JP2019157230A - Recovery method of silver from silver halide-containing scrap raw material - Google Patents

Recovery method of silver from silver halide-containing scrap raw material Download PDF

Info

Publication number
JP2019157230A
JP2019157230A JP2018047659A JP2018047659A JP2019157230A JP 2019157230 A JP2019157230 A JP 2019157230A JP 2018047659 A JP2018047659 A JP 2018047659A JP 2018047659 A JP2018047659 A JP 2018047659A JP 2019157230 A JP2019157230 A JP 2019157230A
Authority
JP
Japan
Prior art keywords
silver
nitric acid
raw material
chloride
silver halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018047659A
Other languages
Japanese (ja)
Inventor
憲 周防原
Ken Sohara
憲 周防原
前場 和也
Kazuya Maeba
和也 前場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkuchi Electronics Co Ltd
Original Assignee
Ohkuchi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkuchi Electronics Co Ltd filed Critical Ohkuchi Electronics Co Ltd
Priority to JP2018047659A priority Critical patent/JP2019157230A/en
Publication of JP2019157230A publication Critical patent/JP2019157230A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for efficiently recovering high-purity silver from a scrap raw material containing silver halide at a state of coexistence with many kinds of impurities.SOLUTION: There is provided a method for separating and recovering silver from a scrap raw material containing impurities such as alumina, silica, and iron in addition to silver halide, having a process for adjusting pH of a slurry manufactured by adding water to the scrap raw material with alkali hydroxide and reduction treating the silver halide under a condition with pH of 12 or more, a process for adding nitric acid to a solid component obtained by solid solution separation of the slurry after the reduction treatment to leach silver, a process for solid solution separating a nitric acid solution containing silver obtained by the exudation from the leach residue and then adding sodium chloride or hydrochloric acid to the nitric acid solution to generate silver chloride, and a process for adjusting pH of the slurry manufactured by adding water to the silver chloride with alkali hydroxide and reduction treating again under a condition of pH of 12 or more.SELECTED DRAWING: Figure 1

Description

本発明は、難溶性のハロゲン化銀が不純物と共存した状態で含まれる銀系スクラップ原料から銀を回収する方法に関する。   The present invention relates to a method for recovering silver from a silver-based scrap raw material containing a sparingly soluble silver halide coexisting with impurities.

貴金属を含有するスクラップ原料から貴金属を分離回収する方法として湿式処理及び乾式処理が知られており、前者の湿式処理では酸溶解又はシアン溶解が一般的に用いられている。例えば、銀を含有する銀系スクラップ原料を湿式処理する場合は、銀を溶解すべく先ず硝酸で浸出処理することが行われている。この場合、硝酸による溶解に代えて王水で溶解する場合は、銀は塩化銀として沈降して他の未溶解物と共に残渣中に残ることになる。この残存する塩化銀は水だけでなく酸やアルカリ性溶液に対しても溶解度が低いため、湿式処理による回収は難しく、一般的には乾式で処理されることが多い。しかしながら、乾式処理では排ガス中に塩素や塩化水素が含まれることになるため排ガス処理設備において腐食等の問題が生じやすく、この防食対策のために高額の設備投資が必要になる。   Wet processing and dry processing are known as methods for separating and recovering noble metal from scrap raw materials containing noble metal, and acid dissolution or cyan dissolution is generally used in the former wet processing. For example, when a silver-based scrap raw material containing silver is wet-treated, first, leaching treatment with nitric acid is performed to dissolve silver. In this case, when dissolving with aqua regia instead of dissolving with nitric acid, silver settles as silver chloride and remains in the residue together with other undissolved substances. Since the remaining silver chloride has low solubility in not only water but also acid or alkaline solution, recovery by wet processing is difficult, and generally it is often processed by dry method. However, in the dry treatment, since exhaust gas contains chlorine and hydrogen chloride, problems such as corrosion are likely to occur in the exhaust gas treatment facility, and a large capital investment is required for this anti-corrosion measure.

