JP2019155355A - Oxygen evolution catalyst - Google Patents

Oxygen evolution catalyst Download PDF

Info

Publication number
JP2019155355A
JP2019155355A JP2018242435A JP2018242435A JP2019155355A JP 2019155355 A JP2019155355 A JP 2019155355A JP 2018242435 A JP2018242435 A JP 2018242435A JP 2018242435 A JP2018242435 A JP 2018242435A JP 2019155355 A JP2019155355 A JP 2019155355A
Authority
JP
Japan
Prior art keywords
titania
catalyst
oxygen evolution
evolution catalyst
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018242435A
Other languages
Japanese (ja)
Other versions
JP6763009B2 (en
Inventor
修平 吉野
Shuhei Yoshino
修平 吉野
健作 兒玉
Kensaku Kodama
健作 兒玉
佳生 提嶋
Yoshio Tsutsushima
佳生 提嶋
敬一郎 大石
Keiichiro Oishi
敬一郎 大石
世里子 長谷川
Yoriko Hasegawa
世里子 長谷川
典之 喜多尾
Noriyuki Kitao
典之 喜多尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to US16/262,197 priority Critical patent/US10879538B2/en
Publication of JP2019155355A publication Critical patent/JP2019155355A/en
Application granted granted Critical
Publication of JP6763009B2 publication Critical patent/JP6763009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide an oxygen evolution catalyst that has initial activity and durability equal to or higher than those of iridium oxide and is less costly than iridium oxide.SOLUTION: In the first embodiment, an oxygen evolution catalyst is provided which comprises a core and a shell covering the core surface, and in which the core includes ruthenium oxide or metal ruthenium at least on the surface, and the shell includes titania or a compound oxide of titanium and ruthenium. In the second embodiment, an oxygen evolution catalyst is provided which is identical to the oxygen evolution catalyst in first embodiment except that the oxygen evolution catalyst has a titania coverage factor of 0.05-5.0 ML (the number of titania atomic layers defined assuming that all titanium included in the shell becomes titania and that the titania uniformly covers the core surface). In the third embodiment, the oxygen evolution catalyst is provided which is identical to the oxygen evolution catalyst in the first or the second embodiment except that the oxygen evolution catalyst is used for an oxygen electrode of a water electrolysis apparatus. In the fourth embodiment, an oxygen evolution catalyst is provided which is identical to the oxygen evolution catalyst in the first or the second embodiment except that oxygen evolution catalyst is added to an anode of a fuel cell.SELECTED DRAWING: Figure 1

Description

本発明は、酸素生成触媒に関し、さらに詳しくは、水電解装置の酸素極や燃料電池のアノードにおいて使用することが可能な酸素生成触媒に関する。   The present invention relates to an oxygen generation catalyst, and more particularly to an oxygen generation catalyst that can be used in an oxygen electrode of a water electrolysis apparatus or an anode of a fuel cell.

酸素生成(OER)活性を示す材料として、酸化ルテニウム、酸化イリジウムなどが知られている。このようなOER活性を示す材料は、
(a)水電解装置の酸素極側の触媒、
(b)燃料電池スタック内の一部の単セルへの燃料供給が途絶えた状態で発電を継続した場合において、燃料供給が途絶えた単セル(燃料欠セル)のアノードで生ずるカーボン材料の酸化を抑制するための触媒
などに利用されている。
Ruthenium oxide, iridium oxide, and the like are known as materials showing oxygen generation (OER) activity. Materials that exhibit such OER activity are:
(A) a catalyst on the oxygen electrode side of the water electrolysis device,
(B) When power generation is continued in a state where the fuel supply to some of the single cells in the fuel cell stack is interrupted, oxidation of the carbon material generated at the anode of the single cell (fuel shortage cell) where the fuel supply is interrupted It is used as a catalyst for suppression.

これらの中でも、酸化イリジウムは、他の材料に比べてOER活性の耐久性が高い。そのため、酸素生成触媒として、酸化イリジウムが用いられることが多い。しかし、酸化イリジウムは、初期活性が低く、コストも高い。
一方、酸化ルテニウムは、酸化イリジウムに比べて低コストであり、初期活性も高い。しかし、酸化ルテニウムは、OER活性の耐久性が低いという問題がある。
Among these, iridium oxide has higher durability of OER activity than other materials. Therefore, iridium oxide is often used as the oxygen generation catalyst. However, iridium oxide has low initial activity and high cost.
On the other hand, ruthenium oxide is lower in cost and higher in initial activity than iridium oxide. However, ruthenium oxide has a problem that durability of OER activity is low.

そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、
(a)TiO2(BET>300m2/g)の懸濁液にヘキサクロロイリジウム酸(H2IrCl6)溶液を加え、懸濁液を70℃に加熱し、
(b)生成物を濾過により単離し、さらに
(c)生成物を400℃で仮焼する
IrO2/TiO2触媒の製造方法が開示されている。
In order to solve this problem, various proposals have heretofore been made.
For example, Patent Document 1 discloses that
(A) To a suspension of TiO 2 (BET> 300 m 2 / g) was added a hexachloroiridium acid (H 2 IrCl 6 ) solution, and the suspension was heated to 70 ° C.
A process for producing an IrO 2 / TiO 2 catalyst is disclosed in which (b) the product is isolated by filtration and (c) the product is calcined at 400 ° C.

同文献には、
(A)このような方法により、無機酸化物材料(TiO2)上に酸化イリジウム(IrO2)粒子が微細に堆積している触媒が得られる点、
(B)高比表面積の無機酸化物材料上に酸化イリジウムを堆積させると、熱処理後においても酸化イリジウムの凝集が抑制され、高比表面積が維持されるのに対し、酸化イリジウムのみでは粒子が凝集しやすい点、及び、
(C)その結果として、IrO2/TiO2触媒は、IrO2触媒に比べて、酸素発生のための開始電位が低くなる(すなわち、OER活性が高くなる)点、
が記載されている。
In the same document,
(A) By such a method, a catalyst in which iridium oxide (IrO 2 ) particles are finely deposited on an inorganic oxide material (TiO 2 ) can be obtained,
(B) When iridium oxide is deposited on an inorganic oxide material having a high specific surface area, agglomeration of iridium oxide is suppressed even after heat treatment, and a high specific surface area is maintained, whereas particles are aggregated only with iridium oxide. Easy to do and
(C) As a result, the IrO 2 / TiO 2 catalyst has a lower starting potential for oxygen generation (ie, higher OER activity) than the IrO 2 catalyst,
Is described.

