and Comparative Examples 1 to 3). In Table 2, the value obtained by converting the molar ratio of each constituent component into the mass ratio, and the mass ratio in terms of oxide of the auxiliary component with respect to cerium contained in the cerium dioxide particles (that is, the mass ratio of the oxide of the auxiliary component) The value divided by the mass ratio of cerium dioxide) is also shown. In addition, all the mass ratios of the metal oxide with respect to the whole oxidation catalyst are 20 mass%.

Figure 2019166451
Figure 2019166451

触媒担持構造体の作製では、まず、粉末状の炭化珪素(SiC)、結合材原料、造孔材、バインダ、および、水を混合して、成形原料を調製した。実施例1〜8では、結合材原料として金属珪素を用い、実施例9〜11では、結合材原料としてコージェライト化原料を用いた。コージェライト化原料とは、焼成によりコージェライト結晶が生成する原料である。成形原料を混練することにより坏土を形成し、坏土を押出成形することにより、ハニカム状の成形体を得た。そして、成形体を乾燥および焼成することにより、ハニカム構造体を得た。   In producing the catalyst-supporting structure, first, powdered silicon carbide (SiC), a binder material, a pore former, a binder, and water were mixed to prepare a molding material. In Examples 1 to 8, metal silicon was used as a binder material, and in Examples 9 to 11, a cordierite forming material was used as a binder material. The cordierite-forming raw material is a raw material from which cordierite crystals are generated by firing. A kneaded material was kneaded to form a kneaded material, and the kneaded material was extruded to obtain a honeycomb-shaped formed body. The formed body was dried and fired to obtain a honeycomb structure.

表1では、基材の材質の欄において、実施例1〜8のハニカム構造体を「Si結合SiC」と示し、実施例9〜11のハニカム構造体を「コージェライト」と示している。実施例1〜8のハニカム構造体における開気孔率は41.0%であり、平均細孔径は11.0μmであった。実施例9〜11のハニカム構造体における開気孔率は58.0%であり、平均細孔径は13.0μmであった。開気孔率はアルキメデス法を用いて測定し、平均細孔径は水銀圧入法(JIS R1655準拠)を用いて測定した。   In Table 1, in the column of the material of the base material, the honeycomb structures of Examples 1 to 8 are indicated as “Si-bonded SiC”, and the honeycomb structures of Examples 9 to 11 are indicated as “Cordierite”. The open porosity of the honeycomb structures of Examples 1 to 8 was 41.0%, and the average pore diameter was 11.0 μm. The open porosity in the honeycomb structures of Examples 9 to 11 was 58.0%, and the average pore diameter was 13.0 μm. The open porosity was measured using the Archimedes method, and the average pore diameter was measured using the mercury intrusion method (based on JIS R1655).

続いて、上記酸化触媒の粉末および水を秤量し、当該粉末を容器内の水に混合してスラリーを得た。当該スラリーにハニカム構造体の全体を浸漬し、暫くしてからハニカム構造体を取り出した。ハニカム構造体に対してエアーガンを用いてエアーを吹き付け、ハニカム構造体の外面に付着したスラリーを除去した。その後、乾燥機においてハニカム構造体を90℃で2時間ほど十分に乾燥させ、ハニカム構造体の重量を測定した。乾燥後のハニカム構造体の重量が、予め測定したスラリー付与前の重量から、表1の「触媒担持量」に示す酸化触媒の担持量に対応する量だけ増加するまで、ハニカム構造体のスラリーへの浸漬、ハニカム構造体の乾燥、および、ハニカム構造体の重量測定を繰り返した。その後、ハニカム構造体を300℃で焼成した。このようにして、ハニカム構造体の隔壁の細孔内に酸化触媒を担持させ、実施例1〜11の触媒担持構造体を得た。   Subsequently, the powder of the oxidation catalyst and water were weighed, and the powder was mixed with water in a container to obtain a slurry. The entire honeycomb structure was immersed in the slurry, and after a while, the honeycomb structure was taken out. Air was blown onto the honeycomb structure using an air gun to remove the slurry adhering to the outer surface of the honeycomb structure. Thereafter, the honeycomb structure was sufficiently dried at 90 ° C. for about 2 hours in a dryer, and the weight of the honeycomb structure was measured. Until the weight of the honeycomb structure after drying increases from the pre-measured weight before slurry addition by an amount corresponding to the supported amount of oxidation catalyst shown in “Catalyst loading” in Table 1, , Drying of the honeycomb structure, and weight measurement of the honeycomb structure were repeated. Thereafter, the honeycomb structure was fired at 300 ° C. In this manner, the oxidation catalyst was supported in the pores of the partition walls of the honeycomb structure, and catalyst supporting structures of Examples 1 to 11 were obtained.