そこで特許文献1には、塩化銀を主成分とする残渣から錯化剤を用いてAgを浸出して金属銀を回収する方法が開示されており、該残渣の錯化剤浸出液を溶媒抽出法で処理することでAgを逆抽出液側に移行させ、これを還元することで金属銀を回収できると記載されている。また、特許文献2には、難溶性の銀化合物原料に対して抽出剤としてトリアルキルホスフィンスルフィドを用いて銀を抽出処理する技術が開示されており、この抽出処理に際して該卜リアルキルホスフィンスルフィドに含まれる不純物のジホスフィンスルフィド化合物を消滅させるべく卜リアルキルホスフィンスルフィドを有機溶媒で溶解し、該ジホスフィンスルフィド化合物を所定の金属と反応させて銀抽出に影響しない有機りん化合物に変化させることが記載されている。   Therefore, Patent Document 1 discloses a method of leaching Ag from a residue containing silver chloride as a main component using a complexing agent to recover metallic silver. It is described that silver can be recovered by transferring Ag to the back-extracted solution side and reducing it. Patent Document 2 discloses a technique of extracting silver using a trialkylphosphine sulfide as an extractant for a hardly soluble silver compound raw material. It is described that a trialkylphosphine sulfide is dissolved in an organic solvent in order to eliminate the contained diphosphine sulfide compound, and the diphosphine sulfide compound is reacted with a predetermined metal to be changed into an organophosphorus compound that does not affect silver extraction. ing.

更に特許文献3には、難溶性銀化合物を含む原料をアンモニア溶液で浸出した後、該浸出液を還元剤で還元することで、不純物の極めて少ない粗銀を回収する湿式処理技術が開示されている。また、特許文献4には、難溶性銀化合物と不純物元素とを含有する精錬中間物から高純度塩化銀を分離精製する方法として、該精錬中間物を亜硫酸塩水溶液中で浸出する浸出工程と、該浸出工程で得た銀を含む浸出生成液を酸性にして塩化銀を析出する塩化銀生成工程と、該塩化銀を酸化剤で酸化処理することで精製する塩化銀精製工程とからなる方法が開示されている。この方法は、精錬中間物の前処理が不要であると共に、それを原料として金属銀を製造する際に、金属銀の乾式精製又は電解による再精製処理を行なう必要がないと記載されている。   Further, Patent Document 3 discloses a wet processing technique for recovering crude silver with very few impurities by leaching a raw material containing a hardly soluble silver compound with an ammonia solution and then reducing the leaching solution with a reducing agent. . Patent Document 4 discloses, as a method for separating and purifying high-purity silver chloride from a refined intermediate containing a sparingly soluble silver compound and an impurity element, a leaching step of leaching the refined intermediate in a sulfite aqueous solution, A method comprising a silver chloride production step of acidifying the leaching product solution containing silver obtained in the leaching step to precipitate silver chloride, and a silver chloride purification step of purifying the silver chloride by oxidizing it with an oxidizing agent. It is disclosed. This method does not require a pretreatment of a refining intermediate, and it is described that it is not necessary to carry out dry refining of metal silver or repurification by electrolysis when producing metal silver using it as a raw material.

特開2003−105456号公報JP 2003-105456 A 特開2002−003958号公報JP 2002-003958 A 特開2000−297332号公報JP 2000-297332 A 国際公開第2005/023716号International Publication No. 2005/023716