特許文献1には、TiO2表面に微細なIrO2粒子を担持させることにより、OER活性の低下(IrO2の凝集)が抑制される点が記載されている。
しかし、同文献に記載の触媒は、触媒劣化の起点となる触媒表面を保護する構成とはなっておらず、耐久性の課題を解決するものではない。また、触媒としてIrO2を用いているので、高コストである。
Patent Document 1 describes that a decrease in OER activity (aggregation of IrO 2 ) is suppressed by supporting fine IrO 2 particles on the TiO 2 surface.
However, the catalyst described in this document is not configured to protect the catalyst surface that is the starting point of catalyst deterioration, and does not solve the problem of durability. Further, since IrO 2 is used as the catalyst, the cost is high.

特表2007−514520号公報Special table 2007-514520 gazette

本発明が解決しようとする課題は、酸化イリジウムと同等以上の初期活性及び耐久性を有し、かつ、酸化イリジウムより低コストな酸素生成触媒を提供することにある。   The problem to be solved by the present invention is to provide an oxygen-generating catalyst having an initial activity and durability equivalent to or higher than those of iridium oxide and lower in cost than iridium oxide.

上記課題を解決するために、本発明に係る酸素生成触媒は、
コアと
前記コアの表面を被覆するシェルと
を備え、
前記コアは、少なくとも表面に酸化ルテニウム又は金属ルテニウムを含み、
前記シェルは、チタニア、又は、チタンとルテニウムとの複合酸化物を含む
ことを要旨とする。
In order to solve the above-described problems, an oxygen generation catalyst according to the present invention includes:
A core and a shell covering the surface of the core;
The core includes ruthenium oxide or metal ruthenium at least on the surface,
The gist is that the shell contains titania or a composite oxide of titanium and ruthenium.

本発明に係る酸素生成触媒は、酸化イリジウムを用いた従来の触媒と同等以上の初期活性及び耐久性を示す。これは、酸化ルテニウム又は金属ルテニウムを含むコアの表面を、チタニア、又は、チタンとルテニウムとの複合酸化物を含むシェルで被覆することによって、触媒劣化の起点となる触媒表面が保護されるためと考えられる。さらに、本発明に係る酸素生成触媒は、酸化ルテニウム又は金属ルテニウムを主成分とするので、酸化イリジウムを主成分とする従来の触媒よりも低コストである。   The oxygen generation catalyst according to the present invention exhibits an initial activity and durability equal to or higher than those of conventional catalysts using iridium oxide. This is because the surface of the core containing ruthenium oxide or metal ruthenium is covered with titania or a shell containing a composite oxide of titanium and ruthenium, thereby protecting the catalyst surface that is the starting point of catalyst deterioration. Conceivable. Furthermore, since the oxygen generation catalyst according to the present invention is mainly composed of ruthenium oxide or metal ruthenium, the cost is lower than that of conventional catalysts mainly composed of iridium oxide.

実施例1及び比較例1で得られた酸素生成触媒のTEM像である。2 is a TEM image of the oxygen generation catalyst obtained in Example 1 and Comparative Example 1. FIG. 実施例1で得られた酸素生成触媒のEDXマッピングである。2 is an EDX mapping of the oxygen generation catalyst obtained in Example 1. 実施例1及び比較例1〜3で得られた酸素生成触媒の初期の水電解活性である。It is the initial water electrolysis activity of the oxygen generation catalyst obtained in Example 1 and Comparative Examples 1-3. 実施例1及び比較例1〜3で得られた酸素生成触媒の電位サイクル(0.07V⇔1.8V)中の活性変化である。It is an activity change in the potential cycle (0.07V⇔1.8V) of the oxygen generation catalyst obtained in Example 1 and Comparative Examples 1 to 3. 図5(A)は、実施例1で得られた酸素生成触媒のI−V特性の変化である。図5(B)は、比較例1で得られた酸素生成触媒のI−V特性の変化である。FIG. 5A shows changes in the IV characteristics of the oxygen generation catalyst obtained in Example 1. FIG. FIG. 5B shows changes in the IV characteristics of the oxygen generation catalyst obtained in Comparative Example 1.

実施例1〜5及び比較例1〜2で得られた酸素生成触媒の電位サイクル(0.07V⇔1.8V)中の活性変化である。It is an activity change in the potential cycle (0.07V⇔1.8V) of the oxygen generation catalyst obtained in Examples 1-5 and Comparative Examples 1-2. 実施例1〜5及び比較例1〜2で得られた酸素生成触媒の初期活性と耐久試験後の活性のチタニア被覆率依存性である。It is the titania coverage dependency of the initial activity of the oxygen generation catalyst obtained in Examples 1-5 and Comparative Examples 1-2 and the activity after the durability test. 実施例1〜5及び比較例1〜2で得られた酸素生成触媒に電位サイクル(0.07V⇔1.8V)を加えた時の、電位の上昇幅である。It is an increase in potential when a potential cycle (0.07 V⇔1.8 V) is added to the oxygen generation catalysts obtained in Examples 1 to 5 and Comparative Examples 1 and 2. 実施例1〜5及び比較例1で得られた酸素生成触媒に電位サイクル(0.07V⇔1.8V)を加えた時の、電位の上昇幅のチタニア被覆率依存性である。It is the titania coverage dependency of the increase width of the potential when the potential cycle (0.07 VV1.8 V) is added to the oxygen generation catalysts obtained in Examples 1 to 5 and Comparative Example 1.

以下、本発明の一実施の形態について詳細に説明する。
[1. 酸素生成触媒]
本発明に係る酸素生成触媒は、
コアと
前記コアの表面を被覆するシェルと
を備え、
前記コアは、少なくとも表面に酸化ルテニウム又は金属ルテニウムを含み、
前記シェルは、チタニア、又は、チタンとルテニウムとの複合酸化物を含む。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Oxygen generation catalyst]
The oxygen generation catalyst according to the present invention is:
A core and a shell covering the surface of the core;
The core includes ruthenium oxide or metal ruthenium at least on the surface,
The shell includes titania or a composite oxide of titanium and ruthenium.

