JP2019158306A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2019158306A
JP2019158306A JP2018049294A JP2018049294A JP2019158306A JP 2019158306 A JP2019158306 A JP 2019158306A JP 2018049294 A JP2018049294 A JP 2018049294A JP 2018049294 A JP2018049294 A JP 2018049294A JP 2019158306 A JP2019158306 A JP 2019158306A
Authority
JP
Japan
Prior art keywords
outdoor
fan
heat exchanger
defrosting operation
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018049294A
Other languages
Japanese (ja)
Other versions
JP7163598B2 (en
Inventor
慎佑 吉田
Shinsuke Yoshida
慎佑 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018049294A priority Critical patent/JP7163598B2/en
Publication of JP2019158306A publication Critical patent/JP2019158306A/en
Application granted granted Critical
Publication of JP7163598B2 publication Critical patent/JP7163598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

To provide an air conditioner capable of optimizing a fan defrosting operation time.SOLUTION: A CPU 210 is configured to: stop an outdoor fan 27 during heating operation; after the heat exchange defrosting operation of switching a four-way valve 22 to direct refrigerant discharged from a compressor 21 to an outdoor heat exchanger 23 is completed, drive the outdoor fan 27 to perform fan defrosting operation of defrosting the outdoor fan 27, while the refrigerant discharged from the compressor 21 is directed to the outdoor heat exchanger 23; and according to a temperature increase amount ΔTcs per unit time from the time when the frost generated in the outdoor heat exchanger 23 calculated during the heat exchange defrosting operation has been thawed, change an operating time for the fan defrosting operation.SELECTED DRAWING: Figure 3

Description

本発明は、暖房運転時に逆サイクル除霜運転を行う空気調和機に関するものである。   The present invention relates to an air conditioner that performs a reverse cycle defrosting operation during heating operation.

空気調和機は、外気温度が低く、湿度が高いときに暖房運転が行われると、蒸発器として機能する室外熱交換器に霜が発生する。暖房運転において室外熱交換器に発生した霜は、逆サイクル除霜運転を行うことによって融かされる。その後、融かされた霜は室外熱交換器の下方に配置されている室外ユニットの底板を通じて、ドレン水として排出される。逆サイクル除霜運転を行うときは、空気調和機は、室外ファンを停止するとともに冷凍サイクルを暖房サイクルから冷房サイクルに切り替える。そして、空気調和機は圧縮機によって圧縮されて高温となった冷媒を室外熱交換器に流入させる。これにより、室外熱交換器が加熱されて、室外熱交換器に発生した霜が融かされる。   When the air conditioner is heated when the outside air temperature is low and the humidity is high, frost is generated in the outdoor heat exchanger that functions as an evaporator. The frost generated in the outdoor heat exchanger in the heating operation is melted by performing the reverse cycle defrosting operation. Then, the melted frost is discharged as drain water through the bottom plate of the outdoor unit disposed below the outdoor heat exchanger. When performing the reverse cycle defrosting operation, the air conditioner stops the outdoor fan and switches the refrigeration cycle from the heating cycle to the cooling cycle. And an air conditioner makes the refrigerant | coolant which became high temperature compressed by the compressor flow in into an outdoor heat exchanger. Thereby, an outdoor heat exchanger is heated and the frost generated in the outdoor heat exchanger is melted.

ところで、外気温度が0℃以下で暖房運転を行うときは、室外熱交換器を通過した空気が0℃以下となって室外ファンに当たる。また、室外熱交換器に発生した霜によって室外熱交換器が目詰まりして空気が通らなくなると、吹出口から流入した室外熱交換器を通らない空気が室外ファンに当たる。これらにより、室外熱交換器だけでなく室外ファンにも霜が発生する場合がある。   By the way, when the heating operation is performed at an outdoor temperature of 0 ° C. or lower, the air that has passed through the outdoor heat exchanger becomes 0 ° C. or lower and hits the outdoor fan. Further, when the outdoor heat exchanger is clogged by frost generated in the outdoor heat exchanger and air cannot pass therethrough, air that does not pass through the outdoor heat exchanger that has flowed in from the air outlet hits the outdoor fan. As a result, frost may be generated not only in the outdoor heat exchanger but also in the outdoor fan.

室外ファンに発生した霜は、室外ファンを停止させて実行する上述した逆サイクル除霜運転では融けない。そこで、室外ファンで発生した霜を融かすためにファン除霜運転を行う空気調和機が提案されている。例えば、特許文献1に示す空気調和機では、逆サイクル除霜運転を行って室外熱交換器の除霜を行った後に、圧縮機から吐出された冷媒が室外熱交換器に流入する状態のままで室外ファンを一定時間回転させることが記載されている。これにより、室外熱交換器で加熱された温かい空気を室外ファンに当てて、室外ファンで発生した霜を融かすことができる。   The frost generated in the outdoor fan is not melted in the above-described reverse cycle defrosting operation that is performed with the outdoor fan stopped. Then, the air conditioner which performs a fan defrost operation in order to melt the frost which generate | occur | produced with the outdoor fan is proposed. For example, in the air conditioner shown in Patent Document 1, after the reverse cycle defrosting operation is performed and the outdoor heat exchanger is defrosted, the refrigerant discharged from the compressor remains in a state of flowing into the outdoor heat exchanger. Describes that the outdoor fan is rotated for a certain period of time. Thereby, the warm air heated with the outdoor heat exchanger can be applied to an outdoor fan, and the frost generated with the outdoor fan can be melted.

特開2010−121789号公報JP 2010-121789 A

特許文献1に示す空気調和機では、室外熱交換器の除霜運転やファン除霜運転を予め定められた時間だけ行っていた。この時間は予め試験等により定められており、想定された室外ファンで発生する最大量の霜を完全に除去できるように設定された時間である。霜を完全に融かすために必要な時間は、室外ファンで発生する霜の量や、熱交除霜運転中に費やされた冷凍サイクル中の熱量や暖房運転中に蓄えられた冷凍サイクル中の熱量によって変動する。そのため、室外ファンで発生した霜が融けきったにもかかわらずファン除霜運転を継続してしまう(いわゆる、空除霜運転)場合がある。   In the air conditioner shown in Patent Document 1, the defrosting operation and the fan defrosting operation of the outdoor heat exchanger are performed for a predetermined time. This time is determined in advance by a test or the like, and is set to be able to completely remove the maximum amount of frost generated by the assumed outdoor fan. The time required to completely melt the frost is the amount of frost generated by the outdoor fan, the amount of heat in the refrigeration cycle spent during heat defrosting operation, and the refrigeration cycle stored during heating operation. Fluctuates depending on the amount of heat. Therefore, the fan defrosting operation may be continued (so-called empty defrosting operation) even though the frost generated by the outdoor fan has melted.

本発明は以上述べた問題点を解決するものであって、ファン除霜運転時間を最適な長さにすることができる空気調和機を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide an air conditioner capable of setting the fan defrosting operation time to an optimum length.