しかしながら、上記の特許文献1及び2に記載の技術は、溶解反応槽とは別に溶媒抽出法で処理を行なうための専用の抽出装置及び逆抽出装置を設ける必要がある。また、工程が特殊となる上、抽出剤そのものが不純物の一部になるおそれがある。上記特許文献3の技術は、過剰のアンモニアを添加する必要がある上、アンモニア濃度が上昇すると雷銀等の爆発性銀化合物の形成が懸念され安全面で注意が必要である。上記特許文献4の技術は、難溶性銀化合物として例えば塩化銀を亜硫酸塩水溶液中において亜硫酸ナトリウムと反応させて銀のスルフィド錯塩を生成する場合は、亜硫酸イオン濃度、pH、温度などの反応条件をそれぞれ好適な範囲内に維持する必要があるため調整が難しく、これらの反応条件が適切な値から外れると実収率が低下するなどの問題が生じる。このように、従来の湿式処理によるハロゲン化銀からの銀の回収技術は、工程が特殊且つ複雑である上、場合によっては特殊な薬品を必要とするため高コストになることが問題になっていた。   However, the techniques described in Patent Documents 1 and 2 need to provide a dedicated extraction device and a back extraction device for performing processing by a solvent extraction method separately from the dissolution reaction tank. Further, the process becomes special, and the extractant itself may become a part of impurities. The technique of Patent Document 3 requires the addition of excess ammonia, and when the ammonia concentration is increased, there is concern about the formation of explosive silver compounds such as thunder silver, and caution is required in terms of safety. In the technique of Patent Document 4 described above, for example, when silver chloride is reacted with sodium sulfite in a sulfite aqueous solution as a hardly soluble silver compound to form a silver sulfide complex salt, reaction conditions such as sulfite ion concentration, pH, and temperature are set. Since it is necessary to maintain each within a suitable range, it is difficult to adjust, and problems such as a decrease in actual yield occur when these reaction conditions deviate from appropriate values. As described above, the conventional technique for recovering silver from silver halide by wet processing has a problem in that the process is special and complicated, and in some cases, a special chemical is required, so that the cost is high. It was.

本発明は、上記した従来の銀系スクラップ原料の湿式処理技術が抱える問題点に鑑みてなされたものであり、ハロゲン化銀が多種類の不純物と共存した状態で含まれるスクラップ原料から、効率的に高純度の銀を回収する方法を提供することを目的とする。   The present invention has been made in view of the problems of the above-described conventional wet processing technology for silver-based scrap raw materials. From the scrap raw materials in which silver halide is coexisting with many kinds of impurities, the present invention is efficient. Another object of the present invention is to provide a method for recovering highly pure silver.

上記目的を達成するため、本発明に係る銀の回収方法は、ハロゲン化銀に加えて不純物としてアルミナ、シリカ、鉄、ニッケル、及び銅のうちの少なくとも1成分を含有するスクラップ原料から銀を分離して回収する方法であって、前記スクラップ原料に水を加えて作製したスラリーのpHを水酸化アルカリで調整してpH12以上の条件下で前記ハロゲン化銀を還元処理する工程と、前記還元処理後のスラリーを固液分離し、得られた不純物を含む固形分に硝酸を添加して銀を浸出する工程と、前記浸出により得た銀を含む硝酸溶液を浸出残渣物から固液分離した後、該硝酸溶液に塩化ナトリウム又は塩酸を添加して塩化銀を生成する工程と、前記塩化銀に水を加えて作製したスラリーのpHを水酸化アルカリで調整してpH12以上の条件下で再度還元処理する工程とを有することを特徴としている。   In order to achieve the above object, a silver recovery method according to the present invention separates silver from a scrap material containing at least one component of alumina, silica, iron, nickel, and copper as impurities in addition to silver halide. And reducing the silver halide under a condition of pH 12 or more by adjusting the pH of the slurry prepared by adding water to the scrap raw material, and the reduction treatment Solid-liquid separation of the later slurry, the step of leaching silver by adding nitric acid to the solid content containing the impurities, and after solid-liquid separation of the nitric acid solution containing silver obtained by the leaching from the leaching residue A step of producing silver chloride by adding sodium chloride or hydrochloric acid to the nitric acid solution, and adjusting the pH of the slurry prepared by adding water to the silver chloride with an alkali hydroxide to a pH of 12 or more. It is characterized by a step of reduction treatment again under.

本発明によれば、難溶性の銀のハロゲン化物が不純物と共存した状態で含まれるスクラップ原料から湿式法によって効率的に高純度の銀を回収することができる。   ADVANTAGE OF THE INVENTION According to this invention, highly purified silver can be efficiently collect | recovered by the wet method from the scrap raw material contained in the state in which the hardly soluble silver halide coexisted with the impurity.

本発明の実施形態の銀の回収方法を示す工程フロー図である。It is a process flow figure showing a recovery method of silver of an embodiment of the present invention.