(比較例1〜3)
比較例1〜3の触媒担持構造体の作製は、酸化触媒の作製において補助成分(ランタン、アルミニウムおよび鉄)を用いなかった点を除き、実施例1〜11と同じである。なお、比較例1〜3では、ハニカム構造体の作製の際に、結合材原料として金属珪素を用いた。
(Comparative Examples 1-3)
Production of the catalyst-supporting structures of Comparative Examples 1 to 3 is the same as that of Examples 1 to 11 except that auxiliary components (lanthanum, aluminum, and iron) were not used in the production of the oxidation catalyst. In Comparative Examples 1 to 3, metal silicon was used as a binder raw material when the honeycomb structure was manufactured.

(酸化触媒の構成結晶相の同定)
作製した酸化触媒における構成結晶相を同定した。構成結晶相の同定では、まず、X線回折装置を用いてX線回折パターンを得た。X線回折装置としては、回転対陰極型X線回折装置(理学電機社製、RINT)を用いた。X線回折測定の条件は、CuKα線源、50kV、300mA、2θ=10〜60°とした。X線回折データの解析は、MDI社製の「X線データ解析ソフトJADE7」を用いて行い、酸化触媒の構成結晶相を同定した。実施例1〜11、並びに、比較例1〜3の酸化触媒に対する構成結晶相の同定結果を表3に示す。表3では、後述の熱処理の前後における構成結晶相の同定結果を示している。表3において、各結晶相の列に記す「〇」は当該結晶相の存在を意味し、「−」は当該結晶相の不存在を意味する。実施例1〜4,7〜11、並びに、比較例1〜3では、熱処理後においてFeMnOの存在が確認された。
(Identification of constituent crystal phase of oxidation catalyst)
The constituent crystal phases in the prepared oxidation catalyst were identified. In identifying the constituent crystal phases, first, an X-ray diffraction pattern was obtained using an X-ray diffractometer. As the X-ray diffractometer, a rotating counter-cathode X-ray diffractometer (RINT, manufactured by Rigaku Corporation) was used. The conditions for the X-ray diffraction measurement were a CuKα radiation source, 50 kV, 300 mA, and 2θ = 10 to 60 °. The analysis of the X-ray diffraction data was performed using “X-ray data analysis software JADE7” manufactured by MDI, and the constituent crystal phase of the oxidation catalyst was identified. Table 3 shows the identification results of the constituent crystal phases for the oxidation catalysts of Examples 1 to 11 and Comparative Examples 1 to 3. Table 3 shows the identification results of the constituent crystal phases before and after the heat treatment described later. In Table 3, “◯” written in each crystal phase column means the presence of the crystal phase, and “-” means the absence of the crystal phase. In Examples 1 to 4, 7 to 11 and Comparative Examples 1 to 3, the presence of FeMnO 3 was confirmed after the heat treatment.

Figure 2019166451
Figure 2019166451

(耐熱試験)
耐熱試験として、各触媒担持構造体において、熱処理前後におけるNO変換率を測定した。実施例1〜11、並びに、比較例1〜3の触媒担持構造体に対する耐熱試験の結果を表4に示す。表4では、熱処理前の各触媒担持構造体に対する、一定流量のガスにおける初期の圧力損失(初期圧力損失)の測定結果も示している。
(Heat resistance test)
As a heat resistance test, the NO 2 conversion rate before and after the heat treatment was measured in each catalyst supporting structure. Table 4 shows the results of heat resistance tests on the catalyst-supporting structures of Examples 1 to 11 and Comparative Examples 1 to 3. Table 4 also shows the measurement results of the initial pressure loss (initial pressure loss) in the gas at a constant flow rate for each catalyst supporting structure before the heat treatment.