[1.1. コア]
コアは、少なくとも表面に酸化ルテニウム(RuO2)又は金属ルテニウム(Ru)を含む。酸化ルテニウム又は金属ルテニウムは、コアの表面にのみ含まれていても良く、あるいは、コアの全体に含まれていても良い。コアの表面は、実質的に酸化ルテニウム又は金属ルテニウムのみからなるものが好ましいが、不可避的不純物が含まれていても良い。コアの中心部は、酸素生成反応にあまり寄与しないので、必ずしも酸化ルテニウム又は金属ルテニウムで構成されている必要はなく、他の材料で構成されていても良い。
コアの粒径は、特に限定されない。一般に、コアの粒径が小さくなるほど、少量の添加で高い効果が得られる。そのためには、コアの平均粒径は、1μm以下が好ましい。コアの平均粒径は、好ましくは、500nm以下、さらに好ましくは、200nm以下である。
[1.1. core]
The core includes ruthenium oxide (RuO 2 ) or metal ruthenium (Ru) at least on the surface. Ruthenium oxide or metal ruthenium may be contained only on the surface of the core, or may be contained in the entire core. The surface of the core is preferably substantially composed of ruthenium oxide or metal ruthenium, but may contain inevitable impurities. Since the central part of the core does not contribute much to the oxygen generation reaction, it does not necessarily need to be made of ruthenium oxide or metal ruthenium, and may be made of other materials.
The particle size of the core is not particularly limited. In general, the smaller the core particle size, the higher the effect obtained with a small amount. For this purpose, the average particle diameter of the core is preferably 1 μm or less. The average particle diameter of the core is preferably 500 nm or less, and more preferably 200 nm or less.

[1.2. シェル]
シェルは、チタニア(TiO2)、又は、チタンとルテニウムとの複合酸化物((Ti,Ru)O2)を含む。後述するように、シェルは、コアの周囲にチタニア前駆体を形成し、焼成することにより形成される。この時、コア表面の酸化ルテニウム又は金属ルテニウムとチタニア前駆体とが反応し、複合酸化物が形成される場合がある。シェルは、実質的にチタニア又は複合酸化物のみからなるものが好ましいが、不可避的不純物が含まれていても良い。
コアの表面を被覆するシェルは、酸化ルテニウム又は金属ルテニウムのOER活性を阻害せず、かつ、酸化ルテニウム又は金属ルテニウムの耐久性を向上させることが可能なものである限りにおいて、特に限定されない。
[1.2. shell]
The shell includes titania (TiO 2 ) or a composite oxide of titanium and ruthenium ((Ti, Ru) O 2 ). As will be described later, the shell is formed by forming a titania precursor around the core and firing it. At this time, ruthenium oxide or metal ruthenium on the core surface may react with the titania precursor to form a composite oxide. The shell is preferably composed essentially of titania or a complex oxide, but may contain inevitable impurities.
The shell covering the surface of the core is not particularly limited as long as it does not inhibit the OER activity of ruthenium oxide or metal ruthenium and can improve the durability of ruthenium oxide or metal ruthenium.

[1.3. チタニア被覆率]
「チタニア被覆率」とは、シェルに含まれるチタンがすべてチタニア(TiO2)となっており、チタニアがコアの表面を均一に被覆していると仮定した時の、チタニア原子層の層数をいう。「1ML」は、1原子層のチタニアを表す。「1ML」は、具体的には、TiO2の表面原子数密度(単位面積当たりのTiとOの数の合計)が1.5×1015cm-2である時と定義される。
[1.3. Titania coverage]
“Titania coverage” refers to the number of titania atomic layers when it is assumed that the titanium contained in the shell is all titania (TiO 2 ) and the titania covers the surface of the core uniformly. Say. “1ML” represents one atomic layer of titania. “1ML” is specifically defined when the surface atom number density of TiO 2 (the total number of Ti and O per unit area) is 1.5 × 10 15 cm −2 .

チタニア被覆率が小さくなるほど、酸素生成触媒の耐久性が低下する。酸化イリジウムと同等以上の耐久性を得るためには、チタニア被覆率は、0.05ML以上が好ましい。チタニア被覆率は、好ましくは、0.1ML以上である。
一方、チタニア自体は、OER活性がない。そのため、チタニア被覆率が大きくなりすぎると、コア表面への水の拡散及びコア表面からの酸素の拡散の抵抗が増大するために、OER活性が低下する。従って、チタニア被覆率は、5.0ML以下が好ましい。チタニア被覆率は、好ましくは、0.5ML以下である。
As the titania coverage decreases, the durability of the oxygen generating catalyst decreases. In order to obtain durability equal to or higher than that of iridium oxide, the titania coverage is preferably 0.05 ML or higher. The titania coverage is preferably 0.1 ML or more.
On the other hand, titania itself has no OER activity. Therefore, when the titania coverage is too high, the resistance of the diffusion of water to the core surface and the diffusion of oxygen from the core surface increases, and thus the OER activity decreases. Therefore, the titania coverage is preferably 5.0 ML or less. The titania coverage is preferably 0.5 ML or less.

[1.4. 用途]
本発明に係る酸素生成触媒は、
(a)水電解装置の酸素極に用いられる触媒、
(b)燃料電池のアノードに添加される触媒(燃料欠セルのアノードで生ずるカーボン材料の酸化を抑制するための触媒)、
などに用いることができる。
[1.4. Application]
The oxygen generation catalyst according to the present invention is:
(A) a catalyst used for an oxygen electrode of a water electrolysis device,
(B) a catalyst added to the anode of the fuel cell (a catalyst for suppressing the oxidation of the carbon material generated at the anode of the fuel-deficient cell),
Can be used.

[2. 酸素生成触媒の製造方法]
本発明に係る酸素生成触媒は、いわゆるゾルゲル法により作製することができる。
[2. Method for producing oxygen-generating catalyst]
The oxygen generation catalyst according to the present invention can be produced by a so-called sol-gel method.

[2.1. 分散液の作製]
まず、少なくとも表面に酸化ルテニウム又は金属ルテニウムを含むコア粒子を溶媒に分散させ、分散液を得る。溶媒は、
(a)コア粒子を分散させることができ、かつ、
(b)コア粒子の表面がチタニア前駆体で被覆されるように、Ti源(アルコキシド)の加水分解及び縮重合を行うことができるもの、
であればよい。
溶媒としては、例えば、アルコール、水、及び、それらの混合溶媒などがある。
分散液中のコア粒子の濃度は、コア粒子を均一に分散させることが可能なものである限りにおいて、特に限定されない。
[2.1. Preparation of dispersion]
First, core particles containing at least ruthenium oxide or metal ruthenium on the surface are dispersed in a solvent to obtain a dispersion. The solvent is
(A) the core particles can be dispersed, and
(B) A material capable of performing hydrolysis and polycondensation of a Ti source (alkoxide) so that the surface of the core particle is coated with a titania precursor,
If it is.
Examples of the solvent include alcohol, water, and a mixed solvent thereof.
The concentration of the core particles in the dispersion is not particularly limited as long as the core particles can be uniformly dispersed.