以下、図1を参照しながら本発明の実施形態に係る銀の回収方法について詳細に説明する。この本発明の実施形態の銀の回収方法は、塩化銀や臭化銀などの難溶性のハロゲン化銀に加えて不純物としてアルミナ、シリカなどの難溶性の酸化物や鉄、ニッケル、銅などが少なくとも1成分共存する銀系のスクラップ原料に工業用水を添加したスラリーに対して、先ず第1不純物除去工程S1において、苛性ソーダなどの水酸化アルカリを用いてpH12以上に調整し、液温を好ましくは50〜90℃程度、より好ましくは70℃程度に加温した状態でヒドラジンなどの還元剤を添加して好ましくは酸化還元電位−600〜−800mV(参照電極:銀/塩化銀電極)でハロゲン化銀を還元処理する。この還元処理により、下記の式1〜3の反応が生ずると考えられる。   Hereinafter, a silver recovery method according to an embodiment of the present invention will be described in detail with reference to FIG. The silver recovery method according to the embodiment of the present invention includes, in addition to poorly soluble silver halides such as silver chloride and silver bromide, poorly soluble oxides such as alumina and silica, iron, nickel and copper as impurities. For the slurry in which industrial water is added to silver-based scrap raw material coexisting with at least one component, first, in the first impurity removal step S1, the pH is adjusted to 12 or more using an alkali hydroxide such as caustic soda, and the liquid temperature is preferably Halogenated at a redox potential of −600 to −800 mV (reference electrode: silver / silver chloride electrode) by adding a reducing agent such as hydrazine in a state heated to about 50 to 90 ° C., more preferably about 70 ° C. Reduce silver. This reduction treatment is considered to cause the reactions of the following formulas 1 to 3.

[式1]
AgX+NaOH→AgOH+NaX(式中、Xはハロゲン元素である)
[式2]
2AgOH→AgO+H
[式3]
2AgO+N・HO→4Ag+3HO+N
[Formula 1]
AgX + NaOH → AgOH + NaX (wherein X is a halogen element)
[Formula 2]
2AgOH → Ag 2 O + H 2 O
[Formula 3]
2Ag 2 O + N 2 H 4 · H 2 O → 4 Ag + 3H 2 O + N 2

これら式1〜3の反応により銀は硝酸に溶解できる形態となる。なお、上記式2に示すように、AgOHは不安定な物質であるため、AgOとHOに容易に分解される。この還元処理後のスラリーをろ過などの固液分離手段で固液分離することにより、銀、鉄、ニッケル、銅が一部のアルミナ及びシリカと共に固形分側として回収され、該固形分は残部のアルミナ及びシリカと、塩素イオン、臭素イオン、ナトリウムイオンとを含んだ液相側から分離される。 By the reaction of these formulas 1 to 3, silver is dissolved in nitric acid. As shown in the above formula 2, since AgOH is an unstable substance, it is easily decomposed into Ag 2 O and H 2 O. By performing solid-liquid separation of the slurry after the reduction treatment by solid-liquid separation means such as filtration, silver, iron, nickel, and copper are recovered as a solid content side together with a part of alumina and silica, and the solid content is the remainder. It is separated from the liquid phase side containing alumina and silica and chlorine ions, bromine ions and sodium ions.

