JP2019161583A - 画像処理装置、画像処理方法、及びプログラム - Google Patents

画像処理装置、画像処理方法、及びプログラム Download PDF

Info

Publication number
JP2019161583A
JP2019161583A JP2018049364A JP2018049364A JP2019161583A JP 2019161583 A JP2019161583 A JP 2019161583A JP 2018049364 A JP2018049364 A JP 2018049364A JP 2018049364 A JP2018049364 A JP 2018049364A JP 2019161583 A JP2019161583 A JP 2019161583A
Authority
JP
Japan
Prior art keywords
image
defocus
defocus map
subject
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018049364A
Other languages
English (en)
Other versions
JP7034781B2 (ja
Inventor
保彦 岩本
Yasuhiko Iwamoto
保彦 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018049364A priority Critical patent/JP7034781B2/ja
Publication of JP2019161583A publication Critical patent/JP2019161583A/ja
Application granted granted Critical
Publication of JP7034781B2 publication Critical patent/JP7034781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】デフォーカスマップを用いた被写体探索処理及び被写体領域補正処理をともに精度よく実現できるようにする。【解決手段】画像及びそれぞれの画像について生成時のブロックのサイズが異なる複数のデフォーカスマップを取得し、取得した画像及びデフォーカスマップに基づいてテンプレートマッチング部が被写体探索処理を行い、取得した画像及びデフォーカスマップに基づいて大きさ推定部が被写体領域補正処理を行うとともに、複数のデフォーカスマップの内から被写体領域補正処理に用いるデフォーカスマップを選択して適宜切り替えるようにして、被写体探索処理及び被写体領域補正処理をともに精度よく実現できるようにする。【選択図】図1

Description

本発明は、取得される複数の画像において被写体領域を特定し、特定された被写体領域に応じた画像処理を行う画像処理装置、画像処理方法、及びプログラムに関する。
時系列に並んだ複数の画像において画像解析により被写体の存在する被写体領域をそれぞれ特定する被写体探索処理を行う技術がある。特許文献1では、テンプレートマッチングを用いて被写体探索処理を行うとともに、被写体領域を含む周辺領域の画像情報を参照して被写体領域を補正する被写体領域補正処理を行う技術の開示がある。
特開2014−127154号公報
しかしながら、特許文献1に記載の方法では、単に画像信号のレベルから被写体領域とそれ以外の領域を分離するため、同色だが異なる被写体が近い場合など、色や輝度によって両者を分離できない場合には被写体領域を正しく特定できないことがある。
上記課題に鑑み、本発明は、奥行き情報を用いて被写体領域を精度よく特定する画像処理装置及び画像処理方法を提供することを目的とする。
本発明に係る画像処理装置は、画像を取得する第1の取得手段と、前記画像のそれぞれについて、生成時のブロックのサイズが異なる複数のデフォーカスマップを取得する第2の取得手段と、前記画像及び前記デフォーカスマップに基づいて、対象の被写体を探索する探索手段と、前記画像及び前記デフォーカスマップに基づいて、前記探索手段が決定した被写体領域を補正する補正手段と、前記複数のデフォーカスマップの内から前記補正手段での前記被写体領域の補正に用いる前記デフォーカスマップを選択する選択手段とを有することを特徴とする。
本発明によれば、画像から被写体領域を特定する際にデフォーカス情報を用いることで、精度よく被写体領域を特定することができる。
本発明の実施形態における撮像装置の構成例を示す図である。 本実施形態における撮像素子の構成例を示す図である。 本実施形態における被写体探索処理を説明する図である。 本実施形態における視差画像とデフォーカスマップの例を示す図である。 本実施形態における撮像装置の処理の例を示すフローチャートである。 本実施形態における被写体探索処理の例を示すフローチャートである。 本実施形態におけるデフォーカスマップ選択処理の例を示すフローチャートである。 本実施形態における視差画像とデフォーカスマップの例を示す図である。 本実施形態における視差画像とデフォーカスマップの例を示す図である。 本実施形態におけるラベリング処理の例を示す図である。 本実施形態における被写体領域補正処理の例を示すフローチャートである。 本実施形態におけるラベリングしたデフォーカスマップを用いた被写体領域補正処理の例を示す図である。
以下、本発明の実施形態を図面に基づいて説明する。
<撮像システム>
本発明の一実施形態における撮像装置について説明する。
本実施形態では、時系列に並んだ複数の画像に対して特許文献1のような被写体探索処理と被写体領域補正処理を行う際に、瞳分割された被写体光を受光する撮像素子からの出力を用いて位相差検出方式で求められたデフォーカス情報を用いる。
ここで、瞳分割型撮像素子からの出力を用いて位相差検出方式により生成されるデフォーカスマップは、相関演算時に用いる微小ブロックの大きさにより異なる性質を持つ。具体的には、微小ブロックの大きさが小さいと相関演算に用いるデータ量が少なくなり、同一距離である領域のデフォーカス量がばらつくことがある。一方、微小ブロックの大きさが大きいと、遠近競合の影響によりデフォーカスマップ上で被写体輪郭部分の形状が正確に捉えられないことがある。
また、被写体探索処理と被写体領域補正処理とでは重視すべき性能が異なる。被写体探索処理は、画像の広い領域から大まかな被写体位置を探索する処理であるので、被写体と背景との境界を識別する精度は低くても良いが、背景を安定的に識別できる必要がある。一方、被写体領域補正処理は、おおまかに特定した被写体位置から被写体領域を細かく補正する処理であるので、背景を安定的に識別できなくても良いが、被写体と背景との境界を識別する精度は高い必要がある。
すなわち、同じ大きさの微小ブロックを用いて生成されたデフォーカスマップを被写体探索処理及び被写体領域補正処理のそれぞれに用いる場合、両方の処理を精度よく実現することができないことがある。
