JP2019157232A - Method of tempering annular work - Google Patents

Method of tempering annular work Download PDF

Info

Publication number
JP2019157232A
JP2019157232A JP2018047696A JP2018047696A JP2019157232A JP 2019157232 A JP2019157232 A JP 2019157232A JP 2018047696 A JP2018047696 A JP 2018047696A JP 2018047696 A JP2018047696 A JP 2018047696A JP 2019157232 A JP2019157232 A JP 2019157232A
Authority
JP
Japan
Prior art keywords
workpiece
induction heating
annular
annular workpiece
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018047696A
Other languages
Japanese (ja)
Inventor
義也 真野
Yoshiya Mano
義也 真野
慎太郎 鈴木
Shintaro Suzuki
慎太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018047696A priority Critical patent/JP2019157232A/en
Priority to PCT/JP2019/010602 priority patent/WO2019177111A1/en
Publication of JP2019157232A publication Critical patent/JP2019157232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To suppress the occurrence of downtime due to the change of an annular work to be heated (tempered) as much as possible.SOLUTION: An induction heating device 20 has a plurality of coil parts 25 (25A to 25C) which are mutually different in diameter, separated from each other and arranged coaxially with each other in the axial direction of the annular work W. When executing an induction heating step S211 for induction-heating a hardened annular work W to a target temperature r1, The induction heating device 20 is energized in a state where the annular work W is coaxially arranged on an inner periphery of a coil part 25 having a minimum distance from the annular work W in the radial direction of the annular work W.SELECTED DRAWING: Figure 9

Description

本発明は、環状ワークの焼戻し方法に関する。   The present invention relates to a method for tempering an annular workpiece.

例えば、転がり軸受の軌道輪のように、SUJ2等の鋼材からなる機械部品の製造過程においては、通常、機械部品の基材としての環状のワーク(以下、単に「ワーク」という)に対し、機械的強度や硬さを付与するための焼入硬化処理が施され、その後、残留応力の緩和や残留オーステナイトの低減(靱性の向上)を目的として焼戻し処理が施される。焼戻し処理は、焼入済のワークを狙い温度に加熱する加熱工程と、加熱後のワークを冷却する冷却工程とを含み、加熱工程では、雰囲気加熱炉や誘導加熱装置を用いてワークが加熱される。上記の「狙い温度」は、主に機械部品の使用温度に応じて設定される。   For example, in the manufacturing process of a machine part made of steel such as SUJ2, such as a bearing ring of a rolling bearing, an annular work (hereinafter simply referred to as “work”) as a base material of a machine part is usually used as a machine part. A quench hardening treatment is applied for imparting sufficient strength and hardness, and then a tempering treatment is performed for the purpose of relaxing residual stress and reducing residual austenite (improving toughness). The tempering process includes a heating process for heating a quenched workpiece to a target temperature and a cooling process for cooling the heated workpiece. In the heating process, the workpiece is heated using an atmospheric heating furnace or an induction heating device. The The “target temperature” is set mainly according to the operating temperature of the machine part.

雰囲気加熱炉は、温度制御が容易で、複数のワークを同時に加熱できる、などというメリットがある反面、エネルギー効率が低くワークを狙い温度に加熱するのに時間がかかる、広大な設置スペースが必要、などといったデメリットがある。このため、上記加熱工程におけるワークの加熱を誘導加熱により行うケースが増加しつつある(例えば特許文献1)。   Atmospheric heating furnace has the advantage that temperature control is easy and multiple workpieces can be heated at the same time, but energy efficiency is low and it takes time to heat the workpiece to the target temperature. There are disadvantages such as. For this reason, the case where the workpiece | work is heated by induction heating in the said heating process is increasing (for example, patent document 1).

特開2013−221199号公報JP 2013-221199 A

ところで、ワークを誘導加熱する場合におけるワークの加熱効率は、ワークを誘導加熱するためのコイルと、その対向領域(内周および/または外周)に同軸配置されるワークとの径方向離間距離によって左右され、コイルを流れる電流量が一定の場合、コイルとワークの径方向離間距離が小さいほどワークを効率良く加熱することができる。このため、ワークと同軸配置されたコイルに通電することによってワークを誘導加熱する場合(例えば、特許文献1の図5を参照)、ワークの直径寸法に応じた適当な直径寸法を有するコイルを使用するのが好ましいと言える。しかしながら、加熱対象のワークが直径寸法の異なるものに変更される毎にコイルを交換していたのでは、ダウンタイムが増加して生産性が低下するため、誘導加熱を採用することにより享受されるコストメリットが損なわれる。   By the way, the heating efficiency of the work in the case of induction heating of the work depends on the distance in the radial direction between the coil for induction heating of the work and the work arranged coaxially in the opposing region (inner circumference and / or outer circumference). When the amount of current flowing through the coil is constant, the work can be efficiently heated as the distance between the coil and the work in the radial direction is smaller. For this reason, when a work is induction-heated by energizing a coil arranged coaxially with the work (see, for example, FIG. 5 of Patent Document 1), a coil having an appropriate diameter according to the diameter of the work is used. It can be said that it is preferable to do. However, if the workpiece is changed every time the workpiece to be heated is changed to one having a different diameter, the downtime increases and the productivity decreases, so that it is enjoyed by adopting induction heating. Cost merit is impaired.

上記の実情に鑑み、本発明は、加熱(焼戻し)対象の環状ワークの変更に伴うダウンタイムの発生を可及的に抑制可能とし、これにより、焼戻し処理の処理効率、ひいては機械部品の生産性の向上に寄与することを目的とする。   In view of the above circumstances, the present invention makes it possible to suppress as much as possible the occurrence of downtime associated with the change of the annular workpiece to be heated (tempered), thereby improving the processing efficiency of the tempering process and thus the productivity of machine parts. The purpose is to contribute to improvement.

上記の目的を達成するため、本発明では、焼入済の環状ワークを狙い温度に誘導加熱する誘導加熱工程を備えた環状ワークの焼戻し方法において、誘導加熱工程を実行するに際し、直径寸法が相互に異なり、かつ環状ワークの軸方向に相互に離間して同軸に配置された複数のコイル部を有する誘導加熱装置のうち、環状ワークの径方向における環状ワークとの離間距離が最小となるコイル部の対向領域に環状ワークを同軸配置し、その状態で誘導加熱装置に通電することを特徴とする環状ワークの焼戻し方法を提供する。   In order to achieve the above object, according to the present invention, in the method of tempering an annular workpiece provided with an induction heating step of induction heating the quenched annular workpiece to a target temperature, the diameter dimension is mutually reduced when the induction heating step is executed. And an induction heating device having a plurality of coil portions arranged coaxially and spaced apart from each other in the axial direction of the annular workpiece, the coil portion having the smallest separation distance from the annular workpiece in the radial direction of the annular workpiece An annular work is tempered by arranging an annular work on the opposite area of the coil and energizing the induction heating device in that state.

上記の方法によれば、例えば、直径寸法が相互に異なる型番A,Bの環状ワークを誘導加熱するのに適した2つのコイル部(第1および第2コイル部)を有する誘導加熱装置を使用した場合、加熱対象の環状ワークが型番A→型番Bに変更されても、型番Bの環状ワークを誘導加熱する際には、環状ワークを第2コイル部の対向領域に同軸配置した状態で誘導加熱装置(の第2コイル部)に通電すれば良く、誘導加熱装置を交換する必要はない。そのため、加熱対象の環状ワークの変更に伴うダウンタイムの発生を抑制あるいは防止することが可能となり、焼戻し処理を効率良く実施することができる。   According to said method, the induction heating apparatus which has two coil parts (1st and 2nd coil part) suitable for induction heating of the cyclic | annular workpiece | work of the model numbers A and B from which diameter dimensions differ mutually, for example is used If the annular workpiece to be heated is changed from the model number A to the model number B, when the annular workpiece of the model number B is induction-heated, the annular workpiece is guided coaxially in the opposing region of the second coil portion. What is necessary is just to energize a heating apparatus (2nd coil part), and it is not necessary to replace | exchange an induction heating apparatus. Therefore, it becomes possible to suppress or prevent the occurrence of downtime due to the change of the annular workpiece to be heated, and the tempering process can be efficiently performed.

誘導加熱工程の実行時には、環状ワークを、その中心軸に沿って進退移動可能に設けられたワーク保持部材で保持しつつ、誘導加熱装置に対して上記中心軸回りに相対回転させるのが好ましい。このようにすれば、環状ワークの周方向各部を均等に加熱することができるので、焼戻し処理の完了後には、ワーク内で硬さ等にばらつきがない高品質な環状ワークを得易くなる。   At the time of performing the induction heating process, it is preferable that the annular work is relatively rotated around the central axis with respect to the induction heating device while being held by a work holding member provided so as to be movable back and forth along the central axis. In this way, since each part in the circumferential direction of the annular workpiece can be heated uniformly, it becomes easy to obtain a high-quality annular workpiece having no variation in hardness or the like in the workpiece after the tempering process is completed.

ワーク保持部材としては、例えば、環状ワークの径方向に進退移動可能に設けられ、環状ワークと径方向に係合することにより環状ワークを保持するワーク保持部を有するものや、環状ワークの軸方向に相互に離間して設けられ、環状ワークを実質的に保持する部分を通る円軌道の直径寸法が相互に異なる複数のワーク保持部を有するもの、を使用することができる。   As the work holding member, for example, a work holding member which is provided so as to be movable back and forth in the radial direction of the annular work and has a work holding part for holding the annular work by engaging with the annular work in the radial direction, or the axial direction of the annular work And having a plurality of workpiece holding portions having different diameter dimensions of circular tracks passing through a portion that substantially holds the annular workpiece can be used.