上記の固形分は、次に第2不純物除去工程S2において硝酸が添加される。これにより、銀が硝酸に浸出されて銀浸出液としての硝酸溶液が得られる。この硝酸には銀のほか鉄、銅、ニッケルも溶解するが、アルミナ及びシリカは溶解できないので、上記硝酸浸出処理後のスラリーをろ過などの固液分離手段で固液分離することにより、上記アルミナ及びシリカなどの酸化物からなる不純物が上記銀浸出液(硝酸溶液)から除去される。この銀を含んだ硝酸溶液に対して、次に第3不純物除去工程S3において化学量論的に必要な量の塩酸又は塩化ナトリウムを加えることで不純物品位の低い塩化銀を生成することができる。この塩化銀を含んだ溶液をろ過などの固液分離手段で固液分離することにより、不純物としての鉄、銅、ニッケルを含んだ液相側から固形分の塩化銀を分離することができる。   Next, nitric acid is added to the solid content in the second impurity removal step S2. Thereby, silver is leached into nitric acid to obtain a nitric acid solution as a silver leaching solution. In addition to silver, iron, copper, and nickel can be dissolved in nitric acid, but alumina and silica cannot be dissolved. Therefore, the slurry after the nitric acid leaching treatment is subjected to solid-liquid separation by solid-liquid separation means such as filtration. And impurities made of oxides such as silica are removed from the silver leachate (nitric acid solution). Next, in the third impurity removal step S3, silver chloride having low impurity quality can be produced by adding a stoichiometrically necessary amount of hydrochloric acid or sodium chloride to the nitric acid solution containing silver. By solid-liquid separation of the solution containing silver chloride by solid-liquid separation means such as filtration, solid silver chloride can be separated from the liquid phase side containing iron, copper, and nickel as impurities.

この塩化銀に対して、次に銀粉回収工程S4において前述した第1不純物除去工程S1と同様に苛性ソーダなどの水酸化アルカリの水溶液を添加してpH12以上に調整し、液温を好ましくは50〜90℃程度、より好ましくは70℃程度に加熱した状態でヒドラジンなどの還元剤を添加することで好ましくは酸化還元電位−600〜−800mV(参照電極:銀/塩化銀電極)で塩化銀を還元処理し、金属銀粉を生成する。この銀粉を含んだスラリーをろ過などの固液分離手段で固液分離することにより、高純度の銀粉を回収することができる。   Next to this silver chloride, an aqueous solution of alkali hydroxide such as caustic soda is added to adjust the pH to 12 or more in the silver powder recovery step S4 as in the first impurity removal step S1, and the liquid temperature is preferably 50 to 50. Silver chloride is reduced at a redox potential of −600 to −800 mV (reference electrode: silver / silver chloride electrode) by adding a reducing agent such as hydrazine while heated to about 90 ° C., more preferably about 70 ° C. Process to produce metallic silver powder. High purity silver powder can be recovered by solid-liquid separation of the slurry containing silver powder by solid-liquid separation means such as filtration.

(実施例)
先ず銀粉の原料として、王水を用いて金、白金、及びパラジウムを回収した後に残留する、銀を5質量%含有した王水溶解残渣スクラップを用意した。このスクラップ原料に対して蛍光X線分析を行ったところ、塩素を5.7質量%、臭素を0.3質量%含んでいた。また、不純物として難溶性の酸化物であるアルミナやシリカを含有していた。当該スクラップ原料10gに水を加えてスラリー濃度100g/Lのスラリーとした後、このスラリーに水酸化ナトリウムを添加してpH12に調整すると共に反応を促進するために液温を70℃に加温した。この条件下で還元剤として水加ヒドラジンを参照電極に銀/塩化銀電極を用いた酸化還元電位で−700mVになるまで添加して還元処理を行った。この還元処理後のスラリーをろ過により固液分離して得た固形分に対して蛍光X線分析を行なったところ、塩素及び臭素はいずれも検出されなかった。
(Example)
First, as a raw material for silver powder, aqua regia-dissolved residue scraps containing 5% by mass of silver remaining after recovering gold, platinum, and palladium using aqua regia were prepared. When this scrap material was subjected to fluorescent X-ray analysis, it contained 5.7% by mass of chlorine and 0.3% by mass of bromine. In addition, it contained alumina and silica, which are hardly soluble oxides, as impurities. After adding water to 10 g of the scrap raw material to make a slurry with a slurry concentration of 100 g / L, sodium hydroxide was added to the slurry to adjust to pH 12 and the liquid temperature was heated to 70 ° C. to promote the reaction. . Under this condition, hydrazine hydrate as a reducing agent was added to the reference electrode until the oxidation / reduction potential using a silver / silver chloride electrode became −700 mV, and reduction treatment was performed. When X-ray fluorescence analysis was performed on the solid content obtained by solid-liquid separation of the slurry after the reduction treatment by filtration, neither chlorine nor bromine was detected.