そこで、本実施形態では、デフォーカス情報を算出する最小単位であるブロックのサイズが異なる複数のデフォーカスマップを生成する。それらを被写体探索処理と被写体領域補正処理とで選択的に用いることで、両処理の精度を上げ、被写体領域の特定精度を上げることを特徴とする。
図1は、本実施形態における撮像装置100の構成例を示すブロック図である。本実施形態における撮像装置100は、例えば被写体の画像を撮像するデジタルカメラとして具現化される。また、本実施形態における撮像装置100は、時系列に並んだ画像に含まれる被写体を追跡する被写体領域追跡装置としても機能する。本実施形態における撮像装置100は、撮像光学系101、撮像素子102、アナログ信号処理部103、A/D(アナログ/デジタル)変換部104、制御部105、画像処理部106、表示部107、及び記録媒体108を有する。また、撮像装置100は、被写体指定部109、被写体追跡部110、ROM(Read Only Memory)121、及びRAM(Random Access Memory)122を有する。
撮像装置100において、被写体像に係る光は、撮像レンズを含む撮像光学系101によって集光され撮像素子102に入射する。撮像素子102は、入射する光の強度に応じた電気信号をそれぞれ出力する複数の光電変換素子を有し、被写体像(光学像)を電気信号に光電変換する。撮像素子102における画素配列構成の詳細は後述する。アナログ信号処理部103は、撮像素子102から出力された画像信号に対して相関二重サンプリング(CDS)等のアナログ信号処理を施す。A/D変換部104は、アナログ信号処理部103から出力されたアナログの画像信号をデジタルデータの形式に変換する。A/D変換部104によって変換されたデジタル形式の画像信号(以下、単に画像ともいう)は、制御部105及び画像処理部106に入力される。
制御部105は、例えばCPU(Central Processing Unit)やマイクロコントローラ等であり、撮像装置100の動作を制御する。制御部105は、選択手段の一例である。制御部105は、ROM121に記憶されたプログラムコードをRAM122の作業領域に展開して順次実行することで、撮像装置100の各機能部を制御する。また、制御部105は、撮像素子102で撮像する際の焦点状況や露出状況等の撮像条件を制御することもできる。例えば、制御部105は、A/D変換部104から出力された画像信号に基づいて、撮像光学系101の図示しない焦点制御機構や露出制御機構の制御を行う。焦点制御機構は撮像光学系101に含まれる撮像レンズを光軸方向へ駆動させるアクチュエータ等であり、露出制御機構は撮像光学系101に含まれる絞りやシャッタを駆動させるアクチュエータ等である。
画像処理部106は、入力されるデジタル形式の画像信号に対して、ガンマ補正やホワイトバランス処理等の画像処理を施す。画像処理部106は、第1の取得手段及び第2の取得手段の一例である。本実施形態では、異なる2つの瞳領域の画像信号を加算することで撮像面の画像を取得することができる他、異なる2つの瞳領域の画像信号を各々扱うことにより視差の異なる2つの画像(視差画像)を取得することもできる。本実施形態における説明では、異なる2つの瞳領域の画像信号を加算したものを(A+B)像、異なる2つの瞳領域の画像信号を各々扱ったものをA像、B像と呼称する。また、画像処理部106は、被写体追跡部110から供給される画像中の被写体領域に関する情報を用いた画像処理を行ったり、デフォーカスマップの生成を行ったりする。さらに、画像処理部106は、デフォーカスマップの2値化処理やラベリング処理を行う。
デフォーカスマップの生成は、公知の瞳分割型位相差検出方式であって良い。例えば、画像処理部106は、異なる2つの瞳領域の画像信号のそれぞれについて相関演算を行い、視差の異なるA像及びB像のずれ量である位相差、つまりA像及びB像の像ずれ量を算出する。そして、画像処理部106は、算出したA像及びB像の位相差(像ずれ量)に基づいてデフォーカス量を算出することで、デフォーカスマップを生成する。デフォーカスマップは画素毎にデフォーカス量を有するマップであり、デフォーカス量はFδの単位で表される。本実施形態において、画像処理部106は、相関演算を行う微小ブロックの大きさが異なる複数のデフォーカスマップを生成する。例えば、微小ブロックのサイズを基準サイズの等倍と2倍に設定した2種類のデフォーカスマップを生成する。基準サイズとは、被写体追跡部110で取り扱う最小被写体サイズに基づいて決定する。なお、デフォーカスマップ生成において入力となる視差画像と被写体追跡部110の入力画像との解像度が異なる場合には、最小被写体サイズを視差画像上に換算したサイズを基準サイズとする。
表示部107は、例えばLCD(Liquid Crystal Display)や有機EL(electroluminescence)ディスプレイであり、画像処理部106から供給される画像信号に基づいて画像を表示する。撮像装置100は、撮像素子102で時系列的に撮像した画像を表示部107に表示させることで、表示部107を電子ビューファインダ(EVF)として機能させることができる。また、表示部107は、被写体追跡部110によって追跡している被写体を含む被写体領域の位置等も表示可能とする。また、画像処理部106から出力される画像信号は、記録媒体108に記録可能である。記録媒体108は、例えば撮像装置100に着脱可能なメモリカードである。なお、画像処理部106から出力される画像信号の記録先は、撮像装置100に内蔵されたメモリであっても良いし、撮像装置100と通信可能に接続された外部装置であっても良い。
被写体指定部109は、画像に含まれる、追跡対象とする被写体を指定する。被写体指定部109は、例えばタッチパネルやボタン等を含む入力インターフェイスであり、この被写体指定部109を介して、ユーザー(撮像者)は画像に含まれる任意の被写体を追跡対象に指定することが可能である。被写体追跡部110は、画像処理部106から時系列的に画像信号及びデフォーカス量が順次供給され、撮像された時刻の異なる画像に含まれる被写体を追跡する。被写体追跡部110は、画像における被写体の画素パターンや特徴量、デフォーカスマップにおけるデフォーカス量に基づき、被写体指定部109によって指定された追跡対象の被写体を検出して追跡する。被写体追跡部110は、テンプレート登録部111、色特徴量抽出部112、距離特徴量算出部113、テンプレートマッチング部114、及び大きさ推定部115を有する。
テンプレート登録部111は、画像処理部106から時系列的に順次供給される画像から追跡対象の被写体に対応する部分領域を抽出してテンプレート画像として登録する。なお、登録されたテンプレート画像は、大きさ推定部115での処理結果に応じて拡大処理や縮小処理が適宜施された上でテンプレートマッチング部114に入力される。また、時系列的に順次供給される画像に含まれる被写体の見え方の変化を考慮して、時系列的に順次供給される画像毎にテンプレート画像を更新しても良い。この場合には、テンプレート画像として登録する部分領域の範囲を、大きさ推定部115での処理結果に応じて変化させれば良い。