本発明に係る焼戻し方法においては、以上のようにして誘導加熱工程を実行した後、雰囲気加熱により、上記狙い温度を含む所定の温度範囲内で環状ワークを所定時間保温する保温工程を実行しても良い。このようにすれば、焼戻し処理後の環状ワークに含まれる残留オーステナイト量を所定レベル以下にまで低減しつつ、ワーク硬さを所定範囲内に収める(ワーク硬さが過剰に低下するのを防止する)ことが可能となる。特に、雰囲気加熱であれば、
・ワーク全体を均一温度で保温することができるので、ワーク内での温度のばらつきを抑え、焼戻し処理後の環状ワークが高品質なものとなる。
・保温工程実行時の温度制御を容易にかつ精度良く行うことができる。
・複数のワークに同時に保温処理を施すことができる。
などという種々のメリットがある。
In the tempering method according to the present invention, after the induction heating step is performed as described above, a heat retaining step is performed in which the annular workpiece is kept warm for a predetermined time within a predetermined temperature range including the target temperature by atmospheric heating. Also good. If it does in this way, while reducing the amount of retained austenite contained in the annular work after tempering processing to below a predetermined level, it will keep work hardness in a predetermined range (a work hardness is prevented from falling excessively). ) Is possible. Especially if the atmosphere is heated
-Since the entire workpiece can be kept at a uniform temperature, the variation in temperature within the workpiece is suppressed, and the annular workpiece after tempering is of high quality.
・ Temperature control at the time of executing the heat retention process can be performed easily and accurately.
・ Heat insulation can be applied to multiple workpieces simultaneously.
There are various advantages such as.

上記のように、誘導加熱工程と保温工程とで環状ワークの加熱方法を異ならせた場合、環状ワークが狙い温度に加熱された後(誘導加熱工程の実行後)には、環状ワークを保温工程(を実行するための加熱装置)に移送する必要がある。このとき、環状ワークの温度は少なからず低下するが、この温度低下を見越して上記狙い温度を高めに設定すると、焼戻し処理後の環状ワークに所望の硬さ等を確保できなくなるおそれがある。   As described above, when the heating method of the annular workpiece is different between the induction heating step and the heat retaining step, after the annular workpiece is heated to the target temperature (after the induction heating step is performed), the annular workpiece is heated. Need to be transferred to (heating device for performing). At this time, the temperature of the annular workpiece is reduced by a small amount. However, if the target temperature is set high in anticipation of this temperature decrease, there is a possibility that desired hardness or the like cannot be secured for the annular workpiece after tempering.

このような問題は、誘導加熱工程と保温工程との間に、雰囲気加熱により、環状ワークの温度を上記狙い温度に回復させる復温工程を設けることで可及的に解消し得る。すなわち、保温工程の実行前に環状ワークの温度を上記狙い温度に回復させるようにすれば、保温工程を効率良く実行しつつ、焼戻し処理後の環状ワークに所望の硬さ等を確保することができる。特に、雰囲気加熱により環状ワークの温度を回復させるようにすれば、復温工程および保温工程を一の雰囲気加熱炉を用いて連続的に実行することができるので、復温工程から保温工程に移行する際のワークの温度低下を抑制しつつ、両工程を効率良く行い得る。   Such a problem can be solved as much as possible by providing a rewarming step for recovering the temperature of the annular workpiece to the target temperature by atmospheric heating between the induction heating step and the heat retaining step. That is, if the temperature of the annular workpiece is restored to the target temperature before the heat retention step, the desired hardness or the like can be secured on the annular workpiece after the tempering process while efficiently performing the heat retention step. it can. In particular, if the temperature of the annular workpiece is recovered by atmospheric heating, the reheating process and the heat retaining process can be performed continuously using one atmosphere heating furnace, so the process shifts from the rewarming process to the heat retaining process. Both steps can be performed efficiently while suppressing a decrease in the temperature of the workpiece during the process.

なお、この場合、復温工程実行時の雰囲気温度は、上記狙い温度よりも高く設定するのが好ましい。このようにすれば、復温に要する時間を短縮することができるので、焼戻し処理の処理効率を高めることができる。   In this case, it is preferable to set the ambient temperature during the reheating process to be higher than the target temperature. In this way, since the time required for reheating can be shortened, the processing efficiency of the tempering process can be increased.

本発明に係る焼戻し方法は、例えば転がり軸受の軌道輪のように、直径寸法が相互に異なる多数の型番を有する環状ワークに焼戻し処理を施すにあたり、好ましく適用することができる。   The tempering method according to the present invention can be preferably applied to tempering an annular workpiece having a number of model numbers having different diameters, such as a bearing ring of a rolling bearing.

以上で述べたように、本発明によれば、加熱(焼戻し)対象の環状ワークの変更に伴うダウンタイムの発生を可及的に抑制することが可能となる。これにより、焼戻し処理の処理効率、ひいては機械部品の生産性を向上することができる。   As described above, according to the present invention, it is possible to suppress as much as possible the occurrence of downtime associated with the change of the annular workpiece to be heated (tempered). Thereby, the processing efficiency of a tempering process and by extension, productivity of a machine part can be improved.

本発明の実施形態に係る熱処理工程の全体フロー図である。It is a whole flowchart of the heat treatment process concerning the embodiment of the present invention. (a)図は、焼戻し工程のフロー図、(b)図は、焼戻し工程に含まれる加熱工程のフロー図である。FIG. 4A is a flowchart of a tempering process, and FIG. 4B is a flowchart of a heating process included in the tempering process. 焼戻し工程で使用される焼戻し装置の概略図である。It is the schematic of the tempering apparatus used at a tempering process. 焼戻し装置のうち、加熱工程が実行される部分の概略断面図である。It is a schematic sectional drawing of the part in which a heating process is performed among tempering apparatuses. (a)図は、一実施形態に係る誘導加熱装置を上側から見たときの部分平面図、(b)図は、同誘導加熱装置を構成するコイル部の概略断面図である。(A) A figure is a partial top view when the induction heating apparatus which concerns on one Embodiment is seen from upper side, (b) A figure is a schematic sectional drawing of the coil part which comprises the induction heating apparatus. 図5(a)に示す誘導加熱装置の部分分解斜視図である。FIG. 6 is a partially exploded perspective view of the induction heating device shown in FIG. 図5(a)に示す誘導加熱装置の背面図である。It is a rear view of the induction heating apparatus shown to Fig.5 (a). 誘導加熱部に設けられるワーク保持部材の概略断面図であり、(a)図は、ワーク保持部材がワークを保持する直前状態を示す図、(b)図は、ワーク保持部材がワークを保持した状態を示す図である。It is a schematic sectional drawing of the workpiece | work holding member provided in an induction heating part, (a) A figure shows the state just before a workpiece | work holding member hold | maintains a workpiece | work, (b) The figure showed the workpiece | work holding member held the workpiece | work. It is a figure which shows a state. (a)〜(c)図は、何れも、誘導加熱工程の実施状態を概念的に示す断面図である。(A)-(c) figure is all sectional drawing which shows notionally the implementation state of an induction heating process. 焼戻し工程の実行時におけるワークの温度履歴を示す図である。It is a figure which shows the temperature history of the workpiece | work at the time of execution of a tempering process. 他の実施形態に係る誘導加熱工程の実行時の様子を示す概略断面図である。It is a schematic sectional drawing which shows the mode at the time of execution of the induction heating process which concerns on other embodiment. 図11に示すワーク保持部材を上側から見たときの平面図である。It is a top view when the workpiece holding member shown in FIG. 11 is seen from the upper side.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る焼戻し方法が適用される焼戻し工程を含む熱処理工程のフロー図である。熱処理工程は、例えば、転がり軸受の外輪の基材等、鋼材からなる環状ワークW(図4や図8を参照。以下、単に「ワークW」とも言う。)に焼入硬化処理を施す焼入れ工程S1と、焼入済のワークWに焼戻し処理を施す焼戻し工程S2とを備える。上記の鋼材としては、例えば、JIS G4805に規定の高炭素クロム軸受鋼に分類されるSUJ2やSUJ3等を挙げることができる。   FIG. 1 is a flowchart of a heat treatment process including a tempering process to which a tempering method according to an embodiment of the present invention is applied. The heat treatment step is, for example, a quenching step in which a hardening work is performed on an annular workpiece W made of a steel material such as a base material of an outer ring of a rolling bearing (see FIGS. 4 and 8; hereinafter, also simply referred to as “work W”). S1 and a tempering step S2 for tempering the hardened workpiece W. Examples of the steel material include SUJ2 and SUJ3 classified as high carbon chrome bearing steel defined in JIS G4805.

図1では、焼入れ工程S1と焼戻し工程S2との間に、焼入済のワークWを洗浄する洗浄工程S3、および洗浄された焼入済のワークWが品質基準を満たす良品であるか否かを検査する検査工程S4を設けると共に、焼戻し工程S2の後に、焼戻し済のワークWを洗浄する洗浄工程S5、および洗浄された焼戻し済のワークWが品質基準を満たす良品であるか否かを検査する検査工程S6を設けている。但し、上記の工程S3〜S6は必ずしも全て実行されるわけではなく、一部又は全部が省略される場合もある。また、図示は省略するが、焼入れ工程S1および/または焼戻し工程S2の後に、ワークWに研磨等の仕上げ加工を施す仕上げ工程などが追加的に実行される場合もある。以下、本発明の要旨である焼戻し工程S2について詳細に説明する。   In FIG. 1, between the quenching step S1 and the tempering step S2, a cleaning step S3 for cleaning the quenched workpiece W, and whether the cleaned and quenched workpiece W is a non-defective product that satisfies the quality standards. And an inspection step S4 for inspecting, and after the tempering step S2, a cleaning step S5 for cleaning the tempered workpiece W, and an inspection whether the cleaned tempered workpiece W satisfies a quality standard. An inspection step S6 is provided. However, all of the above steps S3 to S6 are not necessarily executed, and some or all of them may be omitted. Although illustration is omitted, after the quenching step S1 and / or tempering step S2, a finishing step for performing a finishing process such as polishing on the workpiece W may be additionally executed. Hereinafter, tempering process S2 which is the summary of this invention is demonstrated in detail.