Figure 2019166451
Figure 2019166451

熱処理では、酸素(O)10%、水蒸気(HO)10%、窒素(N)80%の混合ガスを750℃に加熱し、当該混合ガス中にて触媒担持構造体を16時間保持した。NO変換率の測定では、各触媒担持構造体を直径25.4mm×長さ50.8mmの試料片に加工し、試料片の外周面をコートした。これを測定試料として自動車排ガス分析装置(堀場製作所社製、SIGU1000)を用いて評価を行った。具体的には、昇温炉内の反応管に上記測定試料をセットし、250℃に保持した。また、一酸化窒素(NO)200ppm、酸素10%、残りが窒素である混合ガスを250℃に加熱し、反応管内の測定試料に導入した。そして、測定試料から排出されたガス(排ガス)を排ガス測定装置(堀場製作所社製、MEXA−6000FT)を用いて分析し、排ガスのNO濃度およびNO濃度を得た。NO変換率は、NO濃度をa、NO濃度をbとして、((b/(a+b)))により求めた。 In the heat treatment, a mixed gas of 10% oxygen (O 2 ), 10% water vapor (H 2 O), and 80% nitrogen (N 2 ) is heated to 750 ° C., and the catalyst-supporting structure is heated in the mixed gas for 16 hours. Retained. In the measurement of the NO 2 conversion rate, each catalyst supporting structure was processed into a sample piece having a diameter of 25.4 mm and a length of 50.8 mm, and the outer peripheral surface of the sample piece was coated. Using this as a measurement sample, an automobile exhaust gas analyzer (manufactured by Horiba, Ltd., SIGU1000) was used for evaluation. Specifically, the measurement sample was set in a reaction tube in a temperature raising furnace and maintained at 250 ° C. In addition, a mixed gas of nitrogen monoxide (NO) 200 ppm, oxygen 10%, and the remainder nitrogen was heated to 250 ° C. and introduced into the measurement sample in the reaction tube. The measurement gas measuring device gas (the exhaust gas) discharged from the sample (Horiba Ltd., MEXA-6000FT) analyzes were used to obtain NO concentration and NO 2 concentration in the exhaust gas. The NO 2 conversion rate was determined by ((b / (a + b))) where the NO concentration was a and the NO 2 concentration was b.

表4では、NO変換率の劣化率も示している。NO変換率の劣化率は、熱処理前のNO変換率をc、熱処理後のNO変換率をdとして、((c−d)/c)により求めた。表4では、さらに「総合評価」の項目を設けている。総合評価については、熱処理後のNO変換率が15%以上であり、かつ、初期圧力損失が2.15kPa以下である触媒担持構造体に「〇」を付し、熱処理後のNO変換率が15%未満である、または、初期圧力損失が2.15kPaを超える触媒担持構造体に「×」を付している。 Table 4 also shows the deterioration rate of the NO 2 conversion rate. Deterioration rate of NO 2 conversion rate, the NO 2 conversion rate before the heat treatment c, and NO 2 conversion rate after the heat treatment as d, was determined by ((c-d) / c ). In Table 4, an item of “total evaluation” is further provided. For comprehensive evaluation, the catalyst-supporting structure having a NO 2 conversion rate after heat treatment of 15% or more and an initial pressure loss of 2.15 kPa or less is marked with “◯”, and the NO 2 conversion rate after heat treatment Is less than 15%, or “x” is attached to the catalyst-supporting structure in which the initial pressure loss exceeds 2.15 kPa.

表4のように、二酸化セリウム粒子が補助成分(ランタン、アルミニウムおよび鉄)を含む実施例1〜11の触媒担持構造体では、二酸化セリウム粒子が補助成分を含まない比較例1〜3の触媒担持構造体に比べて、NO変換率の劣化率が低くなった。よって、二酸化セリウム粒子が補助成分を含むことにより、酸化触媒において耐熱性が向上することが判る。また、基材の種類、触媒担持量、および、鉄とマンガンとの混合比(Fe/Mnモル比)が同じである比較例2と実施例1,3,4,7,8、比較例3と実施例2をそれぞれ比べると、実施例の触媒担持構造体では、比較例の触媒担持構造体よりも初期圧力損失が低くなった。さらに、NO変換率の劣化率の低下により、熱処理後のNO変換率も高くなった。 As shown in Table 4, in the catalyst support structures of Examples 1 to 11 in which the cerium dioxide particles contain auxiliary components (lanthanum, aluminum and iron), the catalyst support of Comparative Examples 1 to 3 in which the cerium dioxide particles do not contain the auxiliary components Compared to the structure, the deterioration rate of the NO 2 conversion rate was low. Therefore, it turns out that heat resistance improves in an oxidation catalyst because a cerium dioxide particle contains an auxiliary component. Comparative Example 2 and Examples 1, 3, 4, 7, 8 and Comparative Example 3 in which the type of base material, the amount of catalyst supported, and the mixing ratio of iron and manganese (Fe / Mn molar ratio) are the same. When comparing Example 2 with Example 2, the catalyst support structure of Example had a lower initial pressure loss than the catalyst support structure of Comparative Example. Furthermore, the NO 2 conversion rate after the heat treatment also increased due to a decrease in the deterioration rate of the NO 2 conversion rate.