色特徴量抽出部112は、画像処理部106から時系列的に順次供給される画像から追跡対象の被写体に関する色特徴量を抽出して保持する。具体的には、色特徴量抽出部112は、被写体指定部109によって指定された被写体に対応する領域の画素値情報から色特徴量を抽出する。例えば、画像処理部106から供給される画像をHSV色空間で表現する場合、色特徴量抽出部112は、色相(Hue)を画素値情報とし、色相のヒストグラムから頻度(要素数)が所定の閾値以上の階調を色特徴量として抽出する。閾値は例えば25%とする。また、色相のヒストグラムは0〜359で表現される色相情報を12階調に分け、頻度を要素数で正規化しているものとする。ここで、正規化とはヒストグラムを取得する領域の面積(画素数)で割っていることを示す。
距離特徴量算出部113は、画像処理部106から時系列的に順次供給されるデフォーカスマップから追跡対象の被写体に関する距離特徴量を算出して保持する。距離特徴量は、被写体指定部109によって指定された被写体に対応する領域からデフォーカス量の平均値で算出して良い。なお、平均値に限らず、中央値や分散値等の他のものでも良い。また、時系列的に順次供給されるデフォーカスマップに含まれる被写体の光軸方向の移動や、見た目の大きさの変化を考慮して、時系列的に順次供給される画像毎に距離特徴量を更新しても良い。この場合には、距離特徴量を算出する部分領域の範囲を、大きさ推定部115での処理結果に応じて変化させれば良い。
テンプレートマッチング部114は、画像処理部106から時系列的に逐次供給される(A+B)像及びデフォーカスマップに含まれる被写体を探索する。テンプレートマッチング部114は、探索手段の一例である。探索処理においては、テンプレートマッチング部114は、被写体モデルとして、テンプレート登録部111に保持されたテンプレート画像と、距離特徴量算出部113に保持された距離特徴量とを参照する。
大きさ推定部115は、画像処理部106からの時系列的に順次供給される入力群に対し、基準領域と特徴量とを参照して被写体の大きさを推定する。ここで、入力群とは画像処理部106から入力される画像及びデフォーカスマップである。また、基準領域とはテンプレートマッチング部114が決定した被写体領域であり、特徴量とは色特徴量抽出部112により抽出された色特徴量及び距離特徴量算出部113により算出された距離特徴量である。大きさ推定部115は、供給される画像の各画素において、色特徴量抽出部112により抽出された色特徴量と一致する画素であるか否か、距離特徴量算出部113により算出された距離特徴量と一致する画素であるか否かを判定する。大きさ推定部115は、色特徴量及び距離特徴量と一致すると判定した画素を特徴画素とし、基準領域から特徴画素の分布状況に応じて被写体の大きさを拡大するか否か、縮小するか否かを判定する。ただし、予め最小被写体サイズを定めておき、縮小は最小被写体サイズまでしか行わないものとする。最小被写体サイズは入力画像に対する比率で決定し、例えば入力画像がVGAであれば、最小被写体サイズは32画素とする。大きさ推定部115によって推定された被写体の大きさに基づき被写体領域は更新され、制御部105や画像処理部106に供給される。また、大きさ推定部115によって推定された被写体の大きさは、テンプレート登録部111や距離特徴量算出部113に伝えられ、各種情報が更新される。大きさ推定部115は、補正手段の一例である。
<撮像素子の画素配列構成>
次に、本実施形態における撮像素子102について説明する。図2(a)は、図1に示した撮像素子102の画素配列構成を示す図である。撮像素子102においては、図2(a)に示すように画素200が二次元マトリクス状(行列状)に規則的に配列されている。各画素200は、図2(b)に示すように、マイクロレンズ201と一対の光電変換部202A、203B(以下、瞳分割画素202A、203Bとも呼ぶ)から構成される。
本実施形態においては、二次元マトリクス状に規則的に配列された瞳分割画素202A、203Bから、視差画像としてA像、B像が出力されるものとする。図2(a)に示すように撮像素子102を構成することで、撮像光学系101の瞳の異なる領域を通過する一対の光束を一対の光学像として結像させて、それらをA像及びB像として出力することができる。本実施形態では、このA像、B像を参照して画像処理部106がデフォーカスマップを生成する。なお、A像、B像の取得方法は、これに限定されない。例えば、空間的に間隔をあけて設置した複数台のカメラから取得した互いに視差のついた画像をA像、B像としても良いし、複数の光学系と撮像部を有する1台のカメラから得られる視差画像をそれぞれA像、B像としても良い。
<テンプレートマッチング部における処理>
次に、本実施形態におけるテンプレートマッチング部114における処理について説明する。図3は、テンプレートマッチング部114における被写体探索処理を説明する図である。被写体が指定された際の(A+B)像を図3(a)に示し、図3(a)に示した(A+B)像に対応する2値化デフォーカスマップを図3(b)に示す。図3(a)に示す領域300はテンプレート画像を切り出した領域を示し、図3(b)に示す領域301は領域300に対応するデフォーカスマップ上の領域であり、距離特徴量を算出した領域を示している。また、被写体探索処理対象の(A+B)像を図3(c)に示し、図3(c)に示した(A+B)像に対応する2値化デフォーカスマップを図3(d)に示す。
テンプレートマッチング部114は、被写体探索処理を行うとき、図3(c)に示すようにサーチ領域302及びウィンドウ領域303を設定する。サーチ領域302は、(A+B)像全域とすることが好ましいが、前画像における被写体領域と重心が等しく、一辺の比がN倍の領域としても良い。さらに、テンプレートマッチング部114は、図3(c)に示すように、サーチ領域302の内部において、2次元空間的に順次画素単位でずらしながら領域300と同じ大きさのウィンドウ領域303を複数設定する。また、同時にテンプレートマッチング部114は、(A+B)像におけるウィンドウ領域303に対応するデフォーカスマップ上の領域304を設定する。
テンプレートマッチング部114は、領域300から切り出したテンプレート画像とウィンドウ領域303から切り出した画像との相関度を算出するとともに、領域301から算出した距離特徴量と領域304から算出した距離評価値との類似度を算出する。そして、テンプレートマッチング部114は、算出した相関度と類似度とに基づいて被写体領域を決定する。ここで、相関度は、領域300から切り出したテンプレート画像とウィンドウ領域303から切り出した画像の各画素の画素値の差分和を用いて良く、求められた差分和の値が小さい程、相関度が高いことを表す。また、距離評価値は、領域304の各座標のデフォーカス量に対して距離特徴量と同様の方法で算出して良い。類似度は、距離評価値と距離特徴量の差の絶対値を用いて良く、求められた値が小さい程、類似度が高いことを表す。なお、相関度、距離評価値、及び類似度を算出する方法は一例であり、前述した方法に限定されるものではない。例えば、相関度を求める方法は、正規化相互相関などの他の方法であっても良いし、類似度を算出する方法は分散であっても良い。