図2(a)(b)に示すように、焼戻し工程S2は、焼入済のワークWを加熱する加熱工程S21と、加熱工程S21で加熱されたワークWを冷却する冷却工程S22とを備え、加熱工程S21は、ワークWを狙い温度r1(図10参照)に誘導加熱する誘導加熱工程S211と、ワークW(狙い温度r1に加熱された後に温度低下が生じたワークW)の温度を狙い温度r1に回復させる復温工程S212と、狙い温度r1に回復したワークWを保温する保温工程S213とを有する。詳細は後述するが、復温工程S212および保温工程S213では、雰囲気加熱によりワークWが加熱・保温される。   As shown in FIGS. 2 (a) and 2 (b), the tempering step S2 includes a heating step S21 for heating the quenched workpiece W and a cooling step S22 for cooling the workpiece W heated in the heating step S21. The heating step S21 aims at the temperatures of the induction heating step S211 for induction heating the workpiece W to the target temperature r1 (see FIG. 10) and the temperature of the workpiece W (the workpiece W whose temperature has dropped after being heated to the target temperature r1). It has a reheating step S212 for recovering to the temperature r1, and a heat retaining step S213 for keeping the work W recovered to the target temperature r1. Although details will be described later, in the reheating step S212 and the heat retaining step S213, the workpiece W is heated and kept warm by atmospheric heating.

図3に、焼戻し工程S2を実行するために使用される焼戻し装置10の概略図を示す。この焼戻し装置10は、ワークWが水平姿勢(ワークWの中心軸を鉛直方向に沿わせた姿勢)で搬送される搬送路11と、加熱工程S21を実行する加熱部12と、加熱部12よりも搬送路11の下流側に配設され、冷却工程S22を実行する冷却部13とを備える。加熱部12は、誘導加熱工程S211を実行する誘導加熱部14、復温工程S212を実行する復温部15および保温工程S213を実行する保温部16を備え、これらは搬送路11の上流側から下流側に向けて順に配置されている。   In FIG. 3, the schematic of the tempering apparatus 10 used in order to perform tempering process S2 is shown. The tempering apparatus 10 includes a transport path 11 in which the workpiece W is transported in a horizontal posture (a posture in which the central axis of the workpiece W is aligned in the vertical direction), a heating unit 12 that performs the heating step S21, and a heating unit 12. Is also provided on the downstream side of the transport path 11 and includes a cooling unit 13 that performs the cooling step S22. The heating unit 12 includes an induction heating unit 14 that performs the induction heating step S211, a rewarming unit 15 that performs the reheating step S212, and a heat retaining unit 16 that performs the heat retaining step S213, which are provided from the upstream side of the conveyance path 11. It arranges in order toward the downstream side.

図示は省略しているが、ワークWを搬送路11に沿って搬送するための搬送装置としては、例えば、搬送コンベア、動力シリンダ(油圧シリンダ、エアシリンダ、電動シリンダ等)、あるいはワークWの外径面をチャッキングした状態(ワークWを縮径方向に拘束した状態)で搬送路11に沿って水平移動するもの、などを一種、あるいは二種以上組み合わせて使用することができる。   Although not shown in the drawings, examples of the transfer device for transferring the workpiece W along the transfer path 11 include a transfer conveyor, a power cylinder (such as a hydraulic cylinder, an air cylinder, and an electric cylinder), or an outside of the workpiece W. One that is horizontally moved along the conveyance path 11 in a state where the radial surface is chucked (a state in which the workpiece W is constrained in the reduced diameter direction) can be used alone or in combination of two or more.

図4に示すように、誘導加熱部14は、搬送路11の上方に配設された誘導加熱装置20と、加熱対象のワークWを保持するワーク保持部材30と、誘導加熱装置20などを収容した誘導加熱室40とを備える。   As shown in FIG. 4, the induction heating unit 14 accommodates the induction heating device 20 disposed above the conveyance path 11, the workpiece holding member 30 that holds the workpiece W to be heated, the induction heating device 20, and the like. The induction heating chamber 40 is provided.

誘導加熱室40は、入口側開口部40aおよび出口側開口部40bを有し、両開口部40a,40bは、それぞれ、開閉手段41,42によって開口又は閉口される。誘導加熱室40は必ずしも設ける必要はないが、誘導加熱室40を設けて、その内部空間で誘導加熱工程S211を実行すれば、誘導加熱工程S211の実行時における雰囲気温度を調整し易くなる。これにより、ワークWを精度良く誘導加熱する上で、また、誘導加熱後のワークWの温度低下を抑制する上で有利となる。   The induction heating chamber 40 has an inlet-side opening 40a and an outlet-side opening 40b, and both the openings 40a and 40b are opened or closed by opening / closing means 41 and 42, respectively. The induction heating chamber 40 is not necessarily provided, but if the induction heating chamber 40 is provided and the induction heating step S211 is performed in the internal space, it is easy to adjust the ambient temperature during the execution of the induction heating step S211. This is advantageous in accurately heating the workpiece W by induction and suppressing the temperature drop of the workpiece W after induction heating.

図5(a)(b)に示すように、誘導加熱装置20は、ワークWの軸方向(鉛直方向)に相互に離間して配置された複数のコイル部材21(21A−21F)を備え、各コイル部材21は、絶縁材料で形成された図示外の枠体に対して着脱可能に固定されている。   As shown in FIGS. 5 (a) and 5 (b), the induction heating device 20 includes a plurality of coil members 21 (21A-21F) that are spaced apart from each other in the axial direction (vertical direction) of the workpiece W. Each coil member 21 is detachably fixed to a frame body (not shown) formed of an insulating material.

図5(a)に示すように、各コイル部材21は、銅管等の導電性金属からなる管状体で形成され、周方向で有端のリング状をなす環状部22と、環状部22の周方向一端部および他端部から延びた第1および第2延長部23,24とを有する。コイル部材21のうち、少なくとも環状部22は、その周方向の各部が同一平面上(ここでは水平面上)に位置している。そして、各コイル部材21は、環状部22の中心軸を、他のコイル部材21の環状部22の中心軸と一致させた状態で図示外の枠体に固定されている。   As shown in FIG. 5 (a), each coil member 21 is formed of a tubular body made of a conductive metal such as a copper tube, and has an annular portion 22 having a ring shape with an end in the circumferential direction. It has the 1st and 2nd extension parts 23 and 24 extended from the circumferential direction one end part and the other end part. Of the coil member 21, at least the annular portion 22 is positioned on the same plane (here, on the horizontal plane) in the circumferential direction. Each coil member 21 is fixed to a frame body (not shown) in a state where the central axis of the annular portion 22 coincides with the central axis of the annular portion 22 of the other coil member 21.

図5(a)(b)に示すように、誘導加熱装置20は、直径寸法(内径寸法)が相互に異なり、かつワークWの軸方向に相互に離間して同軸に配置された複数のコイル部25を有する。本実施形態の誘導加熱装置20は3つのコイル部25(25A−25C)を有し、最も下側に配置された第1コイル部25Aの内径寸法D1と、第1コイル部25Aの上側に配置された第2コイル部25Bの内径寸法D2と、第2コイル部25Bの上側に配置された第3コイル部25Cの内径寸法D3との間には、D1>D2>D3の関係式が成立する。   As shown in FIGS. 5 (a) and 5 (b), the induction heating device 20 includes a plurality of coils having different diameter dimensions (inner diameter dimensions) and coaxially spaced apart from each other in the axial direction of the workpiece W. Part 25. The induction heating device 20 of the present embodiment has three coil portions 25 (25A-25C), and is arranged on the inner diameter dimension D1 of the first coil portion 25A arranged on the lowermost side and on the upper side of the first coil portion 25A. The relational expression of D1> D2> D3 is established between the inner diameter dimension D2 of the second coil portion 25B and the inner diameter dimension D3 of the third coil portion 25C disposed on the upper side of the second coil portion 25B. .

本実施形態において、第1コイル部25Aは、最下段および下から2番目に配置されたコイル部材21A,21Bの環状部22で形成され、第2コイル部25Bは、下から3番目および4番目に配置されたコイル部材21C,21Dの環状部22で形成され、第3コイル部25Cは、下から5番目および6番目(最上段)に配置されたコイル部材21E,21Fの環状部22で形成される。なお、各コイル部25(25A−25C)は、1又は3以上のコイル部材21の環状部22で形成することもでき、各コイル部25の軸方向寸法は、加熱すべきワークWの軸方向寸法に応じて変更することができる。   In the present embodiment, the first coil portion 25A is formed by the annular portion 22 of the coil members 21A and 21B arranged second from the bottom and the bottom, and the second coil portion 25B is the third and fourth from the bottom. The third coil portion 25C is formed by the annular portions 22 of the coil members 21E and 21F disposed at the fifth and sixth (topmost) positions from the bottom. Is done. In addition, each coil part 25 (25A-25C) can also be formed by the annular part 22 of the coil member 21 of 1 or 3 or more, and the axial direction dimension of each coil part 25 is the axial direction of the workpiece | work W which should be heated. It can be changed according to the dimensions.

図6および図7に示すように、誘導加熱装置20は、上下で隣り合う2つのコイル部材21,21を導通可能に接続する接続手段26を備える。図示例の接続手段26は、コイル部材21に固定された導電性金属からなる受け部材27と、導電性金属からなり、一端28aおよび他端28bが、それぞれ、隣り合う2つのコイル部材21のうち上側および下側のコイル部材21(受け部材27)に対してボルト部材29により固定された接続部材28とを備える。受け部材27は、例えば、溶接や導電性接着剤を用いた接着によってコイル部材21に固定される。この場合、隣り合う2つのコイル部材21,21は、受け部材27、ボルト部材29および接続部材28を介して導通可能となる。そのため、本実施形態の誘導加熱装置20では、複数のコイル部材21のうち、最下段のコイル部材21Aおよび最上段のコイル部材21Fが図4に示す電源17と電気的に接続されている。   As shown in FIGS. 6 and 7, the induction heating device 20 includes connection means 26 that connects two coil members 21, 21 adjacent in the vertical direction so as to be conductive. The connecting means 26 in the illustrated example includes a receiving member 27 made of a conductive metal fixed to the coil member 21 and a conductive metal, and one end 28 a and the other end 28 b are each of two adjacent coil members 21. And a connecting member 28 fixed by bolt members 29 to the upper and lower coil members 21 (receiving members 27). The receiving member 27 is fixed to the coil member 21 by, for example, welding or adhesion using a conductive adhesive. In this case, the two adjacent coil members 21 and 21 can be conducted through the receiving member 27, the bolt member 29, and the connecting member 28. Therefore, in the induction heating device 20 of the present embodiment, among the plurality of coil members 21, the lowermost coil member 21A and the uppermost coil member 21F are electrically connected to the power source 17 shown in FIG.