[2.2. Ti源の添加]
次に、分散液にTi源を添加する。分散液にTi源を添加すると、分散液中においてTi源の加水分解及び縮重合が進行する。その結果、コア粒子の表面がチタニア前駆体で被覆された前駆体粒子が得られる。
Ti源としては、例えば、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチルなどがある。
分散液に添加するTi源の量は、目的とする組成に応じて、最適な量を選択する。
[2.2. Addition of Ti source]
Next, a Ti source is added to the dispersion. When a Ti source is added to the dispersion, hydrolysis and condensation polymerization of the Ti source proceed in the dispersion. As a result, precursor particles in which the surfaces of the core particles are coated with a titania precursor are obtained.
Examples of the Ti source include tetraisopropyl orthotitanate and tetrabutyl orthotitanate.
The amount of Ti source to be added to the dispersion is selected in accordance with the target composition.

[2.3. 熱処理]
分散液から前駆体粒子を回収し、乾燥させた後、前駆体粒子を熱処理する。これにより、コア粒子の表面がチタニア、又は、チタンとルテニウムとの複合酸化物からなるシェルで被覆された酸素生成触媒が得られる。
熱処理は、OH基が残留しているチタニア前駆体を脱水・結晶化させるために行われる。熱処理条件は、チタニア前駆体を脱水・結晶化させることが可能なものである限りにおいて、特に限定されない。通常、大気中において、300℃〜800℃で、0.5時間〜3時間程度、熱処理するのが好ましい。
[2.3. Heat treatment]
After the precursor particles are recovered from the dispersion and dried, the precursor particles are heat-treated. Thereby, the oxygen production | generation catalyst by which the surface of the core particle was coat | covered with the shell which consists of titania or the composite oxide of titanium and ruthenium is obtained.
The heat treatment is performed to dehydrate and crystallize the titania precursor in which OH groups remain. The heat treatment conditions are not particularly limited as long as the titania precursor can be dehydrated and crystallized. Usually, it is preferably heat-treated at 300 to 800 ° C. for about 0.5 to 3 hours in the air.

[3. 作用]
酸化ルテニウム及び金属ルテニウムは、酸化イリジウムに比べて低コストであり、初期活性も高い。しかし、酸化ルテニウム及び金属ルテニウムはOER活性の耐久性が低い。
これに対し、本発明に係る酸素生成触媒は、酸化イリジウムを用いた従来の触媒と同等以上の初期活性及び耐久性を示す。これは、酸化ルテニウム又は金属ルテニウムを含むコアの表面を、チタニア、又は、チタンとルテニウムとの複合酸化物を含むシェルで被覆することによって、触媒劣化の起点となる触媒表面が保護されるためと考えられる。さらに、本発明に係る酸素生成触媒は、酸化ルテニウム又は金属ルテニウムを主成分とするので、酸化イリジウムを主成分とする従来の触媒よりも低コストである。
[3. Action]
Ruthenium oxide and metal ruthenium are lower in cost and higher in initial activity than iridium oxide. However, ruthenium oxide and metal ruthenium have low durability of OER activity.
In contrast, the oxygen generation catalyst according to the present invention exhibits an initial activity and durability equal to or higher than those of conventional catalysts using iridium oxide. This is because the surface of the core containing ruthenium oxide or metal ruthenium is covered with titania or a shell containing a composite oxide of titanium and ruthenium, thereby protecting the catalyst surface that is the starting point of catalyst deterioration. Conceivable. Furthermore, since the oxygen generation catalyst according to the present invention is mainly composed of ruthenium oxide or metal ruthenium, the cost is lower than that of conventional catalysts mainly composed of iridium oxide.

(実施例1、比較例1〜3)
[1. 試料の作製]
[1.1. 実施例1]
市販の酸化ルテニウム触媒0.3gを溶媒(イソプロパノール80%、水20%)50mLに分散させた。これに、オルトチタン酸テトライソプロピル(TTIP)を0.6mL加え、室温で4時間撹拌した。撹拌後、分散液を濾過し、触媒前駆体を回収・乾燥した。さらに、触媒前駆体を空気雰囲気下において、400℃で1時間熱処理し、酸素生成触媒を得た。
なお、実施例1のTTIP添加量は、酸化ルテニウムの表面にチタニアの原子層が5層形成される量に相当する。以下、ML(Mono Layer)という単位を使用して、実施例1を「5ML」とも表記する。
(Example 1, Comparative Examples 1-3)
[1. Preparation of sample]
[1.1. Example 1]
A commercially available ruthenium oxide catalyst (0.3 g) was dispersed in 50 mL of a solvent (isopropanol 80%, water 20%). To this, 0.6 mL of tetraisopropyl orthotitanate (TTIP) was added and stirred at room temperature for 4 hours. After stirring, the dispersion was filtered, and the catalyst precursor was recovered and dried. Further, the catalyst precursor was heat-treated at 400 ° C. for 1 hour in an air atmosphere to obtain an oxygen generation catalyst.
The amount of TTIP added in Example 1 corresponds to the amount of five titania atomic layers formed on the surface of ruthenium oxide. Hereinafter, Example 1 is also expressed as “5ML” using a unit of ML (Mono Layer).

[1.2. 比較例1〜3]
市販の酸化ルテニウム触媒をチタニアで修飾せずに、そのまま空気雰囲気下において、400℃で1時間熱処理した(比較例1)。
さらに、市販の酸化ルテニウム触媒であって、熱処理を行わなかったもの(比較例2)、及び市販の酸化イリジウム触媒(比較例3)をそのまま試験に供した。
[1.2. Comparative Examples 1-3]
A commercially available ruthenium oxide catalyst was heat-treated at 400 ° C. for 1 hour in an air atmosphere without being modified with titania (Comparative Example 1).
Further, a commercially available ruthenium oxide catalyst that was not subjected to heat treatment (Comparative Example 2) and a commercially available iridium oxide catalyst (Comparative Example 3) were subjected to the test as they were.