<画像処理部が生成するデフォーカスマップ>
次に、本実施形態における画像処理部106が生成するデフォーカスマップについて説明する。図4は、A像及びB像において設定される微小ブロックと、その微小ブロックを用いて生成されたデフォーカスマップの例を示す図である。デフォーカスマップの着目座標のデフォーカス量を算出するために、図4(a)ではA像において小さいサイズの微小ブロック400が設定されており、図4(b)ではB像に対して小さいサイズの微小ブロック401が設定されている例である。微小ブロック400及び微小ブロック401は同じ大きさであり、着目座標のデフォーカス量を算出するために位置をずらしながら複数組設定され、各々に含まれる画像情報から相関演算が行われる。この小さいサイズの微小ブロックに基づき全座標に対して相関演算を行って得られるデフォーカスマップを2値化した例を図4(c)に示す。図4(c)に示すように、生成時の微小ブロック400及び401が小さいため、被写体輪郭部分の形状は正しく捉えられている。しかし、微小ブロック400及び401が小さいために相関演算に用いる情報量が少なく、ノイズや背景のエッジ成分等が誤相関することにより、同一距離である背景領域の一部においてデフォーカス量がばらついている。
図4(d)及び図4(e)に示す例は、大きいサイズの微小ブロック402及び403が設定されていることを除けば、図4(a)及び図4(b)に示した例と同様である。この大きいサイズの微小ブロックに基づき全座標に対して相関演算を行って得られるデフォーカスマップを2値化表現した例を図4(f)に示す。図4(f)に示すように、生成時の微小ブロック402及び403が大きいため、同一距離である背景領域のデフォーカス量はばらついていない。しかし、微小ブロック402及び403が大きいために、デフォーカスマップの各着目座標において相関演算を行う際に被写体成分を含む座標が多いことにより、被写体輪郭部分の形状が正しく捉えられていない。
<撮像装置100における処理>
次に、本実施形態における撮像装置100での処理の流れについて説明する。図5は、本実施形態における撮像装置100の処理の例を示すフローチャートである。図5には、撮像装置100における被写体探索処理及び被写体領域補正処理に係る処理について示している。なお、被写体探索処理及び被写体領域補正処理に係る処理以外の処理は、一般的な撮像装置と同様であるので、説明は省略する。
まず、ステップS500にて、画像処理部106は、撮像素子102等を介して得られた画像信号から生成した(A+B)像及び微小ブロックのサイズが異なる2種類のデフォーカスマップを入力として読みこみ、被写体追跡部110に供給する。次に、ステップS501にて、被写体追跡部110は、被写体指定部109による指定を受け付け、指定された領域を(A+B)像における被写体領域とする。続いて、ステップS502にて、テンプレート登録部111は、(A+B)像の被写体領域から切り出した画像をテンプレート画像として登録する。また、ステップS503にて、色特徴量抽出部112は、(A+B)像の被写体領域から色特徴量を抽出する。また、ステップS504にて、距離特徴算出部113は、被写体領域に対応する微小ブロックが小さいデフォーカスマップ上の領域から距離特徴量を抽出する。なお、前述したステップS502、S503、S504の処理の実行順序は、順不同であり、また一部又は全部を並列して実行しても良い。
次のステップS505〜S512の処理は、時系列的に順次供給される(A+B)像及びデフォーカスマップ毎に繰り返し実行される。ステップS505にて、ステップS500と同様に、画像処理部106は、(A+B)像及び微小ブロックのサイズが異なる2種類のデフォーカスマップを入力として読みこみ、被写体追跡部110に供給する。次に、ステップS506にて、テンプレートマッチング部114は、(A+B)像とデフォーカスマップを入力として被写体探索処理を行い、テンプレート画像と距離特徴量とを参照して(A+B)像において最も被写体らしい領域を被写体領域に決定する。次に、ステップS507にて、制御部105は、ステップS505において入力された2つのデフォーカスマップから被写体領域補正に用いるデフォーカスマップを選択する。
次に、ステップS508にて、画像処理部106は、ステップS507において選択したデフォーカスマップに対して2値化処理を行う。この2値化処理では、デフォーカスマップの各座標において、それぞれのデフォーカス量が基準値に近いか否かに基づいて2値化する。ここでの基準値は、ステップS506において決定された被写体領域に対応するデフォーカスマップ上の領域から得られる距離評価値とする。次に、ステップS509にて、画像処理部106は、ステップS508において2値化したデフォーカスマップのラベリングを行う。次に、ステップS510にて、大きさ推定部115は、被写体領域補正処理を行い、直前の画像における被写体領域を基準として、色特徴量及び距離特徴量に基づき被写体の大きさを推定して被写体領域を補正する。このとき、大きさ推定部115は、画像平面上の位置が、ステップS506において決定された被写体領域に近いラベルに属するデフォーカス量を優先的に用いて被写体領域を補正する。
次に、ステップS511にて、ステップS510において大きさ推定部115により補正された被写体領域がテンプレート登録部111に供給され、テンプレート画像に反映されてテンプレート画像が更新される。ステップS502において登録されたテンプレート画像を保持する手法であれば、ステップS511では、ステップS510において補正された被写体領域とテンプレート登録時の被写体領域の大きさの比率に基づいてテンプレート画像を拡大又は縮小を行う。テンプレート画像を更新する手法であれば、ステップS511では、ステップS505において入力された(A+B)像からステップS510において補正された被写体領域を切り出した部分画像でテンプレート画像を更新する。このようにテンプレート画像の大きさ又は部分領域の範囲を、大きさ推定部115による被写体の大きさの推定の結果に基づいて逐次更新することで、被写体の画像上の大きさ変化に頑健な被写体追跡が実現できる。
次に、ステップS512にて、ステップS510において大きさ推定部115により補正された被写体領域が距離特徴量算出部113に供給され、距離特徴量に反映されて距離特徴量が更新される。そして、ステップS505に戻る。ステップS512では、ステップS504において算出された距離特徴量を更新する手法であれば、ステップS507において選択したデフォーカスマップにおいて、ステップS510において補正された被写体領域から算出された値で距離特徴量を更新する。このように距離特徴量を、大きさ推定部115による被写体の大きさの推定の結果に基づいて逐次更新することで、被写体の光軸上の位置変化に頑強な被写体追跡が実現できる。
<被写体探索処理>
次に、図5のステップS506において、テンプレートマッチング部114が行う被写体探索処理について説明する。図6は、本実施形態における被写体探索処理の例を示すフローチャートである。