上記の課題を解決するために、本発明の空気調和機は、暖房運転時に、圧縮機、室内熱交換器、膨張弁、室外熱交換器の順で冷媒が循環する冷媒回路と、前記冷媒回路に備えられ、前記圧縮機から吐出された冷媒の流れる方向を切り替える流路切替手段と、前記室外熱交換器に送風する室外ファンと、前記暖房運転時に、前記室外ファンを停止させるとともに、前記流路切替手段を切り替えて前記圧縮機から吐出された冷媒を前記室外熱交換器に向かわせる熱交除霜運転と、前記熱交除霜運転が終了した後に、前記圧縮機から吐出された冷媒を前記室外熱交換器に向かわせたまま、前記室外ファンを駆動して同室外ファンを除霜するファン除霜運転を行う制御手段と、前記熱交除霜運転時、前記室外熱交換器から流出した冷媒の温度である室外熱交温度を検出する室外熱交温度検出手段と、を有する。前記制御手段は、前記熱交除霜運転時、前記室外熱交換器で発生した霜を融かし終えた時点からの単位時間当たりの温度増加量を算出し、前記ファン除霜運転時、前記温度増加量に応じて前記ファン除霜運転の運転時間を異ならせる。   In order to solve the above problems, an air conditioner of the present invention includes a refrigerant circuit in which refrigerant circulates in the order of a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger during heating operation, and the refrigerant circuit And a flow path switching means for switching a flow direction of the refrigerant discharged from the compressor, an outdoor fan for blowing air to the outdoor heat exchanger, and stopping the outdoor fan during the heating operation. The heat exchange defrosting operation for switching the path switching means to direct the refrigerant discharged from the compressor to the outdoor heat exchanger, and the refrigerant discharged from the compressor after the heat exchange defrosting operation is completed. Control means for performing fan defrosting operation to defrost the outdoor fan by driving the outdoor fan while facing the outdoor heat exchanger, and outflow from the outdoor heat exchanger during the heat exchange defrosting operation The temperature of the refrigerant Having an outdoor heat exchanger temperature detection means for detecting the heat exchanger temperature, the. The control means calculates the amount of temperature increase per unit time from the time when the frost generated in the outdoor heat exchanger is completely melted during the heat exchanger defrosting operation, and during the fan defrosting operation, The operation time of the fan defrosting operation is varied according to the temperature increase amount.

上記のように構成した本発明の空気調和機によれば、ファン除霜運転時間を最適な長さにすることができる。   According to the air conditioner of the present invention configured as described above, the fan defrosting operation time can be set to an optimum length.

本発明の実施形態における、空気調和機の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。It is explanatory drawing of the air conditioner in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means. 熱交除霜運転時の室外熱交換器23の温度変化を示すグラフである。It is a graph which shows the temperature change of the outdoor heat exchanger 23 at the time of heat exchange defrost operation. 本発明の実施形態における、ファン除霜制御テーブルである。It is a fan defrost control table in the embodiment of the present invention. 本発明の実施形態における、熱交除霜運転時およびファン除霜運転時の室外機制御手段での処理を説明するフローチャートである。It is a flowchart explaining the process in the outdoor unit control means at the time of heat exchange defrost operation and fan defrost operation in embodiment of this invention. 本発明の実施形態における、除霜運転、つまり、熱交除霜運転を行う際に、室外機制御手段200のCPU210が実行する温度増加量ΔTcsの算出処理を説明するフローチャートである。It is a flowchart explaining the calculation process of temperature increase amount (DELTA) Tcs which CPU210 of the outdoor unit control means 200 performs in performing defrost operation, ie, heat exchange defrost operation, in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、室外機と室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4およびガス管5で接続された室内機3を備えている。詳細には、室外機2の閉鎖弁25と室内機3の液管接続部33が液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34がガス管5で接続されている。以上により、空気調和機1の冷媒回路10が形成される。   As shown in FIG. 1A, an air conditioner 1 according to this embodiment includes an outdoor unit 2 installed outdoors, and an indoor unit installed indoors and connected to the outdoor unit 2 with a liquid pipe 4 and a gas pipe 5. Machine 3 is provided. Specifically, the shutoff valve 25 of the outdoor unit 2 and the liquid pipe connection portion 33 of the indoor unit 3 are connected by the liquid pipe 4. Further, the shutoff valve 26 of the outdoor unit 2 and the gas pipe connection part 34 of the indoor unit 3 are connected by the gas pipe 5. Thus, the refrigerant circuit 10 of the air conditioner 1 is formed.

<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、液管4が接続された閉鎖弁25と、ガス管5が接続された閉鎖弁26と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が後述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。
<Configuration of outdoor unit>
First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an expansion valve 24, a closing valve 25 to which the liquid pipe 4 is connected, and a closing valve 26 to which the gas pipe 5 is connected. The outdoor fan 27 is provided. And these each apparatus except the outdoor fan 27 is mutually connected by each refrigerant | coolant piping mentioned later, and the outdoor unit refrigerant circuit 10a which makes a part of refrigerant circuit 10 is formed.

圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaと吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcと吸入管66で接続されている。   The compressor 21 is a variable capacity compressor capable of changing the operating capacity by controlling the rotation speed by an inverter (not shown). The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 by a discharge pipe 61. The refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 66.

四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。尚、四方弁22が、本発明の流路切替手段である。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 66 as described above. The port d is connected to the shutoff valve 26 and the outdoor unit gas pipe 64. The four-way valve 22 is the flow path switching means of the present invention.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、後述する四方弁22の切り替えによって、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and outside air taken into the outdoor unit 2 by rotation of an outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 63. The outdoor heat exchanger 23 functions as a condenser during cooling operation and functions as an evaporator during heating operation by switching a four-way valve 22 described later.

膨張弁24は、図示しないパルスモータにより駆動される電子膨張弁である。具体的には、パルスモータに加えられるパルス数によりその開度が調整される。膨張弁24は、暖房運転時は圧縮機21から吐出される冷媒の温度である吐出温度が所定の目標温度となるように、その開度が調整される。   The expansion valve 24 is an electronic expansion valve that is driven by a pulse motor (not shown). Specifically, the opening degree is adjusted by the number of pulses applied to the pulse motor. The opening degree of the expansion valve 24 is adjusted so that the discharge temperature, which is the temperature of the refrigerant discharged from the compressor 21, becomes a predetermined target temperature during the heating operation.

室外ファン27は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、その中心部がファンモータ27aの図示しない回転軸に接続されている。ファンモータ27aが回転することで室外ファン27が回転する。室外ファン27の回転によって、室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を、室外機2の図示しない吹出口から室外機2外部へ放出する。   The outdoor fan 27 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The center of the outdoor fan 27 is connected to a rotating shaft (not shown) of the fan motor 27a. As the fan motor 27a rotates, the outdoor fan 27 rotates. By the rotation of the outdoor fan 27, outside air is taken into the outdoor unit 2 from a suction port (not shown) of the outdoor unit 2, and the outdoor air exchanged with the refrigerant in the outdoor heat exchanger 23 is discharged from the outlet (not shown) of the outdoor unit 2. Release to outside of machine 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度(上述した吐出温度)を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74が設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 61 includes a discharge pressure sensor 71 that detects the pressure of the refrigerant discharged from the compressor 21, and the temperature of the refrigerant discharged from the compressor 21 (the discharge temperature described above). ) Is provided. The suction pipe 66 is provided with a suction pressure sensor 72 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 74 that detects the temperature of the refrigerant sucked into the compressor 21.

室外熱交換器23の図示しない冷媒パスの略中間部には、室外熱交換器23の温度である室外熱交温度を検出する熱交温度センサ75が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。   A heat exchange temperature sensor 75 that detects an outdoor heat exchange temperature, which is the temperature of the outdoor heat exchanger 23, is provided at a substantially intermediate portion of a refrigerant path (not shown) of the outdoor heat exchanger 23. An outdoor air temperature sensor 76 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、フラッシュメモリで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27等の制御状態等を記憶している。また、図示は省略するが、記憶部220には室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。   The storage unit 220 includes a flash memory, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21, the outdoor fan 27, and the like. Although not shown, the storage unit 220 stores in advance a rotation speed table that determines the rotation speed of the compressor 21 in accordance with the required capacity received from the indoor unit 3.

通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The communication unit 230 is an interface that performs communication with the indoor unit 3. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果を、センサ入力部240を介して取り込む。さらには、CPU210は、室内機3から送信される制御信号を、通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号等に基づいて、圧縮機21や室外ファン27の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、膨張弁24の開度調整を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. Further, the CPU 210 takes in a control signal transmitted from the indoor unit 3 via the communication unit 230. The CPU 210 performs drive control of the compressor 21 and the outdoor fan 27 based on the acquired detection results, control signals, and the like. Further, the CPU 210 performs switching control of the four-way valve 22 based on the detected result and control signal taken in. Furthermore, the CPU 210 adjusts the opening degree of the expansion valve 24 based on the acquired detection result and control signal.