[2. 試験方法]
[2.1. TEM観察及びEDSマッピング]
実施例1及び比較例1〜3の触媒のTEM観察及びEDXマッピングを行った。
[2. Test method]
[2.1. TEM observation and EDS mapping]
TEM observation and EDX mapping of the catalyst of Example 1 and Comparative Examples 1 to 3 were performed.

[2.2. 活性及び耐久性評価]
実施例1及び比較例1〜3の触媒を、それぞれ、金ディスクに塗布して乾燥させた。これを作用極に用いて、電気化学測定を行った。なお、触媒担持量は、すべて15μgcm-2に統一した。なお、実施例1について、「触媒担持量」とは、チタニアを除いた量を表す。参照電極は可逆水素電極、対極は白金、電解液は過塩素酸(0.1M)とした。
測定手順は、以下の通りである。
(a)まず、1.0V⇔1.6Vの電位走査を1サイクル行った。
(b)次に、1.0V⇔1.7Vの電位走査を1サイクル行った。
(c)さらに、0.07V⇔1.8Vの電位走査を20〜50サイクル行った。
[2.2. Activity and durability evaluation]
The catalysts of Example 1 and Comparative Examples 1 to 3 were each applied to a gold disk and dried. Using this as a working electrode, electrochemical measurement was performed. The catalyst loading was unified to 15 μgcm −2 . For Example 1, “catalyst loading” represents the amount excluding titania. The reference electrode was a reversible hydrogen electrode, the counter electrode was platinum, and the electrolyte was perchloric acid (0.1 M).
The measurement procedure is as follows.
(A) First, a potential scan of 1.0 V to 1.6 V was performed for one cycle.
(B) Next, a potential scan of 1.0 V to 1.7 V was performed for one cycle.
(C) Further, a potential scan of 0.07 V to 1.8 V was performed for 20 to 50 cycles.

[3. 結果]
[3.1. TEM観察及びEDSマッピング]
図1に、実施例1及び比較例1で得られた酸素生成触媒のTEM像を示す。全体的に、比較例1より実施例1の粒子の方が丸みを帯びているように見える。また、実施例1のTEM像を詳細に観察すると、酸化ルテニウム粒子(図1中、破線で囲った領域)をアモルファス状の物質(図1中、破線で囲った領域)が覆っているように見える。
[3. result]
[3.1. TEM observation and EDS mapping]
In FIG. 1, the TEM image of the oxygen production | generation catalyst obtained in Example 1 and Comparative Example 1 is shown. Overall, the particles of Example 1 appear to be rounder than Comparative Example 1. Further, when the TEM image of Example 1 is observed in detail, the ruthenium oxide particles (the region surrounded by the broken line in FIG. 1) are covered with the amorphous substance (the region surrounded by the broken line in FIG. 1). appear.

図2に、実施例1で得られた酸素生成触媒のEDXマッピングを示す。RuとTiの分布は、ほぼ重なっており、酸化ルテニウム粒子の表面全体をチタニアが覆っていると考えられる。   FIG. 2 shows an EDX mapping of the oxygen generation catalyst obtained in Example 1. The distributions of Ru and Ti are almost overlapped, and it is considered that titania covers the entire surface of the ruthenium oxide particles.

[3.2. 活性及び耐久性評価]
[3.2.1. 初期活性]
図3に、実施例1及び比較例1〜3で得られた酸素生成触媒の初期の水電解活性(測定手順(a)で得られた水電解活性)を示す。初期活性は、未処理酸化ルテニウム(RuO2、比較例2)>未修飾熱処理酸化ルテニウム(HT−RuO2、比較例1)>チタニア修飾酸化ルテニウム(HT−TiO2−RuO2、実施例1)>IrO2(比較例3)の順となった。図3より、HT−TiO2−RuO2は、RuO2及びHT−RuO2より活性は低いが、IrO2よりは活性が高いことがわかる。
[3.2. Activity and durability evaluation]
[3.2.1. Initial activity]
In FIG. 3, the initial water electrolysis activity (water electrolysis activity obtained by the measurement procedure (a)) of the oxygen generation catalyst obtained in Example 1 and Comparative Examples 1 to 3 is shown. Initial activity is as follows: untreated ruthenium oxide (RuO 2 , Comparative Example 2)> unmodified heat-treated ruthenium oxide (HT-RuO 2 , Comparative Example 1)> titania modified ruthenium oxide (HT-TiO 2 —RuO 2 , Example 1) The order was> IrO 2 (Comparative Example 3). FIG. 3 shows that HT—TiO 2 —RuO 2 is less active than RuO 2 and HT—RuO 2, but more active than IrO 2 .

[3.2.2. 耐久性]
図4に、実施例1及び比較例1〜3で得られた酸素生成触媒の電位サイクル(0.07V⇔1.8V)中の活性変化を示す。図4中、縦軸の「電位@0.5mAμg-1」は、0.07Vから電位を増大させた場合において、電流密度が0.5mAμg-1に到達した時の電位を表す。「電位@0.5mAμg-1」が小さくなるほど、OER活性が高いことを表す。また、図4中の1サイクル目の値は、測定手順(a)、(b)を行った後、測定手順(c)を行った際の1サイクル目において、電流密度が0.5mAμg-1に到達した時の電位を表す
[3.2.2. durability]
FIG. 4 shows the activity change during the potential cycle (0.07 V⇔1.8 V) of the oxygen generation catalysts obtained in Example 1 and Comparative Examples 1 to 3. In FIG. 4, “potential @ 0.5 mA μg −1 ” on the vertical axis represents the potential when the current density reaches 0.5 mA μg −1 when the potential is increased from 0.07V. It represents that OER activity is so high that "electric potential @ 0.5mAmicrogram < -1 >" becomes small. Further, the value of the first cycle in FIG. 4 indicates that the current density is 0.5 mA μg −1 in the first cycle when the measurement procedure (c) is performed after the measurement procedures (a) and (b). Represents the potential at which

図3では、HT−RuO2(比較例1)の活性は、HT−TiO2−RuO2(実施例1)のそれより大きかった。しかし、図4の1サイクル目での実施例1の活性は、比較例1とほぼ同等であった。これは、測定手順(a)+測定手順(b)で既に劣化が進行し、測定手順(c)の開始時点で両者の触媒活性が同等となったためである。図4より、HT−RuO2(比較例1)及びRuO2(比較例2)はサイクル中に活性が低下(触媒が劣化)しているのに対し、実施例1はほとんど活性が低下していないことが分かる。 In FIG. 3, the activity of HT-RuO 2 (Comparative Example 1) was greater than that of HT-TiO 2 —RuO 2 (Example 1). However, the activity of Example 1 in the first cycle of FIG. 4 was almost equivalent to that of Comparative Example 1. This is because the deterioration has already progressed in the measurement procedure (a) + measurement procedure (b), and the catalytic activities of both were equal at the start of the measurement procedure (c). From FIG. 4, HT-RuO 2 (Comparative Example 1) and RuO 2 (Comparative Example 2) show a decrease in activity during the cycle (catalyst deterioration), while Example 1 shows a decrease in activity. I understand that there is no.