<変形例>
上記酸化触媒2、触媒担持構造体1、酸化触媒の製造方法、および、触媒担持構造体の製造方法では様々な変形が可能である。
<Modification>
Various modifications can be made to the oxidation catalyst 2, the catalyst support structure 1, the method for manufacturing the oxidation catalyst, and the method for manufacturing the catalyst support structure.

酸化触媒2を担持するセル構造体では、内部が隔壁により複数のセルに仕切られものであるならば、様々な形状が採用されてよい。酸化触媒2において、二酸化セリウム粒子21が、金属酸化物22に加えて他の物質を保持してもよい。   In the cell structure carrying the oxidation catalyst 2, various shapes may be adopted as long as the inside is partitioned into a plurality of cells by partition walls. In the oxidation catalyst 2, the cerium dioxide particles 21 may hold other substances in addition to the metal oxide 22.

酸化触媒の製造方法、および、触媒担持構造体の製造方法は、上述のものには限定されず、様々に変更されてよい。酸化触媒2は、フィルタ以外の様々な用途に用いられてよい。   The method for producing the oxidation catalyst and the method for producing the catalyst supporting structure are not limited to those described above, and may be variously changed. The oxidation catalyst 2 may be used for various purposes other than the filter.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

1 触媒担持構造体
2 酸化触媒
10 ハニカム構造体
12 隔壁
13 セル
21 二酸化セリウム粒子
22 金属酸化物
S11,S12,S21,S22 ステップ
DESCRIPTION OF SYMBOLS 1 Catalyst support structure 2 Oxidation catalyst 10 Honeycomb structure 12 Partition 13 Cell 21 Cerium dioxide particle 22 Metal oxide S11, S12, S21, S22 Step

Claims (8)