なお、上述した接続手段26はあくまでも一例であり、その他の構成を採用することもできる。但し、上記の構成を有する接続手段26であれば、剛体からなる接続部材28によって軸方向で隣り合う2つのコイル部材21,21の離間距離(各コイル部25の軸方向寸法)を所定値に保ち易くなる、という利点がある。   The connecting means 26 described above is merely an example, and other configurations can be employed. However, in the case of the connecting means 26 having the above configuration, the distance between the two coil members 21 and 21 adjacent in the axial direction (the axial dimension of each coil portion 25) is set to a predetermined value by the connecting member 28 made of a rigid body. There is an advantage that it is easy to keep.

また、上記の構成を有する誘導加熱装置20に通電すると、全てのコイル部材21(コイル部25A−25C)に一様に電流が流れるが、加熱対象のワークWは、第1コイル部25A、第2コイル部25Bおよび第3コイル部25Cのうち、何れか一つのコイル部の対向領域に配置される(詳細は後述する)。このため、誘導加熱装置20は、ワークWを誘導加熱するコイル部25(25A−25Cの何れか一つ)のみに電流を流すように構成されたものであっても良い。このような構成は、例えば、(1)第1コイル部25A、第2コイル部25Bおよび第3コイル部25Cのそれぞれに個別に電源17を接続することにより、あるいは、(2)第1コイル部25A、第2コイル部25Bおよび第3コイル部25Cのうち、何れか一つのコイル部に対して選択的に電流を流す切替え装置を制御装置18に設けることにより、実現することができる。この場合、誘導加熱工程S211の省電力化を図ることができる。   Further, when the induction heating device 20 having the above-described configuration is energized, a current flows uniformly to all the coil members 21 (coil portions 25A-25C), but the workpiece W to be heated is the first coil portion 25A, the first coil It arrange | positions in the opposing area | region of any one coil part among 2 coil part 25B and 3rd coil part 25C (it mentions later for details). For this reason, the induction heating apparatus 20 may be configured to allow a current to flow only through the coil portion 25 (any one of 25A-25C) for induction heating the workpiece W. Such a configuration can be achieved, for example, by (1) individually connecting the power supply 17 to each of the first coil unit 25A, the second coil unit 25B, and the third coil unit 25C, or (2) the first coil unit. This can be realized by providing the control device 18 with a switching device that selectively supplies current to any one of the coil portions 25A, the second coil portion 25B, and the third coil portion 25C. In this case, power saving in the induction heating step S211 can be achieved.

誘導加熱装置20には、各コイル部材21を冷却するための冷却回路を設けることができる。このような冷却回路を設けておけば、コイル部材21(特にコイル部25を構成する環状部22)の温度を適切かつ効率良く制御することができる他、コイル部材21の耐久性を向上することができる。冷却回路は、例えば、図7に示すように、上下で隣り合う2つのコイル部材21,21の内部空間を管状の連通部材29Aを介して連通させると共に、最下段のコイル部材21A(の第1延長部23の自由端)および最上段のコイル部材21F(の第1延長部23の自由端)に給水管29Bおよび排水管29Cをそれぞれ接続することで形成することができる。   The induction heating device 20 can be provided with a cooling circuit for cooling each coil member 21. If such a cooling circuit is provided, the temperature of the coil member 21 (particularly the annular portion 22 constituting the coil portion 25) can be controlled appropriately and efficiently, and the durability of the coil member 21 can be improved. Can do. For example, as shown in FIG. 7, the cooling circuit communicates the internal spaces of two coil members 21, 21 adjacent in the vertical direction via a tubular communication member 29 </ b> A and the first coil member 21 </ b> A (the first coil member 21 </ b> A). It can be formed by connecting a water supply pipe 29B and a drain pipe 29C to the free end of the extension 23) and the uppermost coil member 21F (the free end of the first extension 23), respectively.

この場合、図示外の貯水タンクから供給された冷却水が以下のように流通することにより、各コイル部材21が冷却される。まず、貯水タンクから供給された冷却水は、図7中に白抜き矢印で示すように、給水管29Bを介して最下段のコイル部材21Aの内部空間に流入し、その後、連通部材29Aの内部空間およびコイル部材21の内部空間を交互に流通して上方に向かう。そして、最上段のコイル部材21Fの内部空間を流通した冷却水は、最上段のコイル部材21Fに接続された排水管29Cを介して外部に排出される。なお、前述したように、第1コイル部25A、第2コイル部25Bおよび第3コイル部25Cに個別に(選択的に)電流を流す場合には、各コイル部25を形成するコイル部材21(コイル部材21の組)のそれぞれに冷却回路を設けて、電流が流れるコイル部25(コイル部材21)のみを冷却するようにしもよい。   In this case, each coil member 21 is cooled by circulating the cooling water supplied from a water storage tank (not shown) as follows. First, the cooling water supplied from the water storage tank flows into the inner space of the lowermost coil member 21A via the water supply pipe 29B as shown by the white arrow in FIG. 7, and then the inside of the communication member 29A. The space and the internal space of the coil member 21 are alternately circulated and directed upward. And the cooling water which distribute | circulated the inner space of the uppermost coil member 21F is discharged | emitted outside via the drain pipe 29C connected to the uppermost coil member 21F. Note that, as described above, when a current is individually (selectively) passed through the first coil portion 25A, the second coil portion 25B, and the third coil portion 25C, the coil member 21 that forms each coil portion 25 ( A cooling circuit may be provided in each of the coil member 21 sets) to cool only the coil portion 25 (coil member 21) through which a current flows.

図8(a)(b)に示すように、本実施形態のワーク保持部材30は、図5(a)(b)に示す誘導加熱装置20のコイル部25(25A−25C)と同軸に配置される軸部31と、軸部31の上端に設けられたフランジ部32と、ワークWの周方向に所定間隔で配置され、フランジ部32(ワークW)の径方向に進退移動する複数のチャック爪33と、軸部31をワークWの軸方向に進退移動(昇降移動)させる図示外の昇降機構とを備える。このような構成を有するワーク保持部材30は、例えば以下のようにして、搬送路11に沿って搬送されるワークWを取得して保持する。   As shown in FIGS. 8A and 8B, the work holding member 30 of the present embodiment is arranged coaxially with the coil portion 25 (25A-25C) of the induction heating device 20 shown in FIGS. 5A and 5B. A plurality of chucks that are arranged at predetermined intervals in the circumferential direction of the workpiece W and move forward and backward in the radial direction of the flange portion 32 (workpiece W). A claw 33 and a lifting mechanism (not shown) for moving the shaft portion 31 back and forth (moving up and down) in the axial direction of the workpiece W are provided. The workpiece holding member 30 having such a configuration acquires and holds the workpiece W transported along the transport path 11 as follows, for example.

ワーク保持部材30は、ワークWが誘導加熱装置20のコイル部25の直下位置(ワークWの中心軸とコイル部25の中心軸とが一致する位置)に到達するまでは、その上端部が搬送路11よりも下方に位置している。ワークWがコイル部25の直下位置に到達すると、図8(a)に示すように、軸部31が上昇移動してワークWの内周にチャック爪33が挿入される。ワークWの内周にチャック爪33が挿入された後(ワークWの下端面とフランジ部32の上端面とが当接した後)、図8(b)に示すようにチャック爪33が径方向外側に移動し、チャック爪33とワークWがワークWの径方向で係合する。これにより、ワークWは、その中心軸を軸部31の中心軸(コイル部25の中心軸)と一致させた状態でワーク保持部材30に保持される。なお、上記態様でワークWが保持されることから、本実施形態のワーク保持部材30では、チャック爪33が「ワーク保持部」を構成する。   The work holding member 30 is conveyed at its upper end until the work W reaches a position directly below the coil part 25 of the induction heating device 20 (a position where the central axis of the work W and the central axis of the coil part 25 coincide). It is located below the path 11. When the workpiece W reaches a position directly below the coil portion 25, the shaft portion 31 moves upward as shown in FIG. 8A, and the chuck claw 33 is inserted into the inner periphery of the workpiece W. After the chuck claw 33 is inserted into the inner periphery of the workpiece W (after the lower end surface of the workpiece W comes into contact with the upper end surface of the flange portion 32), as shown in FIG. The chuck claw 33 and the workpiece W are engaged in the radial direction of the workpiece W. Thereby, the workpiece W is held by the workpiece holding member 30 in a state in which the center axis thereof coincides with the center axis of the shaft portion 31 (center axis of the coil portion 25). In addition, since the workpiece | work W is hold | maintained in the said aspect, the chuck | zipper claw 33 comprises a "work holding | maintenance part" in the workpiece holding member 30 of this embodiment.

図4に模式的に示すように、ワーク保持部材30は、軸部31に連結された回転駆動部Mを備えている。この回転駆動部Mにより、ワーク保持部材30で保持されたワークWは、その中心軸回りに回転可能となる。なお、回転駆動部Mは電動モータなどで構成される。   As schematically shown in FIG. 4, the work holding member 30 includes a rotation drive unit M coupled to a shaft unit 31. The rotation driving unit M allows the workpiece W held by the workpiece holding member 30 to rotate around its central axis. The rotational drive unit M is configured by an electric motor or the like.