図5に、実施例1(図5(A))及び比較例1(図5(B))で得られた酸素生成触媒のI−V特性の変化を示す。図5より、酸化ルテニウムをチタニアで修飾すると、電位サイクルを付加しても活性が低下しないことが分かる。初期活性は比較例1>実施例1であるが、サイクル中に両者の活性は逆転する。以上から、酸化ルテニウムの表面をチタニアで修飾することによって、高い活性と高い耐久性とを有するOER触媒が得られることが分かった。   FIG. 5 shows changes in the IV characteristics of the oxygen generation catalysts obtained in Example 1 (FIG. 5A) and Comparative Example 1 (FIG. 5B). FIG. 5 shows that when ruthenium oxide is modified with titania, the activity does not decrease even when a potential cycle is added. The initial activity is Comparative Example 1> Example 1, but both activities are reversed during the cycle. From the above, it was found that an OER catalyst having high activity and high durability can be obtained by modifying the surface of ruthenium oxide with titania.

(実施例2〜5)
[1. 試料の作製]
TTIP添加量を0.06mL(0.5ML相当、実施例2)、0.03mL(0.25ML相当、実施例3)、0.012mL(0.1ML相当、実施例4)、又は、0.006mL(0.05ML相当、実施例5)とした以外は、実施例1と同様にして、酸素生成触媒を作製した。
(Examples 2 to 5)
[1. Preparation of sample]
The amount of TTIP added was 0.06 mL (corresponding to 0.5 ML, Example 2), 0.03 mL (corresponding to 0.25 ML, Example 3), 0.012 mL (corresponding to 0.1 ML, Example 4), or An oxygen generation catalyst was produced in the same manner as in Example 1, except that the amount was 006 mL (equivalent to 0.05 ML, Example 5).

[2. 試験方法]
実施例1と同様にして、活性及び耐久性を評価した。得られた電流値は、Ruの重量で規格化した。
[2. Test method]
The activity and durability were evaluated in the same manner as in Example 1. The obtained current value was normalized by the weight of Ru.

[3. 結果]
[3.1. 活性変化]
図6に、実施例2〜5で得られた酸素生成触媒の電位サイクル(0.07V⇔1.8V)中の活性変化を示す。なお、図6には、実施例1及び比較例1〜2の結果も併せて示した。図6中、縦軸は0.5mAμg-1に到達する電位を表し、縦軸の下側に向かうほどOER活性が高いことを示す。
[3. result]
[3.1. Activity change]
FIG. 6 shows a change in activity during the potential cycle (0.07 V⇔1.8 V) of the oxygen generation catalyst obtained in Examples 2 to 5. In addition, in FIG. 6, the result of Example 1 and Comparative Examples 1-2 was also shown collectively. In FIG. 6, the vertical axis represents the potential reaching 0.5 mA μg −1, and the lower the vertical axis, the higher the OER activity.

比較例1(HT−RuO2)及び比較例2(市販のRuO2)は、サイクル中に活性が低下し、触媒の劣化が認められた。
一方、実施例1(5ML)は、ほとんど活性が低下しなかった。さらに、被覆率を減らした実施例2〜5(0.5〜0.05ML)では、1サイクルから20サイクルにかけて劣化が見られた。しかし、20〜50サイクルにかけてはほとんど劣化がなく、50サイクル後でも比較例1よりも活性が高かった。
In Comparative Example 1 (HT-RuO 2 ) and Comparative Example 2 (commercially available RuO 2 ), the activity decreased during the cycle, and catalyst deterioration was observed.
On the other hand, the activity of Example 1 (5ML) hardly decreased. Furthermore, in Examples 2 to 5 (0.5 to 0.05 ML) in which the coverage was reduced, deterioration was observed from 1 cycle to 20 cycles. However, there was almost no deterioration over 20 to 50 cycles, and the activity was higher than that of Comparative Example 1 even after 50 cycles.

[3.2. 活性変化の被覆率依存性]
図7に、実施例2〜5で得られた酸素生成触媒の初期活性と耐久試験後の活性のチタニア被覆率依存性を示す。なお、図7には、実施例1及び比較例1〜2の結果も併せて示した。図7中、縦軸は、0.5mAμg-1に到達する電位を表し、縦軸の下側に向かうほどOER活性が高いことを示す。また、図7中、黒丸は1サイクル目の電位(初期活性)を表し、白丸は50サイクル目の電位(耐久試験後の活性)を表す。さらに、図7中、実線は比較例1又は2の1サイクル目の電位(初期活性)を表し、破線は50サイクル目の電位(耐久試験後の活性)を表す。
[3.2. Coverage dependence of activity change]
FIG. 7 shows the titania coverage dependency of the initial activity of the oxygen generation catalyst obtained in Examples 2 to 5 and the activity after the durability test. In addition, in FIG. 7, the result of Example 1 and Comparative Examples 1-2 was also shown collectively. In FIG. 7, the vertical axis represents the potential reaching 0.5 mA μg −1 , and indicates that the OER activity is higher toward the lower side of the vertical axis. In FIG. 7, black circles represent the first cycle potential (initial activity), and white circles represent the 50th cycle potential (endurance test activity). Further, in FIG. 7, the solid line represents the first cycle potential (initial activity) of Comparative Example 1 or 2, and the broken line represents the 50th cycle potential (endurance test activity).

図7より、実施例1〜5の初期活性は、比較例1〜2のそれより高いことが分かる。耐久試験後の活性も同様であった。さらに、被覆率依存性については、初期活性及び耐久試験後の活性のいずれも、0.25MLで極大となった。   From FIG. 7, it can be seen that the initial activities of Examples 1-5 are higher than those of Comparative Examples 1-2. The activity after the durability test was the same. Furthermore, regarding the coverage dependency, both the initial activity and the activity after the durability test were maximized at 0.25 ML.