まず、ステップS600にて、テンプレートマッチング部114は、入力画像((A+B)像)に対してサーチ領域を決定する。次に、ステップS601にて、テンプレートマッチング部114は、入力画像のサーチ領域内部に対してウィンドウ領域を設定する。次に、ステップS602にて、テンプレートマッチング部114は、テンプレート画像とウィンドウ領域の画像情報を参照して相関度を算出する。次に、ステップS603にて、テンプレートマッチング部114は、ウィンドウ領域に対応する微小ブロックが大きいデフォーカスマップ上の領域を参照し、距離評価値を算出する。次に、ステップS604にて、テンプレートマッチング部114は、図5のステップS504において算出した距離特徴量とステップS603において算出した距離評価値から類似度を算出する。
次に、ステップS605にて、テンプレートマッチング部114は、入力画像のサーチ領域内部に未設定のウィンドウ領域があるか否かを判定する。未設定のウィンドウ領域があるとテンプレートマッチング部114が判定した場合、ステップS601に戻り、未設定のウィンドウ領域が無いと判定した場合、ステップS606に進む。ステップS606において、テンプレートマッチング部114は、ステップS601〜S605の一連の処理を行った複数のウィンドウ領域の内から、最も被写体らしさの高い領域を被写体領域として決定し、被写体探索処理を終了する。例えば、テンプレートマッチング部114は、ステップS604において算出された類似度が閾値よりも小さく(類似性が高い)、かつステップS602において算出した相関度が最も高いウィンドウ領域を被写体領域として決定する。このように、画素情報とデフォーカス量を参照して被写体探索処理を行うことにより、画素情報だけでは分離が難しい被写体に対する被写体探索精度を向上させることができる。
<デフォーカスマップ選択処理>
ここで、図5のステップS507において、制御部105が行うデフォーカスマップの選択処理について説明する。図7は、本実施形態におけるデフォーカスマップ選択処理の例を示すフローチャートである。
まず、ステップS700にて、制御部105は、入力画像を撮影した際のISO感度(露光感度)が閾値以上であるか否かの判定を行う。撮影した際のISO感度(露光感度)が閾値以上であると制御部105が判定した場合にはステップS703に進み、閾値以上ではないと制御部105が判定した場合にはステップS701に進む。ISO感度(露光感度)に応じたデフォーカスマップの切り替えについては後述する。ステップS701において、制御部105は、前画像での被写体領域のサイズが閾値以上であるか否かの判定を行う。前画像での被写体領域のサイズが閾値以上であると制御部105が判定した場合にはステップS703に進み、閾値以上ではないと制御部105が判定した場合にはステップS702に進む。被写体領域の大きさに応じたデフォーカスマップの切り替えについては後述する。
ステップS702では、制御部105は、微小ブロックが小さいデフォーカスマップを選択する。また、ステップS703では、制御部105は、微小ブロックが大きいデフォーカスマップを選択する。このように、撮影条件や被写体領域のサイズによるデフォーカスマップの影響を踏まえ、微小ブロックの大きさが異なるデフォーカスマップを選択することで、被写体領域補正処理で使用するデフォーカスマップを適切に切り替えることができる。なお、本実施形態では2つのデフォーカスマップを切り替える方法について記載したが、これに限定されるものではない。複数のデフォーカスマップを供給するとともに、ISO感度(露光感度)、被写体サイズ毎に複数の閾値を設定し、現フレームにおける値と閾値との関係性から複数のデフォーカスマップを適宜切り替えるようにしても良い。
以下、ISO感度(露光感度)に応じたデフォーカスマップの切り替えについて説明する。ステップS700において、ISO感度(露光感度)が高い場合における視差画像及びデフォーカスマップについて図4及び図8を用いて説明する。図4の説明は前述のとおりであり、図8全体の説明はISO感度(露光感度)が高いためにゲインノイズ800が表れている点を除いて図4と同様である。
図8(c)に示した例と図4(c)に示した例とを比べると、図8(c)に示した例において、同一距離である領域のデフォーカス量のばらつきが顕著になっている。これは、図8(a)及び図8(b)において、微小ブロック801及び802内にゲインノイズ800が含まれるためである。また、図8(f)に示した例と図8(c)に示した例とを比べると、同一距離の領域でデフォーカス量がばらつく問題が抑制されている。これは、図8(d)及び図8(e)において、微小ブロック803及び804が、微小ブロック801及び802に比べて大きく、微小ブロックにおけるゲインノイズ800の割合が低いためである。したがって、ISO感度(露光感度)が閾値以上であると判定された場合には、微小ブロックが大きいデフォーカスマップに優先的に切り替えるようにすることが好ましい。
次に、被写体領域の大きさに応じたデフォーカスマップの切り替えについて説明する。ステップS701において、被写体領域のサイズが大きい場合における視差画像及びデフォーカスマップについて図4及び図9を用いて説明する。図4の説明は前述の通りであり、図9全体の説明は、被写体領域の大きさが異なる点を除いて図4と同様である。
図9(f)に示した例と図4(f)に示した例とを比較すると、図9(f)に示した例では被写体輪郭部分の形状が正しく捉えられていない問題が軽微であるが、図4(f)に示した例では被写体輪郭部分の形状が正しく捉えられていない問題が顕著である。これは、被写体領域のサイズが異なるために、白く表現されている領域におけるデフォーカス量が誤相関している座標の割合が、図9(f)の例では低く、図4(f)の例では高いからである。したがって、被写体領域の大きさが小さい場合には、微小ブロックが小さいデフォーカスマップを優先し、被写体領域の大きさが大きい場合には、微小ブロックが大きいデフォーカスマップを優先することが望ましい。
<ラベリング処理>
次に、図5のステップS509において、画像処理部106が行うラベリング処理について説明する。図10は、画像処理部106におけるラベリング処理を説明する図である。図10(a)は、ステップS508において2値化したデフォーカスマップに対してラベリング処理を行う様子を表す図である。ラベリング処理では各座標に対して、着目座標1000を切り替えながら8近傍の周辺座標1001に対し、既にラベルIDが発番されているかを判定する。発番されていない場合には着目座標に新規のラベルIDを割り振り、発番されている場合には周辺座標1001と同一のラベルIDを発番する。デフォーカスマップの全座標に対してラベリング処理を行った結果が図10(b)である。被写体領域内の各座標には同一のラベルIDが発番され、他の領域には異なるラベルIDが発番される。図10の例では周辺座標を8近傍で判定しているが、4近傍で判定しても良い。
<被写体領域補正処理>