<室内機の構成>
次に、図1(A)を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを形成している。
<Configuration of indoor unit>
Next, the indoor unit 3 will be described with reference to FIG. The indoor unit 3 includes an indoor heat exchanger 31, an indoor fan 32, a liquid pipe connection portion 33 to which the other end of the liquid pipe 4 is connected, and a gas pipe connection portion 34 to which the other end of the gas pipe 5 is connected. I have. And these each apparatus except the indoor fan 32 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the indoor unit refrigerant circuit 10b which makes a part of refrigerant circuit 10 is formed.

室内熱交換器31は、冷媒と後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器31の一方の冷媒出入口は、液管接続部33と室内機液管67で接続されている。室内熱交換器31の他方の冷媒出入口は、ガス管接続部34と室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。   The indoor heat exchanger 31 exchanges heat between indoor air taken into the indoor unit 3 from a suction port (not shown) of the indoor unit 3 by rotation of the refrigerant and an indoor fan 32 described later. One refrigerant inlet / outlet of the indoor heat exchanger 31 is connected to the liquid pipe connecting portion 33 by an indoor unit liquid pipe 67. The other refrigerant inlet / outlet of the indoor heat exchanger 31 is connected to the gas pipe connecting portion 34 by an indoor unit gas pipe 68. The indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs a cooling operation, and functions as a condenser when the indoor unit 3 performs a heating operation. In addition, in the liquid pipe connection part 33 and the gas pipe connection part 34, each refrigerant | coolant piping is connected by welding, a flare nut, etc.

室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン32は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。   The indoor fan 32 is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 31. The indoor fan 32 is rotated by a fan motor (not shown) to take indoor air into the indoor unit 3 from a suction port (not shown) of the indoor unit 3, and the indoor heat exchanger 31 exchanges indoor air with the refrigerant in the indoor heat exchanger 31. It blows out into the room from the blower outlet which machine 3 does not illustrate.

以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管67には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ77が設けられている。室内機ガス管68には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ79が備えられている。   In addition to the configuration described above, the indoor unit 3 is provided with various sensors. The indoor unit liquid pipe 67 is provided with a liquid side temperature sensor 77 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 31. The indoor unit gas pipe 68 is provided with a gas side temperature sensor 78 that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 31 or flowing into the indoor heat exchanger 31. A room temperature sensor 79 for detecting the temperature of the room air flowing into the indoor unit 3, that is, the room temperature, is provided near the suction port (not shown) of the indoor unit 3.

<冷媒回路の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。以下の説明では、まず、室内機3が暖房運転を行う場合について説明し、次に、冷房運転を行う場合について説明する。そして、室外熱交換器23で発生した霜を溶かす熱交除霜運転と、室外ファン27で発生した霜を溶かすファン除霜運転からなる除霜運転を行う場合について説明する。
<Operation of refrigerant circuit>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioner 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor unit 3 performs the heating operation will be described first, and then the case where the cooling operation is performed will be described. And the case where the defrost operation which consists of the heat exchange defrost operation which melts the frost which generate | occur | produced in the outdoor heat exchanger 23, and the fan defrost operation which melts the frost which generate | occur | produced in the outdoor fan 27 is demonstrated.

<暖房運転>
室内機3が暖房運転を行う場合、CPU210は、図1(A)に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器31が凝縮器として機能する暖房サイクルとなる。
<Heating operation>
When the indoor unit 3 performs the heating operation, the CPU 210 performs a state where the four-way valve 22 is indicated by a solid line as shown in FIG. 1A, that is, the port a and the port d of the four-way valve 22 communicate with each other. Switch so that b and port c communicate. As a result, the refrigerant circulates in the direction indicated by the solid line arrow in the refrigerant circuit 10, and the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchanger 31 functions as a condenser.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れて、閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the outdoor unit gas pipe 64, and flows into the gas pipe 5 through the closing valve 26. . The refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.

室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。   The refrigerant that has flowed into the indoor unit 3 flows through the indoor unit gas pipe 68 and flows into the indoor heat exchanger 31, and is condensed by exchanging heat with the indoor air taken into the indoor unit 3 by the rotation of the indoor fan 32. To do. As described above, the indoor heat exchanger 31 functions as a condenser, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown), so that the indoor unit 3 is installed. The heated room is heated.

室内熱交換器31から流出した冷媒は、室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ、閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて膨張弁24を通過する際に減圧される。上述したように、暖房運転時の膨張弁24の開度は、圧縮機21の吐出温度が所定の目標温度となるように調整される。   The refrigerant flowing out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows into the liquid pipe 4 via the liquid pipe connecting portion 33. The refrigerant flowing through the liquid pipe 4 and flowing into the outdoor unit 2 through the closing valve 25 is decompressed when it flows through the outdoor unit liquid pipe 63 and passes through the expansion valve 24. As described above, the opening degree of the expansion valve 24 during the heating operation is adjusted so that the discharge temperature of the compressor 21 becomes a predetermined target temperature.

膨張弁24を通過して室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant flowing through the expansion valve 24 and flowing into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.

<冷房運転>
室内機3が冷房運転あるいは除霜運転を行う場合、CPU210は、図1(A)に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。
<Cooling operation>
When the indoor unit 3 performs a cooling operation or a defrosting operation, the CPU 210 communicates the state where the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 as shown in FIG. In addition, the switching is performed so that the port c and the port d communicate with each other. As a result, the refrigerant circulates in the direction indicated by the broken-line arrow in the refrigerant circuit 10, and a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchanger 31 functions as an evaporator is formed.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the refrigerant pipe 62, and flows into the outdoor heat exchanger 23. The refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27.

室外熱交換器23から流出した冷媒は室外機液管63を流れ、膨張弁24を通過する際に減圧される。   The refrigerant flowing out of the outdoor heat exchanger 23 flows through the outdoor unit liquid pipe 63 and is decompressed when passing through the expansion valve 24.

膨張弁24を通過した冷媒は、閉鎖弁25を介して液管4に流出する。液管4を流れ、液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入する。   The refrigerant that has passed through the expansion valve 24 flows out to the liquid pipe 4 through the closing valve 25. The refrigerant flowing through the liquid pipe 4 and flowing into the indoor unit 3 through the liquid pipe connecting portion 33 flows through the indoor unit liquid pipe 67 and flows into the indoor heat exchanger 31.

室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、冷房運転の場合は、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。   The refrigerant flowing into the indoor heat exchanger 31 evaporates by exchanging heat with the indoor air taken into the interior of the indoor unit 3 by the rotation of the indoor fan 32. Thus, in the case of cooling operation, the indoor heat exchanger 31 functions as an evaporator, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown). The room where the indoor unit 3 is installed is cooled.

室内熱交換器31から流出した冷媒は、室内機ガス管68を流れ、ガス管接続部34を介してガス管5に流出する。ガス管5を流れる冷媒は、閉鎖弁26を介して室外機2に流入し、室外機ガス管64、四方弁22、吸入管66の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit gas pipe 68 and flows out to the gas pipe 5 through the gas pipe connecting portion 34. The refrigerant flowing in the gas pipe 5 flows into the outdoor unit 2 through the closing valve 26, flows in the order of the outdoor unit gas pipe 64, the four-way valve 22, and the suction pipe 66, and is sucked into the compressor 21 and compressed again.