図3および図4に示すように、復温部15は、第1通路室55を介して誘導加熱室40と繋がった第1炉室51と、第1炉室51内に配設され、電源17と電気的に接続されたヒータ52とを備える。ヒータ52は、例えば電気ヒータであり、第1炉室51内の雰囲気(気体)を加熱することにより、第1炉室51内を搬送されるワークWを加熱して復温させる。   As shown in FIGS. 3 and 4, the reheating unit 15 is disposed in the first furnace chamber 51, which is connected to the induction heating chamber 40 via the first passage chamber 55, and in the first furnace chamber 51. 17 and a heater 52 electrically connected. The heater 52 is, for example, an electric heater, and heats the atmosphere (gas) in the first furnace chamber 51 to heat and recover the work W transported in the first furnace chamber 51.

また、図3および図4に示すように、保温部16は、第2炉室53と、第2炉室53内に配設され、電源17と電気的に接続されたヒータ54とを備える。ヒータ54は、例えば電気ヒーターであり、第2炉室53内の雰囲気を加熱することにより、第2炉室53内を搬送されるワークWを保温する。   As shown in FIGS. 3 and 4, the heat retaining unit 16 includes a second furnace chamber 53 and a heater 54 that is disposed in the second furnace chamber 53 and is electrically connected to the power source 17. The heater 54 is, for example, an electric heater, and heats the atmosphere in the second furnace chamber 53 to keep the work W conveyed in the second furnace chamber 53 warm.

第1炉室51の入口側開口部51aには、この開口部51aを開閉するための開閉手段56が設けられると共に、第1炉室51の出口側開口部(第2炉室53の入口側開口部)51bには、この開口部51bを開閉するための開閉手段57が設けられている。図示は省略しているが、第2炉室53は出口側開口部を有し、この開口部にも開閉手段が設けられている。以上の構成により第1炉室51および第2炉室53の密閉性が担保される。   The inlet side opening 51a of the first furnace chamber 51 is provided with opening / closing means 56 for opening and closing the opening 51a, and the outlet side opening of the first furnace chamber 51 (the inlet side of the second furnace chamber 53). The opening 51b is provided with opening / closing means 57 for opening / closing the opening 51b. Although not shown, the second furnace chamber 53 has an outlet side opening, and opening / closing means is also provided in this opening. With the above configuration, the sealing performance of the first furnace chamber 51 and the second furnace chamber 53 is ensured.

図3に示すように、保温部16(を構成する第2炉室53)は、第2通路室58を介して冷却部13(を構成する冷却室59)と繋がっている。これにより、加熱部12で加熱されたワークWは、第2通路室58の内部空間を通って冷却室59内に搬入された後、冷却(焼戻し)される。冷却部13におけるワークWの冷却方式は、空冷であっても良いし、水冷であっても良い。   As shown in FIG. 3, the heat retaining section 16 (the second furnace chamber 53 that constitutes the thermal insulation section 16) is connected to the cooling section 13 (the cooling chamber 59 that constitutes the thermal chamber 13) via the second passage chamber 58. As a result, the workpiece W heated by the heating unit 12 is carried into the cooling chamber 59 through the internal space of the second passage chamber 58 and then cooled (tempered). The cooling method of the workpiece W in the cooling unit 13 may be air cooling or water cooling.

次に、焼戻し工程S2における焼戻し処理の温度条件(温度履歴)を、図4および図10に基づいて説明する。   Next, the temperature condition (temperature history) of the tempering process in the tempering step S2 will be described based on FIG. 4 and FIG.

図10に示すように、焼戻し工程S2では、まず、誘導加熱工程S211において、ワークWの温度が加熱開始時温度r0から狙い温度r1に到達するまでワークWが誘導加熱される。このとき、昇温速度は例えば一定とし、時間が経過するにつれてワークWの温度が連続的に上昇するように誘導加熱装置20に通電する。このような温度履歴は、例えばワークWの温度が狙い温度r1に到達するまでの間(加熱開始時t0から加熱終了時t1までの間)、誘導加熱装置20の出力を一定値に維持することで実現できる。   As shown in FIG. 10, in the tempering step S2, first, in the induction heating step S211, the workpiece W is induction heated until the temperature of the workpiece W reaches the target temperature r1 from the heating start temperature r0. At this time, the rate of temperature increase is, for example, constant, and the induction heating device 20 is energized so that the temperature of the workpiece W increases continuously as time elapses. Such temperature history is, for example, maintaining the output of the induction heating device 20 at a constant value until the temperature of the workpiece W reaches the target temperature r1 (from the heating start time t0 to the heating end time t1). Can be realized.

次に、復温工程S212においてワークWを雰囲気加熱することにより、ワークWの温度を復温開始時温度r2から狙い温度r1に回復させる。以上で説明したとおり、誘導加熱工程S211が実行される誘導加熱部14と保温工程S213が実行される保温部16とではワークWの加熱方法が互いに異なるため、誘導加熱工程S211の実行後、保温工程S213が実行(開始)されるまでの間に、ワークWの温度が狙い温度r1から低下する。そこで、図4に示すように、誘導加熱室40から搬出されたワークWを第1炉室51に搬入して雰囲気加熱することにより、ワークWの温度を可及的速やかに狙い温度r1に回復させる。このような温度履歴は、例えばワークWが復温開始時温度r2から狙い温度r1に到達するまでの間(復温開始時t2から復温終了時t3までの間)、第1炉室51内の雰囲気温度が狙い温度r1よりも少し高い温度(例えば、狙い温度r1+20〜30℃)となるように、復温部15のヒータ52の出力を調整することによって実現できる。   Next, the temperature of the workpiece W is recovered from the temperature r2 at the start of the recovery to the target temperature r1 by heating the workpiece W in the atmosphere in the recovery temperature step S212. As described above, since the heating method of the workpiece W is different between the induction heating unit 14 in which the induction heating step S211 is performed and the heat retaining unit 16 in which the heat retention step S213 is performed, the heat insulation is performed after the induction heating step S211 is performed. Until the process S213 is executed (started), the temperature of the workpiece W decreases from the target temperature r1. Therefore, as shown in FIG. 4, the work W carried out from the induction heating chamber 40 is carried into the first furnace chamber 51 and heated in the atmosphere, whereby the temperature of the work W is recovered to the target temperature r1 as quickly as possible. Let Such a temperature history is, for example, in the first furnace chamber 51 until the workpiece W reaches the target temperature r1 from the reheating start temperature r2 (between the reheating start time t2 and the rewarming end time t3). Can be realized by adjusting the output of the heater 52 of the reheating section 15 so that the ambient temperature becomes a temperature slightly higher than the target temperature r1 (for example, the target temperature r1 + 20 to 30 ° C.).

ワークWの温度を狙い温度r1に回復させた後、保温工程S213において復温後のワークWを雰囲気加熱することにより、ワークWを狙い温度r1を含む所定幅の温度域(例えば、ワークWに要求される残留オーステナイト量および硬さに応じて設定される許容温度域Rの範囲内)で所定時間保温する。本実施形態では、保温開始時t3から保温終了時t4までの間(ワークWが第2炉室53内を搬送される間)、ワークWがほぼ狙い温度r1に等しい温度を保つように(第2炉室53内の雰囲気温度が狙い温度r1にほぼ等しい状態を維持するように)、保温部16のヒータ54の出力を調整する。なお、本実施形態のように、ワークWが高炭素クロム軸受鋼からなる転がり軸受の外輪である場合、許容温度域Rは、例えば290℃以上340℃以下、好ましくは303℃以上315℃以下に設定することができる。   After the temperature of the workpiece W is recovered to the target temperature r1, the workpiece W after rewarming is heated in the atmosphere in the heat retaining step S213, so that a temperature range of a predetermined width including the target temperature r1 (for example, the workpiece W) The temperature is kept for a predetermined time in the allowable temperature range R set according to the required amount of retained austenite and hardness. In the present embodiment, during the period from the heat retention start time t3 to the heat retention end time t4 (while the work W is transported in the second furnace chamber 53), the work W is maintained at a temperature substantially equal to the target temperature r1 (first operation). 2) The output of the heater 54 of the heat retaining section 16 is adjusted so that the atmospheric temperature in the furnace chamber 53 is maintained substantially equal to the target temperature r1. When the workpiece W is an outer ring of a rolling bearing made of high carbon chromium bearing steel as in this embodiment, the allowable temperature range R is, for example, 290 ° C. or higher and 340 ° C. or lower, preferably 303 ° C. or higher and 315 ° C. or lower. Can be set.

最後に、冷却工程S22においてワークWを冷却し、ワークWの温度を狙い温度r1から所定の温度r3(ここでは加熱開始時温度r0よりも低い温度)まで低下させる。これにより、ワークWに対する焼戻し処理が完了する。   Finally, the workpiece W is cooled in the cooling step S22, and the temperature of the workpiece W is lowered from the target temperature r1 to a predetermined temperature r3 (here, a temperature lower than the heating start temperature r0). Thereby, the tempering process for the workpiece W is completed.

本実施形態では、焼戻し工程S2の加熱工程S21に投入されたワークWが以上で説明した温度履歴を辿って加熱されるように、誘導加熱装置20およびヒータ52,54の出力パターンをそれぞれ制御部18(図4参照)に記憶させておき、加熱工程S21の実行時には、記憶させておいた出力パターンに基づいて制御部18が電源17に制御信号を送る。これにより、電源17に接続された誘導加熱装置20およびヒータ52,54に所定パターンの電力が供給され、図10に示す温度履歴を辿るようにワークWが加熱される。   In the present embodiment, the output patterns of the induction heating device 20 and the heaters 52 and 54 are respectively controlled by the control unit so that the workpiece W put into the heating step S21 of the tempering step S2 follows the temperature history described above. 18 (see FIG. 4), and when the heating step S21 is performed, the control unit 18 sends a control signal to the power source 17 based on the stored output pattern. Thereby, electric power of a predetermined pattern is supplied to the induction heating device 20 and the heaters 52 and 54 connected to the power source 17, and the workpiece W is heated so as to follow the temperature history shown in FIG.