次に、図5のステップS510において、大きさ推定部115が行う被写体領域補正処理について説明する。図11は、本実施形態における被写体領域補正処理の例を示すフローチャートである。図11において、ステップS1101〜S1104の処理が拡大判定処理を示し、ステップS1105〜S1108の処理が縮小判定処理を示す。なお、以下の説明において、被写体領域の形状は矩形であるとする。また、以下では、拡大判定処理(ステップS1101〜S1104)を行った後に縮小判定処理(ステップS1105〜S1108)を行う例を説明するが、縮小判定処理を行った後に拡大判定処理を行うようにしても良い。
まず、ステップS1100にて、大きさ推定部115は、供給された(A+B)像の各画素値を着目画素とし、特徴画素であるか否かを判定する。大きさ推定部115は、着目画素が、条件(A)を満たし、かつ条件(B)を満たす場合、特徴画素であると判定する。条件(A)は、着目画素の画素情報が色特徴量抽出部112で抽出された色特徴量と合致していることである。また、条件(B)は、着目画素とステップS506において決定した被写体領域の重心座標が、ステップS509においてラベリングしたデフォーカスマップにおいて同じラベルに属することである。
次に、ステップS1101にて、大きさ推定部115は、テンプレートマッチング部114により決定された被写体領域を基準として、その被写体領域の外周領域の各辺において特徴画素の占める割合を算出する。次に、ステップS1102にて、大きさ推定部115は、被写体領域の4辺の内の1つの辺について、ステップS1101において算出した特徴画素の占める割合が所定の閾値(第1の閾値)以上であるか否かを判定する。特徴画素の占める割合が所定の閾値(第1の閾値)以上であると大きさ推定部115が判定した場合にはステップS1103に進み、所定の閾値(第1の閾値)以上ではないと大きさ推定部115が判定した場合にはステップS1104に進む。
尚、ラベリングしたデフォーカスマップを参照する様子を図12に示す。被写体領域1200の左側に外周領域1201があり、外周領域1201の領域内に距離情報がばらついている。しかし、被写体のラベルIDが1であり、ラベルIDが2または4である座標は条件(B)を満たさない。従ってラベリングしたデフォーカスマップを領域補正に用いることで、外周領域内における距離情報のばらつきの影響を抑制することができる。
ステップS1103では、大きさ推定部115は、当辺の方向に被写体領域を拡大し、その後ステップS1104に進む。次に、ステップS1104にて、大きさ推定部115は、被写体領域の4辺のすべてにおいて拡大判定処理が完了したか否かを判定する。被写体領域の4辺のすべてにおいて拡大判定処理が完了したと大きさ推定部115が判定した場合には、拡大判定処理を終了してステップS1105に進み、そうでない場合にはステップS1102に戻って未処理の辺について処理を行う。
ステップS1105にて、大きさ推定部115は、テンプレートマッチング部114により決定された被写体領域を基準として、その被写体領域の内周領域の各辺において特徴画素の占める割合を算出する。次に、ステップS1106にて、大きさ推定部115は、被写体領域の4辺の内の1つの辺について、ステップS1105において算出した特徴画素の占める割合が所定の閾値(第2の閾値)未満であるか否かを判定する。特徴画素の占める割合が所定の閾値(第2の閾値)未満であると大きさ推定部115が判定した場合にはステップS1107に進み、所定の閾値(第2の閾値)未満ではないと大きさ推定部115が判定した場合にはステップS1108に進む。
ステップS1107では、大きさ推定部115は、当辺の方向に被写体領域を縮小し、その後ステップS1108に進む。次に、ステップS1108にて、大きさ推定部115は、被写体領域の4辺のすべてにおいて縮小判定処理が完了したか否かを判定する。被写体領域の4辺のすべてにおいて縮小判定処理が完了したと大きさ推定部115が判定した場合には、縮小判定処理を終了して被写体領域補正処理を終了し、そうでない場合にはステップS1106に戻って未処理の辺について処理を行う。なお、拡大判定処理において、拡大した辺に関しては、縮小判定処理の対象から除外するようにしても良い。
以上のように、被写体探索と被写体領域補正との処理の性質に応じて、微小ブロックの大きさが異なる複数のデフォーカスマップを適宜切り替えることで、適切なデフォーカスマップを用いて各処理を行う。これにより、画像情報だけでは背景と被写体を分離できないようなシーンにおいても、被写体探索処理及び被写体領域補正処理をともに精度良く実現でき、例えば精度良く被写体追尾を行うことが可能となる。
(本発明の他の実施形態)
本発明は、前述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読み出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
100:撮像装置 101:撮像光学系 102:撮像素子 105:制御部 106:画像処理部 109:被写体指定部 110:被写体追跡部 111:テンプレート登録部 112:色特徴量抽出部 113:距離特徴量算出部 114:テンプレートマッチング部 115:大きさ推定部 200:画素 201:マイクロレンズ 202A、203B:光電変換部 302:サーチ領域 303:ウィンドウ領域 400、401、402、403:微小ブロック 1000:着目座標 1001:周辺座標 1200:被写体領域 1201:外周領域

Claims (12)

  1. 画像を取得する第1の取得手段と、
    前記画像のそれぞれについて、生成時のブロックのサイズが異なる複数のデフォーカスマップを取得する第2の取得手段と、
    前記画像及び前記デフォーカスマップに基づいて、対象の被写体を探索する探索手段と、
    前記画像及び前記デフォーカスマップに基づいて、前記探索手段が決定した被写体領域を補正する補正手段と、
    前記複数のデフォーカスマップの内から前記補正手段での前記被写体領域の補正に用いる前記デフォーカスマップを選択する選択手段とを有することを特徴とする画像処理装置。
  2. 前記選択手段は、前記探索手段での前記被写体の探索に用いる前記デフォーカスマップよりも生成時のブロックのサイズが小さい前記デフォーカスマップを選択することを特徴とする請求項1記載の画像処理装置。
  3. 前記第1の取得手段は、時系列に並んだ画像を取得し、
    前記第2の取得手段は、時系列に並んだ画像のそれぞれについて、生成時のブロックのサイズが異なる複数のデフォーカスマップを取得し、
    前記探索手段は、前記補正手段により前記被写体領域が補正された画像を用いて、次の画像における前記被写体を探索することを特徴とする請求項1又は2記載の画像処理装置。
  4. 前記選択手段は、前記第1の取得手段により取得した画像の露光感度が閾値以上である場合には、前記画像の露光感度が閾値以上でない場合に選択される前記デフォーカスマップよりも生成時のブロックのサイズが大きい前記デフォーカスマップを選択することを特徴とする請求項1〜3の何れか1項に記載の画像処理装置。
  5. 前記選択手段は、前記補正手段により補正された前記被写体領域のサイズが閾値以上である場合には、前記被写体領域のサイズが閾値以上でない場合に選択される前記デフォーカスマップよりも生成時のブロックのサイズが大きい前記デフォーカスマップを、次の画像に用いる前記デフォーカスマップに選択することを特徴とする請求項1〜3の何れか1項に記載の画像処理装置。