<除霜運転>
除霜運転は、室外熱交換器23に発生した霜を融かす熱交除霜運転と、室外ファン27で発生した霜を融かすファン除霜運転で構成されている。熱交除霜運転では、冷媒回路10が前述した冷房サイクルとされ、CPU210は、室外ファン27を停止するとともに、膨張弁24の開度を全開とする。また、CPU210は、室内機3に対して室内ファン32を停止するよう、通信部230を介して指示する。また、熱交除霜運転では、圧縮機21で発生する熱量や圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量等を冷媒が吸熱して暖められ、暖められた冷媒が室外熱交換器23に流入して霜を融かす。また、ファン除霜運転は、後述する所定の条件が成立した場合に、熱交除霜運転に引き続いて行われる運転である。ファン除霜運転では、冷媒回路10が熱交除霜運転と同じ冷房サイクルのままで室外ファン27を駆動するとともに、後述するファン除霜制御テーブル300を用いて、室外ファン27が制御される。
<Defrosting operation>
The defrosting operation includes a heat exchange defrosting operation for melting frost generated in the outdoor heat exchanger 23 and a fan defrosting operation for melting frost generated in the outdoor fan 27. In the heat exchanger defrosting operation, the refrigerant circuit 10 is in the above-described cooling cycle, and the CPU 210 stops the outdoor fan 27 and fully opens the opening of the expansion valve 24. Further, the CPU 210 instructs the indoor unit 3 via the communication unit 230 to stop the indoor fan 32. In the heat exchange defrosting operation, the amount of heat generated in the compressor 21, the amount of heat stored in the container of the compressor 21, the amount of heat of the indoor heat exchanger 31 of the indoor unit 3 functioning as a condenser during the heating operation, The refrigerant absorbs heat from the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3 and warms up, and the warmed refrigerant flows into the outdoor heat exchanger 23 to melt frost. The fan defrosting operation is an operation performed following the heat exchange defrosting operation when a predetermined condition described later is satisfied. In the fan defrosting operation, the refrigerant circuit 10 drives the outdoor fan 27 while maintaining the same cooling cycle as the heat exchange defrosting operation, and the outdoor fan 27 is controlled using a fan defrosting control table 300 described later.

熱交除霜運転開始時点の室内熱交換器31は、直前まで暖房運転で凝縮器として機能していたため、温度が高い。熱交除霜運転中の室内熱交換器31には、熱交除霜運転中に凝縮器として機能する室外熱交換器23において霜を溶かすことで温度が低下した冷媒が流入する。このため、熱交除霜運転を開始した時点から時間が経つにつれて室内熱交換器31の温度が低下していき、ファン除霜運転開始前に室内熱交換器31が有する熱量は、熱交除霜運転開始前に室内熱交換器31が有する熱量と比較して熱交除霜運転時に費やされた熱量分だけ少なくなる。すなわち、ファン除霜運転時において室外熱交換器23に流入する冷媒の熱量は、上述した圧縮機21や室内熱交換器31等の熱量の大きさによって変わる。   The indoor heat exchanger 31 at the time of starting the heat exchanger defrosting operation has a high temperature because it functions as a condenser in the heating operation until immediately before. The refrigerant whose temperature is lowered by melting frost in the outdoor heat exchanger 23 functioning as a condenser during the heat defrosting operation flows into the indoor heat exchanger 31 during the heat defrosting operation. For this reason, the temperature of the indoor heat exchanger 31 decreases as time passes from the start of the heat defrosting operation, and the amount of heat that the indoor heat exchanger 31 has before the fan defrosting operation is Compared to the amount of heat of the indoor heat exchanger 31 before the start of the frost operation, the amount of heat consumed during the heat exchange defrost operation is reduced. That is, the amount of heat of the refrigerant flowing into the outdoor heat exchanger 23 during the fan defrosting operation varies depending on the amount of heat of the compressor 21 and the indoor heat exchanger 31 described above.

以下の説明では、まずは、熱交除霜運転時の室外熱交換器23の温度増加量を算出する方法ついて、図2を用いて説明する。次に、ファン除霜運転の運転時間を調整する際に使用するファン除霜運転制御テーブル300について、図3を用いて説明する。そして、除霜運転時に室外機制御手段200のCPU210が行う処理の流れについて、図4を用いて説明する。尚、以下の説明では、室外熱交換器23の温度である室外熱交温度をTc(単位:℃)、熱交除霜運転時に室外熱交換器23で発生した霜を融かし終えた時点からの温度増加量をΔTcs(単位:℃)、温度増加量の閾温度である第1閾値をΔTc1(単位:℃)、室外熱交温度Tcの閾温度である第2閾値をTc2(単位:℃)、ファン除霜運転時の室外ファン27の回転数をRfo(単位:rpm)とする。   In the following description, first, a method for calculating the temperature increase amount of the outdoor heat exchanger 23 during the heat exchanger defrosting operation will be described with reference to FIG. Next, the fan defrosting operation control table 300 used when adjusting the operation time of the fan defrosting operation will be described with reference to FIG. And the flow of the process which CPU210 of the outdoor unit control means 200 performs at the time of a defrost operation is demonstrated using FIG. In the following description, the outdoor heat exchanger temperature, which is the temperature of the outdoor heat exchanger 23, is Tc (unit: ° C.), and the frost generated in the outdoor heat exchanger 23 during the heat exchanger defrosting operation has been thawed. ΔTcs (unit: ° C.), the first threshold value that is the threshold temperature of the temperature increase amount is ΔTc1 (unit: ° C.), and the second threshold value that is the threshold temperature of the outdoor heat exchange temperature Tc is Tc2 (unit: C), and the rotation speed of the outdoor fan 27 during the fan defrosting operation is Rfo (unit: rpm).

<室外熱交換器23の温度増加量の算出方法について>
ファン除霜運転時、室外熱交換器23で加熱された温かい空気は室外ファン27に当てられて、室外ファン27に発生した霜を融かす。すなわち、室外熱交換器23に流入する冷媒の熱量が室外ファン27に発生した霜の融解に影響を与える。また、前述したように、ファン除霜運転時において室外熱交換器23に流入する冷媒の熱量は圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量の大きさによって変わる。
<About the calculation method of the temperature increase amount of the outdoor heat exchanger 23>
During the fan defrosting operation, warm air heated by the outdoor heat exchanger 23 is applied to the outdoor fan 27 to melt the frost generated in the outdoor fan 27. That is, the amount of heat of the refrigerant flowing into the outdoor heat exchanger 23 affects the melting of frost generated in the outdoor fan 27. Further, as described above, the amount of heat of the refrigerant flowing into the outdoor heat exchanger 23 during the fan defrosting operation is the amount of heat stored in the container of the compressor 21, and the amount of heat of the indoor unit 3 functioning as a condenser during the heating operation. It varies depending on the amount of heat of the indoor heat exchanger 31 and the amount of heat of the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3.

圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量の大きさを推定するために、熱交除霜運転時において、霜を融かし終えた時点からの室外熱交換器23の温度増加量ΔTcsを算出する。図2に示すグラフは、熱交除霜運転時における室外熱交温度Tcの時間的変化を示すものである。熱交除霜運転時、室外熱交温度Tcは、室外熱交換器23で発生した霜を融かしている間は0℃付近の温度を示す。   The amount of heat stored in the container of the compressor 21, the amount of heat of the indoor heat exchanger 31 of the indoor unit 3 that functioned as a condenser during heating operation, and the amount of heat of the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3 In order to estimate the size, the temperature increase amount ΔTcs of the outdoor heat exchanger 23 from the time when the frost has been thawed is calculated in the heat defrosting operation. The graph shown in FIG. 2 shows the temporal change of the outdoor heat exchange temperature Tc during the heat exchange defrosting operation. During the heat exchange defrosting operation, the outdoor heat exchange temperature Tc indicates a temperature around 0 ° C. while melting the frost generated in the outdoor heat exchanger 23.

霜を融かし終えたら、室外熱交温度Tcは上昇する。霜を融かし終えてから室外熱交温度Tcの単位時間当たりの温度増加量ΔTcsは、室外熱交換器23で発生した霜を融かし終えた時点での圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量が大きい程大きい値となる。   When the frost is completely melted, the outdoor heat exchange temperature Tc rises. The temperature increase amount ΔTcs per unit time of the outdoor heat exchange temperature Tc after the frost is completely melted is stored in the container of the compressor 21 when the frost generated in the outdoor heat exchanger 23 is completely melted. The larger the heat amount, the heat amount of the indoor heat exchanger 31 of the indoor unit 3 that has functioned as a condenser during the heating operation, and the heat amount of the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3, the larger the value.