以下、以上の構成を有する焼戻し装置10を用いて実行される焼戻し工程S2の具体的な実施態様の一例を、主に図3−図5を参照しながら説明する。   Hereinafter, an example of a specific embodiment of the tempering step S2 executed using the tempering apparatus 10 having the above configuration will be described mainly with reference to FIGS.

まず、誘導加熱室40の入口側開口部40aを開口した状態とし、水平姿勢で搬送路11上を搬送されるワークWを誘導加熱室40の内部空間に搬入する。そして、ワークWが誘導加熱装置20の直下位置(ワークWの中心軸と誘導加熱装置20に設けられたコイル部25の中心軸とが一致する位置)に到達すると、以上で図8(a)(b)を参照しながら説明したようにして、ワークWがワーク保持部材30で保持される。ワークWを保持したワーク保持部材30は上昇移動し、コイル部25の対向領域(内周)にワークWを導入する。   First, the inlet side opening 40 a of the induction heating chamber 40 is opened, and the workpiece W transferred on the transfer path 11 in a horizontal posture is carried into the internal space of the induction heating chamber 40. When the workpiece W reaches a position immediately below the induction heating device 20 (a position where the central axis of the workpiece W coincides with the central axis of the coil portion 25 provided in the induction heating device 20), FIG. The workpiece W is held by the workpiece holding member 30 as described with reference to FIG. The workpiece holding member 30 holding the workpiece W moves upward and introduces the workpiece W into the opposing region (inner circumference) of the coil portion 25.

このとき、本実施形態では、ワークWの直径寸法(外径寸法)に応じて、ワーク保持部材30の上昇移動量が調整される。具体的には、図9(a)に示すように、ワークWの外径寸法Dが、コイル部25A−25Cのうち、直径寸法(内径寸法)が最も小さい第3コイル部25Cの内径寸法D3[図5(b)参照]よりも小さい場合、ワークWは第1コイル部25Cの内周に導入される。また、図9(b)に示すように、ワークWの外径寸法Dが、第3コイル部25Cの内径寸法D3よりも大きく、第2コイル部25Bの内径寸法D2[図5(b)参照]よりも小さい場合、ワークWは第2コイル部25Bの内周に導入される。また、図9(c)に示すように、ワークWの外径寸法Dが、第2コイル部25Bの内径寸法D2よりも大きく、第1コイル部25Aの内径寸法D1[図5(b)参照]よりも小さい場合、ワークWは第1コイル部25Aの内周に導入される。すなわち、ワークWは、内径寸法が相互に異なり、かつワークWの軸方向に相互に離間して同軸配置された複数のコイル部25(25A−25C)を備えた誘導加熱装置20のうち、ワークWの外径面との径方向離間距離が最小となるコイル部25の内周に同軸配置される。   At this time, in this embodiment, the upward movement amount of the work holding member 30 is adjusted according to the diameter dimension (outer diameter dimension) of the work W. Specifically, as shown in FIG. 9A, the outer diameter D of the work W is the inner diameter D3 of the third coil portion 25C having the smallest diameter (inner diameter) among the coil portions 25A-25C. If smaller than [see FIG. 5B], the workpiece W is introduced into the inner periphery of the first coil portion 25C. As shown in FIG. 9B, the outer diameter D of the workpiece W is larger than the inner diameter D3 of the third coil portion 25C, and the inner diameter D2 of the second coil portion 25B [see FIG. 5B. ], The workpiece W is introduced into the inner periphery of the second coil portion 25B. Further, as shown in FIG. 9C, the outer diameter D of the workpiece W is larger than the inner diameter D2 of the second coil portion 25B, and the inner diameter D1 of the first coil portion 25A [see FIG. 5B. ], The workpiece W is introduced into the inner periphery of the first coil portion 25A. That is, the workpiece W has a plurality of coil portions 25 (25A-25C) that have different inner diameters and are coaxially arranged apart from each other in the axial direction of the workpiece W. It is coaxially arranged on the inner periphery of the coil portion 25 that minimizes the radial separation distance from the outer diameter surface of W.

以上のようにして、ワークWがコイル部25(25A−25Cの何れか)の内周に導入された後、誘導加熱装置20に通電する。具体的には、制御部18から出力される制御信号に基づき、電源17から誘導加熱装置20のコイル部材21に向けて所定パターンの電力が供給される。これにより、ワークWが狙い温度r1(図10参照)に誘導加熱される。なお、電源17から供給する電力は、数kHz以下の低周波帯域の電力とするのが好ましい。これによりワークWの表層部のみならず、ワークWの芯部を含めたワークW全体を狙い温度r1に加熱することができる。また、誘導加熱装置20に通電してワークWを誘導加熱している間、図4に示す回転駆動部Mを駆動してワークWをその中心軸回りに回転させる。これにより、ワークW全体を均等に加熱することができる。   As described above, after the workpiece W is introduced into the inner periphery of the coil portion 25 (any one of 25A-25C), the induction heating device 20 is energized. Specifically, a predetermined pattern of electric power is supplied from the power source 17 toward the coil member 21 of the induction heating device 20 based on a control signal output from the control unit 18. Thereby, the workpiece | work W is induction-heated to target temperature r1 (refer FIG. 10). The power supplied from the power source 17 is preferably a low frequency band power of several kHz or less. Thereby, not only the surface layer portion of the workpiece W but also the entire workpiece W including the core portion of the workpiece W can be heated to the target temperature r1. Further, while the induction heating device 20 is energized and the work W is induction heated, the rotation driving unit M shown in FIG. 4 is driven to rotate the work W around its central axis. Thereby, the whole workpiece | work W can be heated equally.

ワークWが狙い温度r1に加熱された後、図4に示すように、ワーク保持部材30を下降移動等させてワークWを搬送路11上に復帰させる。搬送路11上に復帰したワークWは、開口状態にある誘導加熱室40の出口側開口部40bを介して誘導加熱室40の外側に搬出された後、第1通路室55の内部空間、および開閉手段56により開口された第1炉室51の入口側開口部51aを介して第1炉室51の内部空間に搬入される。ワークWが第1炉室51の内部空間に搬入された後、第1炉室51の入口側開口部51aは開閉手段56によって閉口される。   After the workpiece W is heated to the target temperature r1, as shown in FIG. 4, the workpiece holding member 30 is moved downward to return the workpiece W onto the conveyance path 11. After the workpiece W returned to the conveyance path 11 is carried out to the outside of the induction heating chamber 40 through the outlet side opening 40b of the induction heating chamber 40 in the open state, the internal space of the first passage chamber 55, and It is carried into the internal space of the first furnace chamber 51 through the inlet side opening 51 a of the first furnace chamber 51 opened by the opening / closing means 56. After the workpiece W is carried into the internal space of the first furnace chamber 51, the inlet side opening 51 a of the first furnace chamber 51 is closed by the opening / closing means 56.

第1炉室51の内部空間に搬入されたワークWは、第1炉室51内を搬送される間に雰囲気加熱される。これにより、図10に示すように、加熱終了時t1から復温開始時t2までの間(誘導加熱装置20によるワークWの加熱が終了した後、ワークWが第1炉室51内に搬入されるまでの間)に温度r2まで温度低下を生じていたワークWの温度が狙い温度r1に回復する。   The workpiece W carried into the internal space of the first furnace chamber 51 is heated in the atmosphere while being conveyed in the first furnace chamber 51. As a result, as shown in FIG. 10, from the heating end time t <b> 1 to the reheating start time t <b> 2 (after the heating of the work W by the induction heating device 20 is finished, the work W is carried into the first furnace chamber 51. Until the temperature r2 is reduced to the target temperature r1.

温度が狙い温度r1に回復したワークWは、図4に示すように、第1炉室51の出口側開口部51b(第2炉室53の入口側開口部)を介して第2炉室53の内部空間に搬入される。第2炉室53の内部空間に搬入されたワークWは、第2炉室53内を搬送される間、狙い温度r1を含む許容温度域R(図10参照)の範囲内で保温される。ワークWの保温時間(第2炉室53内におけるワークWの搬送時間)は、例えば3分以上7分以下に設定され、好ましくは4分以上6分以下に設定される。   As shown in FIG. 4, the workpiece W whose temperature has recovered to the target temperature r <b> 1 passes through the outlet side opening 51 b of the first furnace chamber 51 (the inlet side opening of the second furnace chamber 53). It is carried into the interior space. The workpiece W carried into the internal space of the second furnace chamber 53 is kept warm within the allowable temperature range R (see FIG. 10) including the target temperature r1 while being transferred through the second furnace chamber 53. The heat retention time of the workpiece W (the conveyance time of the workpiece W in the second furnace chamber 53) is set to, for example, 3 minutes or more and 7 minutes or less, preferably 4 minutes or more and 6 minutes or less.

第2炉室53の内部空間を通過して第2炉室53の外側に搬出されたワークWは、図3に示すように、第2通路室58を通って冷却部13の冷却室59内に搬入された後、所定の冷却速度で所定の温度r3(図10参照)に冷却される。これにより、ワークWに対する焼戻し処理が完了する。後続のワークWについても同様の経路を辿って、焼戻し処理が施される。   As shown in FIG. 3, the work W that has passed through the internal space of the second furnace chamber 53 and is carried out of the second furnace chamber 53 passes through the second passage chamber 58 and enters the cooling chamber 59 of the cooling unit 13. Then, it is cooled to a predetermined temperature r3 (see FIG. 10) at a predetermined cooling rate. Thereby, the tempering process for the workpiece W is completed. A tempering process is performed on the subsequent workpiece W by following the same route.