  6. 前記補正手段は、前記選択手段が選択した前記デフォーカスマップにラベリング処理を施し、画像平面上の位置が、前記探索手段が決定した前記被写体領域に近いラベルに属するデフォーカス量を優先的に用いて被写体領域を補正することを特徴とする請求項1〜5の何れか1項に記載の画像処理装置。
  7. 前記第2の取得手段は、1つの前記画像に係る異なる2つの瞳領域の画像信号のそれぞれで前記ブロックを用いた相関演算を行い、前記2つの瞳領域に対応する2つの像の位相差を算出し、前記位相差に基づいてデフォーカス量を算出して前記デフォーカスマップを取得することを特徴とする請求項1〜6の何れか1項に記載の画像処理装置。
  8. 画像を取得する第1の取得手段と、
    1つの前記画像に係る異なる2つの瞳領域の画像信号のそれぞれでブロックを用いた相関演算を行い、前記2つの瞳領域に対応する2つの像の位相差を算出し、前記位相差に基づいてデフォーカス量を算出することでデフォーカスマップを生成するとともに、前記画像のそれぞれについて、第1のブロックを用いて第1の前記デフォーカスマップを取得し、前記第1のブロックよりサイズが小さい第2のブロックを用いて第2の前記デフォーカスマップを取得する第2の取得手段と、
    前記第1のデフォーカスマップを用いて、前記画像から対象の被写体を探索する探索手段と、
    前記第1のデフォーカスマップ及び前記第2のデフォーカスマップの内から選択された前記デフォーカスマップを用いて、前記探索手段が決定した被写体領域を補正する補正手段と、
    前記画像の露光感度が閾値以上でなく、かつ前記補正手段により補正された前記被写体領域のサイズが閾値以上でない場合、前記第2のデフォーカスマップを前記補正手段で用いる前記デフォーカスマップに選択し、前記画像の露光感度が閾値以上である場合、又は前記補正手段により補正された前記被写体領域のサイズが閾値以上である場合、前記第1のデフォーカスマップを前記補正手段で用いる前記デフォーカスマップに選択する選択手段とを有することを特徴とする画像処理装置。
  9. 画像を取得する第1の取得工程と、
    前記画像のそれぞれについて、生成時のブロックのサイズが異なる複数のデフォーカスマップを取得する第2の取得工程と、
    前記画像及び前記デフォーカスマップに基づいて、対象の被写体を探索する探索工程と、
    前記画像及び前記デフォーカスマップに基づいて、前記探索工程で決定した被写体領域を補正する補正工程と、
    前記複数のデフォーカスマップの内から前記補正工程で前記被写体領域の補正に用いる前記デフォーカスマップを選択する選択工程とを有することを特徴とする画像処理方法。
  10. 画像を取得する第1の取得工程と、
    1つの前記画像に係る異なる2つの瞳領域の画像信号のそれぞれでブロックを用いた相関演算を行い、前記2つの瞳領域に対応する2つの像の位相差を算出し、前記位相差に基づいてデフォーカス量を算出することでデフォーカスマップを生成するとともに、前記画像のそれぞれについて、第1のブロックを用いて第1の前記デフォーカスマップを取得し、前記第1のブロックよりサイズが小さい第2のブロックを用いて第2の前記デフォーカスマップを取得する第2の取得工程と、
    前記第1のデフォーカスマップを用いて、前記画像から対象の被写体を探索する探索工程と、
    前記第1のデフォーカスマップ及び前記第2のデフォーカスマップの内から選択された前記デフォーカスマップを用いて、前記探索工程で決定した被写体領域を補正する補正工程と、
    前記画像の露光感度が閾値以上でなく、かつ前記補正工程で補正された前記被写体領域のサイズが閾値以上でない場合、前記第2のデフォーカスマップを前記補正工程で用いる前記デフォーカスマップに選択し、前記画像の露光感度が閾値以上である場合、又は前記補正工程で補正された前記被写体領域のサイズが閾値以上である場合、前記第1のデフォーカスマップを前記補正工程で用いる前記デフォーカスマップに選択する選択工程とを有することを特徴とする画像処理方法。
  11. 画像を取得する第1の取得ステップと、
    前記画像のそれぞれについて、生成時のブロックのサイズが異なる複数のデフォーカスマップを取得する第2の取得ステップと、
    前記画像及び前記デフォーカスマップに基づいて、対象の被写体を探索する探索ステップと、
    前記画像及び前記デフォーカスマップに基づいて、前記探索ステップで決定した被写体領域を補正する補正ステップと、
    前記複数のデフォーカスマップの内から前記補正ステップで前記被写体領域の補正に用いる前記デフォーカスマップを選択する選択ステップとをコンピュータに実行させるためのプログラム。
  12. 画像を取得する第1の取得ステップと、
    1つの前記画像に係る異なる2つの瞳領域の画像信号のそれぞれでブロックを用いた相関演算を行い、前記2つの瞳領域に対応する2つの像の位相差を算出し、前記位相差に基づいてデフォーカス量を算出することでデフォーカスマップを生成するとともに、前記画像のそれぞれについて、第1のブロックを用いて第1の前記デフォーカスマップを取得し、前記第1のブロックよりサイズが小さい第2のブロックを用いて第2の前記デフォーカスマップを取得する第2の取得ステップと、
    前記第1のデフォーカスマップを用いて、前記画像から対象の被写体を探索する探索ステップと、
    前記第1のデフォーカスマップ及び前記第2のデフォーカスマップの内から選択された前記デフォーカスマップを用いて、前記探索ステップで決定した被写体領域を補正する補正ステップと、
    前記画像の露光感度が閾値以上でなく、かつ前記補正ステップで補正された前記被写体領域のサイズが閾値以上でない場合、前記第2のデフォーカスマップを前記補正ステップで用いる前記デフォーカスマップに選択し、前記画像の露光感度が閾値以上である場合、又は前記補正ステップで補正された前記被写体領域のサイズが閾値以上である場合、前記第1のデフォーカスマップを前記補正ステップで用いる前記デフォーカスマップに選択する選択ステップとをコンピュータに実行させるためのプログラム。
JP2018049364A 2018-03-16 2018-03-16 画像処理装置、画像処理方法、及びプログラム Active JP7034781B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018049364A JP7034781B2 (ja) 2018-03-16 2018-03-16 画像処理装置、画像処理方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018049364A JP7034781B2 (ja) 2018-03-16 2018-03-16 画像処理装置、画像処理方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2019161583A true JP2019161583A (ja) 2019-09-19