[3.3. 電位の上昇幅]
図8に、実施例2〜5で得られた酸素生成触媒に電位サイクル(0.07V⇔1.8V)を加えた時の、電位の上昇幅を示す。なお、図8には、実施例1及び比較例1〜2の結果も併せて示した。
ここで、「電位の上昇幅」とは、1サイクル目とNサイクル目の電位差をいう。図8は、図6を1サイクル目からの電位の上昇幅として規格化したグラフであり、1サイクル目からの劣化の進行の度合いを表す。図8は、縦軸の上側に向かうほど、劣化が進んでいることを示す。
[3.3. Potential rise]
FIG. 8 shows the increase in potential when a potential cycle (0.07 V⇔1.8 V) is applied to the oxygen generation catalysts obtained in Examples 2 to 5. In addition, in FIG. 8, the result of Example 1 and Comparative Examples 1-2 was also shown collectively.
Here, the “potential increase width” means a potential difference between the first cycle and the Nth cycle. FIG. 8 is a graph obtained by normalizing FIG. 6 as the potential increase from the first cycle, and shows the degree of progress of deterioration from the first cycle. FIG. 8 shows that the deterioration progresses toward the upper side of the vertical axis.

図8より、実施例1〜5の劣化の程度は、比較例1〜2に比べて小さいことが分かる。さらに、図7及び図8より、実施例1〜5は、比較例1〜2に比べてOER活性そのものが高いことに加えて、劣化も進行しにくいことが分かる。   FIG. 8 shows that the degree of deterioration in Examples 1 to 5 is smaller than that in Comparative Examples 1 and 2. Furthermore, it can be seen from FIGS. 7 and 8 that in Examples 1 to 5, the OER activity itself is higher than that of Comparative Examples 1 and 2, and deterioration is less likely to proceed.

[3.4. 電位の上昇幅のチタニア被覆率依存性]
図9に、実施例2〜5で得られた酸素生成触媒に電位サイクル(0.07V⇔1.8V)を加えた時の、電位の上昇幅のチタニア被覆率依存性を示す。なお、図9には、実施例1及び比較例1の結果も併せて示した。図9中、黒丸は1サイクル目と20サイクル目の電位差を表し、白丸は1サイクル目と50サイクル目の電位差を表す。また、図9は、縦軸の下側に向かうほど、劣化抑制効果が大きいことを示す。
[3.4. Dependence of potential rise on titania coverage]
FIG. 9 shows the titania coverage dependency of the potential increase width when a potential cycle (0.07 V⇔1.8 V) is applied to the oxygen generation catalysts obtained in Examples 2 to 5. In FIG. 9, the results of Example 1 and Comparative Example 1 are also shown. In FIG. 9, black circles represent the potential difference between the first cycle and the 20th cycle, and white circles represent the potential difference between the first cycle and the 50th cycle. Moreover, FIG. 9 shows that a deterioration inhibitory effect is so large that it goes to the downward side of a vertical axis | shaft.

図9より、チタニア被覆率が大きくなるほど、劣化の抑制効果が大きいことが分かる。なお、5MLでは、20サイクル目の電位差と50サイクル目の電位差に差がなかったため、両者は重なって表示されている。   From FIG. 9, it can be seen that the greater the titania coverage, the greater the effect of suppressing deterioration. In 5ML, there is no difference between the potential difference at the 20th cycle and the potential difference at the 50th cycle.

[3.5. まとめ]
以上より、ルテニウム系触媒の表面をチタニアで被覆することによる効果は、以下のようにまとめられる。
(1)実施例1〜5の耐久試験後(0.07V⇔1.8Vサイクルを50回行った後)のOER活性は、比較例1より高い(図6参照)。
(2)実施例1〜5は、比較例1より初期活性及び耐久試験後の活性がともに高い。また、初期活性及び耐久試験後の活性は、いずれも0.25MLで極大となる(図7参照)。
(3)実施例1〜5のサイクル数に対する劣化の程度は、比較例1〜2よりも小さい(図8参照)。また、劣化の程度は、被覆率が大きくなるほど,小さくなる(図9参照)。
[3.5. Summary]
From the above, the effects of coating the surface of the ruthenium-based catalyst with titania can be summarized as follows.
(1) The OER activity after the durability test of Examples 1 to 5 (after 50 cycles of 0.07V⇔1.8V cycle) is higher than that of Comparative Example 1 (see FIG. 6).
(2) In Examples 1 to 5, both the initial activity and the activity after the durability test are higher than those of Comparative Example 1. In addition, both the initial activity and the activity after the durability test reach a maximum at 0.25 ML (see FIG. 7).
(3) The degree of deterioration with respect to the number of cycles in Examples 1 to 5 is smaller than those in Comparative Examples 1 and 2 (see FIG. 8). Further, the degree of deterioration decreases as the coverage increases (see FIG. 9).

以上から、本発明のようにルテニウム系触媒の表面を、0.05ML以上5ML以下のチタニアで被覆することによって、高い活性と耐久性とを有するOER触媒を得ることが可能となった。耐久性はチタニア被覆率が高くなるほど高くなったが、活性の絶対値は0.25ML付近で最も高くなった。実験したすべての被覆率(0.05ML以上5ML以下)で耐久性と活性は比較例1よりも高くなったが、最適な被覆率は0.25ML付近にあると考えられる。   From the above, it became possible to obtain an OER catalyst having high activity and durability by coating the surface of the ruthenium-based catalyst with 0.05 to 5 ML of titania as in the present invention. Durability increased as the titania coverage increased, but the absolute value of activity was highest near 0.25 ML. Durability and activity were higher than those of Comparative Example 1 at all the covered ratios tested (0.05 ML or more and 5 ML or less), but the optimum coverage is considered to be around 0.25 ML.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る酸素生成触媒は、水電解装置の酸素極に用いられる触媒、燃料電池のアノードに添加されるカーボン劣化抑制触媒などに用いることができる。   The oxygen generation catalyst according to the present invention can be used as a catalyst used for an oxygen electrode of a water electrolysis apparatus, a carbon deterioration suppressing catalyst added to an anode of a fuel cell, and the like.