図9(a)〜(c)を参照しながら説明したように、本実施形態では、焼戻し工程S2に含まれる誘導加熱工程S211を実行するに際し、直径寸法(内径寸法)が相互に異なり、かつワークWの軸方向に相互に離間して同軸に配置された複数のコイル部25(25A−25C)を備えた誘導加熱装置20のうち、ワークWの径方向におけるワークWとの離間距離が最小となるコイル部25の内周にワークWを同軸配置し、その状態で誘導加熱装置20に通電するようにした。   As described with reference to FIGS. 9A to 9C, in the present embodiment, when performing the induction heating step S211 included in the tempering step S2, the diameter size (inner diameter size) is different from each other, and Among induction heating devices 20 including a plurality of coil portions 25 (25A-25C) that are coaxially spaced apart from each other in the axial direction of the workpiece W, the separation distance from the workpiece W in the radial direction of the workpiece W is the smallest. The work W is coaxially arranged on the inner periphery of the coil portion 25 to be energized, and the induction heating device 20 is energized in that state.

このようにすれば、直径寸法(外径寸法)が相互に異なるワークWを狙い温度r1に誘導加熱する場合でも、誘導加熱装置20に対するワークWの軸方向相対位置を調整するだけで良く、誘導加熱装置20を交換する必要がない。そのため、加熱対象のワークWの変更に伴うダウンタイムの発生を抑制あるいは防止することが可能となり、焼戻し処理を効率良く実施することができる。また、誘導加熱によってワークWを狙い温度r1に加熱するようにすれば、雰囲気加熱でワークWを狙い温度r1に加熱する場合よりも、ワークWの加熱時間(加熱工程S21を実行するのに要する時間)を大幅に短縮することができる。従って、焼戻し処理の処理効率、ひいては機械部品の生産性を向上することができる。   In this way, even when the induction heating is performed to the temperature r1 aiming at the workpieces W having different diameter dimensions (outer diameter dimensions), it is only necessary to adjust the relative position in the axial direction of the workpiece W with respect to the induction heating device 20. There is no need to replace the heating device 20. Therefore, it is possible to suppress or prevent the occurrence of downtime due to the change of the workpiece W to be heated, and the tempering process can be performed efficiently. Further, if the workpiece W is heated to the target temperature r1 by induction heating, the heating time of the workpiece W (required for executing the heating step S21 is greater than the case where the workpiece W is heated to the target temperature r1 by atmospheric heating. Time) can be greatly reduced. Therefore, it is possible to improve the processing efficiency of the tempering process, and consequently the productivity of the machine parts.

その一方、本実施形態では、ワークWに要求される残留オーステナイト量および硬さに応じて狙い温度r1を含む許容温度域Rを設定し、この許容温度域R内で狙い温度r1に加熱されたワークWを保温するようにしたので、焼戻し処理後のワークWに含まれる残留オーステナイト量を所要レベル以下にまで低減化しつつ、ワークWの硬さを所定範囲内に収めることが可能となる。また、雰囲気加熱によってワークWを保温するようにしたので、ワークW全体を均一に保温することができる。よって、高温環境下での使用にも適した機械部品(ここでは転がり軸受の外輪)を安定的に得ることができる。   On the other hand, in the present embodiment, an allowable temperature range R including the target temperature r1 is set according to the amount of retained austenite and hardness required for the workpiece W, and the target temperature r1 is heated within the allowable temperature range R. Since the workpiece W is kept warm, it is possible to keep the hardness of the workpiece W within a predetermined range while reducing the amount of retained austenite contained in the workpiece W after the tempering process to a required level or less. Moreover, since the workpiece | work W was kept warm by atmospheric heating, the whole workpiece | work W can be kept warm uniformly. Therefore, it is possible to stably obtain a mechanical component (here, the outer ring of a rolling bearing) suitable for use in a high temperature environment.

また、本実施形態では、互いに異なる加熱方式でワークWが加熱(保温)される誘導加熱工程S211と保温工程S213との間に、ワークWの温度を狙い温度r1に回復させる復温工程S212を設けたので、誘導加熱工程S211の完了後、保温工程S213が開始されるまでの間に温度低下が生じたワークWの温度を狙い温度r1に回復させた状態で保温工程S213を実行することができる。そのため、ワークWの保温時間を短縮することができる。また、復温工程S212および保温工程S213では、雰囲気加熱によってワークWを加熱・保温するようにしたので、復温工程S212および保温工程S213を一の雰囲気加熱炉を用いて連続的に実行することができる。そのため、復温工程S212から保温工程S213に移行する際のワークWの温度低下を抑制しつつ、両工程S212,213を効率良く実行し得る。   In the present embodiment, a reheating step S212 for recovering the temperature of the workpiece W to the target temperature r1 between the induction heating step S211 and the heat holding step S213 where the workpiece W is heated (heated) by different heating methods is performed. Since it is provided, after the induction heating step S211 is completed, the heat retaining step S213 can be executed in a state in which the temperature of the workpiece W that has undergone a temperature drop before the heat retaining step S213 is started is recovered to the target temperature r1. it can. Therefore, the heat retention time of the workpiece W can be shortened. Further, in the rewarming step S212 and the heat retaining step S213, since the workpiece W is heated and kept warm by atmospheric heating, the rewarming step S212 and the heat retaining step S213 are continuously performed using one atmosphere heating furnace. Can do. Therefore, both processes S212 and 213 can be efficiently performed while suppressing a decrease in the temperature of the workpiece W when shifting from the rewarming process S212 to the heat retaining process S213.

以上、本発明の一実施形態に係る焼戻し方法およびこれを実行するために用いられる焼戻し装置10について説明したが、本発明の実施の形態はこれに限られない。   As mentioned above, although the tempering method which concerns on one Embodiment of this invention, and the tempering apparatus 10 used in order to perform this were demonstrated, embodiment of this invention is not restricted to this.

例えば、誘導加熱部14には、図11および図12に示すようなワーク保持部材30を使用することもできる。同図に示すワーク保持部材30は、コイル部25の中心軸に沿って昇降移動する軸部31と、鉛直方向の相互に離間した複数箇所(3箇所)に設けられたワーク保持部34A,34B,34Cとを備える。各ワーク保持部34A〜34Cは、周方向に離間した複数箇所(図示例では3箇所)に設けられて径方向外向きに延びた径方向部35と、径方向部35の外径端付近に設けられ、他の突起部36と協働してワークWを拘束(保持)する突起部36とを備える。ワーク保持部34A〜34Cは、ワークWを実質的に保持する部分(ここでは突起部36の外径端部)を通る円軌道の直径寸法が相互に異なり、ワーク保持部34A〜34Cのそれぞれが有する上記円軌道T1〜T3の直径寸法の間には、T1の直径寸法>T2の直径寸法>T3の直径寸法、という関係式が成立する。   For example, a work holding member 30 as shown in FIGS. 11 and 12 can be used for the induction heating unit 14. The workpiece holding member 30 shown in the figure includes a shaft portion 31 that moves up and down along the central axis of the coil portion 25, and workpiece holding portions 34A and 34B provided at a plurality of locations (three locations) spaced apart from each other in the vertical direction. , 34C. The workpiece holding portions 34A to 34C are provided at a plurality of locations (three locations in the illustrated example) spaced apart in the circumferential direction and extend radially outward, and near the outer diameter end of the radial portion 35. And a protrusion 36 that restrains (holds) the workpiece W in cooperation with another protrusion 36. The workpiece holding portions 34A to 34C have mutually different diameter dimensions of circular orbits passing through a portion that substantially holds the workpiece W (here, the outer diameter end portion of the protrusion 36), and each of the workpiece holding portions 34A to 34C is Between the diameter dimensions of the circular orbits T <b> 1 to T <b> 3, a relational expression of T <b> 1 diameter dimension> T <b> 2 diameter dimension> T <b> 3 diameter dimension is established.

このようなワーク保持部材30を用いた場合、ワークWの外径寸法Dが第3コイル部25Cの内径寸法D3よりも小さい場合、ワークWはワーク保持部34Cに保持された状態で第3コイル部25Cの内周に導入され[図9(a)参照]、ワークWの外径寸法Dが第3コイル部25Cの内径寸法D3よりも大きく第2コイル部25Bの内径寸法D2よりも小さい場合、ワークWはワーク保持部34Bに保持された状態で第2コイル部25Bの内周に導入され[図9(b)および図11参照]、ワークWの外径寸法Dが第2コイル部25Bの内径寸法D2よりも大きく第1コイル部25Aの内径寸法D1よりも小さい場合、ワークWはワーク保持部34Aに保持された状態で第1コイル部25Aの内周に導入される[図9(c)参照]。そのため、このようなワーク保持部材30を用いた場合であっても、以上で説明したような作用効果を同様に享受することができる。但し、このワーク保持部材30は、図8(a)(b)を参照して説明したワーク保持部材30とは異なり、誘導加熱工程S211の実行時には所定量昇降移動(上昇位置と下降位置の二位置間を昇降移動)する。   When such a workpiece holding member 30 is used and the outer diameter D of the workpiece W is smaller than the inner diameter D3 of the third coil portion 25C, the workpiece W is held by the workpiece holding portion 34C and the third coil. When the outer diameter D of the workpiece W is larger than the inner diameter D3 of the third coil portion 25C and smaller than the inner diameter D2 of the second coil portion 25B, introduced into the inner periphery of the portion 25C [see FIG. 9A]. The workpiece W is introduced into the inner periphery of the second coil portion 25B while being held by the workpiece holding portion 34B [see FIG. 9B and FIG. 11], and the outer diameter D of the workpiece W is the second coil portion 25B. 9 is smaller than the inner diameter D1 of the first coil portion 25A, the workpiece W is introduced into the inner periphery of the first coil portion 25A while being held by the workpiece holding portion 34A [FIG. c)]. Therefore, even if it is a case where such a workpiece holding member 30 is used, the effect as demonstrated above can be enjoyed similarly. However, unlike the workpiece holding member 30 described with reference to FIGS. 8A and 8B, the workpiece holding member 30 is moved up and down by a predetermined amount when the induction heating step S211 is performed (the two positions of the raised position and the lowered position). Move up and down between positions).