酸化触媒であって、
ランタン、アルミニウムおよび鉄の少なくとも一種である補助成分を含む二酸化セリウム粒子と、
前記二酸化セリウム粒子に保持されるとともに、鉄およびマンガンを含む金属酸化物と、
を備えることを特徴とする酸化触媒。
An oxidation catalyst,
Cerium dioxide particles containing an auxiliary component that is at least one of lanthanum, aluminum and iron;
A metal oxide containing iron and manganese and held in the cerium dioxide particles;
An oxidation catalyst comprising:
請求項1に記載の酸化触媒であって、
前記補助成分の質量の比率が、前記二酸化セリウム粒子に含まれるセリウムに対して酸化物換算で3〜45質量%であることを特徴とする酸化触媒。
The oxidation catalyst according to claim 1,
The oxidation catalyst, wherein the mass ratio of the auxiliary component is 3 to 45 mass% in terms of oxide with respect to cerium contained in the cerium dioxide particles.
請求項1または2に記載の酸化触媒であって、
前記金属酸化物の質量の比率が、前記酸化触媒の全体に対して5〜40質量%であることを特徴とする酸化触媒。
The oxidation catalyst according to claim 1 or 2,
The oxidation catalyst, wherein the mass ratio of the metal oxide is 5 to 40% by mass with respect to the whole oxidation catalyst.
触媒担持構造体であって、
内部が隔壁により複数のセルに仕切られたセル構造体と、
前記隔壁に担持される、請求項1ないし3のいずれか1つに記載の酸化触媒と、
を備えることを特徴とする触媒担持構造体。
A catalyst carrying structure,
A cell structure that is internally partitioned into a plurality of cells by partition walls;
The oxidation catalyst according to any one of claims 1 to 3, supported on the partition wall;
A catalyst-supporting structure comprising:
請求項4に記載の触媒担持構造体であって、
貴金属を含まないことを特徴とする触媒担持構造体。
The catalyst-supporting structure according to claim 4,
A catalyst-supporting structure characterized by not containing a noble metal.
酸化触媒の製造方法であって、
ランタン、アルミニウムおよび鉄の少なくとも一種である補助成分を含む二酸化セリウム粒子を生成する工程と、
鉄およびマンガンを含む金属酸化物を前記二酸化セリウム粒子に保持させる工程と、
を備えることを特徴とする酸化触媒の製造方法。
A method for producing an oxidation catalyst, comprising:
Producing cerium dioxide particles comprising an auxiliary component that is at least one of lanthanum, aluminum and iron;
Holding the metal oxide containing iron and manganese in the cerium dioxide particles;
A process for producing an oxidation catalyst, comprising:
触媒担持構造体の製造方法であって、
内部が隔壁により複数のセルに仕切られたセル構造体を準備する準備工程と、
請求項6に記載の酸化触媒の製造方法により製造された酸化触媒を、前記隔壁に担持させる担持工程と、
を備えることを特徴とする触媒担持構造体の製造方法。
A method for producing a catalyst-supporting structure, comprising:
A preparation step of preparing a cell structure whose interior is partitioned into a plurality of cells by a partition;
A supporting step of supporting the oxidation catalyst produced by the method for producing an oxidation catalyst according to claim 6 on the partition wall;
A process for producing a catalyst-supporting structure, comprising:
請求項7に記載の触媒担持構造体の製造方法であって、
前記担持工程において、前記セル構造体に対して前記酸化触媒を分散させた液が付与されることを特徴とする触媒担持構造体の製造方法。
It is a manufacturing method of the catalyst carrying structure according to claim 7,
In the supporting step, a liquid in which the oxidation catalyst is dispersed is applied to the cell structure.
JP2018055160A 2018-03-22 2018-03-22 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure. Active JP7076241B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018055160A JP7076241B2 (en) 2018-03-22 2018-03-22 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure.
US16/295,137 US10946336B2 (en) 2018-03-22 2019-03-07 Oxidation catalyst, catalyst support structure, method of producing oxidation catalyst, and method of producing catalyst support structure
CN201910187009.0A CN110292934B (en) 2018-03-22 2019-03-13 Oxidation catalyst and method for producing same, catalyst-supporting structure, and method for producing same
DE102019106906.8A DE102019106906A1 (en) 2018-03-22 2019-03-19 An oxidation catalyst, a catalyst support structure, a process for producing the oxidation catalyst, and a process for producing the catalyst support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055160A JP7076241B2 (en) 2018-03-22 2018-03-22 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure.

Publications (2)

Publication Number Publication Date
JP2019166451A true JP2019166451A (en) 2019-10-03
JP7076241B2 JP7076241B2 (en) 2022-05-27

Family

ID=67848007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055160A Active JP7076241B2 (en) 2018-03-22 2018-03-22 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure.

Country Status (4)

Country Link
US (1) US10946336B2 (en)
JP (1) JP7076241B2 (en)
CN (1) CN110292934B (en)
DE (1) DE102019106906A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076241B2 (en) * 2018-03-22 2022-05-27 日本碍子株式会社 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure.
JP7284837B2 (en) * 2020-02-04 2023-05-31 日本碍子株式会社 Porous composite and method for producing porous composite
JP7379248B2 (en) * 2020-03-27 2023-11-14 日本碍子株式会社 Porous ceramic structure and method for manufacturing porous ceramic structure
CN112832889B (en) * 2021-01-08 2022-05-13 广西玉柴机器股份有限公司 Method for diagnosing high-sulfur diesel used by engine and related device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271538A (en) * 1985-09-24 1987-04-02 Mazda Motor Corp Catalyst for cleaning up exhaust gas of engine
JPS637841A (en) * 1986-06-30 1988-01-13 エンゲルハ−ド・コ−ポレ−シヨン Production of catalyst composition
JP2009285619A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
US8765085B2 (en) * 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
JP2017185481A (en) * 2016-03-30 2017-10-12 日本碍子株式会社 Honeycomb structure