JP7034781B2 JP7034781B2 (ja) 2022-03-14

Family

ID=67996447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049364A Active JP7034781B2 (ja) 2018-03-16 2018-03-16 画像処理装置、画像処理方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP7034781B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496728B2 (en) 2020-12-15 2022-11-08 Waymo Llc Aperture health monitoring mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126065A (ja) * 1999-10-26 2001-05-11 Toyota Central Res & Dev Lab Inc 距離分布検知装置
WO2013038833A1 (ja) * 2011-09-16 2013-03-21 コニカミノルタホールディングス株式会社 画像処理システム、画像処理方法および画像処理プログラム
JP2014120122A (ja) * 2012-12-19 2014-06-30 Canon Inc 領域抽出装置、領域抽出方法、及びコンピュータプログラム
JP2017045283A (ja) * 2015-08-26 2017-03-02 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および情報処理方法
JP2017229061A (ja) * 2016-06-21 2017-12-28 キヤノン株式会社 画像処理装置およびその制御方法、ならびに撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126065A (ja) * 1999-10-26 2001-05-11 Toyota Central Res & Dev Lab Inc 距離分布検知装置
WO2013038833A1 (ja) * 2011-09-16 2013-03-21 コニカミノルタホールディングス株式会社 画像処理システム、画像処理方法および画像処理プログラム
JP2014120122A (ja) * 2012-12-19 2014-06-30 Canon Inc 領域抽出装置、領域抽出方法、及びコンピュータプログラム
JP2017045283A (ja) * 2015-08-26 2017-03-02 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および情報処理方法
JP2017229061A (ja) * 2016-06-21 2017-12-28 キヤノン株式会社 画像処理装置およびその制御方法、ならびに撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496728B2 (en) 2020-12-15 2022-11-08 Waymo Llc Aperture health monitoring mode

Also Published As

Publication number Publication date
JP7034781B2 (ja) 2022-03-14

Similar Documents

Publication Publication Date Title
JP6271990B2 (ja) 画像処理装置、画像処理方法
US9253377B2 (en) Image processing device and image processing system where de-mosaic image is generated based on shift amount estimation of pixels of captured images
US10306133B2 (en) Image processing apparatus for generating a likelihood distribution of an object
KR20170135855A (ko) 패닝 샷들의 자동 생성
WO2013054499A1 (ja) 画像処理装置、撮像装置および画像処理方法
KR102512889B1 (ko) 이미지 융합 프로세싱 모듈
JP6521626B2 (ja) 被写体追跡装置、方法およびプログラム
JP7223079B2 (ja) 画像処理装置およびその制御方法、ならびに撮像装置
JP2015148532A (ja) 距離計測装置、撮像装置、距離計測方法、およびプログラム
TW201351343A (zh) 影像合成裝置及用於影像合成之電腦程式
KR101875532B1 (ko) 계층적 스테레오 매칭 장치 및 방법
JP2014027355A (ja) 複数画像を利用したオブジェクト検索装置、方法、およびプログラム
JP7034781B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP2015207090A (ja) 画像処理装置、及びその制御方法
JP6486453B2 (ja) 画像処理装置、画像処理方法、プログラム
JP6099973B2 (ja) 被写体領域追跡装置、その制御方法及びプログラム
JP2016081095A (ja) 被写体追跡装置、その制御方法、撮像装置、表示装置及びプログラム
JP2011130384A (ja) 被写体追跡装置及びその制御方法
JP5451364B2 (ja) 被写体追跡装置及びその制御方法
JP2008211506A (ja) 画像処理装置、撮像装置及びそのプログラム
US10565712B2 (en) Image processing apparatus and method for controlling the same
JP2014116789A (ja) 撮影装置、その制御方法及びプログラム
JP5222429B2 (ja) 被写体追跡装置及びその制御方法
JP2020043544A (ja) 撮像装置およびその制御方法、プログラムならびに記憶媒体
US20230065506A1 (en) Image processing apparatus, control method thereof, and image capturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R151 Written notification of patent or utility model registration

Ref document number: 7034781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151