図5に示すフローチャートを用いて、除霜運転、つまり、熱交除霜運転を行う際に、室外機制御手段200のCPU210が実行する温度増加量ΔTcsの算出処理について説明する。   The calculation process of the temperature increase amount ΔTcs executed by the CPU 210 of the outdoor unit control means 200 when performing the defrosting operation, that is, the heat exchange defrosting operation will be described using the flowchart shown in FIG.

図5は、CPU210が除霜運転を行う際の処理の流れを示すものであり、STはステップを表しこれに続く番号はステップ番号を表している。尚、図5では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御といった、空気調和機1に関わる一般的な処理については説明を省略している。   FIG. 5 shows the flow of processing when the CPU 210 performs the defrosting operation, where ST represents a step and the subsequent number represents a step number. In FIG. 5, the processing related to the present invention is mainly described, and other processing, for example, air control such as control of the refrigerant circuit 100 corresponding to the operating conditions such as the set temperature and the air volume instructed by the user. Description of general processing related to the harmonic machine 1 is omitted.

CPU210は、熱交除霜運転を開始した後に、室外熱交温度Tcの増加量ΔTcを算出する(ST201)。CPU210は、熱交温度センサ75の検出結果を定期的(例えば10秒毎)に取り込んで記憶部220に記憶させている。室外熱交温度Tcの増加量ΔTcは、今回取り込んだ熱交温度センサ75の検出結果から前回取り込んで記憶部220に記憶させた熱交温度センサ75の検出結果を減じて算出される。   After starting the heat exchanger defrosting operation, CPU 210 calculates an increase amount ΔTc of outdoor heat exchanger temperature Tc (ST201). The CPU 210 fetches the detection result of the heat exchange temperature sensor 75 periodically (for example, every 10 seconds) and stores it in the storage unit 220. The increase amount ΔTc of the outdoor heat exchanger temperature Tc is calculated by subtracting the detection result of the heat exchanger temperature sensor 75 previously acquired and stored in the storage unit 220 from the detection result of the heat exchanger temperature sensor 75 acquired this time.

次に、CPU210は、増加量ΔTcが第1閾値ΔTc1(例えば、0.5℃)以下であるか否かを判断する(ST202)。第1閾値ΔTc1は、室外機制御手段の記憶部220から読み出される。熱交除霜運転中、増加量ΔTcが第1閾値ΔTc1以下のときは、温度変化が小さく、室外熱交換器23で発生した霜を融かすのに熱量が費やされている(潜熱)状態であることを示す。   Next, CPU 210 determines whether or not increase amount ΔTc is equal to or less than first threshold value ΔTc1 (for example, 0.5 ° C.) (ST202). The first threshold value ΔTc1 is read from the storage unit 220 of the outdoor unit control means. When the increase amount ΔTc is equal to or less than the first threshold value ΔTc1 during the heat exchange defrosting operation, the temperature change is small, and the amount of heat is consumed to melt the frost generated in the outdoor heat exchanger 23 (latent heat). Indicates that

増加量ΔTcが第1閾値ΔTc1以下でなければ(ST202−NO)、CPU210は、ST201に処理を戻す。   If the increase amount ΔTc is not equal to or less than the first threshold value ΔTc1 (ST202—NO), the CPU 210 returns the process to ST201.

増加量ΔTcが第1閾値ΔTc1以下であれば(ST202−YES)、CPU210は、室外熱交温度Tcを算出し(ST203)、室外熱交温度Tcが第2閾値Tc2(例えば5℃)以上であるか否かを判断する(ST204)。第2閾値Tc2は、室外機制御手段200の記憶部220から読み出される。熱交除霜運転中、室外熱交温度Tcが第2閾値Tc2以上のときは、室外熱交換器23で発生した霜を融かし終えて、温度上昇している状態であることを示す。   If the increase amount ΔTc is equal to or less than the first threshold value ΔTc1 (ST202—YES), the CPU 210 calculates the outdoor heat exchange temperature Tc (ST203), and the outdoor heat exchange temperature Tc is equal to or greater than the second threshold value Tc2 (eg, 5 ° C.). It is determined whether or not there is (ST204). The second threshold value Tc2 is read from the storage unit 220 of the outdoor unit control means 200. During the heat exchanger defrosting operation, when the outdoor heat exchanger temperature Tc is equal to or higher than the second threshold value Tc2, it indicates that the frost generated in the outdoor heat exchanger 23 has been melted and the temperature is rising.

室外熱交温度Tcが第2閾値Tc2以上であれば(ST204−YES)、CPU210は、今回取り込んだ熱交温度センサ75の検出結果から前回取り込んで記憶部220に記憶させた熱交温度センサ75の検出結果を減じて再度増加量ΔTcを算出し、後述するファン除霜運転時に読み出される温度増加量ΔTcsとして記憶部220に記憶する。温度増加量ΔTcsは、後述するファン除霜制御テーブル300においてファン除霜運転時間tsと室外ファン27の回転数の加算値ΔRfoに対応付けて設定されている。増加量ΔTcが第2閾値ΔTc2以上でなければ(ST204−NO)、CPU210は、ST203に処理を戻す。   If the outdoor heat exchange temperature Tc is equal to or higher than the second threshold Tc2 (ST204-YES), the CPU 210 takes in the heat exchange temperature sensor 75 taken in the previous time and stored in the storage unit 220 from the detection result of the heat exchange temperature sensor 75 taken in this time. The increase amount ΔTc is calculated again by subtracting the detection result of the above and stored in the storage unit 220 as the temperature increase amount ΔTcs read out during the fan defrosting operation described later. The temperature increase amount ΔTcs is set in association with the fan defrosting operation time ts and the added value ΔRfo of the rotational speed of the outdoor fan 27 in the fan defrost control table 300 described later. If the increase amount ΔTc is not equal to or greater than the second threshold value ΔTc2 (ST204—NO), the CPU 210 returns the process to ST203.

以上説明したように、霜を融解し終えてから室外熱交温度Tcの単位時間当たりの温度増加量ΔTcsが設定される。   As described above, the temperature increase amount ΔTcs per unit time of the outdoor heat exchange temperature Tc is set after the frost is completely melted.

<ファン除霜制御テーブル300について>
ファン除霜運転開始時の圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量が大きいときは、ファン除霜運転時に室外ファン27に発生した霜を融かし易くなる。そのため、予め試験などを行って求められて、温度増加量ΔTcsに応じたファン除霜運転時間及び室外ファン27の回転数が定められたファン除霜制御テーブル300が室外機制御手段200の記憶部に記憶される。
<About Fan Defrost Control Table 300>
The amount of heat stored in the container of the compressor 21 at the start of the fan defrosting operation, the amount of heat of the indoor heat exchanger 31 of the indoor unit 3 functioning as a condenser during the heating operation, and the liquid pipe 4 connected to the indoor unit 3 When the heat quantity of the gas pipe 5 is large, it is easy to melt the frost generated in the outdoor fan 27 during the fan defrosting operation. Therefore, the fan defrosting control table 300 which is obtained by performing a test or the like in advance and in which the fan defrosting operation time and the rotation speed of the outdoor fan 27 according to the temperature increase amount ΔTcs are determined is the storage unit of the outdoor unit control means 200 Is remembered.

圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量が大きければ、ファン除霜運転時間を短縮させることで、ファン除霜運転時間を最適な長さにすることができる。そこで、ファン除霜制御テーブル300では、温度増加量ΔTcsを3つの範囲(ΔTcs<2℃、2℃≦ΔTcs<4℃、4℃≦ΔTcs)に分けている。すなわち、ファン除霜制御テーブル300では、温度増加量ΔTcsが大きいとき(4℃≦ΔTcs)、ファン除霜運転時間tsを短い時間(60秒)とし、室外ファン27の回転数加算値ΔRfo(+20rpm)を加える。すなわち、圧縮機21の容器に蓄えられた熱量、暖房運転時に凝縮器として機能していた室内機3の室内熱交換器31の熱量、室内機3に接続される液管4やガス管5の熱量が大きければ、ファン除霜運転時に室外熱交換器に流入する冷媒の熱量は大きくなるので、ファン除霜運転時間を短く設定できる。また、室内熱交換器31が有する熱量が大きければ、室外ファン27の回転数を上昇させても室外熱交温度Tcが下がりにくいので、室外熱交換器23から室外ファン27へ伝わる熱量を増やすために室外ファン27の回転数Rfoを上昇させることができる。   The amount of heat stored in the container of the compressor 21, the amount of heat of the indoor heat exchanger 31 of the indoor unit 3 that functioned as a condenser during heating operation, and the amount of heat of the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3 If it is larger, the fan defrosting operation time can be shortened to an optimum length. Therefore, in the fan defrosting control table 300, the temperature increase amount ΔTcs is divided into three ranges (ΔTcs <2 ° C., 2 ° C. ≦ ΔTcs <4 ° C., 4 ° C. ≦ ΔTcs). That is, in the fan defrost control table 300, when the temperature increase amount ΔTcs is large (4 ° C. ≦ ΔTcs), the fan defrost operation time ts is set to a short time (60 seconds), and the rotational speed addition value ΔRfo (+20 rpm) of the outdoor fan 27 is set. ). That is, the amount of heat stored in the container of the compressor 21, the amount of heat of the indoor heat exchanger 31 of the indoor unit 3 that functioned as a condenser during heating operation, the liquid pipe 4 and the gas pipe 5 connected to the indoor unit 3 If the amount of heat is large, the amount of heat of the refrigerant flowing into the outdoor heat exchanger during the fan defrosting operation becomes large, so the fan defrosting operation time can be set short. In addition, if the amount of heat that the indoor heat exchanger 31 has is large, the outdoor heat exchange temperature Tc is unlikely to decrease even if the rotational speed of the outdoor fan 27 is increased, so that the amount of heat transferred from the outdoor heat exchanger 23 to the outdoor fan 27 is increased. In addition, the rotational speed Rfo of the outdoor fan 27 can be increased.

また、温度増加量ΔTcsが小さいとき(ΔTcs<2℃)、ファン除霜運転時間tsを長い時間(120秒)とする。すなわち、室内熱交換器31が保有する熱量が小さければ、ファン除霜運転時に室外熱交換器に流入する冷媒の熱量は小さくなるので、ファン除霜運転時間を長く設定する。また、温度増加量ΔTcsが2℃≦ΔTcs<4℃のとき、ファン除霜運転時間tsを標準の時間(90秒)とする。   When the temperature increase amount ΔTcs is small (ΔTcs <2 ° C.), the fan defrosting operation time ts is set to a long time (120 seconds). That is, if the amount of heat held by the indoor heat exchanger 31 is small, the amount of heat of the refrigerant flowing into the outdoor heat exchanger during the fan defrosting operation is small, so the fan defrosting operation time is set to be long. Further, when the temperature increase amount ΔTcs is 2 ° C. ≦ ΔTcs <4 ° C., the fan defrosting operation time ts is set to the standard time (90 seconds).

以上説明したように、ファン除霜制御テーブル300では、ファン除霜運転時間ts各値は、温度増加量ΔTcsが大きくなるほど短い時間が設定される。室外ファン27の回転数加算値ΔRfo各値は、温度増加量ΔTcsが大きくなるほど大きい加算値が設定される。これにより、ファン除霜運転時間を適切な長さにすることができる。   As described above, in the fan defrosting control table 300, each value of the fan defrosting operation time ts is set to be shorter as the temperature increase amount ΔTcs increases. As the rotational speed addition value ΔRfo of the outdoor fan 27, a larger addition value is set as the temperature increase amount ΔTcs increases. Thereby, the fan defrosting operation time can be set to an appropriate length.

<除霜運転時の処理の流れ>
次に、図4に示すフローチャートを用いて、除霜運転、つまり、熱交除霜運転およびファン除霜制御テーブル300を用いたファン除霜運転を行う際に、室外機制御手段200のCPU210が実行する処理について説明する。尚、上記各除霜運転を行う際の冷媒回路100における冷媒の流れは前述した冷房運転時と同じであるため、詳細な説明を省略する。
<Process flow during defrosting operation>
Next, when performing the defrosting operation, that is, the heat defrosting operation and the fan defrosting operation using the fan defrosting control table 300, using the flowchart shown in FIG. Processing to be executed will be described. In addition, since the refrigerant | coolant flow in the refrigerant circuit 100 at the time of performing each said defrost operation is the same as the time of the air_conditionaing | cooling operation mentioned above, detailed description is abbreviate | omitted.

図4に示すフローチャートは、CPU210が除霜運転を行う際の処理の流れを示すものであり、STはステップを表しこれに続く番号はステップ番号を表している。尚、図4では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、使用者の指示した設定温度や風量等の運転条件に対応した冷媒回路100の制御といった、空気調和機1に関わる一般的な処理については説明を省略している。   The flowchart shown in FIG. 4 shows the flow of processing when the CPU 210 performs the defrosting operation, ST represents a step, and the subsequent number represents a step number. In FIG. 4, the processing related to the present invention is mainly described. Other processing, for example, air flow such as control of the refrigerant circuit 100 corresponding to the operating conditions such as the set temperature and the air volume instructed by the user. Description of general processing related to the harmonic machine 1 is omitted.

CPU210は、暖房運転を行っているときに、除霜運転開始条件が成立しているか否かを判断する(ST101)。ここで、除霜運転開始条件とは、予め試験等を行って定められたものであり、室外熱交換器23での着霜量が暖房能力に支障をきたすレベルであることを示すものである。具体的な例としては、暖房運転時間(空気調和機1を暖房運転で起動した時点、あるいは、除霜運転から暖房運転に復帰した時点から暖房運転を継続している時間)が30分以上経過した後で、かつ、熱交温度センサ75で検出した室外熱交温度Tcが外気温度センサ76で検出した外気温度よりも5℃以上低い状態が、10分以上継続した場合や、前回の除霜運転が終了してから所定時間(例:180分)が経過した場合等がある。   CPU 210 determines whether the defrosting operation start condition is satisfied or not when performing the heating operation (ST101). Here, the defrosting operation start condition is determined by conducting a test or the like in advance, and indicates that the amount of frost formation in the outdoor heat exchanger 23 is at a level that interferes with the heating capacity. . As a concrete example, the heating operation time (the time when the air conditioner 1 is started in the heating operation or the time when the heating operation is continued from the time when the defrosting operation is returned to the heating operation) has passed 30 minutes or more. And when the outdoor heat exchange temperature Tc detected by the heat exchange temperature sensor 75 is lower by 5 ° C. or more than the outside air temperature detected by the outside air temperature sensor 76 for 10 minutes or more, or the previous defrosting There are cases where a predetermined time (e.g., 180 minutes) has elapsed since the operation was completed.