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435639B2 (en) * 2006-09-05 2019-10-08 Cerion, Llc Fuel additive containing lattice engineered cerium dioxide nanoparticles
GB0620883D0 (en) * 2006-10-20 2006-11-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine
JP4858463B2 (en) * 2007-04-27 2012-01-18 マツダ株式会社 Exhaust gas purification catalyst and method for producing the same
US20090297418A1 (en) * 2008-05-28 2009-12-03 Battelle Memorial Institute Composite Catalyst Materials And Method For The Selective Reduction Of Nitrogen Oxides
EP2127729A1 (en) * 2008-05-30 2009-12-02 Mazda Motor Corporation Exhaust gas purification catalyst
JP5290062B2 (en) * 2009-06-17 2013-09-18 株式会社豊田中央研究所 Exhaust gas purification catalyst
CN101690890A (en) * 2009-09-23 2010-04-07 中国海洋石油总公司 Method for preparing high-thermal-stability cerium-based oxygen storage material
US8959894B2 (en) * 2011-03-24 2015-02-24 GM Global Technology Operations LLC Manganese-based oxides promoted lean NOx trap (LNT) catalyst
US9387464B2 (en) * 2012-04-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Iron oxide-zirconia composite oxide and method for producing same, and exhaust gas purification catalyst
JP5817782B2 (en) * 2012-06-13 2015-11-18 株式会社豊田中央研究所 Hydrogen production catalyst, hydrogen production method and hydrogen production apparatus using the same
CN104968431A (en) * 2012-11-29 2015-10-07 巴斯夫欧洲公司 Diesel oxidation catalyst comprising palladium, gold and ceria
EP2939741A4 (en) * 2012-12-27 2016-08-17 Mitsui Mining & Smelting Co Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP5816648B2 (en) * 2013-04-18 2015-11-18 三井金属鉱業株式会社 Exhaust gas purification catalyst composition and exhaust gas purification catalyst
CN103464152B (en) * 2013-09-29 2015-03-04 福州大学 Catalyst for tail gas purification and preparation method thereof
JP6971854B2 (en) * 2015-02-09 2021-11-24 ビーエーエスエフ コーポレーション Diesel oxidation catalyst
JP6755306B2 (en) * 2015-09-29 2020-09-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalytic filter with soot catalyst and SCR catalyst
JP6709652B2 (en) 2016-03-24 2020-06-17 日本碍子株式会社 Porous ceramic structure
US9945279B2 (en) 2016-03-30 2018-04-17 Ngk Insulators, Ltd. Honeycomb structure
US10265684B2 (en) * 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
JP7076241B2 (en) * 2018-03-22 2022-05-27 日本碍子株式会社 Oxidation catalyst powder, catalyst-supported structure, method for producing oxidation catalyst powder, and method for producing catalyst-supported structure.
CN109603822A (en) * 2018-12-26 2019-04-12 中自环保科技股份有限公司 A kind of polymolecularity precious metal oxidation catalyst of hydrothermal aging resistant to high temperatures and its preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271538A (en) * 1985-09-24 1987-04-02 Mazda Motor Corp Catalyst for cleaning up exhaust gas of engine
JPS637841A (en) * 1986-06-30 1988-01-13 エンゲルハ−ド・コ−ポレ−シヨン Production of catalyst composition
JP2009285619A (en) * 2008-05-30 2009-12-10 Mazda Motor Corp Exhaust gas purification catalyst
US8765085B2 (en) * 2012-04-26 2014-07-01 Basf Corporation Base metal catalyst and method of using same
JP2017185481A (en) * 2016-03-30 2017-10-12 日本碍子株式会社 Honeycomb structure

Also Published As

Publication number Publication date
US20190291050A1 (en) 2019-09-26
CN110292934A (en) 2019-10-01
DE102019106906A1 (en) 2019-09-26
CN110292934B (en) 2023-12-29
US10946336B2 (en) 2021-03-16
JP7076241B2 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
JP6809942B2 (en) Honeycomb structure
JP6577895B2 (en) Honeycomb structure
CN110292934B (en) Oxidation catalyst and method for producing same, catalyst-supporting structure, and method for producing same
US9945279B2 (en) Honeycomb structure
JP6692256B2 (en) Porous ceramic structure
JP2020535960A (en) SCR catalyst composition, catalyst, and catalyst system incorporating such catalyst
EP2747878B1 (en) Process for preparing an oxidizing catalyst and a post-treatment system of an exhaust gas
CN113441149B (en) Porous ceramic structure and method for producing porous ceramic structure
US11731111B2 (en) Porous ceramic structure and method of producing porous ceramic structure
JP2019525828A (en) Catalyst articles containing coprecipitates of vanadia, tungsta and titania
JP2010227799A (en) Exhaust gas purifying catalyst
CN111686753B (en) Porous ceramic structure
CN113272056B (en) porous ceramic structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150