次に、上記の還元処理後の固形分を100mLの硝酸水溶液(容量基準で濃度67.5質量%の硝酸1:水1)で溶解した後、ろ過により残渣物を除去して硝酸水溶液中の銀を分析したところ、銀の硝酸への浸出率は99.4%であった。次に、この銀が浸出された硝酸水溶液に濃度35質量%の塩酸を理論当量の2倍以上の1mL添加して塩化銀を生成した。この塩化銀をろ過により回収し、これに水を加えてスラリーにしてから水酸化ナトリウムを添加してpH12に調整すると共に液温を70℃に加温した条件下で、水加ヒドラジンを参照電極に銀/塩化銀電極を用いた酸化還元電位で−700mVになるまで添加して還元処理を行った。これにより不純物品位の低い品位99.9%の銀粉を得ることができた。   Next, after the solid content after the above reduction treatment is dissolved in 100 mL of nitric acid aqueous solution (nitric acid 1: water 1 having a concentration of 67.5% by mass on the basis of volume), the residue is removed by filtration, When silver was analyzed, the leaching rate of silver into nitric acid was 99.4%. Next, 1 mL of hydrochloric acid having a concentration of 35 mass% was added to the aqueous nitric acid solution in which the silver had been leached at least twice the theoretical equivalent to produce silver chloride. The silver chloride is recovered by filtration, and water is added thereto to make a slurry, and then sodium hydroxide is added to adjust to pH 12, and the hydrazine hydrate is used as a reference electrode under the condition that the liquid temperature is heated to 70 ° C. Then, a reduction treatment was performed by adding to an oxidation-reduction potential of −700 mV using a silver / silver chloride electrode. As a result, a silver powder having a low impurity quality of 99.9% could be obtained.

(比較例1)
実施例と同様に用意した王水溶解残渣スクラップ原料10gに対してpH12での水加ヒドラジンによる還元処理を行なわない以外は実施例と同様にして100mLの硝酸で溶解を行なったところ、銀はほとんど浸出されずに大部分が残渣物側に残留した。
(Comparative Example 1)
When the aqua regia dissolution residue scrap material prepared in the same manner as in the example was dissolved in 100 mL of nitric acid in the same manner as in the example except that the reduction treatment with hydrated hydrazine at pH 12 was not carried out, almost no silver was obtained. Most of the residue remained on the residue side without leaching.

(比較例2)
pHを12に代えて10に調整したこと以外は実施例と同様にして1回目の還元処理を行ったところ、該1回目の還元処理後を固液分離して得た固形分中に塩素が0.6質量%、臭素が0.1質量%含まれていた。次に、この還元処理後の固形分を実施例と同様に100mLの硝酸で溶解して該硝酸水溶液中の銀を分析したところ、銀の硝酸への浸出率は86.4%であり、実施例に比べて多くの銀が渣物に残留していることが分かった。すなわち、pH10程度の領域での還元処理では、ハロゲン化銀の還元反応が不完全となり、結果的に硝酸への溶解度の低いハロゲン化銀のまま残渣物中に残留するので銀の回収率が低くなることが分かる。
(Comparative Example 2)
Except that the pH was adjusted to 10 instead of 12, the first reduction treatment was carried out in the same manner as in the example. As a result, chlorine was contained in the solid content obtained by solid-liquid separation after the first reduction treatment. 0.6% by mass and 0.1% by mass of bromine were contained. Next, the solid content after the reduction treatment was dissolved in 100 mL of nitric acid in the same manner as in the example, and silver in the aqueous nitric acid solution was analyzed. As a result, the leaching rate of silver into nitric acid was 86.4%. It was found that more silver remained in the residue than in the example. That is, in the reduction treatment at a pH of about 10, the reduction reaction of silver halide becomes incomplete, and as a result, the silver halide having low solubility in nitric acid remains in the residue, so the silver recovery rate is low. I understand that

S1 第1不純物除去工程
S2 第2不純物除去工程
S3 第3不純物除去工程
S4 銀粉回収工程
S1 First impurity removal step S2 Second impurity removal step S3 Third impurity removal step S4 Silver powder recovery step

Claims (3)