Claims (4)

コアと
前記コアの表面を被覆するシェルと
を備え、
前記コアは、少なくとも表面に酸化ルテニウム又は金属ルテニウムを含み、
前記シェルは、チタニア、又は、チタンとルテニウムとの複合酸化物を含む
酸素生成触媒。
A core and a shell covering the surface of the core;
The core includes ruthenium oxide or metal ruthenium at least on the surface,
The shell is an oxygen generation catalyst containing titania or a composite oxide of titanium and ruthenium.
チタニア被覆率は、0.05ML以上5.0ML以下である請求項1に記載の酸素生成触媒。
但し、「チタニア被覆率」とは、前記シェルに含まれる前記チタンがすべて前記チタニアとなっており、前記チタニアが前記コアの表面を均一に被覆していると仮定した時の、チタニア原子層の層数をいう。
The oxygen-producing catalyst according to claim 1, wherein the titania coverage is 0.05 ML or more and 5.0 ML or less.
However, “titania coverage” means that all of the titanium contained in the shell is the titania, and the titania atomic layer is assumed to be uniformly coated on the surface of the core. The number of layers.
水電解装置の酸素極に用いられる請求項1又は2に記載の酸素生成触媒。   The oxygen generation catalyst according to claim 1 or 2, which is used for an oxygen electrode of a water electrolysis apparatus. 燃料電池のアノードに添加される請求項1又は2に記載の酸素生成触媒。   The oxygen generation catalyst according to claim 1 or 2, which is added to an anode of a fuel cell.
JP2018242435A 2018-02-07 2018-12-26 Oxygen generation catalyst Active JP6763009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/262,197 US10879538B2 (en) 2018-02-07 2019-01-30 Oxygen evolution catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018019730 2018-02-07
JP2018019730 2018-02-07

Publications (2)

Publication Number Publication Date
JP2019155355A true JP2019155355A (en) 2019-09-19
JP6763009B2 JP6763009B2 (en) 2020-09-30

Family

ID=67992061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018242435A Active JP6763009B2 (en) 2018-02-07 2018-12-26 Oxygen generation catalyst

Country Status (1)

Country Link
JP (1) JP6763009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046784A (en) * 2021-03-17 2021-06-29 宁波材料所杭州湾研究院 Oxygen-rich defect IrO2-TiO2Solid solution material, its preparation method and application
JP7284689B2 (en) 2019-11-01 2023-05-31 株式会社豊田中央研究所 Catalyst layer and polymer electrolyte fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501823A (en) * 1981-10-28 1983-10-27 エルテッチ・システムス・コ−ポレ−ション Electrolytic cell with narrow gap
JP2000277124A (en) * 1999-03-23 2000-10-06 Ion Kogaku Kenkyusho:Kk Fuel cell and manufacture of electrode of fuel cell
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2006261052A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of electrode catalyst powder for solid polymer fuel cell, and electrode catalyst powder for solid polymer fuel cell
JP2008004453A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2017059466A (en) * 2015-09-18 2017-03-23 日本電信電話株式会社 Lithium air secondary battery, and manufacturing method of air electrode for lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58501823A (en) * 1981-10-28 1983-10-27 エルテッチ・システムス・コ−ポレ−ション Electrolytic cell with narrow gap
JP2000277124A (en) * 1999-03-23 2000-10-06 Ion Kogaku Kenkyusho:Kk Fuel cell and manufacture of electrode of fuel cell
JP2003508877A (en) * 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2006261052A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Manufacturing method of electrode catalyst powder for solid polymer fuel cell, and electrode catalyst powder for solid polymer fuel cell
JP2008004453A (en) * 2006-06-23 2008-01-10 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2017059466A (en) * 2015-09-18 2017-03-23 日本電信電話株式会社 Lithium air secondary battery, and manufacturing method of air electrode for lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOSEVIC, M. ET AL., ADVANCED POWDER TECHNOLOGY, vol. 28, JPN6020012000, 28 July 2016 (2016-07-28), NL, pages 43 - 49, ISSN: 0004243865 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284689B2 (en) 2019-11-01 2023-05-31 株式会社豊田中央研究所 Catalyst layer and polymer electrolyte fuel cell
CN113046784A (en) * 2021-03-17 2021-06-29 宁波材料所杭州湾研究院 Oxygen-rich defect IrO2-TiO2Solid solution material, its preparation method and application
CN113046784B (en) * 2021-03-17 2022-06-14 宁波材料所杭州湾研究院 Oxygen-rich defect IrO2-TiO2Solid solution material, its preparation method and application

Also Published As

Publication number Publication date
JP6763009B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP5675255B2 (en) Method for producing fuel cell catalyst
Oh et al. Electrochemical catalyst–support effects and their stabilizing role for IrO x nanoparticle catalysts during the oxygen evolution reaction
Huang et al. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO 2 nanocoating catalyst support
Sasaki et al. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction
JP6001793B2 (en) Method for producing fuel cell catalyst
JP5798670B2 (en) Method for producing fuel cell catalyst
JP7316436B2 (en) Catalyst for oxygen evolution reaction during water electrolysis
US20090065738A1 (en) Electrocatalyst Support and Catalyst Supported Thereon
JP6763009B2 (en) Oxygen generation catalyst
JP7183158B2 (en) Supported catalyst and method for producing the same
JP2013013878A (en) Catalyst fine particle, and method for producing the same
JP5365231B2 (en) Method for producing conductive oxide carrier
JP2024500218A (en) Iridium-containing catalyst for water electrolysis
JP2018058065A (en) Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
Hajar et al. Investigation of heterogeneous catalysts by an electrochemical method: ceria and titania-supported iridium nanoparticles for ethylene oxidation
US10879538B2 (en) Oxygen evolution catalyst
Takimoto et al. Lateral Size Effects of Two-dimensional IrO2 Nanosheets towards the Oxygen Evolution Reaction Activity
US20140038811A1 (en) Metal oxide-platinum compound catalyst and method for producing same
JP6156822B2 (en) Photocatalyst, water splitting electrode, and method for producing hydrogen and / or oxygen
WO2011061941A1 (en) (metal oxide)-platinum composite catalyst, and process for production thereof
CA3202762A1 (en) Coated membrane for water electrolysis
JP2020028815A (en) Metal-supported catalyst
JP2007117835A (en) Tabular oxide particle-deposited carbon particle, its manufacturing method and method for manufacturing noble metal-deposited tabular oxide particle
WO2023068086A1 (en) Electrode catalyst for hydrogen fuel cell anodes
JP2023548770A (en) Oxygen evolution catalysts, their manufacture and use, membrane electrode assemblies, and fuel cells or electrolytic cells

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6763009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250