除霜運転開始条件が成立していない場合は(ST101−No)、CPU210は、現在行っている暖房運転を継続する(ST102)。除霜運転開始条件が成立した場合は(ST101−Yes)、CPU210は、熱交除霜運転を実行する(ST103)。熱交除霜運転では、CPU210は、圧縮機21および室外ファン27を停止し、四方弁22を切り替えて、冷媒回路100を冷房運転時の状態とした後、圧縮機21を所定回転数で起動して室外熱交換器23の除霜を行う。熱交除霜運転を行っているときは、室外ファン27および室内ファン32は停止している。これにより、圧縮機21から吐出されて室外熱交換器23に流入した冷媒は、室外熱交換器23に発生した霜を融かす。尚、熱交除霜運転を行うときの圧縮機21の所定回転数は、できる限り高い回転数(例えば、90rps)であることが望ましい。   When the defrosting operation start condition is not satisfied (ST101-No), the CPU 210 continues the heating operation currently being performed (ST102). When the defrosting operation start condition is satisfied (ST101-Yes), the CPU 210 executes the heat exchange defrosting operation (ST103). In the heat exchange defrosting operation, the CPU 210 stops the compressor 21 and the outdoor fan 27, switches the four-way valve 22, and sets the refrigerant circuit 100 to the state during the cooling operation, and then starts the compressor 21 at a predetermined rotational speed. Then, the outdoor heat exchanger 23 is defrosted. During the heat exchange defrosting operation, the outdoor fan 27 and the indoor fan 32 are stopped. Thereby, the refrigerant discharged from the compressor 21 and flowing into the outdoor heat exchanger 23 melts frost generated in the outdoor heat exchanger 23. In addition, as for the predetermined rotation speed of the compressor 21 when performing heat exchange defrost operation, it is desirable that it is as high as possible (for example, 90 rps).

次に、CPU210は、前述した図5の温度増加量算出処理を実行する(ST104)。その後、CPU210は、熱交除霜運転終了条件が成立したか否かを判断する(ST105)。ここで、熱交除霜運転終了条件とは、予め試験等を行って定められたものであり、室外熱交換器23で発生した霜が融解したと考えられる条件である。熱交除霜運転終了条件の具体的な例としては、熱交温度センサ75で検出した室外熱交換器23から流出する冷媒温度が10℃以上となったか否か、や、室外熱交除霜運転を開始してから所定時間(例:10分)が経過したか否か等である。   Next, the CPU 210 executes the above-described temperature increase calculation process of FIG. 5 (ST104). Thereafter, CPU 210 determines whether or not a heat exchange defrosting operation end condition is satisfied (ST105). Here, the heat exchanger defrosting operation end condition is determined in advance by performing a test or the like, and is a condition that the frost generated in the outdoor heat exchanger 23 is considered to have melted. As a specific example of the heat exchanger defrosting operation end condition, whether or not the refrigerant temperature flowing out from the outdoor heat exchanger 23 detected by the heat exchanger temperature sensor 75 has become 10 ° C. or more, or the outdoor heat exchanger defrost. Whether or not a predetermined time (e.g., 10 minutes) has elapsed since the start of operation.

熱交除霜運転終了条件が成立していなければ(ST105−No)、CPU210は、ST103に処理を戻し熱交除霜運転を継続する。熱交除霜運転終了条件が成立していれば(ST105−Yes)、CPU210は、ファン除霜運転開始条件が成立しているか否かを判断する(ST106)。ここで、ファン除霜運転開始条件とは、予め試験等を行って定められたものであり、室外ファン27で発生している霜の量が、室外ファン27の駆動に支障をきたすレベルであることを示すものである。ファン除霜運転開始条件の具体的な例としては、熱交除霜運転終了時に外気温度センサ76で検出した外気温度が−10℃〜5℃の場合、等である。ファン除霜運転開始条件が成立していなければ(ST106−No)、つまり、室外ファン27で発生している霜の量が、室外ファン27の駆動に支障のないレベルであれば、CPU210は、ST112に処理を進める。   If the heat exchange defrosting operation end condition is not satisfied (ST105-No), the CPU 210 returns the process to ST103 and continues the heat exchange defrosting operation. If the heat exchange defrosting operation end condition is satisfied (ST105-Yes), CPU 210 determines whether the fan defrosting operation start condition is satisfied (ST106). Here, the fan defrosting operation start condition is determined by performing a test or the like in advance, and the amount of frost generated in the outdoor fan 27 is a level that hinders driving of the outdoor fan 27. It shows that. A specific example of the fan defrosting operation start condition is when the outside air temperature detected by the outside air temperature sensor 76 at the end of the heat exchange defrosting operation is -10 ° C to 5 ° C. If the fan defrosting operation start condition is not satisfied (ST106-No), that is, if the amount of frost generated in the outdoor fan 27 is at a level that does not hinder the driving of the outdoor fan 27, the CPU 210 The process proceeds to ST112.

ファン除霜運転開始条件が成立した場合は(ST106−Yes)、つまり、室外ファン27で発生している霜の量が、室外ファン27の駆動に支障のあるレベルであれば、CPU210は、室外ファン27を回転数Rfoで駆動し、また、ファン除霜運転時間tsを設定し(ST107)、ファン除霜運転を実行する(ST108)。ここで、回転数Rfoは、予め記憶部220に記憶されている標準回転数Rfopにファン除霜制御テーブル300を用いて設定された回転数加算値ΔRfoを加えたものである。標準回転数Rfopに高い回転数を設定すると室内熱交換器23で空気と冷媒の熱交換が促進されて室外熱交温度Tcが下がってしまうため、ファン除霜運転で室外ファン27で発生した霜が溶けることが判明している低回転数にすることが望ましい。尚、所定回転数Rfopは例えば、室外ファン27の使用範囲の下限回転数(例えば、200rpm)である。また、ファン除霜運転時間tsは、ファン除霜制御テーブル300を用いて設定されたものである。   If the fan defrosting operation start condition is satisfied (ST106-Yes), that is, if the amount of frost generated in the outdoor fan 27 is at a level that hinders driving of the outdoor fan 27, the CPU 210 The fan 27 is driven at the rotational speed Rfo, the fan defrosting operation time ts is set (ST107), and the fan defrosting operation is executed (ST108). Here, the rotation speed Rfo is obtained by adding the rotation speed addition value ΔRfo set using the fan defrosting control table 300 to the standard rotation speed Rfop stored in advance in the storage unit 220. If a high rotational speed is set as the standard rotational speed Rfop, heat exchange between air and refrigerant is promoted in the indoor heat exchanger 23 and the outdoor heat exchange temperature Tc is lowered. Therefore, frost generated in the outdoor fan 27 in the fan defrosting operation It is desirable to use a low rotational speed that has been found to melt. The predetermined rotation speed Rfop is, for example, the lower limit rotation speed (for example, 200 rpm) of the usage range of the outdoor fan 27. The fan defrosting operation time ts is set using the fan defrost control table 300.

次に、CPU210は、ST108でファン除霜運転を開始してからの時間tがファン除霜運転時間ts以上であるか(経過したか)否かを判断する(ST109)。ファン除霜運転時間ts以上でなければ(ST109−No)、CPU210は、ST109の処理を再度行ってファン除霜運転を継続する。   Next, CPU 210 determines whether or not time t from the start of fan defrosting operation in ST108 is equal to or longer than fan defrosting operation time ts (ST109). If it is not longer than the fan defrosting operation time ts (ST109-No), the CPU 210 performs the process of ST109 again and continues the fan defrosting operation.

ファン除霜運転時間ts以上であれば(ST109−Yes)、つまり、ファン除霜運転を行ったことで、室外ファン27で発生した霜が溶けて室外ファン27の駆動に支障がなくなったと推定される場合は、CPU210は、暖房運転を再開する(ST112)。ここで、運転再開にあたって、CPU210は、圧縮機21および室外ファン27を停止し、四方弁22を切り替えて、冷媒回路100を暖房運転時の状態にする。   If it is equal to or longer than the fan defrosting operation time ts (ST109-Yes), that is, it is estimated that the fan defrosting operation has melted the frost generated in the outdoor fan 27 and has no problem in driving the outdoor fan 27. If it is determined, the CPU 210 resumes the heating operation (ST112). Here, when restarting the operation, the CPU 210 stops the compressor 21 and the outdoor fan 27, switches the four-way valve 22, and puts the refrigerant circuit 100 into the heating operation state.