ハロゲン化銀に加えて不純物としてアルミナ、シリカ、鉄、ニッケル、及び銅のうちの少なくとも1成分を含有するスクラップ原料から銀を分離して回収する方法であって、
前記スクラップ原料に水を加えて作製したスラリーのpHを水酸化アルカリで調整してpH12以上の条件下で前記ハロゲン化銀を還元処理する工程と、前記還元処理後のスラリーを固液分離し、得られた不純物を含む固形分に硝酸を添加して銀を浸出する工程と、前記浸出により得た銀を含む硝酸溶液を浸出残渣物から固液分離した後、該硝酸溶液に塩化ナトリウム又は塩酸を添加して塩化銀を生成する工程と、前記塩化銀に水を加えて作製したスラリーのpHを水酸化アルカリで調整してpH12以上の条件下で再度還元処理する工程とを有することを特徴とする銀の回収方法。
A method of separating and recovering silver from a scrap material containing at least one component of alumina, silica, iron, nickel, and copper as impurities in addition to silver halide,
Adjusting the pH of the slurry prepared by adding water to the scrap raw material with an alkali hydroxide to reduce the silver halide under a pH of 12 or more, and solid-liquid separation of the slurry after the reduction treatment, A step of leaching silver by adding nitric acid to the solid content containing impurities, and a solid solution separation of the nitric acid solution containing silver obtained by the leaching from the leaching residue, and then adding sodium chloride or hydrochloric acid to the nitric acid solution And adding silver to produce silver chloride, and adjusting the pH of the slurry prepared by adding water to the silver chloride with alkali hydroxide and reducing again under conditions of pH 12 or higher. And silver recovery method.
前記ハロゲン化銀が塩化銀又は臭化銀であることを特徴とする、請求項1に記載の銀の回収方法。   The silver recovery method according to claim 1, wherein the silver halide is silver chloride or silver bromide. 前記ハロゲン化銀の還元処理をヒドラジンで行なうことを特徴とする、請求項1又は2に記載の銀の回収方法。   The silver recovery method according to claim 1 or 2, wherein the reduction treatment of the silver halide is performed with hydrazine.
JP2018047659A 2018-03-15 2018-03-15 Recovery method of silver from silver halide-containing scrap raw material Pending JP2019157230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047659A JP2019157230A (en) 2018-03-15 2018-03-15 Recovery method of silver from silver halide-containing scrap raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047659A JP2019157230A (en) 2018-03-15 2018-03-15 Recovery method of silver from silver halide-containing scrap raw material

Publications (1)

Publication Number Publication Date
JP2019157230A true JP2019157230A (en) 2019-09-19

Family

ID=67995748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047659A Pending JP2019157230A (en) 2018-03-15 2018-03-15 Recovery method of silver from silver halide-containing scrap raw material

Country Status (1)

Country Link
JP (1) JP2019157230A (en)

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
KR100956050B1 (en) Method for separating platinum group element
JP3733909B2 (en) Method for purifying ruthenium
JP5104211B2 (en) Silver powder manufacturing method
JP4207959B2 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
JP2008081822A (en) Method for recovering indium from indium-containing material
JP7487499B2 (en) Method for separating platinum group elements from each other
JP5200588B2 (en) Method for producing high purity silver
JP5327420B2 (en) Platinum recovery method
JP3975901B2 (en) Iridium separation and purification method
JP6636819B2 (en) Treatment method of metal-containing acidic aqueous solution
CN102274978B (en) Method for quickly wet-process refining non-standard coarse gold powder
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
JP7400443B2 (en) Mutual separation method of platinum group elements
JP2019157230A (en) Recovery method of silver from silver halide-containing scrap raw material
JP4281534B2 (en) Treatment method for platinum group-containing materials
JP4269693B2 (en) Process for treating selenium mixture
JP7146175B2 (en) How to collect gold
JP3309801B2 (en) How to collect gold
JP2004035969A (en) Method for refining selenium or the like
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP6222469B2 (en) Platinum family recovery methods
JP6967937B2 (en) How to collect selenium
JP2019147718A (en) Method for recovering tellurium
JP6948910B2 (en) How to collect selenium