また、以上で説明した誘導加熱装置20には、直径寸法(内径寸法)が相互に異なる3つのコイル部25を設けたが、誘導加熱装置20には、直径寸法(内径寸法)が相互に異なり、かつ軸方向に相互に離間して配置された2又は4以上のコイル部25を設けることもできる。   The induction heating device 20 described above is provided with three coil portions 25 having different diameter dimensions (inner diameter dimensions), but the induction heating apparatus 20 has different diameter dimensions (inner diameter dimensions). Also, two or four or more coil portions 25 that are spaced apart from each other in the axial direction can be provided.

また、以上では、コイル部25の内周にワークWを同軸配置した状態で誘導加熱装置20に通電することにより、ワークWを狙い温度r1(図10参照)に加熱する場合に本発明を適用したが、本発明は、コイル部25の外周にワークWを同軸配置した状態で誘導加熱装置20に通電することにより、ワークWを狙い温度r1に加熱する場合にも適用することができる。   Further, in the above, the present invention is applied to the case where the work W is heated to the target temperature r1 (see FIG. 10) by energizing the induction heating device 20 in a state where the work W is coaxially arranged on the inner periphery of the coil portion 25. However, the present invention can also be applied to the case where the work W is heated to the target temperature r <b> 1 by energizing the induction heating device 20 in a state where the work W is coaxially arranged on the outer periphery of the coil portion 25.

また、以上では、転がり軸受の外輪(の基材)に焼戻し処理を施すにあたって本発明に係る焼戻し方法を適用したが、本発明は、その他の環状ワークW、例えば、転がり軸受の内輪、すべり軸受、等速自在継手を構成する外側継手部材や内側継手部材、転がり軸受や等速自在継手に組み込まれる保持器に焼戻し処理を施す際にも好ましく適用することができる。   Further, in the above, the tempering method according to the present invention is applied to tempering the outer ring (base material) of the rolling bearing. However, the present invention is applicable to other annular workpieces W, for example, the inner ring of a rolling bearing, a sliding bearing The present invention can also be preferably applied to a case where a tempering process is performed on a cage incorporated in an outer joint member, an inner joint member, a rolling bearing, or a constant velocity universal joint constituting the constant velocity universal joint.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得る。すなわち、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention. That is, the scope of the present invention is defined by the terms of the claims, and includes the equivalent meanings recited in the claims and all modifications within the scope.

10 焼戻し装置
11 搬送路
14 誘導加熱部
15 復温部
16 保温部
20 誘導加熱装置
25 コイル部
30 ワーク保持部材
D ワークの直径(外径)寸法
D1,D2,D3 コイル部の直径(内径)寸法
S21 加熱工程
S211 誘導加熱工程
S212 復温工程
S213 保温工程
W ワーク
M 回転駆動部
DESCRIPTION OF SYMBOLS 10 Tempering apparatus 11 Conveying path 14 Induction heating part 15 Reheating part 16 Insulation part 20 Induction heating apparatus 25 Coil part 30 Work holding member D Diameter (outer diameter) dimensions D1, D2, D3 S21 Heating process S211 Induction heating process S212 Reheating process S213 Thermal insulation process W Work M Rotation drive part

Claims (7)

焼入済の環状ワークを狙い温度に誘導加熱する誘導加熱工程を備えた環状ワークの焼戻し方法において、前記誘導加熱工程を実行するに際し、
直径寸法が相互に異なり、かつ前記環状ワークの軸方向に相互に離間して同軸に配置された複数のコイル部を備えた誘導加熱装置のうち、前記環状ワークの径方向における前記環状ワークとの離間距離が最小となるコイル部の対向領域に前記環状ワークを同軸配置し、その状態で前記誘導加熱装置に通電することを特徴とする環状ワークの焼戻し方法。
In the tempering method of the annular workpiece provided with the induction heating step of induction heating to the target temperature of the quenched annular workpiece, when performing the induction heating step,
Of the induction heating apparatus having a plurality of coil portions that are different in diameter from each other and are coaxially spaced apart from each other in the axial direction of the annular workpiece, the diameter of the annular workpiece in the radial direction of the annular workpiece is A method for tempering an annular workpiece, wherein the annular workpiece is coaxially arranged in an opposing region of a coil portion where a separation distance is minimized, and the induction heating device is energized in that state.
前記誘導加熱工程の実行時、前記環状ワークを、その中心軸に沿って進退移動可能に設けられたワーク保持部材で保持しつつ、前記誘導加熱装置に対して前記中心軸回りに相対回転させる請求項1に記載の環状ワークの焼戻し方法。   When the induction heating step is performed, the annular workpiece is relatively rotated about the central axis with respect to the induction heating device while being held by a workpiece holding member provided so as to be movable back and forth along the central axis. Item 2. A method for tempering an annular workpiece according to Item 1. 前記ワーク保持部材は、前記環状ワークの径方向に進退移動可能に設けられ、前記環状ワークと前記環状ワークの径方向で係合することにより前記環状ワークを保持するワーク保持部を有する請求項2に記載の環状ワークの焼戻し方法。   The work holding member is provided so as to be capable of moving forward and backward in the radial direction of the annular workpiece, and has a workpiece holding portion that holds the annular workpiece by engaging the annular workpiece in the radial direction of the annular workpiece. A method for tempering an annular workpiece according to claim 1. 前記ワーク保持部材は、前記環状ワークの軸方向に相互に離間して設けられ、前記環状ワークを実質的に保持する部分を通る円軌道の直径寸法が相互に異なる複数のワーク保持部を有する請求項2に記載の環状ワークの焼戻し方法。   The workpiece holding member includes a plurality of workpiece holding portions which are provided apart from each other in the axial direction of the annular workpiece and have different diameter dimensions of circular orbits passing through a portion which substantially holds the annular workpiece. Item 3. A method for tempering an annular workpiece according to Item 2. 前記誘導加熱工程を実行した後、雰囲気加熱により、前記狙い温度を含む所定の温度範囲内で前記環状ワークを所定時間保温する保温工程を実行する請求項1〜4の何れか一項に記載の環状ワークの焼戻し方法。   5. The heat retaining step of retaining the annular work for a predetermined time within a predetermined temperature range including the target temperature is performed by atmospheric heating after the induction heating step is performed. Tempering method for annular workpieces. 前記誘導加熱工程と前記保温工程との間に、雰囲気加熱により、前記環状ワークの温度を前記狙い温度に回復させる復温工程を設けた請求項5に記載の環状ワークの焼戻し方法。   The method for tempering an annular workpiece according to claim 5, further comprising a reheating step for recovering the temperature of the annular workpiece to the target temperature by atmospheric heating between the induction heating step and the heat retaining step. 前記環状ワークが、転がり軸受の軌道輪である請求項1〜6の何れか一項に記載の環状ワークの焼戻し方法。   The method for tempering an annular workpiece according to any one of claims 1 to 6, wherein the annular workpiece is a bearing ring of a rolling bearing.
JP2018047696A 2018-03-15 2018-03-15 Method of tempering annular work Pending JP2019157232A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018047696A JP2019157232A (en) 2018-03-15 2018-03-15 Method of tempering annular work
PCT/JP2019/010602 WO2019177111A1 (en) 2018-03-15 2019-03-14 Method for tempering annular work piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047696A JP2019157232A (en) 2018-03-15 2018-03-15 Method of tempering annular work

Publications (1)

Publication Number Publication Date
JP2019157232A true JP2019157232A (en) 2019-09-19

Family

ID=67906726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047696A Pending JP2019157232A (en) 2018-03-15 2018-03-15 Method of tempering annular work

Country Status (2)

Country Link
JP (1) JP2019157232A (en)
WO (1) WO2019177111A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3836188B2 (en) * 1996-07-12 2006-10-18 高周波熱錬株式会社 Ring gear induction heating quenching and tempering equipment
JP3257416B2 (en) * 1996-09-20 2002-02-18 三菱マテリアル株式会社 Induction hardening apparatus, induction hardening method, and method for manufacturing hardened product
JP5277545B2 (en) * 2007-01-23 2013-08-28 株式会社ジェイテクト Induction heat treatment method and induction heat treatment apparatus
JP2017226873A (en) * 2016-06-22 2017-12-28 Ntn株式会社 Method of manufacturing bearing component

Also Published As

Publication number Publication date
WO2019177111A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6211364B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
JP6211366B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
TW201544600A (en) Heat-treatment device and heat-treatment method
JP2001240914A (en) Crawler bush and method and apparatus for producing it
WO2019177111A1 (en) Method for tempering annular work piece
WO2015045822A1 (en) Method for thermally treating ring-shaped member
CN108605388B (en) Heat treatment apparatus and heat treatment method
JP6767144B2 (en) Heat treatment equipment and heat treatment method
JP2007169670A (en) Induction-heating apparatus for hardening ring-shaped article
JP2019157166A (en) Work tempering process, and machine part obtained by said process
JP2009024243A (en) Quenching method
JP7266426B2 (en) Workpiece tempering method and machine parts obtained by this method
JP2007146261A (en) Induction-heating apparatus for quenching of ring-type article, and continuous production line for ring-type article assembled machine part
WO2019172385A1 (en) Method for tempering work piece, and machine part obtained by said method
JP6263231B2 (en) Heat treatment equipment and heat treatment method
WO2018221465A1 (en) Multi-chamber heat treatment device
KR101754805B1 (en) Heat treatment of pliable tube
JP2019185882A (en) Induction heating apparatus and induction heating method
JP2005133214A (en) Heat treatment system
WO2019194035A1 (en) Induction heating device and induction heating method
JP4544537B2 (en) Carburizing apparatus and carburizing method
JP2018080397A (en) Heat treatment facility and heat treatment method
JP2005330544A (en) High frequency induction hardening apparatus
JP3853311B2 (en) High frequency induction heating method for tempering a crankshaft
JP5101217B2 (en) Tubular member manufacturing method and tubular member