以上説明したように、本実施形態の空気調和機1では、ファン除霜運転の運転時間を霜を融かし終えてから室外熱交温度Tcの単位時間当たりの温度増加量ΔTcsに応じて異ならせるようにしたので、ファン除霜運転の運転時間に室外ファン27で発生した霜を完全に融かすために必要最低限の時間を設定することができ、ファン除霜運転時間を最適な長さにすることができる。   As described above, in the air conditioner 1 of the present embodiment, the fan defrosting operation time varies depending on the temperature increase amount ΔTcs per unit time of the outdoor heat exchange temperature Tc after the frost is completely melted. Therefore, the minimum time required to completely melt the frost generated in the outdoor fan 27 can be set during the fan defrosting operation time, and the fan defrosting operation time has an optimum length. Can be.

1 空気調和機
2 室外機
3 室内機
21 圧縮機
23 室外熱交換器
24 膨張弁
27 室外ファン
31 室内熱交換器
32 室内ファン
100 冷媒回路
200 室外機制御手段
210 CPU
220 記憶部
300 ファン回転数調整制御テーブル
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 21 Compressor 23 Outdoor heat exchanger 24 Expansion valve 27 Outdoor fan 31 Indoor heat exchanger 32 Indoor fan 100 Refrigerant circuit 200 Outdoor unit control means 210 CPU
220 storage unit 300 fan rotation speed adjustment control table

Claims (2)

暖房運転時に、圧縮機、室内熱交換器、膨張弁、室外熱交換器の順で冷媒が循環する冷媒回路と、
前記冷媒回路に備えられ、前記圧縮機から吐出された冷媒の流れる方向を切り替える流路切替手段と、
前記室外熱交換器に送風する室外ファンと、
前記暖房運転時に、前記室外ファンを停止させるとともに、前記流路切替手段を切り替えて前記圧縮機から吐出された冷媒を前記室外熱交換器に向かわせる熱交除霜運転と、前記熱交除霜運転が終了した後に、前記圧縮機から吐出された冷媒を前記室外熱交換器に向かわせたまま、前記室外ファンを駆動して同室外ファンを除霜するファン除霜運転を行う制御手段と、
前記ファン除霜運転時、前記室外熱交換器の温度である室外熱交温度を検出する室外熱交温度検出手段と、
を有する空気調和機であって、
前記制御手段は、
前記熱交除霜運転時、前記室外熱交換器で発生した霜を融解し終えた時点から単位時間当たりの前記室外熱交換器の温度増加量を算出し、
前記ファン除霜運転時、前記温度増加量に応じて、前記ファン除霜運転の運転時間を異ならせる、
ことを特徴とする空気調和機。
A refrigerant circuit in which refrigerant circulates in the order of a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger during heating operation;
A flow path switching means provided in the refrigerant circuit, for switching a flow direction of the refrigerant discharged from the compressor;
An outdoor fan that blows air to the outdoor heat exchanger;
During the heating operation, the outdoor fan is stopped, and the heat exchanger defrosting operation is performed in which the flow path switching unit is switched and the refrigerant discharged from the compressor is directed to the outdoor heat exchanger. Control means for performing a fan defrosting operation for defrosting the outdoor fan by driving the outdoor fan while the refrigerant discharged from the compressor is directed to the outdoor heat exchanger after the operation is completed.
During the fan defrosting operation, an outdoor heat exchange temperature detecting means for detecting an outdoor heat exchange temperature that is the temperature of the outdoor heat exchanger;
An air conditioner having
The control means includes
During the heat exchanger defrosting operation, calculate the amount of increase in the temperature of the outdoor heat exchanger per unit time from the time when frost generated in the outdoor heat exchanger has been thawed,
During the fan defrosting operation, the operation time of the fan defrosting operation is varied according to the temperature increase amount.
An air conditioner characterized by that.
前記制御手段は、
前記ファン除霜運転時、前記温度増加量が大きい程、前記室外ファンの回転数を上げる、
ことを特徴とする請求項1に記載の空気調和機。
The control means includes
During the fan defrosting operation, the larger the temperature increase amount, the higher the rotational speed of the outdoor fan.
The air conditioner according to claim 1.
JP2018049294A 2018-03-16 2018-03-16 air conditioner Active JP7163598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018049294A JP7163598B2 (en) 2018-03-16 2018-03-16 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018049294A JP7163598B2 (en) 2018-03-16 2018-03-16 air conditioner

Publications (2)

Publication Number Publication Date
JP2019158306A true JP2019158306A (en) 2019-09-19
JP7163598B2 JP7163598B2 (en) 2022-11-01

Family

ID=67993959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049294A Active JP7163598B2 (en) 2018-03-16 2018-03-16 air conditioner

Country Status (1)

Country Link
JP (1) JP7163598B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084444A (en) * 2018-07-26 2018-12-25 四川长虹空调有限公司 A kind of method and air-conditioning inhibiting condenser for outdoor unit of air conditioner frosting
CN110925954A (en) * 2019-11-15 2020-03-27 浙江中广电器股份有限公司 Defrosting mode starting or not judging method, processor, air conditioner and heat pump water heater
CN111457552A (en) * 2020-04-17 2020-07-28 宁波奥克斯电气股份有限公司 Air conditioner control method and device, air conditioner and computer readable storage medium
CN115751611A (en) * 2022-10-20 2023-03-07 宁波奥克斯电气股份有限公司 Partial load non-stop defrosting control method and device and variable frequency air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156268A (en) * 1989-11-14 1991-07-04 Fujitsu General Ltd Air conditioner
JP2015034655A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156268A (en) * 1989-11-14 1991-07-04 Fujitsu General Ltd Air conditioner
JP2015034655A (en) * 2013-08-08 2015-02-19 株式会社富士通ゼネラル Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084444A (en) * 2018-07-26 2018-12-25 四川长虹空调有限公司 A kind of method and air-conditioning inhibiting condenser for outdoor unit of air conditioner frosting
CN109084444B (en) * 2018-07-26 2021-07-16 四川长虹空调有限公司 Method for inhibiting frosting of condenser of air conditioner outdoor unit and air conditioner
CN110925954A (en) * 2019-11-15 2020-03-27 浙江中广电器股份有限公司 Defrosting mode starting or not judging method, processor, air conditioner and heat pump water heater
CN111457552A (en) * 2020-04-17 2020-07-28 宁波奥克斯电气股份有限公司 Air conditioner control method and device, air conditioner and computer readable storage medium
CN111457552B (en) * 2020-04-17 2021-08-24 宁波奥克斯电气股份有限公司 Air conditioner control method and device, air conditioner and computer readable storage medium
CN115751611A (en) * 2022-10-20 2023-03-07 宁波奥克斯电气股份有限公司 Partial load non-stop defrosting control method and device and variable frequency air conditioner

Also Published As

Publication number Publication date
JP7163598B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US9651294B2 (en) Outdoor unit of air conditioner and air conditioner
JP2019116993A (en) Air conditioner
JP2019158306A (en) Air conditioner
JP5574028B1 (en) Air conditioner
JP5590195B1 (en) Air conditioner
JP2019078411A (en) Air conditioner
JP2017062049A (en) Air conditioner
JP2016070574A (en) Air conditioning device
JP2018066502A (en) Air conditioner
JP2011144960A (en) Air conditioner and method of defrosting operation of air conditioner
JP6405700B2 (en) Air conditioner
JP6965736B2 (en) Air conditioner
JP6103212B2 (en) Air conditioner
JP7009808B2 (en) Air conditioner
JP2016070575A (en) Air conditioning device
JP7000902B2 (en) Air conditioner
JP2018013301A (en) Air conditioner
JP2021055931A (en) Heat pump cycle device
JP6458533B2 (en) Air conditioner
JP2019100592A (en) Air conditioner
JP2021162251A (en) Air conditioner
WO2017179165A1 (en) Refrigeration cycle device
JP2017032251A (en) Multi-type air conditioning device
JP2022040448A (en) Hear pump cycle device
JP7443887B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R151 Written notification of patent or utility model registration

Ref document number: 7163598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151